Merge tag 'powerpc-5.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 /*
156  * swapon tell device that all the old swap contents can be discarded,
157  * to allow the swap device to optimize its wear-levelling.
158  */
159 static int discard_swap(struct swap_info_struct *si)
160 {
161         struct swap_extent *se;
162         sector_t start_block;
163         sector_t nr_blocks;
164         int err = 0;
165
166         /* Do not discard the swap header page! */
167         se = &si->first_swap_extent;
168         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
169         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
170         if (nr_blocks) {
171                 err = blkdev_issue_discard(si->bdev, start_block,
172                                 nr_blocks, GFP_KERNEL, 0);
173                 if (err)
174                         return err;
175                 cond_resched();
176         }
177
178         list_for_each_entry(se, &si->first_swap_extent.list, list) {
179                 start_block = se->start_block << (PAGE_SHIFT - 9);
180                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
181
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         break;
186
187                 cond_resched();
188         }
189         return err;             /* That will often be -EOPNOTSUPP */
190 }
191
192 /*
193  * swap allocation tell device that a cluster of swap can now be discarded,
194  * to allow the swap device to optimize its wear-levelling.
195  */
196 static void discard_swap_cluster(struct swap_info_struct *si,
197                                  pgoff_t start_page, pgoff_t nr_pages)
198 {
199         struct swap_extent *se = si->curr_swap_extent;
200         int found_extent = 0;
201
202         while (nr_pages) {
203                 if (se->start_page <= start_page &&
204                     start_page < se->start_page + se->nr_pages) {
205                         pgoff_t offset = start_page - se->start_page;
206                         sector_t start_block = se->start_block + offset;
207                         sector_t nr_blocks = se->nr_pages - offset;
208
209                         if (nr_blocks > nr_pages)
210                                 nr_blocks = nr_pages;
211                         start_page += nr_blocks;
212                         nr_pages -= nr_blocks;
213
214                         if (!found_extent++)
215                                 si->curr_swap_extent = se;
216
217                         start_block <<= PAGE_SHIFT - 9;
218                         nr_blocks <<= PAGE_SHIFT - 9;
219                         if (blkdev_issue_discard(si->bdev, start_block,
220                                     nr_blocks, GFP_NOIO, 0))
221                                 break;
222                 }
223
224                 se = list_next_entry(se, list);
225         }
226 }
227
228 #ifdef CONFIG_THP_SWAP
229 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
230
231 #define swap_entry_size(size)   (size)
232 #else
233 #define SWAPFILE_CLUSTER        256
234
235 /*
236  * Define swap_entry_size() as constant to let compiler to optimize
237  * out some code if !CONFIG_THP_SWAP
238  */
239 #define swap_entry_size(size)   1
240 #endif
241 #define LATENCY_LIMIT           256
242
243 static inline void cluster_set_flag(struct swap_cluster_info *info,
244         unsigned int flag)
245 {
246         info->flags = flag;
247 }
248
249 static inline unsigned int cluster_count(struct swap_cluster_info *info)
250 {
251         return info->data;
252 }
253
254 static inline void cluster_set_count(struct swap_cluster_info *info,
255                                      unsigned int c)
256 {
257         info->data = c;
258 }
259
260 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
261                                          unsigned int c, unsigned int f)
262 {
263         info->flags = f;
264         info->data = c;
265 }
266
267 static inline unsigned int cluster_next(struct swap_cluster_info *info)
268 {
269         return info->data;
270 }
271
272 static inline void cluster_set_next(struct swap_cluster_info *info,
273                                     unsigned int n)
274 {
275         info->data = n;
276 }
277
278 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
279                                          unsigned int n, unsigned int f)
280 {
281         info->flags = f;
282         info->data = n;
283 }
284
285 static inline bool cluster_is_free(struct swap_cluster_info *info)
286 {
287         return info->flags & CLUSTER_FLAG_FREE;
288 }
289
290 static inline bool cluster_is_null(struct swap_cluster_info *info)
291 {
292         return info->flags & CLUSTER_FLAG_NEXT_NULL;
293 }
294
295 static inline void cluster_set_null(struct swap_cluster_info *info)
296 {
297         info->flags = CLUSTER_FLAG_NEXT_NULL;
298         info->data = 0;
299 }
300
301 static inline bool cluster_is_huge(struct swap_cluster_info *info)
302 {
303         if (IS_ENABLED(CONFIG_THP_SWAP))
304                 return info->flags & CLUSTER_FLAG_HUGE;
305         return false;
306 }
307
308 static inline void cluster_clear_huge(struct swap_cluster_info *info)
309 {
310         info->flags &= ~CLUSTER_FLAG_HUGE;
311 }
312
313 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
314                                                      unsigned long offset)
315 {
316         struct swap_cluster_info *ci;
317
318         ci = si->cluster_info;
319         if (ci) {
320                 ci += offset / SWAPFILE_CLUSTER;
321                 spin_lock(&ci->lock);
322         }
323         return ci;
324 }
325
326 static inline void unlock_cluster(struct swap_cluster_info *ci)
327 {
328         if (ci)
329                 spin_unlock(&ci->lock);
330 }
331
332 /*
333  * Determine the locking method in use for this device.  Return
334  * swap_cluster_info if SSD-style cluster-based locking is in place.
335  */
336 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
337                 struct swap_info_struct *si, unsigned long offset)
338 {
339         struct swap_cluster_info *ci;
340
341         /* Try to use fine-grained SSD-style locking if available: */
342         ci = lock_cluster(si, offset);
343         /* Otherwise, fall back to traditional, coarse locking: */
344         if (!ci)
345                 spin_lock(&si->lock);
346
347         return ci;
348 }
349
350 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
351                                                struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 unlock_cluster(ci);
355         else
356                 spin_unlock(&si->lock);
357 }
358
359 static inline bool cluster_list_empty(struct swap_cluster_list *list)
360 {
361         return cluster_is_null(&list->head);
362 }
363
364 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
365 {
366         return cluster_next(&list->head);
367 }
368
369 static void cluster_list_init(struct swap_cluster_list *list)
370 {
371         cluster_set_null(&list->head);
372         cluster_set_null(&list->tail);
373 }
374
375 static void cluster_list_add_tail(struct swap_cluster_list *list,
376                                   struct swap_cluster_info *ci,
377                                   unsigned int idx)
378 {
379         if (cluster_list_empty(list)) {
380                 cluster_set_next_flag(&list->head, idx, 0);
381                 cluster_set_next_flag(&list->tail, idx, 0);
382         } else {
383                 struct swap_cluster_info *ci_tail;
384                 unsigned int tail = cluster_next(&list->tail);
385
386                 /*
387                  * Nested cluster lock, but both cluster locks are
388                  * only acquired when we held swap_info_struct->lock
389                  */
390                 ci_tail = ci + tail;
391                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
392                 cluster_set_next(ci_tail, idx);
393                 spin_unlock(&ci_tail->lock);
394                 cluster_set_next_flag(&list->tail, idx, 0);
395         }
396 }
397
398 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
399                                            struct swap_cluster_info *ci)
400 {
401         unsigned int idx;
402
403         idx = cluster_next(&list->head);
404         if (cluster_next(&list->tail) == idx) {
405                 cluster_set_null(&list->head);
406                 cluster_set_null(&list->tail);
407         } else
408                 cluster_set_next_flag(&list->head,
409                                       cluster_next(&ci[idx]), 0);
410
411         return idx;
412 }
413
414 /* Add a cluster to discard list and schedule it to do discard */
415 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
416                 unsigned int idx)
417 {
418         /*
419          * If scan_swap_map() can't find a free cluster, it will check
420          * si->swap_map directly. To make sure the discarding cluster isn't
421          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
422          * will be cleared after discard
423          */
424         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
425                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
426
427         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
428
429         schedule_work(&si->discard_work);
430 }
431
432 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
433 {
434         struct swap_cluster_info *ci = si->cluster_info;
435
436         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
437         cluster_list_add_tail(&si->free_clusters, ci, idx);
438 }
439
440 /*
441  * Doing discard actually. After a cluster discard is finished, the cluster
442  * will be added to free cluster list. caller should hold si->lock.
443 */
444 static void swap_do_scheduled_discard(struct swap_info_struct *si)
445 {
446         struct swap_cluster_info *info, *ci;
447         unsigned int idx;
448
449         info = si->cluster_info;
450
451         while (!cluster_list_empty(&si->discard_clusters)) {
452                 idx = cluster_list_del_first(&si->discard_clusters, info);
453                 spin_unlock(&si->lock);
454
455                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
456                                 SWAPFILE_CLUSTER);
457
458                 spin_lock(&si->lock);
459                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
460                 __free_cluster(si, idx);
461                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                                 0, SWAPFILE_CLUSTER);
463                 unlock_cluster(ci);
464         }
465 }
466
467 static void swap_discard_work(struct work_struct *work)
468 {
469         struct swap_info_struct *si;
470
471         si = container_of(work, struct swap_info_struct, discard_work);
472
473         spin_lock(&si->lock);
474         swap_do_scheduled_discard(si);
475         spin_unlock(&si->lock);
476 }
477
478 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
479 {
480         struct swap_cluster_info *ci = si->cluster_info;
481
482         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
483         cluster_list_del_first(&si->free_clusters, ci);
484         cluster_set_count_flag(ci + idx, 0, 0);
485 }
486
487 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
488 {
489         struct swap_cluster_info *ci = si->cluster_info + idx;
490
491         VM_BUG_ON(cluster_count(ci) != 0);
492         /*
493          * If the swap is discardable, prepare discard the cluster
494          * instead of free it immediately. The cluster will be freed
495          * after discard.
496          */
497         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
498             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
499                 swap_cluster_schedule_discard(si, idx);
500                 return;
501         }
502
503         __free_cluster(si, idx);
504 }
505
506 /*
507  * The cluster corresponding to page_nr will be used. The cluster will be
508  * removed from free cluster list and its usage counter will be increased.
509  */
510 static void inc_cluster_info_page(struct swap_info_struct *p,
511         struct swap_cluster_info *cluster_info, unsigned long page_nr)
512 {
513         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
514
515         if (!cluster_info)
516                 return;
517         if (cluster_is_free(&cluster_info[idx]))
518                 alloc_cluster(p, idx);
519
520         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
521         cluster_set_count(&cluster_info[idx],
522                 cluster_count(&cluster_info[idx]) + 1);
523 }
524
525 /*
526  * The cluster corresponding to page_nr decreases one usage. If the usage
527  * counter becomes 0, which means no page in the cluster is in using, we can
528  * optionally discard the cluster and add it to free cluster list.
529  */
530 static void dec_cluster_info_page(struct swap_info_struct *p,
531         struct swap_cluster_info *cluster_info, unsigned long page_nr)
532 {
533         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
534
535         if (!cluster_info)
536                 return;
537
538         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
539         cluster_set_count(&cluster_info[idx],
540                 cluster_count(&cluster_info[idx]) - 1);
541
542         if (cluster_count(&cluster_info[idx]) == 0)
543                 free_cluster(p, idx);
544 }
545
546 /*
547  * It's possible scan_swap_map() uses a free cluster in the middle of free
548  * cluster list. Avoiding such abuse to avoid list corruption.
549  */
550 static bool
551 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
552         unsigned long offset)
553 {
554         struct percpu_cluster *percpu_cluster;
555         bool conflict;
556
557         offset /= SWAPFILE_CLUSTER;
558         conflict = !cluster_list_empty(&si->free_clusters) &&
559                 offset != cluster_list_first(&si->free_clusters) &&
560                 cluster_is_free(&si->cluster_info[offset]);
561
562         if (!conflict)
563                 return false;
564
565         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
566         cluster_set_null(&percpu_cluster->index);
567         return true;
568 }
569
570 /*
571  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
572  * might involve allocating a new cluster for current CPU too.
