Merge commit 'upstream-x86-virt' into WIP.x86/mm
[sfrench/cifs-2.6.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section *root = NULL;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(!root);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr < NR_MEM_SECTIONS) &&
194                  (section_nr <= __highest_present_section_nr));
195
196         return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)          \
199         for (section_nr = next_present_section_nr(start-1);     \
200              ((section_nr >= 0) &&                              \
201               (section_nr < NR_MEM_SECTIONS) &&                 \
202               (section_nr <= __highest_present_section_nr));    \
203              section_nr = next_present_section_nr(section_nr))
204
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208         unsigned long pfn;
209
210         start &= PAGE_SECTION_MASK;
211         mminit_validate_memmodel_limits(&start, &end);
212         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
213                 unsigned long section = pfn_to_section_nr(pfn);
214                 struct mem_section *ms;
215
216                 sparse_index_init(section, nid);
217                 set_section_nid(section, nid);
218
219                 ms = __nr_to_section(section);
220                 if (!ms->section_mem_map) {
221                         ms->section_mem_map = sparse_encode_early_nid(nid) |
222                                                         SECTION_IS_ONLINE;
223                         section_mark_present(ms);
224                 }
225         }
226 }
227
228 /*
229  * Only used by the i386 NUMA architecures, but relatively
230  * generic code.
231  */
232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
233                                                      unsigned long end_pfn)
234 {
235         unsigned long pfn;
236         unsigned long nr_pages = 0;
237
238         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
239         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240                 if (nid != early_pfn_to_nid(pfn))
241                         continue;
242
243                 if (pfn_present(pfn))
244                         nr_pages += PAGES_PER_SECTION;
245         }
246
247         return nr_pages * sizeof(struct page);
248 }
249
250 /*
251  * Subtle, we encode the real pfn into the mem_map such that
252  * the identity pfn - section_mem_map will return the actual
253  * physical page frame number.
254  */
255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
256 {
257         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
258 }
259
260 /*
261  * Decode mem_map from the coded memmap
262  */
263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
264 {
265         /* mask off the extra low bits of information */
266         coded_mem_map &= SECTION_MAP_MASK;
267         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
268 }
269
270 static int __meminit sparse_init_one_section(struct mem_section *ms,
271                 unsigned long pnum, struct page *mem_map,
272                 unsigned long *pageblock_bitmap)
273 {
274         if (!present_section(ms))
275                 return -EINVAL;
276
277         ms->section_mem_map &= ~SECTION_MAP_MASK;
278         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
279                                                         SECTION_HAS_MEM_MAP;
280         ms->pageblock_flags = pageblock_bitmap;
281
282         return 1;
283 }
284
285 unsigned long usemap_size(void)
286 {
287         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
288 }
289
290 #ifdef CONFIG_MEMORY_HOTPLUG
291 static unsigned long *__kmalloc_section_usemap(void)
292 {
293         return kmalloc(usemap_size(), GFP_KERNEL);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
297 #ifdef CONFIG_MEMORY_HOTREMOVE
298 static unsigned long * __init
299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
300                                          unsigned long size)
301 {
302         unsigned long goal, limit;
303         unsigned long *p;
304         int nid;
305         /*
306          * A page may contain usemaps for other sections preventing the
307          * page being freed and making a section unremovable while
308          * other sections referencing the usemap remain active. Similarly,
309          * a pgdat can prevent a section being removed. If section A
310          * contains a pgdat and section B contains the usemap, both
311          * sections become inter-dependent. This allocates usemaps
312          * from the same section as the pgdat where possible to avoid
313          * this problem.