573  */
574 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
575         unsigned long *offset, unsigned long *scan_base)
576 {
577         struct percpu_cluster *cluster;
578         struct swap_cluster_info *ci;
579         bool found_free;
580         unsigned long tmp, max;
581
582 new_cluster:
583         cluster = this_cpu_ptr(si->percpu_cluster);
584         if (cluster_is_null(&cluster->index)) {
585                 if (!cluster_list_empty(&si->free_clusters)) {
586                         cluster->index = si->free_clusters.head;
587                         cluster->next = cluster_next(&cluster->index) *
588                                         SWAPFILE_CLUSTER;
589                 } else if (!cluster_list_empty(&si->discard_clusters)) {
590                         /*
591                          * we don't have free cluster but have some clusters in
592                          * discarding, do discard now and reclaim them
593                          */
594                         swap_do_scheduled_discard(si);
595                         *scan_base = *offset = si->cluster_next;
596                         goto new_cluster;
597                 } else
598                         return false;
599         }
600
601         found_free = false;
602
603         /*
604          * Other CPUs can use our cluster if they can't find a free cluster,
605          * check if there is still free entry in the cluster
606          */
607         tmp = cluster->next;
608         max = min_t(unsigned long, si->max,
609                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
610         if (tmp >= max) {
611                 cluster_set_null(&cluster->index);
612                 goto new_cluster;
613         }
614         ci = lock_cluster(si, tmp);
615         while (tmp < max) {
616                 if (!si->swap_map[tmp]) {
617                         found_free = true;
618                         break;
619                 }
620                 tmp++;
621         }
622         unlock_cluster(ci);
623         if (!found_free) {
624                 cluster_set_null(&cluster->index);
625                 goto new_cluster;
626         }
627         cluster->next = tmp + 1;
628         *offset = tmp;
629         *scan_base = tmp;
630         return found_free;
631 }
632
633 static void __del_from_avail_list(struct swap_info_struct *p)
634 {
635         int nid;
636
637         for_each_node(nid)
638                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
639 }
640
641 static void del_from_avail_list(struct swap_info_struct *p)
642 {
643         spin_lock(&swap_avail_lock);
644         __del_from_avail_list(p);
645         spin_unlock(&swap_avail_lock);
646 }
647
648 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
649                              unsigned int nr_entries)
650 {
651         unsigned int end = offset + nr_entries - 1;
652
653         if (offset == si->lowest_bit)
654                 si->lowest_bit += nr_entries;
655         if (end == si->highest_bit)
656                 si->highest_bit -= nr_entries;
657         si->inuse_pages += nr_entries;
658         if (si->inuse_pages == si->pages) {
659                 si->lowest_bit = si->max;
660                 si->highest_bit = 0;
661                 del_from_avail_list(si);
662         }
663 }
664
665 static void add_to_avail_list(struct swap_info_struct *p)
666 {
667         int nid;
668
669         spin_lock(&swap_avail_lock);
670         for_each_node(nid) {
671                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
672                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
673         }
674         spin_unlock(&swap_avail_lock);
675 }
676
677 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
678                             unsigned int nr_entries)
679 {
680         unsigned long end = offset + nr_entries - 1;
681         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
682
683         if (offset < si->lowest_bit)
684                 si->lowest_bit = offset;
685         if (end > si->highest_bit) {
686                 bool was_full = !si->highest_bit;
687
688                 si->highest_bit = end;
689                 if (was_full && (si->flags & SWP_WRITEOK))
690                         add_to_avail_list(si);
691         }
692         atomic_long_add(nr_entries, &nr_swap_pages);
693         si->inuse_pages -= nr_entries;
694         if (si->flags & SWP_BLKDEV)
695                 swap_slot_free_notify =
696                         si->bdev->bd_disk->fops->swap_slot_free_notify;
697         else
698                 swap_slot_free_notify = NULL;
699         while (offset <= end) {
700                 frontswap_invalidate_page(si->type, offset);
701                 if (swap_slot_free_notify)
702                         swap_slot_free_notify(si->bdev, offset);
703                 offset++;
704         }
705 }
706
707 static int scan_swap_map_slots(struct swap_info_struct *si,
708                                unsigned char usage, int nr,
709                                swp_entry_t slots[])
710 {
711         struct swap_cluster_info *ci;
712         unsigned long offset;
713         unsigned long scan_base;
714         unsigned long last_in_cluster = 0;
715         int latency_ration = LATENCY_LIMIT;
716         int n_ret = 0;
717
718         if (nr > SWAP_BATCH)
719                 nr = SWAP_BATCH;
720
721         /*
722          * We try to cluster swap pages by allocating them sequentially
723          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
724          * way, however, we resort to first-free allocation, starting
725          * a new cluster.  This prevents us from scattering swap pages
726          * all over the entire swap partition, so that we reduce
727          * overall disk seek times between swap pages.  -- sct
728          * But we do now try to find an empty cluster.  -Andrea
729          * And we let swap pages go all over an SSD partition.  Hugh
730          */
731
732         si->flags += SWP_SCANNING;
733         scan_base = offset = si->cluster_next;
734
735         /* SSD algorithm */
736         if (si->cluster_info) {
737                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
738                         goto checks;
739                 else
740                         goto scan;
741         }
742
743         if (unlikely(!si->cluster_nr--)) {
744                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
745                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
746                         goto checks;
747                 }
748
749                 spin_unlock(&si->lock);
750
751                 /*
752                  * If seek is expensive, start searching for new cluster from
753                  * start of partition, to minimize the span of allocated swap.
754                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
755                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
756                  */
757                 scan_base = offset = si->lowest_bit;
758                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
759
760                 /* Locate the first empty (unaligned) cluster */
761                 for (; last_in_cluster <= si->highest_bit; offset++) {
762                         if (si->swap_map[offset])
763                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
764                         else if (offset == last_in_cluster) {
765                                 spin_lock(&si->lock);
766                                 offset -= SWAPFILE_CLUSTER - 1;
767                                 si->cluster_next = offset;
768                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
769                                 goto checks;
770                         }
771                         if (unlikely(--latency_ration < 0)) {
772                                 cond_resched();
773                                 latency_ration = LATENCY_LIMIT;
774                         }
775                 }
776
777                 offset = scan_base;
778                 spin_lock(&si->lock);
779                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
780         }
781
782 checks:
783         if (si->cluster_info) {
784                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
785                 /* take a break if we already got some slots */
786                         if (n_ret)
787                                 goto done;
788                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
789                                                         &scan_base))
790                                 goto scan;
791                 }
792         }
793         if (!(si->flags & SWP_WRITEOK))
794                 goto no_page;
795         if (!si->highest_bit)
796                 goto no_page;
797         if (offset > si->highest_bit)
798                 scan_base = offset = si->lowest_bit;
799
800         ci = lock_cluster(si, offset);
801         /* reuse swap entry of cache-only swap if not busy. */
802         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803                 int swap_was_freed;
804                 unlock_cluster(ci);
805                 spin_unlock(&si->lock);
806                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
807                 spin_lock(&si->lock);
808                 /* entry was freed successfully, try to use this again */
809                 if (swap_was_freed)
810                         goto checks;
811                 goto scan; /* check next one */
812         }
813
814         if (si->swap_map[offset]) {
815                 unlock_cluster(ci);
816                 if (!n_ret)
817                         goto scan;
818                 else
819                         goto done;
820         }
821         si->swap_map[offset] = usage;
822         inc_cluster_info_page(si, si->cluster_info, offset);
823         unlock_cluster(ci);
824
825         swap_range_alloc(si, offset, 1);
826         si->cluster_next = offset + 1;
827         slots[n_ret++] = swp_entry(si->type, offset);
828
829         /* got enough slots or reach max slots? */
830         if ((n_ret == nr) || (offset >= si->highest_bit))
831                 goto done;
832
833         /* search for next available slot */
834
835         /* time to take a break? */
836         if (unlikely(--latency_ration < 0)) {
837                 if (n_ret)
838                         goto done;
839                 spin_unlock(&si->lock);
840                 cond_resched();
841                 spin_lock(&si->lock);
842                 latency_ration = LATENCY_LIMIT;
843         }
844
845         /* try to get more slots in cluster */
846         if (si->cluster_info) {
847                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
848                         goto checks;
849                 else
850                         goto done;
851         }
852         /* non-ssd case */
853         ++offset;
854
855         /* non-ssd case, still more slots in cluster? */
856         if (si->cluster_nr && !si->swap_map[offset]) {
857                 --si->cluster_nr;
858                 goto checks;
859         }
860
861 done:
862         si->flags -= SWP_SCANNING;
863         return n_ret;
864
865 scan:
866         spin_unlock(&si->lock);
867         while (++offset <= si->highest_bit) {
868                 if (!si->swap_map[offset]) {
869                         spin_lock(&si->lock);
870                         goto checks;
871                 }
872                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
873                         spin_lock(&si->lock);
874                         goto checks;
875                 }
876                 if (unlikely(--latency_ration < 0)) {
877                         cond_resched();
878                         latency_ration = LATENCY_LIMIT;
879                 }
880         }
881         offset = si->lowest_bit;
882         while (offset < scan_base) {
883                 if (!si->swap_map[offset]) {
884                         spin_lock(&si->lock);
885                         goto checks;
886                 }
887                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
888                         spin_lock(&si->lock);
889                         goto checks;
890                 }
891                 if (unlikely(--latency_ration < 0)) {
892                         cond_resched();
893                         latency_ration = LATENCY_LIMIT;
894                 }
895                 offset++;
896         }
897         spin_lock(&si->lock);
898
899 no_page:
900         si->flags -= SWP_SCANNING;
901         return n_ret;
902 }
903
904 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
905 {
906         unsigned long idx;
907         struct swap_cluster_info *ci;
908         unsigned long offset, i;
909         unsigned char *map;
910
911         /*
912          * Should not even be attempting cluster allocations when huge
913          * page swap is disabled.  Warn and fail the allocation.
914          */
915         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
916                 VM_WARN_ON_ONCE(1);
917                 return 0;
918         }
919
920         if (cluster_list_empty(&si->free_clusters))
921                 return 0;
922
923         idx = cluster_list_first(&si->free_clusters);
924         offset = idx * SWAPFILE_CLUSTER;
925         ci = lock_cluster(si, offset);
926         alloc_cluster(si, idx);
927         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
928
929         map = si->swap_map + offset;
930         for (i = 0; i < SWAPFILE_CLUSTER; i++)
931                 map[i] = SWAP_HAS_CACHE;
932         unlock_cluster(ci);
933         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
934         *slot = swp_entry(si->type, offset);
935
936         return 1;
937 }
938
939 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
940 {
941         unsigned long offset = idx * SWAPFILE_CLUSTER;
942         struct swap_cluster_info *ci;
943
944         ci = lock_cluster(si, offset);
945         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
946         cluster_set_count_flag(ci, 0, 0);
947         free_cluster(si, idx);
948         unlock_cluster(ci);
949         swap_range_free(si, offset, SWAPFILE_CLUSTER);
950 }
951
952 static unsigned long scan_swap_map(struct swap_info_struct *si,
953                                    unsigned char usage)
954 {
955         swp_entry_t entry;
956         int n_ret;
957
958         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
959
960         if (n_ret)
961                 return swp_offset(entry);
962         else
963                 return 0;
964
965 }
966
967 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
968 {
969         unsigned long size = swap_entry_size(entry_size);
970         struct swap_info_struct *si, *next;
971         long avail_pgs;
972         int n_ret = 0;
973         int node;
974
975         /* Only single cluster request supported */
976         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
977
978         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
979         if (avail_pgs <= 0)
980                 goto noswap;
981
982         if (n_goal > SWAP_BATCH)
983                 n_goal = SWAP_BATCH;
984
985         if (n_goal > avail_pgs)
986                 n_goal = avail_pgs;
987
988         atomic_long_sub(n_goal * size, &nr_swap_pages);
989
990         spin_lock(&swap_avail_lock);
991
992 start_over:
993         node = numa_node_id();
994         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
995                 /* requeue si to after same-priority siblings */
996                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
997                 spin_unlock(&swap_avail_lock);
998                 spin_lock(&si->lock);
999                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1000                         spin_lock(&swap_avail_lock);
1001                         if (plist_node_empty(&si->avail_lists[node])) {
1002                                 spin_unlock(&si->lock);
1003                                 goto nextsi;
1004                         }
1005                         WARN(!si->highest_bit,
1006                              "swap_info %d in list but !highest_bit\n",
1007                              si->type);
1008                         WARN(!(si->flags & SWP_WRITEOK),
1009                              "swap_info %d in list but !SWP_WRITEOK\n",
1010                              si->type);
1011                         __del_from_avail_list(si);
1012                         spin_unlock(&si->lock);
1013                         goto nextsi;
1014                 }
1015                 if (size == SWAPFILE_CLUSTER) {
1016                         if (!(si->flags & SWP_FS))
1017                                 n_ret = swap_alloc_cluster(si, swp_entries);
1018                 } else
1019                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1020                                                     n_goal, swp_entries);
1021                 spin_unlock(&si->lock);
1022                 if (n_ret || size == SWAPFILE_CLUSTER)
1023                         goto check_out;
1024                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1025                         si->type);
1026
1027                 spin_lock(&swap_avail_lock);
1028 nextsi:
1029                 /*
1030                  * if we got here, it's likely that si was almost full before,
1031                  * and since scan_swap_map() can drop the si->lock, multiple
1032                  * callers probably all tried to get a page from the same si
1033                  * and it filled up before we could get one; or, the si filled
1034                  * up between us dropping swap_avail_lock and taking si->lock.
1035                  * Since we dropped the swap_avail_lock, the swap_avail_head
1036                  * list may have been modified; so if next is still in the
1037                  * swap_avail_head list then try it, otherwise start over
1038                  * if we have not gotten any slots.
1039                  */
1040                 if (plist_node_empty(&next->avail_lists[node]))
1041                         goto start_over;
1042         }
1043
1044         spin_unlock(&swap_avail_lock);
1045
1046 check_out:
1047         if (n_ret < n_goal)
1048                 atomic_long_add((long)(n_goal - n_ret) * size,
1049                                 &nr_swap_pages);
1050 noswap:
1051         return n_ret;
1052 }
1053
1054 /* The only caller of this function is now suspend routine */
1055 swp_entry_t get_swap_page_of_type(int type)
1056 {
1057         struct swap_info_struct *si = swap_type_to_swap_info(type);
1058         pgoff_t offset;
1059
1060         if (!si)
1061                 goto fail;
1062
1063         spin_lock(&si->lock);
1064         if (si->flags & SWP_WRITEOK) {
1065                 atomic_long_dec(&nr_swap_pages);
1066                 /* This is called for allocating swap entry, not cache */
1067                 offset = scan_swap_map(si, 1);
1068                 if (offset) {
1069                         spin_unlock(&si->lock);
1070                         return swp_entry(type, offset);
1071                 }
1072                 atomic_long_inc(&nr_swap_pages);
1073         }
1074         spin_unlock(&si->lock);
1075 fail:
1076         return (swp_entry_t) {0};
1077 }
1078
1079 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1080 {
1081         struct swap_info_struct *p;
1082         unsigned long offset, type;
1083
1084         if (!entry.val)
1085                 goto out;
1086         type = swp_type(entry);
1087         p = swap_type_to_swap_info(type);
1088         if (!p)
1089                 goto bad_nofile;
1090         if (!(p->flags & SWP_USED))
1091                 goto bad_device;
1092         offset = swp_offset(entry);
1093         if (offset >= p->max)
1094                 goto bad_offset;
1095         return p;
1096
1097 bad_offset:
1098         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1099         goto out;
1100 bad_device:
1101         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1102         goto out;
1103 bad_nofile:
1104         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1105 out:
1106         return NULL;
1107 }
1108
1109 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1110 {
1111         struct swap_info_struct *p;
1112
1113         p = __swap_info_get(entry);
1114         if (!p)
1115                 goto out;
1116         if (!p->swap_map[swp_offset(entry)])
1117                 goto bad_free;
1118         return p;
1119
1120 bad_free:
1121         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1122         goto out;
1123 out:
1124         return NULL;
1125 }
1126
1127 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1128 {
1129         struct swap_info_struct *p;
1130
1131         p = _swap_info_get(entry);
1132         if (p)
1133                 spin_lock(&p->lock);
1134         return p;
1135 }
1136
1137 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1138                                         struct swap_info_struct *q)
1139 {
1140         struct swap_info_struct *p;
1141
1142         p = _swap_info_get(entry);
1143
1144         if (p != q) {
1145                 if (q != NULL)
1146                         spin_unlock(&q->lock);
1147                 if (p != NULL)
1148                         spin_lock(&p->lock);
1149         }
1150         return p;
1151 }
1152
1153 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1154                                               unsigned long offset,
1155                                               unsigned char usage)
1156 {
1157         unsigned char count;
1158         unsigned char has_cache;
1159
1160         count = p->swap_map[offset];
1161
1162         has_cache = count & SWAP_HAS_CACHE;
1163         count &= ~SWAP_HAS_CACHE;
1164
1165         if (usage == SWAP_HAS_CACHE) {
1166                 VM_BUG_ON(!has_cache);
1167                 has_cache = 0;
1168         } else if (count == SWAP_MAP_SHMEM) {
1169                 /*
1170                  * Or we could insist on shmem.c using a special
1171                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1172                  */
1173                 count = 0;
1174         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1175                 if (count == COUNT_CONTINUED) {
1176                         if (swap_count_continued(p, offset, count))
1177                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1178                         else
1179                                 count = SWAP_MAP_MAX;
1180                 } else
1181                         count--;
1182         }
1183
1184         usage = count | has_cache;
1185         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1186
1187         return usage;
1188 }
1189
1190 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1191                                        swp_entry_t entry, unsigned char usage)
1192 {
1193         struct swap_cluster_info *ci;
1194         unsigned long offset = swp_offset(entry);
1195
1196         ci = lock_cluster_or_swap_info(p, offset);
1197         usage = __swap_entry_free_locked(p, offset, usage);
1198         unlock_cluster_or_swap_info(p, ci);
1199         if (!usage)
1200                 free_swap_slot(entry);
1201
1202         return usage;
1203 }
1204
1205 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1206 {
1207         struct swap_cluster_info *ci;
1208         unsigned long offset = swp_offset(entry);
1209         unsigned char count;
1210
1211         ci = lock_cluster(p, offset);
1212         count = p->swap_map[offset];
1213         VM_BUG_ON(count != SWAP_HAS_CACHE);
1214         p->swap_map[offset] = 0;
1215         dec_cluster_info_page(p, p->cluster_info, offset);
1216         unlock_cluster(ci);
1217
1218         mem_cgroup_uncharge_swap(entry, 1);
1219         swap_range_free(p, offset, 1);
1220 }
1221
1222 /*
1223  * Caller has made sure that the swap device corresponding to entry
1224  * is still around or has not been recycled.
1225  */
1226 void swap_free(swp_entry_t entry)
1227 {
1228         struct swap_info_struct *p;
1229
1230         p = _swap_info_get(entry);
1231         if (p)
1232                 __swap_entry_free(p, entry, 1);
1233 }
1234
1235 /*
1236  * Called after dropping swapcache to decrease refcnt to swap entries.
1237  */
1238 void put_swap_page(struct page *page, swp_entry_t entry)
1239 {
1240         unsigned long offset = swp_offset(entry);
1241         unsigned long idx = offset / SWAPFILE_CLUSTER;
1242         struct swap_cluster_info *ci;
1243         struct swap_info_struct *si;
1244         unsigned char *map;
1245         unsigned int i, free_entries = 0;
1246         unsigned char val;
1247         int size = swap_entry_size(hpage_nr_pages(page));
1248
1249         si = _swap_info_get(entry);
1250         if (!si)
1251                 return;
1252
1253         ci = lock_cluster_or_swap_info(si, offset);
1254         if (size == SWAPFILE_CLUSTER) {
1255                 VM_BUG_ON(!cluster_is_huge(ci));
1256                 map = si->swap_map + offset;
1257                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1258                         val = map[i];
1259                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1260                         if (val == SWAP_HAS_CACHE)
1261                                 free_entries++;
1262                 }
1263                 cluster_clear_huge(ci);
1264                 if (free_entries == SWAPFILE_CLUSTER) {
1265                         unlock_cluster_or_swap_info(si, ci);
1266                         spin_lock(&si->lock);
1267                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1268                         swap_free_cluster(si, idx);
1269                         spin_unlock(&si->lock);
1270                         return;
1271                 }
1272         }
1273         for (i = 0; i < size; i++, entry.val++) {
1274                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1275                         unlock_cluster_or_swap_info(si, ci);
1276                         free_swap_slot(entry);
1277                         if (i == size - 1)
1278                                 return;
1279                         lock_cluster_or_swap_info(si, offset);
1280                 }
1281         }
1282         unlock_cluster_or_swap_info(si, ci);
1283 }
1284
1285 #ifdef CONFIG_THP_SWAP
1286 int split_swap_cluster(swp_entry_t entry)
1287 {
1288         struct swap_info_struct *si;
1289         struct swap_cluster_info *ci;
1290         unsigned long offset = swp_offset(entry);
1291
1292         si = _swap_info_get(entry);
1293         if (!si)
1294                 return -EBUSY;
1295         ci = lock_cluster(si, offset);
1296         cluster_clear_huge(ci);
1297         unlock_cluster(ci);
1298         return 0;
1299 }
1300 #endif
1301
1302 static int swp_entry_cmp(const void *ent1, const void *ent2)
1303 {
1304         const swp_entry_t *e1 = ent1, *e2 = ent2;
1305
1306         return (int)swp_type(*e1) - (int)swp_type(*e2);
1307 }
1308
1309 void swapcache_free_entries(swp_entry_t *entries, int n)
1310 {
1311         struct swap_info_struct *p, *prev;
1312         int i;
1313
1314         if (n <= 0)
1315                 return;
1316
1317         prev = NULL;
1318         p = NULL;
1319
1320         /*
1321          * Sort swap entries by swap device, so each lock is only taken once.
1322          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1323          * so low that it isn't necessary to optimize further.
1324          */
1325         if (nr_swapfiles > 1)
1326                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1327         for (i = 0; i < n; ++i) {
1328                 p = swap_info_get_cont(entries[i], prev);
1329                 if (p)
1330                         swap_entry_free(p, entries[i]);
1331                 prev = p;
1332         }
1333         if (p)
1334                 spin_unlock(&p->lock);
1335 }
1336
1337 /*
1338  * How many references to page are currently swapped out?
1339  * This does not give an exact answer when swap count is continued,
1340  * but does include the high COUNT_CONTINUED flag to allow for that.
1341  */
1342 int page_swapcount(struct page *page)
1343 {
1344         int count = 0;
1345         struct swap_info_struct *p;
1346         struct swap_cluster_info *ci;
1347         swp_entry_t entry;
1348         unsigned long offset;
1349
1350         entry.val = page_private(page);
1351         p = _swap_info_get(entry);
1352         if (p) {
1353                 offset = swp_offset(entry);
1354                 ci = lock_cluster_or_swap_info(p, offset);
1355                 count = swap_count(p->swap_map[offset]);
1356                 unlock_cluster_or_swap_info(p, ci);
1357         }
1358         return count;
1359 }
1360
1361 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1362 {
1363         pgoff_t offset = swp_offset(entry);
1364
1365         return swap_count(si->swap_map[offset]);
1366 }
1367
1368 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1369 {
1370         int count = 0;
1371         pgoff_t offset = swp_offset(entry);
1372         struct swap_cluster_info *ci;
1373
1374         ci = lock_cluster_or_swap_info(si, offset);
1375         count = swap_count(si->swap_map[offset]);
1376         unlock_cluster_or_swap_info(si, ci);
1377         return count;
1378 }
1379
1380 /*
1381  * How many references to @entry are currently swapped out?
1382  * This does not give an exact answer when swap count is continued,
1383  * but does include the high COUNT_CONTINUED flag to allow for that.
1384  */
1385 int __swp_swapcount(swp_entry_t entry)
1386 {
1387         int count = 0;
1388         struct swap_info_struct *si;
1389
1390         si = __swap_info_get(entry);
1391         if (si)
1392                 count = swap_swapcount(si, entry);
1393         return count;
1394 }
1395
1396 /*
1397  * How many references to @entry are currently swapped out?
1398  * This considers COUNT_CONTINUED so it returns exact answer.
1399  */
1400 int swp_swapcount(swp_entry_t entry)
1401 {
1402         int count, tmp_count, n;
1403         struct swap_info_struct *p;
1404         struct swap_cluster_info *ci;
1405         struct page *page;
1406         pgoff_t offset;
1407         unsigned char *map;
1408
1409         p = _swap_info_get(entry);
1410         if (!p)
1411                 return 0;
1412
1413         offset = swp_offset(entry);
1414
1415         ci = lock_cluster_or_swap_info(p, offset);
1416
1417         count = swap_count(p->swap_map[offset]);
1418         if (!(count & COUNT_CONTINUED))
1419                 goto out;
1420
1421         count &= ~COUNT_CONTINUED;
1422         n = SWAP_MAP_MAX + 1;
1423
1424         page = vmalloc_to_page(p->swap_map + offset);
1425         offset &= ~PAGE_MASK;
1426         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1427
1428         do {
1429                 page = list_next_entry(page, lru);
1430                 map = kmap_atomic(page);
1431                 tmp_count = map[offset];
1432                 kunmap_atomic(map);
1433
1434                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1435                 n *= (SWAP_CONT_MAX + 1);
1436         } while (tmp_count & COUNT_CONTINUED);
1437 out:
1438         unlock_cluster_or_swap_info(p, ci);
1439         return count;
1440 }
1441
1442 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1443                                          swp_entry_t entry)
1444 {
1445         struct swap_cluster_info *ci;
1446         unsigned char *map = si->swap_map;
1447         unsigned long roffset = swp_offset(entry);
1448         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1449         int i;
1450         bool ret = false;
1451
1452         ci = lock_cluster_or_swap_info(si, offset);
1453         if (!ci || !cluster_is_huge(ci)) {
1454                 if (swap_count(map[roffset]))
1455                         ret = true;
1456                 goto unlock_out;
1457         }
1458         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1459                 if (swap_count(map[offset + i])) {
1460                         ret = true;
1461                         break;
1462                 }
1463         }
1464 unlock_out:
1465         unlock_cluster_or_swap_info(si, ci);
1466         return ret;
1467 }
1468
1469 static bool page_swapped(struct page *page)
1470 {
1471         swp_entry_t entry;
1472         struct swap_info_struct *si;
1473
1474         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1475                 return page_swapcount(page) != 0;
1476
1477         page = compound_head(page);
1478         entry.val = page_private(page);
1479         si = _swap_info_get(entry);
1480         if (si)
1481                 return swap_page_trans_huge_swapped(si, entry);
1482         return false;
1483 }
1484
1485 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1486                                          int *total_swapcount)
1487 {
1488         int i, map_swapcount, _total_mapcount, _total_swapcount;
1489         unsigned long offset = 0;
1490         struct swap_info_struct *si;
1491         struct swap_cluster_info *ci = NULL;
1492         unsigned char *map = NULL;
1493         int mapcount, swapcount = 0;
1494
1495         /* hugetlbfs shouldn't call it */
1496         VM_BUG_ON_PAGE(PageHuge(page), page);
1497
1498         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1499                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1500                 if (PageSwapCache(page))
1501                         swapcount = page_swapcount(page);
1502                 if (total_swapcount)
1503                         *total_swapcount = swapcount;
1504                 return mapcount + swapcount;
1505         }
1506
1507         page = compound_head(page);
1508
1509         _total_mapcount = _total_swapcount = map_swapcount = 0;
1510         if (PageSwapCache(page)) {
1511                 swp_entry_t entry;
1512
1513                 entry.val = page_private(page);
1514                 si = _swap_info_get(entry);
1515                 if (si) {
1516                         map = si->swap_map;
1517                         offset = swp_offset(entry);
1518                 }
1519         }
1520         if (map)
1521                 ci = lock_cluster(si, offset);
1522         for (i = 0; i < HPAGE_PMD_NR; i++) {
1523                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1524                 _total_mapcount += mapcount;
1525                 if (map) {
1526                         swapcount = swap_count(map[offset + i]);
1527                         _total_swapcount += swapcount;
1528                 }
1529                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1530         }
1531         unlock_cluster(ci);
1532         if (PageDoubleMap(page)) {
1533                 map_swapcount -= 1;
1534                 _total_mapcount -= HPAGE_PMD_NR;
1535         }
1536         mapcount = compound_mapcount(page);
1537         map_swapcount += mapcount;
1538         _total_mapcount += mapcount;
1539         if (total_mapcount)
1540                 *total_mapcount = _total_mapcount;
1541         if (total_swapcount)
1542                 *total_swapcount = _total_swapcount;
1543
1544         return map_swapcount;
1545 }
1546
1547 /*
1548  * We can write to an anon page without COW if there are no other references
1549  * to it.  And as a side-effect, free up its swap: because the old content
1550  * on disk will never be read, and seeking back there to write new content
1551  * later would only waste time away from clustering.