314          */
315         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
316         limit = goal + (1UL << PA_SECTION_SHIFT);
317         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
318 again:
319         p = memblock_virt_alloc_try_nid_nopanic(size,
320                                                 SMP_CACHE_BYTES, goal, limit,
321                                                 nid);
322         if (!p && limit) {
323                 limit = 0;
324                 goto again;
325         }
326         return p;
327 }
328
329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
330 {
331         unsigned long usemap_snr, pgdat_snr;
332         static unsigned long old_usemap_snr;
333         static unsigned long old_pgdat_snr;
334         struct pglist_data *pgdat = NODE_DATA(nid);
335         int usemap_nid;
336
337         /* First call */
338         if (!old_usemap_snr) {
339                 old_usemap_snr = NR_MEM_SECTIONS;
340                 old_pgdat_snr = NR_MEM_SECTIONS;
341         }
342
343         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
344         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
345         if (usemap_snr == pgdat_snr)
346                 return;
347
348         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
349                 /* skip redundant message */
350                 return;
351
352         old_usemap_snr = usemap_snr;
353         old_pgdat_snr = pgdat_snr;
354
355         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
356         if (usemap_nid != nid) {
357                 pr_info("node %d must be removed before remove section %ld\n",
358                         nid, usemap_snr);
359                 return;
360         }
361         /*
362          * There is a circular dependency.
363          * Some platforms allow un-removable section because they will just
364          * gather other removable sections for dynamic partitioning.
365          * Just notify un-removable section's number here.
366          */
367         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
368                 usemap_snr, pgdat_snr, nid);
369 }
370 #else
371 static unsigned long * __init
372 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
373                                          unsigned long size)
374 {
375         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
376 }
377
378 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
379 {
380 }
381 #endif /* CONFIG_MEMORY_HOTREMOVE */
382
383 static void __init sparse_early_usemaps_alloc_node(void *data,
384                                  unsigned long pnum_begin,
385                                  unsigned long pnum_end,
386                                  unsigned long usemap_count, int nodeid)
387 {
388         void *usemap;
389         unsigned long pnum;
390         unsigned long **usemap_map = (unsigned long **)data;
391         int size = usemap_size();
392
393         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
394                                                           size * usemap_count);
395         if (!usemap) {
396                 pr_warn("%s: allocation failed\n", __func__);
397                 return;
398         }
399
400         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
401                 if (!present_section_nr(pnum))
402                         continue;
403                 usemap_map[pnum] = usemap;
404                 usemap += size;
405                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
406         }
407 }
408
409 #ifndef CONFIG_SPARSEMEM_VMEMMAP
410 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
411 {
412         struct page *map;
413         unsigned long size;
414
415         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
416         if (map)
417                 return map;
418
419         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
420         map = memblock_virt_alloc_try_nid(size,
421                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
422                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
423         return map;
424 }
425 void __init sparse_mem_maps_populate_node(struct page **map_map,
426                                           unsigned long pnum_begin,
427                                           unsigned long pnum_end,
428                                           unsigned long map_count, int nodeid)
429 {
430         void *map;
431         unsigned long pnum;
432         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
433
434         map = alloc_remap(nodeid, size * map_count);
435         if (map) {
436                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
437                         if (!present_section_nr(pnum))
438                                 continue;
439                         map_map[pnum] = map;
440                         map += size;
441                 }
442                 return;
443         }
444
445         size = PAGE_ALIGN(size);
446         map = memblock_virt_alloc_try_nid(size * map_count,
447                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
448                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
449         if (map) {
450                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
451                         if (!present_section_nr(pnum))
452                                 continue;
453                         map_map[pnum] = map;
454                         map += size;
455                 }
456                 return;
457         }
458
459         /* fallback */
460         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
461                 struct mem_section *ms;
462
463                 if (!present_section_nr(pnum))
464                         continue;
465                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
466                 if (map_map[pnum])
467                         continue;
468                 ms = __nr_to_section(pnum);
469                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
470                        __func__);
471                 ms->section_mem_map = 0;
472         }
473 }
474 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
475
476 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
477 static void __init sparse_early_mem_maps_alloc_node(void *data,
478                                  unsigned long pnum_begin,
479                                  unsigned long pnum_end,
480                                  unsigned long map_count, int nodeid)
481 {
482         struct page **map_map = (struct page **)data;
483         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
484                                          map_count, nodeid);
485 }
486 #else
487 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
488 {
489         struct page *map;
490         struct mem_section *ms = __nr_to_section(pnum);
491         int nid = sparse_early_nid(ms);
492
493         map = sparse_mem_map_populate(pnum, nid);
494         if (map)
495                 return map;
496
497         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
498                __func__);
499         ms->section_mem_map = 0;
500         return NULL;
501 }
502 #endif
503
504 void __weak __meminit vmemmap_populate_print_last(void)
505 {
506 }
507
508 /**
509  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
510  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
511  */
512 static void __init alloc_usemap_and_memmap(void (*alloc_func)
513                                         (void *, unsigned long, unsigned long,
514                                         unsigned long, int), void *data)
515 {
516         unsigned long pnum;
517         unsigned long map_count;
518         int nodeid_begin = 0;
519         unsigned long pnum_begin = 0;
520
521         for_each_present_section_nr(0, pnum) {
522                 struct mem_section *ms;
523
524                 ms = __nr_to_section(pnum);
525                 nodeid_begin = sparse_early_nid(ms);
526                 pnum_begin = pnum;
527                 break;
528         }
529         map_count = 1;
530         for_each_present_section_nr(pnum_begin + 1, pnum) {
531                 struct mem_section *ms;
532                 int nodeid;
533
534                 ms = __nr_to_section(pnum);
535                 nodeid = sparse_early_nid(ms);
536                 if (nodeid == nodeid_begin) {
537                         map_count++;
538                         continue;
539                 }
540                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
541                 alloc_func(data, pnum_begin, pnum,
542                                                 map_count, nodeid_begin);
543                 /* new start, update count etc*/
544                 nodeid_begin = nodeid;
545                 pnum_begin = pnum;
546                 map_count = 1;
547         }
548         /* ok, last chunk */
549         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
550                                                 map_count, nodeid_begin);
551 }
552
553 /*
554  * Allocate the accumulated non-linear sections, allocate a mem_map
555  * for each and record the physical to section mapping.
556  */
557 void __init sparse_init(void)
558 {
559         unsigned long pnum;
560         struct page *map;
561         unsigned long *usemap;
562         unsigned long **usemap_map;
563         int size;
564 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
565         int size2;
566         struct page **map_map;
567 #endif
568
569         /* see include/linux/mmzone.h 'struct mem_section' definition */
570         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
571
572         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
573         set_pageblock_order();
574
575         /*
576          * map is using big page (aka 2M in x86 64 bit)
577          * usemap is less one page (aka 24 bytes)
578          * so alloc 2M (with 2M align) and 24 bytes in turn will
579          * make next 2M slip to one more 2M later.
580          * then in big system, the memory will have a lot of holes...
581          * here try to allocate 2M pages continuously.
582          *
583          * powerpc need to call sparse_init_one_section right after each
584          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
585          */
586         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
587         usemap_map = memblock_virt_alloc(size, 0);
588         if (!usemap_map)
589                 panic("can not allocate usemap_map\n");
590         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
591                                                         (void *)usemap_map);
592
593 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
594         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
595         map_map = memblock_virt_alloc(size2, 0);
596         if (!map_map)
597                 panic("can not allocate map_map\n");
598         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
599                                                         (void *)map_map);
600 #endif
601
602         for_each_present_section_nr(0, pnum) {
603                 usemap = usemap_map[pnum];
604                 if (!usemap)
605                         continue;
606
607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
608                 map = map_map[pnum];
609 #else
610                 map = sparse_early_mem_map_alloc(pnum);
611 #endif
612                 if (!map)
613                         continue;
614
615                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
616                                                                 usemap);
617         }
618
619         vmemmap_populate_print_last();
620
621 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