1552  *
1553  * NOTE: total_map_swapcount should not be relied upon by the caller if
1554  * reuse_swap_page() returns false, but it may be always overwritten
1555  * (see the other implementation for CONFIG_SWAP=n).
1556  */
1557 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1558 {
1559         int count, total_mapcount, total_swapcount;
1560
1561         VM_BUG_ON_PAGE(!PageLocked(page), page);
1562         if (unlikely(PageKsm(page)))
1563                 return false;
1564         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1565                                               &total_swapcount);
1566         if (total_map_swapcount)
1567                 *total_map_swapcount = total_mapcount + total_swapcount;
1568         if (count == 1 && PageSwapCache(page) &&
1569             (likely(!PageTransCompound(page)) ||
1570              /* The remaining swap count will be freed soon */
1571              total_swapcount == page_swapcount(page))) {
1572                 if (!PageWriteback(page)) {
1573                         page = compound_head(page);
1574                         delete_from_swap_cache(page);
1575                         SetPageDirty(page);
1576                 } else {
1577                         swp_entry_t entry;
1578                         struct swap_info_struct *p;
1579
1580                         entry.val = page_private(page);
1581                         p = swap_info_get(entry);
1582                         if (p->flags & SWP_STABLE_WRITES) {
1583                                 spin_unlock(&p->lock);
1584                                 return false;
1585                         }
1586                         spin_unlock(&p->lock);
1587                 }
1588         }
1589
1590         return count <= 1;
1591 }
1592
1593 /*
1594  * If swap is getting full, or if there are no more mappings of this page,
1595  * then try_to_free_swap is called to free its swap space.
1596  */
1597 int try_to_free_swap(struct page *page)
1598 {
1599         VM_BUG_ON_PAGE(!PageLocked(page), page);
1600
1601         if (!PageSwapCache(page))
1602                 return 0;
1603         if (PageWriteback(page))
1604                 return 0;
1605         if (page_swapped(page))
1606                 return 0;
1607
1608         /*
1609          * Once hibernation has begun to create its image of memory,
1610          * there's a danger that one of the calls to try_to_free_swap()
1611          * - most probably a call from __try_to_reclaim_swap() while
1612          * hibernation is allocating its own swap pages for the image,
1613          * but conceivably even a call from memory reclaim - will free
1614          * the swap from a page which has already been recorded in the
1615          * image as a clean swapcache page, and then reuse its swap for
1616          * another page of the image.  On waking from hibernation, the
1617          * original page might be freed under memory pressure, then
1618          * later read back in from swap, now with the wrong data.
1619          *
1620          * Hibernation suspends storage while it is writing the image
1621          * to disk so check that here.
1622          */
1623         if (pm_suspended_storage())
1624                 return 0;
1625
1626         page = compound_head(page);
1627         delete_from_swap_cache(page);
1628         SetPageDirty(page);
1629         return 1;
1630 }
1631
1632 /*
1633  * Free the swap entry like above, but also try to
1634  * free the page cache entry if it is the last user.
1635  */
1636 int free_swap_and_cache(swp_entry_t entry)
1637 {
1638         struct swap_info_struct *p;
1639         unsigned char count;
1640
1641         if (non_swap_entry(entry))
1642                 return 1;
1643
1644         p = _swap_info_get(entry);
1645         if (p) {
1646                 count = __swap_entry_free(p, entry, 1);
1647                 if (count == SWAP_HAS_CACHE &&
1648                     !swap_page_trans_huge_swapped(p, entry))
1649                         __try_to_reclaim_swap(p, swp_offset(entry),
1650                                               TTRS_UNMAPPED | TTRS_FULL);
1651         }
1652         return p != NULL;
1653 }
1654
1655 #ifdef CONFIG_HIBERNATION
1656 /*
1657  * Find the swap type that corresponds to given device (if any).
1658  *
1659  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1660  * from 0, in which the swap header is expected to be located.
1661  *
1662  * This is needed for the suspend to disk (aka swsusp).
1663  */
1664 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1665 {
1666         struct block_device *bdev = NULL;
1667         int type;
1668
1669         if (device)
1670                 bdev = bdget(device);
1671
1672         spin_lock(&swap_lock);
1673         for (type = 0; type < nr_swapfiles; type++) {
1674                 struct swap_info_struct *sis = swap_info[type];
1675
1676                 if (!(sis->flags & SWP_WRITEOK))
1677                         continue;
1678
1679                 if (!bdev) {
1680                         if (bdev_p)
1681                                 *bdev_p = bdgrab(sis->bdev);
1682
1683                         spin_unlock(&swap_lock);
1684                         return type;
1685                 }
1686                 if (bdev == sis->bdev) {
1687                         struct swap_extent *se = &sis->first_swap_extent;
1688
1689                         if (se->start_block == offset) {
1690                                 if (bdev_p)
1691                                         *bdev_p = bdgrab(sis->bdev);
1692
1693                                 spin_unlock(&swap_lock);
1694                                 bdput(bdev);
1695                                 return type;
1696                         }
1697                 }
1698         }
1699         spin_unlock(&swap_lock);
1700         if (bdev)
1701                 bdput(bdev);
1702
1703         return -ENODEV;
1704 }
1705
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712         struct block_device *bdev;
1713         struct swap_info_struct *si = swap_type_to_swap_info(type);
1714
1715         if (!si || !(si->flags & SWP_WRITEOK))
1716                 return 0;
1717         return map_swap_entry(swp_entry(type, offset), &bdev);
1718 }
1719
1720 /*
1721  * Return either the total number of swap pages of given type, or the number
1722  * of free pages of that type (depending on @free)
1723  *
1724  * This is needed for software suspend
1725  */
1726 unsigned int count_swap_pages(int type, int free)
1727 {
1728         unsigned int n = 0;
1729
1730         spin_lock(&swap_lock);
1731         if ((unsigned int)type < nr_swapfiles) {
1732                 struct swap_info_struct *sis = swap_info[type];
1733
1734                 spin_lock(&sis->lock);
1735                 if (sis->flags & SWP_WRITEOK) {
1736                         n = sis->pages;
1737                         if (free)
1738                                 n -= sis->inuse_pages;
1739                 }
1740                 spin_unlock(&sis->lock);
1741         }
1742         spin_unlock(&swap_lock);
1743         return n;
1744 }
1745 #endif /* CONFIG_HIBERNATION */
1746
1747 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1748 {
1749         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1750 }
1751
1752 /*
1753  * No need to decide whether this PTE shares the swap entry with others,
1754  * just let do_wp_page work it out if a write is requested later - to
1755  * force COW, vm_page_prot omits write permission from any private vma.
1756  */
1757 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1758                 unsigned long addr, swp_entry_t entry, struct page *page)
1759 {
1760         struct page *swapcache;
1761         struct mem_cgroup *memcg;
1762         spinlock_t *ptl;
1763         pte_t *pte;
1764         int ret = 1;
1765
1766         swapcache = page;
1767         page = ksm_might_need_to_copy(page, vma, addr);
1768         if (unlikely(!page))
1769                 return -ENOMEM;
1770
1771         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1772                                 &memcg, false)) {
1773                 ret = -ENOMEM;
1774                 goto out_nolock;
1775         }
1776
1777         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1778         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1779                 mem_cgroup_cancel_charge(page, memcg, false);
1780                 ret = 0;
1781                 goto out;
1782         }
1783
1784         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1786         get_page(page);
1787         set_pte_at(vma->vm_mm, addr, pte,
1788                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1789         if (page == swapcache) {
1790                 page_add_anon_rmap(page, vma, addr, false);
1791                 mem_cgroup_commit_charge(page, memcg, true, false);
1792         } else { /* ksm created a completely new copy */
1793                 page_add_new_anon_rmap(page, vma, addr, false);
1794                 mem_cgroup_commit_charge(page, memcg, false, false);
1795                 lru_cache_add_active_or_unevictable(page, vma);
1796         }
1797         swap_free(entry);
1798         /*
1799          * Move the page to the active list so it is not
1800          * immediately swapped out again after swapon.
1801          */
1802         activate_page(page);
1803 out:
1804         pte_unmap_unlock(pte, ptl);
1805 out_nolock:
1806         if (page != swapcache) {
1807                 unlock_page(page);
1808                 put_page(page);
1809         }
1810         return ret;
1811 }
1812
1813 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1814                         unsigned long addr, unsigned long end,
1815                         unsigned int type, bool frontswap,
1816                         unsigned long *fs_pages_to_unuse)
1817 {
1818         struct page *page;
1819         swp_entry_t entry;
1820         pte_t *pte;
1821         struct swap_info_struct *si;
1822         unsigned long offset;
1823         int ret = 0;
1824         volatile unsigned char *swap_map;
1825
1826         si = swap_info[type];
1827         pte = pte_offset_map(pmd, addr);
1828         do {
1829                 struct vm_fault vmf;
1830
1831                 if (!is_swap_pte(*pte))
1832                         continue;
1833
1834                 entry = pte_to_swp_entry(*pte);
1835                 if (swp_type(entry) != type)
1836                         continue;
1837
1838                 offset = swp_offset(entry);
1839                 if (frontswap && !frontswap_test(si, offset))
1840                         continue;
1841
1842                 pte_unmap(pte);
1843                 swap_map = &si->swap_map[offset];
1844                 vmf.vma = vma;
1845                 vmf.address = addr;
1846                 vmf.pmd = pmd;
1847                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1848                 if (!page) {
1849                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1850                                 goto try_next;
1851                         return -ENOMEM;
1852                 }
1853
1854                 lock_page(page);
1855                 wait_on_page_writeback(page);
1856                 ret = unuse_pte(vma, pmd, addr, entry, page);
1857                 if (ret < 0) {
1858                         unlock_page(page);
1859                         put_page(page);
1860                         goto out;
1861                 }
1862
1863                 try_to_free_swap(page);
1864                 unlock_page(page);
1865                 put_page(page);
1866
1867                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1868                         ret = FRONTSWAP_PAGES_UNUSED;
1869                         goto out;
1870                 }
1871 try_next:
1872                 pte = pte_offset_map(pmd, addr);
1873         } while (pte++, addr += PAGE_SIZE, addr != end);
1874         pte_unmap(pte - 1);
1875
1876         ret = 0;
1877 out:
1878         return ret;
1879 }
1880
1881 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1882                                 unsigned long addr, unsigned long end,
1883                                 unsigned int type, bool frontswap,
1884                                 unsigned long *fs_pages_to_unuse)
1885 {
1886         pmd_t *pmd;
1887         unsigned long next;
1888         int ret;
1889
1890         pmd = pmd_offset(pud, addr);
1891         do {
1892                 cond_resched();
1893                 next = pmd_addr_end(addr, end);
1894                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1895                         continue;
1896                 ret = unuse_pte_range(vma, pmd, addr, next, type,
1897                                       frontswap, fs_pages_to_unuse);
1898                 if (ret)
1899                         return ret;
1900         } while (pmd++, addr = next, addr != end);
1901         return 0;
1902 }
1903
1904 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1905                                 unsigned long addr, unsigned long end,
1906                                 unsigned int type, bool frontswap,
1907                                 unsigned long *fs_pages_to_unuse)
1908 {
1909         pud_t *pud;
1910         unsigned long next;
1911         int ret;
1912
1913         pud = pud_offset(p4d, addr);
1914         do {
1915                 next = pud_addr_end(addr, end);
1916                 if (pud_none_or_clear_bad(pud))
1917                         continue;
1918                 ret = unuse_pmd_range(vma, pud, addr, next, type,
1919                                       frontswap, fs_pages_to_unuse);
1920                 if (ret)
1921                         return ret;
1922         } while (pud++, addr = next, addr != end);
1923         return 0;
1924 }
1925
1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1927                                 unsigned long addr, unsigned long end,
1928                                 unsigned int type, bool frontswap,
1929                                 unsigned long *fs_pages_to_unuse)
1930 {
1931         p4d_t *p4d;
1932         unsigned long next;
1933         int ret;
1934
1935         p4d = p4d_offset(pgd, addr);
1936         do {
1937                 next = p4d_addr_end(addr, end);
1938                 if (p4d_none_or_clear_bad(p4d))
1939                         continue;
1940                 ret = unuse_pud_range(vma, p4d, addr, next, type,
1941                                       frontswap, fs_pages_to_unuse);
1942                 if (ret)
1943                         return ret;
1944         } while (p4d++, addr = next, addr != end);
1945         return 0;
1946 }
1947
1948 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
1949                      bool frontswap, unsigned long *fs_pages_to_unuse)
1950 {
1951         pgd_t *pgd;
1952         unsigned long addr, end, next;
1953         int ret;
1954
1955         addr = vma->vm_start;
1956         end = vma->vm_end;
1957
1958         pgd = pgd_offset(vma->vm_mm, addr);
1959         do {
1960                 next = pgd_addr_end(addr, end);
1961                 if (pgd_none_or_clear_bad(pgd))
1962                         continue;
1963                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
1964                                       frontswap, fs_pages_to_unuse);
1965                 if (ret)
1966                         return ret;
1967         } while (pgd++, addr = next, addr != end);
1968         return 0;
1969 }
1970
1971 static int unuse_mm(struct mm_struct *mm, unsigned int type,
1972                     bool frontswap, unsigned long *fs_pages_to_unuse)
1973 {
1974         struct vm_area_struct *vma;
1975         int ret = 0;
1976
1977         down_read(&mm->mmap_sem);
1978         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1979                 if (vma->anon_vma) {
1980                         ret = unuse_vma(vma, type, frontswap,
1981                                         fs_pages_to_unuse);
1982                         if (ret)
1983                                 break;
1984                 }
1985                 cond_resched();
1986         }
1987         up_read(&mm->mmap_sem);
1988         return ret;
1989 }
1990
1991 /*
1992  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1993  * from current position to next entry still in use. Return 0
1994  * if there are no inuse entries after prev till end of the map.
1995  */
1996 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1997                                         unsigned int prev, bool frontswap)
1998 {
1999         unsigned int i;
2000         unsigned char count;
2001
2002         /*
2003          * No need for swap_lock here: we're just looking
2004          * for whether an entry is in use, not modifying it; false
2005          * hits are okay, and sys_swapoff() has already prevented new
2006          * allocations from this area (while holding swap_lock).
2007          */
2008         for (i = prev + 1; i < si->max; i++) {
2009                 count = READ_ONCE(si->swap_map[i]);
2010                 if (count && swap_count(count) != SWAP_MAP_BAD)
2011                         if (!frontswap || frontswap_test(si, i))
2012                                 break;
2013                 if ((i % LATENCY_LIMIT) == 0)
2014                         cond_resched();
2015         }
2016
2017         if (i == si->max)
2018                 i = 0;
2019
2020         return i;
2021 }
2022
2023 /*
2024  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2025  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2026  */
2027 int try_to_unuse(unsigned int type, bool frontswap,
2028                  unsigned long pages_to_unuse)
2029 {
2030         struct mm_struct *prev_mm;
2031         struct mm_struct *mm;
2032         struct list_head *p;
2033         int retval = 0;
2034         struct swap_info_struct *si = swap_info[type];
2035         struct page *page;
2036         swp_entry_t entry;
2037         unsigned int i;
2038
2039         if (!si->inuse_pages)
2040                 return 0;
2041
2042         if (!frontswap)
2043                 pages_to_unuse = 0;
2044
2045 retry:
2046         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2047         if (retval)
2048                 goto out;
2049
2050         prev_mm = &init_mm;
2051         mmget(prev_mm);
2052
2053         spin_lock(&mmlist_lock);
2054         p = &init_mm.mmlist;
2055         while (si->inuse_pages &&
2056                !signal_pending(current) &&
2057                (p = p->next) != &init_mm.mmlist) {
2058
2059                 mm = list_entry(p, struct mm_struct, mmlist);
2060                 if (!mmget_not_zero(mm))
2061                         continue;
2062                 spin_unlock(&mmlist_lock);
2063                 mmput(prev_mm);
2064                 prev_mm = mm;
2065                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2066
2067                 if (retval) {
2068                         mmput(prev_mm);
2069                         goto out;
2070                 }
2071
2072                 /*
2073                  * Make sure that we aren't completely killing
2074                  * interactive performance.
2075                  */
2076                 cond_resched();
2077                 spin_lock(&mmlist_lock);
2078         }
2079         spin_unlock(&mmlist_lock);
2080
2081         mmput(prev_mm);
2082
2083         i = 0;
2084         while (si->inuse_pages &&
2085                !signal_pending(current) &&
2086                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2087
2088                 entry = swp_entry(type, i);
2089                 page = find_get_page(swap_address_space(entry), i);
2090                 if (!page)
2091                         continue;
2092
2093                 /*
2094                  * It is conceivable that a racing task removed this page from
2095                  * swap cache just before we acquired the page lock. The page
2096                  * might even be back in swap cache on another swap area. But
2097                  * that is okay, try_to_free_swap() only removes stale pages.
2098                  */
2099                 lock_page(page);
2100                 wait_on_page_writeback(page);
2101                 try_to_free_swap(page);
2102                 unlock_page(page);
2103                 put_page(page);
2104
2105                 /*
2106                  * For frontswap, we just need to unuse pages_to_unuse, if
2107                  * it was specified. Need not check frontswap again here as
2108                  * we already zeroed out pages_to_unuse if not frontswap.
2109                  */
2110                 if (pages_to_unuse && --pages_to_unuse == 0)
2111                         goto out;
2112         }
2113
2114         /*
2115          * Lets check again to see if there are still swap entries in the map.
2116          * If yes, we would need to do retry the unuse logic again.
2117          * Under global memory pressure, swap entries can be reinserted back
2118          * into process space after the mmlist loop above passes over them.
2119          *
2120          * Limit the number of retries? No: when mmget_not_zero() above fails,
2121          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2122          * at its own independent pace; and even shmem_writepage() could have
2123          * been preempted after get_swap_page(), temporarily hiding that swap.
2124          * It's easy and robust (though cpu-intensive) just to keep retrying.
2125          */
2126         if (si->inuse_pages) {
2127                 if (!signal_pending(current))
2128                         goto retry;
2129                 retval = -EINTR;
2130         }
2131 out:
2132         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2133 }
2134
2135 /*
2136  * After a successful try_to_unuse, if no swap is now in use, we know
2137  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2138  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2139  * added to the mmlist just after page_duplicate - before would be racy.
2140  */
2141 static void drain_mmlist(void)
2142 {
2143         struct list_head *p, *next;
2144         unsigned int type;
2145
2146         for (type = 0; type < nr_swapfiles; type++)
2147                 if (swap_info[type]->inuse_pages)
2148                         return;
2149         spin_lock(&mmlist_lock);
2150         list_for_each_safe(p, next, &init_mm.mmlist)
2151                 list_del_init(p);
2152         spin_unlock(&mmlist_lock);
2153 }
2154
2155 /*
2156  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2157  * corresponds to page offset for the specified swap entry.
2158  * Note that the type of this function is sector_t, but it returns page offset
2159  * into the bdev, not sector offset.
2160  */
2161 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2162 {
2163         struct swap_info_struct *sis;
2164         struct swap_extent *start_se;
2165         struct swap_extent *se;
2166         pgoff_t offset;
2167
2168         sis = swp_swap_info(entry);
2169         *bdev = sis->bdev;
2170
2171         offset = swp_offset(entry);
2172         start_se = sis->curr_swap_extent;
2173         se = start_se;
2174
2175         for ( ; ; ) {
2176                 if (se->start_page <= offset &&
2177                                 offset < (se->start_page + se->nr_pages)) {
2178                         return se->start_block + (offset - se->start_page);
2179                 }
2180                 se = list_next_entry(se, list);
2181                 sis->curr_swap_extent = se;
2182                 BUG_ON(se == start_se);         /* It *must* be present */
2183         }
2184 }
2185
2186 /*
2187  * Returns the page offset into bdev for the specified page's swap entry.
2188  */
2189 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2190 {
2191         swp_entry_t entry;
2192         entry.val = page_private(page);
2193         return map_swap_entry(entry, bdev);
2194 }
2195
2196 /*
2197  * Free all of a swapdev's extent information
2198  */
2199 static void destroy_swap_extents(struct swap_info_struct *sis)
2200 {
2201         while (!list_empty(&sis->first_swap_extent.list)) {
2202                 struct swap_extent *se;
2203
2204                 se = list_first_entry(&sis->first_swap_extent.list,
2205                                 struct swap_extent, list);
2206                 list_del(&se->list);
2207                 kfree(se);
2208         }
2209
2210         if (sis->flags & SWP_ACTIVATED) {
2211                 struct file *swap_file = sis->swap_file;
2212                 struct address_space *mapping = swap_file->f_mapping;
2213
2214                 sis->flags &= ~SWP_ACTIVATED;
2215                 if (mapping->a_ops->swap_deactivate)
2216                         mapping->a_ops->swap_deactivate(swap_file);
2217         }
2218 }
2219
2220 /*
2221  * Add a block range (and the corresponding page range) into this swapdev's
2222  * extent list.  The extent list is kept sorted in page order.
2223  *
2224  * This function rather assumes that it is called in ascending page order.
2225  */
2226 int
2227 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2228                 unsigned long nr_pages, sector_t start_block)
2229 {
2230         struct swap_extent *se;
2231         struct swap_extent *new_se;
2232         struct list_head *lh;
2233
2234         if (start_page == 0) {
2235                 se = &sis->first_swap_extent;
2236                 sis->curr_swap_extent = se;
2237                 se->start_page = 0;
2238                 se->nr_pages = nr_pages;
2239                 se->start_block = start_block;
2240                 return 1;
2241         } else {
2242                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2243                 se = list_entry(lh, struct swap_extent, list);
2244                 BUG_ON(se->start_page + se->nr_pages != start_page);
2245                 if (se->start_block + se->nr_pages == start_block) {
2246                         /* Merge it */
2247                         se->nr_pages += nr_pages;
2248                         return 0;
2249                 }
2250         }
2251
2252         /*
2253          * No merge.  Insert a new extent, preserving ordering.
2254          */
2255         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2256         if (new_se == NULL)
2257                 return -ENOMEM;
2258         new_se->start_page = start_page;
2259         new_se->nr_pages = nr_pages;
2260         new_se->start_block = start_block;
2261
2262         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2263         return 1;
2264 }
2265 EXPORT_SYMBOL_GPL(add_swap_extent);
2266
2267 /*
2268  * A `swap extent' is a simple thing which maps a contiguous range of pages
2269  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2270  * is built at swapon time and is then used at swap_writepage/swap_readpage
2271  * time for locating where on disk a page belongs.
2272  *
2273  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2274  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2275  * swap files identically.
2276  *
2277  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2278  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2279  * swapfiles are handled *identically* after swapon time.
2280  *
2281  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2282  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2283  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2284  * requirements, they are simply tossed out - we will never use those blocks
2285  * for swapping.
2286  *
2287  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2288  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2289  * which will scribble on the fs.
2290  *
2291  * The amount of disk space which a single swap extent represents varies.
2292  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2293  * extents in the list.  To avoid much list walking, we cache the previous
2294  * search location in `curr_swap_extent', and start new searches from there.
2295  * This is extremely effective.  The average number of iterations in
2296  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2297  */
2298 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2299 {
2300         struct file *swap_file = sis->swap_file;
2301         struct address_space *mapping = swap_file->f_mapping;
2302         struct inode *inode = mapping->host;
2303         int ret;
2304
2305         if (S_ISBLK(inode->i_mode)) {
2306                 ret = add_swap_extent(sis, 0, sis->max, 0);
2307                 *span = sis->pages;
2308                 return ret;
2309         }
2310
2311         if (mapping->a_ops->swap_activate) {
2312                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2313                 if (ret >= 0)
2314                         sis->flags |= SWP_ACTIVATED;
2315                 if (!ret) {
2316                         sis->flags |= SWP_FS;
2317                         ret = add_swap_extent(sis, 0, sis->max, 0);
2318                         *span = sis->pages;
2319                 }
2320                 return ret;
2321         }
2322
2323         return generic_swapfile_activate(sis, swap_file, span);
2324 }
2325
2326 static int swap_node(struct swap_info_struct *p)
2327 {
2328         struct block_device *bdev;
2329
2330         if (p->bdev)
2331                 bdev = p->bdev;
2332         else
2333                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2334
2335         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2336 }
2337
2338 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2339                                 unsigned char *swap_map,
2340                                 struct swap_cluster_info *cluster_info)
2341 {
2342         int i;
2343
2344         if (prio >= 0)
2345                 p->prio = prio;
2346         else
2347                 p->prio = --least_priority;
2348         /*
2349          * the plist prio is negated because plist ordering is
2350          * low-to-high, while swap ordering is high-to-low
2351          */
2352         p->list.prio = -p->prio;
2353         for_each_node(i) {
2354                 if (p->prio >= 0)
2355                         p->avail_lists[i].prio = -p->prio;
2356                 else {
2357                         if (swap_node(p) == i)
2358                                 p->avail_lists[i].prio = 1;
2359                         else
2360                                 p->avail_lists[i].prio = -p->prio;
2361                 }
2362         }
2363         p->swap_map = swap_map;
2364         p->cluster_info = cluster_info;
2365         p->flags |= SWP_WRITEOK;
2366         atomic_long_add(p->pages, &nr_swap_pages);
2367         total_swap_pages += p->pages;
2368
2369         assert_spin_locked(&swap_lock);
2370         /*
2371          * both lists are plists, and thus priority ordered.
2372          * swap_active_head needs to be priority ordered for swapoff(),
2373          * which on removal of any swap_info_struct with an auto-assigned
2374          * (i.e. negative) priority increments the auto-assigned priority
2375          * of any lower-priority swap_info_structs.
2376          * swap_avail_head needs to be priority ordered for get_swap_page(),
2377          * which allocates swap pages from the highest available priority
2378          * swap_info_struct.
2379          */
2380         plist_add(&p->list, &swap_active_head);
2381         add_to_avail_list(p);
2382 }
2383
2384 static void enable_swap_info(struct swap_info_struct *p, int prio,
2385                                 unsigned char *swap_map,
2386                                 struct swap_cluster_info *cluster_info,
2387                                 unsigned long *frontswap_map)
2388 {
2389         frontswap_init(p->type, frontswap_map);
2390         spin_lock(&swap_lock);
2391         spin_lock(&p->lock);
2392          _enable_swap_info(p, prio, swap_map, cluster_info);
2393         spin_unlock(&p->lock);
2394         spin_unlock(&swap_lock);
2395 }
2396
2397 static void reinsert_swap_info(struct swap_info_struct *p)
2398 {
2399         spin_lock(&swap_lock);
2400         spin_lock(&p->lock);
2401         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2402         spin_unlock(&p->lock);
2403         spin_unlock(&swap_lock);
2404 }
2405
2406 bool has_usable_swap(void)
2407 {
2408         bool ret = true;
2409
2410         spin_lock(&swap_lock);
2411         if (plist_head_empty(&swap_active_head))
2412                 ret = false;
2413         spin_unlock(&swap_lock);
2414         return ret;
2415 }
2416
2417 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2418 {
2419         struct swap_info_struct *p = NULL;
2420         unsigned char *swap_map;
2421         struct swap_cluster_info *cluster_info;
2422         unsigned long *frontswap_map;
2423         struct file *swap_file, *victim;
2424         struct address_space *mapping;
2425         struct inode *inode;
2426         struct filename *pathname;
2427         int err, found = 0;
2428         unsigned int old_block_size;
2429
2430         if (!capable(CAP_SYS_ADMIN))
2431                 return -EPERM;
2432
2433         BUG_ON(!current->mm);
2434
2435         pathname = getname(specialfile);
2436         if (IS_ERR(pathname))
2437                 return PTR_ERR(pathname);
2438
2439         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2440         err = PTR_ERR(victim);
2441         if (IS_ERR(victim))
2442                 goto out;
2443
2444         mapping = victim->f_mapping;
2445         spin_lock(&swap_lock);
2446         plist_for_each_entry(p, &swap_active_head, list) {
2447                 if (p->flags & SWP_WRITEOK) {
2448                         if (p->swap_file->f_mapping == mapping) {
2449                                 found = 1;
2450                                 break;
2451                         }
2452                 }
2453         }
2454         if (!found) {
2455                 err = -EINVAL;
2456                 spin_unlock(&swap_lock);
2457                 goto out_dput;
2458         }
2459         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2460                 vm_unacct_memory(p->pages);
2461         else {
2462                 err = -ENOMEM;
2463                 spin_unlock(&swap_lock);
2464                 goto out_dput;
2465         }
2466         del_from_avail_list(p);
2467         spin_lock(&p->lock);
2468         if (p->prio < 0) {
2469                 struct swap_info_struct *si = p;
2470                 int nid;
2471
2472                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2473                         si->prio++;
2474                         si->list.prio--;
2475                         for_each_node(nid) {
2476                                 if (si->avail_lists[nid].prio != 1)
2477                                         si->avail_lists[nid].prio--;
2478                         }
2479                 }
2480                 least_priority++;
2481         }
2482         plist_del(&p->list, &swap_active_head);
2483         atomic_long_sub(p->pages, &nr_swap_pages);
2484         total_swap_pages -= p->pages;
2485         p->flags &= ~SWP_WRITEOK;
2486         spin_unlock(&p->lock);
2487         spin_unlock(&swap_lock);
2488
2489         disable_swap_slots_cache_lock();
2490
2491         set_current_oom_origin();
2492         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2493         clear_current_oom_origin();
2494
2495         if (err) {
2496                 /* re-insert swap space back into swap_list */
2497                 reinsert_swap_info(p);
2498                 reenable_swap_slots_cache_unlock();
2499                 goto out_dput;
2500         }
2501
2502         reenable_swap_slots_cache_unlock();
2503
2504         flush_work(&p->discard_work);
2505
2506         destroy_swap_extents(p);
2507         if (p->flags & SWP_CONTINUED)
2508                 free_swap_count_continuations(p);
2509
2510         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2511                 atomic_dec(&nr_rotate_swap);
2512
2513         mutex_lock(&swapon_mutex);
2514         spin_lock(&swap_lock);
2515         spin_lock(&p->lock);
2516         drain_mmlist();
2517
2518         /* wait for anyone still in scan_swap_map */
2519         p->highest_bit = 0;             /* cuts scans short */
2520         while (p->flags >= SWP_SCANNING) {
2521                 spin_unlock(&p->lock);
2522                 spin_unlock(&swap_lock);
2523                 schedule_timeout_uninterruptible(1);
2524                 spin_lock(&swap_lock);
2525                 spin_lock(&p->lock);
2526         }
2527
2528         swap_file = p->swap_file;
2529         old_block_size = p->old_block_size;
2530         p->swap_file = NULL;
2531         p->max = 0;
2532         swap_map = p->swap_map;
2533         p->swap_map = NULL;
2534         cluster_info = p->cluster_info;
2535         p->cluster_info = NULL;
2536         frontswap_map = frontswap_map_get(p);
2537         spin_unlock(&p->lock);
2538         spin_unlock(&swap_lock);
2539         frontswap_invalidate_area(p->type);
2540         frontswap_map_set(p, NULL);
2541         mutex_unlock(&swapon_mutex);
2542         free_percpu(p->percpu_cluster);
2543         p->percpu_cluster = NULL;
2544         vfree(swap_map);
2545         kvfree(cluster_info);
2546         kvfree(frontswap_map);
2547         /* Destroy swap account information */
2548         swap_cgroup_swapoff(p->type);
2549         exit_swap_address_space(p->type);
2550
2551         inode = mapping->host;
2552         if (S_ISBLK(inode->i_mode)) {
2553                 struct block_device *bdev = I_BDEV(inode);
2554                 set_blocksize(bdev, old_block_size);
2555                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2556         } else {
2557                 inode_lock(inode);
2558                 inode->i_flags &= ~S_SWAPFILE;
2559                 inode_unlock(inode);
2560         }
2561         filp_close(swap_file, NULL);
2562
2563         /*
2564          * Clear the SWP_USED flag after all resources are freed so that swapon
2565          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2566          * not hold p->lock after we cleared its SWP_WRITEOK.
2567          */
2568         spin_lock(&swap_lock);
2569         p->flags = 0;
2570         spin_unlock(&swap_lock);
2571
2572         err = 0;
2573         atomic_inc(&proc_poll_event);
2574         wake_up_interruptible(&proc_poll_wait);
2575
2576 out_dput:
2577         filp_close(victim, NULL);
2578 out:
2579         putname(pathname);
2580         return err;
2581 }
2582
2583 #ifdef CONFIG_PROC_FS
2584 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2585 {
2586         struct seq_file *seq = file->private_data;
2587
2588         poll_wait(file, &proc_poll_wait, wait);
2589
2590         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2591                 seq->poll_event = atomic_read(&proc_poll_event);
2592                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2593         }
2594
2595         return EPOLLIN | EPOLLRDNORM;
2596 }
2597
2598 /* iterator */
2599 static void *swap_start(struct seq_file *swap, loff_t *pos)
2600 {
2601         struct swap_info_struct *si;
2602         int type;
2603         loff_t l = *pos;
2604
2605         mutex_lock(&swapon_mutex);
2606
2607         if (!l)
2608                 return SEQ_START_TOKEN;
2609
2610         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2611                 if (!(si->flags & SWP_USED) || !si->swap_map)
2612                         continue;
2613                 if (!--l)
2614                         return si;
2615         }
2616
2617         return NULL;
2618 }
2619
2620 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2621 {
2622         struct swap_info_struct *si = v;
2623         int type;
2624
2625         if (v == SEQ_START_TOKEN)
2626                 type = 0;
2627         else
2628                 type = si->type + 1;
2629
2630         for (; (si = swap_type_to_swap_info(type)); type++) {
2631                 if (!(si->flags & SWP_USED) || !si->swap_map)
2632                         continue;
2633                 ++*pos;
2634                 return si;
2635         }
2636
2637         return NULL;
2638 }
2639
2640 static void swap_stop(struct seq_file *swap, void *v)
2641 {
2642         mutex_unlock(&swapon_mutex);
2643 }
2644
2645 static int swap_show(struct seq_file *swap, void *v)
2646 {
2647         struct swap_info_struct *si = v;
2648         struct file *file;
2649         int len;
2650
2651         if (si == SEQ_START_TOKEN) {
2652                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2653                 return 0;
2654         }
2655
2656         file = si->swap_file;
2657         len = seq_file_path(swap, file, " \t\n\\");
2658         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2659                         len < 40 ? 40 - len : 1, " ",
2660                         S_ISBLK(file_inode(file)->i_mode) ?
2661                                 "partition" : "file\t",
2662                         si->pages << (PAGE_SHIFT - 10),
2663                         si->inuse_pages << (PAGE_SHIFT - 10),
2664                         si->prio);
2665         return 0;
2666 }
2667
2668 static const struct seq_operations swaps_op = {
2669         .start =        swap_start,
2670         .next =         swap_next,
2671         .stop =         swap_stop,
2672         .show =         swap_show
2673 };
2674
2675 static int swaps_open(struct inode *inode, struct file *file)
2676 {
2677         struct seq_file *seq;
2678         int ret;
2679
2680         ret = seq_open(file, &swaps_op);
2681         if (ret)
2682                 return ret;
2683
2684         seq = file->private_data;
2685         seq->poll_event = atomic_read(&proc_poll_event);
2686         return 0;
2687 }
2688
2689 static const struct file_operations proc_swaps_operations = {
2690         .open           = swaps_open,
2691         .read           = seq_read,
2692         .llseek         = seq_lseek,
2693         .release        = seq_release,
2694         .poll           = swaps_poll,
2695 };
2696
2697 static int __init procswaps_init(void)
2698 {
2699         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2700         return 0;
2701 }
2702 __initcall(procswaps_init);
2703 #endif /* CONFIG_PROC_FS */
2704
2705 #ifdef MAX_SWAPFILES_CHECK
2706 static int __init max_swapfiles_check(void)
2707 {
2708         MAX_SWAPFILES_CHECK();
2709         return 0;
2710 }
2711 late_initcall(max_swapfiles_check);
2712 #endif
2713
2714 static struct swap_info_struct *alloc_swap_info(void)
2715 {
2716         struct swap_info_struct *p;
2717         unsigned int type;
2718         int i;
2719
2720         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721         if (!p)
2722                 return ERR_PTR(-ENOMEM);
2723
2724         spin_lock(&swap_lock);
2725         for (type = 0; type < nr_swapfiles; type++) {
2726                 if (!(swap_info[type]->flags & SWP_USED))
2727                         break;
2728         }
2729         if (type >= MAX_SWAPFILES) {
2730                 spin_unlock(&swap_lock);
2731                 kvfree(p);
2732                 return ERR_PTR(-EPERM);
2733         }
2734         if (type >= nr_swapfiles) {
2735                 p->type = type;
2736                 WRITE_ONCE(swap_info[type], p);
2737                 /*
2738                  * Write swap_info[type] before nr_swapfiles, in case a
2739                  * racing procfs swap_start() or swap_next() is reading them.
2740                  * (We never shrink nr_swapfiles, we never free this entry.)
2741                  */
2742                 smp_wmb();
2743                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2744         } else {
2745                 kvfree(p);
2746                 p = swap_info[type];
2747                 /*
2748                  * Do not memset this entry: a racing procfs swap_next()
2749                  * would be relying on p->type to remain valid.
2750                  */
2751         }
2752         INIT_LIST_HEAD(&p->first_swap_extent.list);
2753         plist_node_init(&p->list, 0);
2754         for_each_node(i)
2755                 plist_node_init(&p->avail_lists[i], 0);
2756         p->flags = SWP_USED;
2757         spin_unlock(&swap_lock);
2758         spin_lock_init(&p->lock);
2759         spin_lock_init(&p->cont_lock);
2760
2761         return p;
2762 }
2763
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766         int error;
2767
2768         if (S_ISBLK(inode->i_mode)) {
2769                 p->bdev = bdgrab(I_BDEV(inode));
2770                 error = blkdev_get(p->bdev,
2771                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2772                 if (error < 0) {
2773                         p->bdev = NULL;
2774                         return error;
2775                 }
2776                 p->old_block_size = block_size(p->bdev);
2777                 error = set_blocksize(p->bdev, PAGE_SIZE);
2778                 if (error < 0)
2779                         return error;
2780                 p->flags |= SWP_BLKDEV;
2781         } else if (S_ISREG(inode->i_mode)) {
2782                 p->bdev = inode->i_sb->s_bdev;
2783                 inode_lock(inode);
2784                 if (IS_SWAPFILE(inode))
2785                         return -EBUSY;
2786         } else
2787                 return -EINVAL;
2788
2789         return 0;
2790 }
2791
2792
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811         return swp_offset(pte_to_swp_entry(
2812                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long max_swapfile_size(void)
2817 {
2818         return generic_max_swapfile_size();
2819 }
2820
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822                                         union swap_header *swap_header,
2823                                         struct inode *inode)
2824 {
2825         int i;
2826         unsigned long maxpages;
2827         unsigned long swapfilepages;
2828         unsigned long last_page;
2829
2830         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831                 pr_err("Unable to find swap-space signature\n");
2832                 return 0;
2833         }
2834
2835         /* swap partition endianess hack... */
2836         if (swab32(swap_header->info.version) == 1) {
2837                 swab32s(&swap_header->info.version);
2838                 swab32s(&swap_header->info.last_page);
2839                 swab32s(&swap_header->info.nr_badpages);
2840                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841                         return 0;
2842                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2843                         swab32s(&swap_header->info.badpages[i]);
2844         }
2845         /* Check the swap header's sub-version */
2846         if (swap_header->info.version != 1) {
2847                 pr_warn("Unable to handle swap header version %d\n",
2848                         swap_header->info.version);
2849                 return 0;
2850         }
2851
2852         p->lowest_bit  = 1;
2853         p->cluster_next = 1;
2854         p->cluster_nr = 0;
2855
2856         maxpages = max_swapfile_size();
2857         last_page = swap_header->info.last_page;
2858         if (!last_page) {
2859                 pr_warn("Empty swap-file\n");
2860                 return 0;
2861         }
2862         if (last_page > maxpages) {
2863                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864                         maxpages << (PAGE_SHIFT - 10),
2865                         last_page << (PAGE_SHIFT - 10));
2866         }
2867         if (maxpages > last_page) {
2868                 maxpages = last_page + 1;
2869                 /* p->max is an unsigned int: don't overflow it */
2870                 if ((unsigned int)maxpages == 0)
2871                         maxpages = UINT_MAX;
2872         }
2873         p->highest_bit = maxpages - 1;
2874
2875         if (!maxpages)
2876                 return 0;
2877         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878         if (swapfilepages && maxpages > swapfilepages) {
2879                 pr_warn("Swap area shorter than signature indicates\n");
2880                 return 0;
2881         }
2882         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883                 return 0;
2884         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885                 return 0;
2886
2887         return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS                                          \
2891         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS                                         \
2893         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS                                               \
2895         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898                                         union swap_header *swap_header,
2899                                         unsigned char *swap_map,
2900                                         struct swap_cluster_info *cluster_info,
2901                                         unsigned long maxpages,
2902                                         sector_t *span)
2903 {
2904         unsigned int j, k;
2905         unsigned int nr_good_pages;
2906         int nr_extents;
2907         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909         unsigned long i, idx;
2910
2911         nr_good_pages = maxpages - 1;   /* omit header page */
2912
2913         cluster_list_init(&p->free_clusters);
2914         cluster_list_init(&p->discard_clusters);
2915
2916         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917                 unsigned int page_nr = swap_header->info.badpages[i];
2918                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919                         return -EINVAL;
2920                 if (page_nr < maxpages) {
2921                         swap_map[page_nr] = SWAP_MAP_BAD;
2922                         nr_good_pages--;
2923                         /*
2924                          * Haven't marked the cluster free yet, no list
2925                          * operation involved
2926                          */
2927                         inc_cluster_info_page(p, cluster_info, page_nr);
2928                 }
2929         }
2930
2931         /* Haven't marked the cluster free yet, no list operation involved */
2932         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933                 inc_cluster_info_page(p, cluster_info, i);
2934
2935         if (nr_good_pages) {
2936                 swap_map[0] = SWAP_MAP_BAD;
2937                 /*
2938                  * Not mark the cluster free yet, no list
2939                  * operation involved
2940                  */
2941                 inc_cluster_info_page(p, cluster_info, 0);
2942                 p->max = maxpages;
2943                 p->pages = nr_good_pages;
2944                 nr_extents = setup_swap_extents(p, span);
2945                 if (nr_extents < 0)
2946                         return nr_extents;
2947                 nr_good_pages = p->pages;
2948         }
2949         if (!nr_good_pages) {
2950                 pr_warn("Empty swap-file\n");
2951                 return -EINVAL;
2952         }
2953
2954         if (!cluster_info)
2955                 return nr_extents;
2956
2957
2958         /*
2959          * Reduce false cache line sharing between cluster_info and
2960          * sharing same address space.
2961          */
2962         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963                 j = (k + col) % SWAP_CLUSTER_COLS;
2964                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965                         idx = i * SWAP_CLUSTER_COLS + j;
2966                         if (idx >= nr_clusters)
2967                                 continue;
2968                         if (cluster_count(&cluster_info[idx]))
2969                                 continue;
2970                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2972                                               idx);
2973                 }
2974         }
2975         return nr_extents;
2976 }
2977
2978 /*
2979  * Helper to sys_swapon determining if a given swap
2980  * backing device queue supports DISCARD operations.
2981  */
2982 static bool swap_discardable(struct swap_info_struct *si)
2983 {
2984         struct request_queue *q = bdev_get_queue(si->bdev);
2985
2986         if (!q || !blk_queue_discard(q))
2987                 return false;
2988
2989         return true;
2990 }
2991
2992 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2993 {
2994         struct swap_info_struct *p;
2995         struct filename *name;
2996         struct file *swap_file = NULL;
2997         struct address_space *mapping;
2998         int prio;
2999         int error;
3000         union swap_header *swap_header;
3001         int nr_extents;
3002         sector_t span;
3003         unsigned long maxpages;
3004         unsigned char *swap_map = NULL;
3005         struct swap_cluster_info *cluster_info = NULL;
3006         unsigned long *frontswap_map = NULL;
3007         struct page *page = NULL;
3008         struct inode *inode = NULL;
3009         bool inced_nr_rotate_swap = false;
3010
3011         if (swap_flags & ~SWAP_FLAGS_VALID)
3012                 return -EINVAL;
3013
3014         if (!capable(CAP_SYS_ADMIN))
3015                 return -EPERM;
3016
3017         if (!swap_avail_heads)
3018                 return -ENOMEM;
3019
3020         p = alloc_swap_info();
3021         if (IS_ERR(p))
3022                 return PTR_ERR(p);
3023
3024         INIT_WORK(&p->discard_work, swap_discard_work);
3025
3026         name = getname(specialfile);
3027         if (IS_ERR(name)) {
3028                 error = PTR_ERR(name);
3029                 name = NULL;
3030                 goto bad_swap;
3031         }
3032         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3033         if (IS_ERR(swap_file)) {
3034                 error = PTR_ERR(swap_file);
3035                 swap_file = NULL;
3036                 goto bad_swap;
3037         }
3038
3039         p->swap_file = swap_file;
3040         mapping = swap_file->f_mapping;
3041         inode = mapping->host;
3042
3043         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3044         error = claim_swapfile(p, inode);
3045         if (unlikely(error))
3046                 goto bad_swap;
3047
3048         /*
3049          * Read the swap header.
3050          */
3051         if (!mapping->a_ops->readpage) {
3052                 error = -EINVAL;
3053                 goto bad_swap;
3054         }
3055         page = read_mapping_page(mapping, 0, swap_file);
3056         if (IS_ERR(page)) {
3057                 error = PTR_ERR(page);
3058                 goto bad_swap;
3059         }
3060         swap_header = kmap(page);
3061
3062         maxpages = read_swap_header(p, swap_header, inode);
3063         if (unlikely(!maxpages)) {
3064                 error = -EINVAL;
3065                 goto bad_swap;
3066         }
3067
3068         /* OK, set up the swap map and apply the bad block list */
3069         swap_map = vzalloc(maxpages);
3070         if (!swap_map) {
3071                 error = -ENOMEM;
3072                 goto bad_swap;
3073         }
3074
3075         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3076                 p->flags |= SWP_STABLE_WRITES;
3077
3078         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3079                 p->flags |= SWP_SYNCHRONOUS_IO;
3080
3081         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3082                 int cpu;
3083                 unsigned long ci, nr_cluster;
3084
3085                 p->flags |= SWP_SOLIDSTATE;
3086                 /*
3087                  * select a random position to start with to help wear leveling
3088                  * SSD
3089                  */
3090                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3091                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3092
3093                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3094                                         GFP_KERNEL);
3095                 if (!cluster_info) {
3096                         error = -ENOMEM;
3097                         goto bad_swap;
3098                 }
3099
3100                 for (ci = 0; ci < nr_cluster; ci++)
3101                         spin_lock_init(&((cluster_info + ci)->lock));
3102
3103                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3104                 if (!p->percpu_cluster) {
3105                         error = -ENOMEM;
3106                         goto bad_swap;
3107                 }
3108                 for_each_possible_cpu(cpu) {
3109                         struct percpu_cluster *cluster;
3110                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3111                         cluster_set_null(&cluster->index);
3112                 }
3113         } else {
3114                 atomic_inc(&nr_rotate_swap);
3115                 inced_nr_rotate_swap = true;
3116         }
3117
3118         error = swap_cgroup_swapon(p->type, maxpages);
3119         if (error)
3120                 goto bad_swap;
3121
3122         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3123                 cluster_info, maxpages, &span);
3124         if (unlikely(nr_extents < 0)) {
3125                 error = nr_extents;
3126                 goto bad_swap;
3127         }
3128         /* frontswap enabled? set up bit-per-page map for frontswap */
3129         if (IS_ENABLED(CONFIG_FRONTSWAP))
3130                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3131                                          sizeof(long),
3132                                          GFP_KERNEL);
3133
3134         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3135                 /*
3136                  * When discard is enabled for swap with no particular
3137                  * policy flagged, we set all swap discard flags here in
3138                  * order to sustain backward compatibility with older
3139                  * swapon(8) releases.
3140                  */
3141                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142                              SWP_PAGE_DISCARD);
3143
3144                 /*
3145                  * By flagging sys_swapon, a sysadmin can tell us to
3146                  * either do single-time area discards only, or to just
3147                  * perform discards for released swap page-clusters.
3148                  * Now it's time to adjust the p->flags accordingly.
3149                  */
3150                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151                         p->flags &= ~SWP_PAGE_DISCARD;
3152                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153                         p->flags &= ~SWP_AREA_DISCARD;
3154
3155                 /* issue a swapon-time discard if it's still required */
3156                 if (p->flags & SWP_AREA_DISCARD) {
3157                         int err = discard_swap(p);
3158                         if (unlikely(err))
3159                                 pr_err("swapon: discard_swap(%p): %d\n",
3160                                         p, err);
3161                 }
3162         }
3163
3164         error = init_swap_address_space(p->type, maxpages);
3165         if (error)
3166                 goto bad_swap;
3167
3168         mutex_lock(&swapon_mutex);
3169         prio = -1;
3170         if (swap_flags & SWAP_FLAG_PREFER)
3171                 prio =
3172                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3173         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3174
3175         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3176                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3177                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3178                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3179                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3180                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3181                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3182                 (frontswap_map) ? "FS" : "");
3183
3184         mutex_unlock(&swapon_mutex);
3185         atomic_inc(&proc_poll_event);
3186         wake_up_interruptible(&proc_poll_wait);
3187
3188         if (S_ISREG(inode->i_mode))
3189                 inode->i_flags |= S_SWAPFILE;
3190         error = 0;
3191         goto out;
3192 bad_swap:
3193         free_percpu(p->percpu_cluster);
3194         p->percpu_cluster = NULL;
3195         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3196                 set_blocksize(p->bdev, p->old_block_size);
3197                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3198         }
3199         destroy_swap_extents(p);
3200         swap_cgroup_swapoff(p->type);
3201         spin_lock(&swap_lock);
3202         p->swap_file = NULL;
3203         p->flags = 0;
3204         spin_unlock(&swap_lock);
3205         vfree(swap_map);
3206         kvfree(cluster_info);
3207         kvfree(frontswap_map);
3208         if (inced_nr_rotate_swap)
3209                 atomic_dec(&nr_rotate_swap);
3210         if (swap_file) {
3211                 if (inode && S_ISREG(inode->i_mode)) {
3212                         inode_unlock(inode);
3213                         inode = NULL;
3214                 }
3215                 filp_close(swap_file, NULL);
3216         }
3217 out:
3218         if (page && !IS_ERR(page)) {
3219                 kunmap(page);
3220                 put_page(page);
3221         }
3222         if (name)
3223                 putname(name);
3224         if (inode && S_ISREG(inode->i_mode))
3225                 inode_unlock(inode);
3226         if (!error)
3227                 enable_swap_slots_cache();
3228         return error;
3229 }
3230
3231 void si_swapinfo(struct sysinfo *val)
3232 {
3233         unsigned int type;
3234         unsigned long nr_to_be_unused = 0;
3235
3236         spin_lock(&swap_lock);
3237         for (type = 0; type < nr_swapfiles; type++) {
3238                 struct swap_info_struct *si = swap_info[type];
3239
3240                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3241                         nr_to_be_unused += si->inuse_pages;
3242         }
3243         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3244         val->totalswap = total_swap_pages + nr_to_be_unused;
3245         spin_unlock(&swap_lock);
3246 }
3247
3248 /*
3249  * Verify that a swap entry is valid and increment its swap map count.
3250  *
3251  * Returns error code in following case.
3252  * - success -> 0
3253  * - swp_entry is invalid -> EINVAL
3254  * - swp_entry is migration entry -> EINVAL
3255  * - swap-cache reference is requested but there is already one. -> EEXIST
3256  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3257  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258  */
3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3260 {
3261         struct swap_info_struct *p;
3262         struct swap_cluster_info *ci;
3263         unsigned long offset;
3264         unsigned char count;
3265         unsigned char has_cache;
3266         int err = -EINVAL;
3267
3268         if (non_swap_entry(entry))
3269                 goto out;
3270
3271         p = swp_swap_info(entry);
3272         if (!p)
3273                 goto bad_file;
3274
3275         offset = swp_offset(entry);
3276         if (unlikely(offset >= p->max))
3277                 goto out;
3278
3279         ci = lock_cluster_or_swap_info(p, offset);
3280
3281         count = p->swap_map[offset];
3282
3283         /*
3284          * swapin_readahead() doesn't check if a swap entry is valid, so the
3285          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3286          */
3287         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3288                 err = -ENOENT;
3289                 goto unlock_out;
3290         }
3291
3292         has_cache = count & SWAP_HAS_CACHE;
3293         count &= ~SWAP_HAS_CACHE;
3294         err = 0;
3295
3296         if (usage == SWAP_HAS_CACHE) {
3297
3298                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3299                 if (!has_cache && count)
3300                         has_cache = SWAP_HAS_CACHE;
3301                 else if (has_cache)             /* someone else added cache */
3302                         err = -EEXIST;
3303                 else                            /* no users remaining */
3304                         err = -ENOENT;
3305
3306         } else if (count || has_cache) {
3307
3308                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3309                         count += usage;
3310                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3311                         err = -EINVAL;
3312                 else if (swap_count_continued(p, offset, count))
3313                         count = COUNT_CONTINUED;
3314                 else
3315                         err = -ENOMEM;
3316         } else
3317                 err = -ENOENT;                  /* unused swap entry */
3318
3319         p->swap_map[offset] = count | has_cache;
3320
3321 unlock_out:
3322         unlock_cluster_or_swap_info(p, ci);
3323 out:
3324         return err;
3325
3326 bad_file:
3327         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3328         goto out;
3329 }
3330
3331 /*
3332  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3333  * (in which case its reference count is never incremented).
3334  */
3335 void swap_shmem_alloc(swp_entry_t entry)
3336 {
3337         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3338 }
3339
3340 /*
3341  * Increase reference count of swap entry by 1.
3342  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3343  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3344  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3345  * might occur if a page table entry has got corrupted.
3346  */
3347 int swap_duplicate(swp_entry_t entry)
3348 {
3349         int err = 0;
3350
3351         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3352                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3353         return err;
3354 }
3355
3356 /*
3357  * @entry: swap entry for which we allocate swap cache.
3358  *
3359  * Called when allocating swap cache for existing swap entry,
3360  * This can return error codes. Returns 0 at success.
3361  * -EBUSY means there is a swap cache.
3362  * Note: return code is different from swap_duplicate().
3363  */
3364 int swapcache_prepare(swp_entry_t entry)
3365 {
3366         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3367 }
3368
3369 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3370 {
3371         return swap_type_to_swap_info(swp_type(entry));
3372 }
3373
3374 struct swap_info_struct *page_swap_info(struct page *page)
3375 {
3376         swp_entry_t entry = { .val = page_private(page) };
3377         return swp_swap_info(entry);
3378 }
3379
3380 /*
3381  * out-of-line __page_file_ methods to avoid include hell.
3382  */
3383 struct address_space *__page_file_mapping(struct page *page)
3384 {
3385         return page_swap_info(page)->swap_file->f_mapping;
3386 }
3387 EXPORT_SYMBOL_GPL(__page_file_mapping);
3388
3389 pgoff_t __page_file_index(struct page *page)
3390 {
3391         swp_entry_t swap = { .val = page_private(page) };
3392         return swp_offset(swap);
3393 }
3394 EXPORT_SYMBOL_GPL(__page_file_index);
3395
3396 /*
3397  * add_swap_count_continuation - called when a swap count is duplicated
3398  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3399  * page of the original vmalloc'ed swap_map, to hold the continuation count
3400  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3401  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3402  *
3403  * These continuation pages are seldom referenced: the common paths all work
3404  * on the original swap_map, only referring to a continuation page when the
3405  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3406  *
3407  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3408  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3409  * can be called after dropping locks.
3410  */
3411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3412 {
3413         struct swap_info_struct *si;
3414         struct swap_cluster_info *ci;
3415         struct page *head;
3416         struct page *page;
3417         struct page *list_page;
3418         pgoff_t offset;
3419         unsigned char count;
3420
3421         /*
3422          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3423          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3424          */
3425         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3426
3427         si = swap_info_get(entry);
3428         if (!si) {
3429                 /*
3430                  * An acceptable race has occurred since the failing
3431                  * __swap_duplicate(): the swap entry has been freed,
3432                  * perhaps even the whole swap_map cleared for swapoff.
3433                  */
3434                 goto outer;
3435         }
3436
3437         offset = swp_offset(entry);
3438
3439         ci = lock_cluster(si, offset);
3440
3441         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3442
3443         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3444                 /*
3445                  * The higher the swap count, the more likely it is that tasks
3446                  * will race to add swap count continuation: we need to avoid
3447                  * over-provisioning.
3448                  */
3449                 goto out;
3450         }
3451
3452         if (!page) {
3453                 unlock_cluster(ci);
3454                 spin_unlock(&si->lock);
3455                 return -ENOMEM;
3456         }
3457
3458         /*
3459          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3460          * no architecture is using highmem pages for kernel page tables: so it
3461          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3462          */
3463         head = vmalloc_to_page(si->swap_map + offset);
3464         offset &= ~PAGE_MASK;
3465
3466         spin_lock(&si->cont_lock);
3467         /*
3468          * Page allocation does not initialize the page's lru field,
3469          * but it does always reset its private field.
3470          */
3471         if (!page_private(head)) {
3472                 BUG_ON(count & COUNT_CONTINUED);
3473                 INIT_LIST_HEAD(&head->lru);
3474                 set_page_private(head, SWP_CONTINUED);
3475                 si->flags |= SWP_CONTINUED;
3476         }
3477
3478         list_for_each_entry(list_page, &head->lru, lru) {
3479                 unsigned char *map;
3480
3481                 /*
3482                  * If the previous map said no continuation, but we've found
3483                  * a continuation page, free our allocation and use this one.
3484                  */
3485                 if (!(count & COUNT_CONTINUED))
3486                         goto out_unlock_cont;
3487
3488                 map = kmap_atomic(list_page) + offset;
3489                 count = *map;
3490                 kunmap_atomic(map);
3491
3492                 /*
3493                  * If this continuation count now has some space in it,
3494                  * free our allocation and use this one.
3495                  */
3496                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3497                         goto out_unlock_cont;
3498         }
3499
3500         list_add_tail(&page->lru, &head->lru);
3501         page = NULL;                    /* now it's attached, don't free it */
3502 out_unlock_cont:
3503         spin_unlock(&si->cont_lock);
3504 out:
3505         unlock_cluster(ci);
3506         spin_unlock(&si->lock);
3507 outer:
3508         if (page)
3509                 __free_page(page);
3510         return 0;
3511 }
3512
3513 /*
3514  * swap_count_continued - when the original swap_map count is incremented
3515  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3516  * into, carry if so, or else fail until a new continuation page is allocated;
3517  * when the original swap_map count is decremented from 0 with continuation,
3518  * borrow from the continuation and report whether it still holds more.
3519  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3520  * lock.
3521  */
3522 static bool swap_count_continued(struct swap_info_struct *si,
3523                                  pgoff_t offset, unsigned char count)
3524 {
3525         struct page *head;
3526         struct page *page;
3527         unsigned char *map;
3528         bool ret;
3529
3530         head = vmalloc_to_page(si->swap_map + offset);
3531         if (page_private(head) != SWP_CONTINUED) {
3532                 BUG_ON(count & COUNT_CONTINUED);
3533                 return false;           /* need to add count continuation */
3534         }
3535
3536         spin_lock(&si->cont_lock);
3537         offset &= ~PAGE_MASK;
3538         page = list_entry(head->lru.next, struct page, lru);
3539         map = kmap_atomic(page) + offset;
3540
3541         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3542                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3543
3544         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3545                 /*
3546                  * Think of how you add 1 to 999
3547                  */
3548                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3549                         kunmap_atomic(map);
3550                         page = list_entry(page->lru.next, struct page, lru);
3551                         BUG_ON(page == head);
3552                         map = kmap_atomic(page) + offset;
3553                 }
3554                 if (*map == SWAP_CONT_MAX) {
3555                         kunmap_atomic(map);
3556                         page = list_entry(page->lru.next, struct page, lru);
3557                         if (page == head) {
3558                                 ret = false;    /* add count continuation */
3559                                 goto out;
3560                         }
3561                         map = kmap_atomic(page) + offset;
3562 init_map:               *map = 0;               /* we didn't zero the page */
3563                 }
3564                 *map += 1;
3565                 kunmap_atomic(map);
3566                 page = list_entry(page->lru.prev, struct page, lru);
3567                 while (page != head) {
3568                         map = kmap_atomic(page) + offset;
3569                         *map = COUNT_CONTINUED;
3570                         kunmap_atomic(map);
3571                         page = list_entry(page->lru.prev, struct page, lru);
3572                 }
3573                 ret = true;                     /* incremented */
3574
3575         } else {                                /* decrementing */
3576                 /*
3577                  * Think of how you subtract 1 from 1000
3578                  */
3579                 BUG_ON(count != COUNT_CONTINUED);
3580                 while (*map == COUNT_CONTINUED) {
3581                         kunmap_atomic(map);
3582                         page = list_entry(page->lru.next, struct page, lru);
3583                         BUG_ON(page == head);
3584                         map = kmap_atomic(page) + offset;
3585                 }
3586                 BUG_ON(*map == 0);
3587                 *map -= 1;
3588                 if (*map == 0)
3589                         count = 0;
3590                 kunmap_atomic(map);
3591                 page = list_entry(page->lru.prev, struct page, lru);
3592                 while (page != head) {
3593                         map = kmap_atomic(page) + offset;
3594                         *map = SWAP_CONT_MAX | count;
3595                         count = COUNT_CONTINUED;
3596                         kunmap_atomic(map);
3597                         page = list_entry(page->lru.prev, struct page, lru);
3598                 }
3599                 ret = count == COUNT_CONTINUED;
3600         }
3601 out:
3602         spin_unlock(&si->cont_lock);
3603         return ret;
3604 }
3605
3606 /*
3607  * free_swap_count_continuations - swapoff free all the continuation pages
3608  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609  */
3610 static void free_swap_count_continuations(struct swap_info_struct *si)
3611 {
3612         pgoff_t offset;
3613
3614         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615                 struct page *head;
3616                 head = vmalloc_to_page(si->swap_map + offset);
3617                 if (page_private(head)) {
3618                         struct page *page, *next;
3619
3620                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3621                                 list_del(&page->lru);
3622                                 __free_page(page);
3623                         }
3624                 }
3625         }
3626 }
3627
3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3630                                   gfp_t gfp_mask)
3631 {
3632         struct swap_info_struct *si, *next;
3633         if (!(gfp_mask & __GFP_IO) || !memcg)
3634                 return;
3635
3636         if (!blk_cgroup_congested())
3637                 return;
3638
3639         /*
3640          * We've already scheduled a throttle, avoid taking the global swap
3641          * lock.
3642          */
3643         if (current->throttle_queue)
3644                 return;
3645
3646         spin_lock(&swap_avail_lock);
3647         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3648                                   avail_lists[node]) {
3649                 if (si->bdev) {
3650                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3651                                                 true);
3652                         break;
3653                 }
3654         }
3655         spin_unlock(&swap_avail_lock);
3656 }
3657 #endif
3658
3659 static int __init swapfile_init(void)
3660 {
3661         int nid;
3662
3663         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664                                          GFP_KERNEL);
3665         if (!swap_avail_heads) {
3666                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667                 return -ENOMEM;
3668         }
3669
3670         for_each_node(nid)
3671                 plist_head_init(&swap_avail_heads[nid]);
3672
3673         return 0;
3674 }
3675 subsys_initcall(swapfile_init);