622         memblock_free_early(__pa(map_map), size2);
623 #endif
624         memblock_free_early(__pa(usemap_map), size);
625 }
626
627 #ifdef CONFIG_MEMORY_HOTPLUG
628
629 /* Mark all memory sections within the pfn range as online */
630 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
631 {
632         unsigned long pfn;
633
634         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
635                 unsigned long section_nr = pfn_to_section_nr(pfn);
636                 struct mem_section *ms;
637
638                 /* onlining code should never touch invalid ranges */
639                 if (WARN_ON(!valid_section_nr(section_nr)))
640                         continue;
641
642                 ms = __nr_to_section(section_nr);
643                 ms->section_mem_map |= SECTION_IS_ONLINE;
644         }
645 }
646
647 #ifdef CONFIG_MEMORY_HOTREMOVE
648 /* Mark all memory sections within the pfn range as online */
649 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
650 {
651         unsigned long pfn;
652
653         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
654                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
655                 struct mem_section *ms;
656
657                 /*
658                  * TODO this needs some double checking. Offlining code makes
659                  * sure to check pfn_valid but those checks might be just bogus
660                  */
661                 if (WARN_ON(!valid_section_nr(section_nr)))
662                         continue;
663
664                 ms = __nr_to_section(section_nr);
665                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
666         }
667 }
668 #endif
669
670 #ifdef CONFIG_SPARSEMEM_VMEMMAP
671 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
672 {
673         /* This will make the necessary allocations eventually. */
674         return sparse_mem_map_populate(pnum, nid);
675 }
676 static void __kfree_section_memmap(struct page *memmap)
677 {
678         unsigned long start = (unsigned long)memmap;
679         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
680
681         vmemmap_free(start, end);
682 }
683 #ifdef CONFIG_MEMORY_HOTREMOVE
684 static void free_map_bootmem(struct page *memmap)
685 {
686         unsigned long start = (unsigned long)memmap;
687         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
688
689         vmemmap_free(start, end);
690 }
691 #endif /* CONFIG_MEMORY_HOTREMOVE */
692 #else
693 static struct page *__kmalloc_section_memmap(void)
694 {
695         struct page *page, *ret;
696         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
697
698         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
699         if (page)
700                 goto got_map_page;
701
702         ret = vmalloc(memmap_size);
703         if (ret)
704                 goto got_map_ptr;
705
706         return NULL;
707 got_map_page:
708         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
709 got_map_ptr:
710
711         return ret;
712 }
713
714 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
715 {
716         return __kmalloc_section_memmap();
717 }
718
719 static void __kfree_section_memmap(struct page *memmap)
720 {
721         if (is_vmalloc_addr(memmap))
722                 vfree(memmap);
723         else
724                 free_pages((unsigned long)memmap,
725                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
726 }
727
728 #ifdef CONFIG_MEMORY_HOTREMOVE
729 static void free_map_bootmem(struct page *memmap)
730 {
731         unsigned long maps_section_nr, removing_section_nr, i;
732         unsigned long magic, nr_pages;
733         struct page *page = virt_to_page(memmap);
734
735         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
736                 >> PAGE_SHIFT;
737
738         for (i = 0; i < nr_pages; i++, page++) {
739                 magic = (unsigned long) page->freelist;
740
741                 BUG_ON(magic == NODE_INFO);
742
743                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
744                 removing_section_nr = page_private(page);
745
746                 /*
747                  * When this function is called, the removing section is
748                  * logical offlined state. This means all pages are isolated
749                  * from page allocator. If removing section's memmap is placed
750                  * on the same section, it must not be freed.
751                  * If it is freed, page allocator may allocate it which will
752                  * be removed physically soon.
753                  */
754                 if (maps_section_nr != removing_section_nr)
755                         put_page_bootmem(page);
756         }
757 }
758 #endif /* CONFIG_MEMORY_HOTREMOVE */
759 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
760
761 /*
762  * returns the number of sections whose mem_maps were properly
763  * set.  If this is <=0, then that means that the passed-in
764  * map was not consumed and must be freed.
765  */
766 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
767 {
768         unsigned long section_nr = pfn_to_section_nr(start_pfn);
769         struct mem_section *ms;
770         struct page *memmap;
771         unsigned long *usemap;
772         unsigned long flags;
773         int ret;
774
775         /*
776          * no locking for this, because it does its own
777          * plus, it does a kmalloc
778          */
779         ret = sparse_index_init(section_nr, pgdat->node_id);
780         if (ret < 0 && ret != -EEXIST)
781                 return ret;
782         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
783         if (!memmap)
784                 return -ENOMEM;
785         usemap = __kmalloc_section_usemap();
786         if (!usemap) {
787                 __kfree_section_memmap(memmap);
788                 return -ENOMEM;
789         }
790
791         pgdat_resize_lock(pgdat, &flags);
792
793         ms = __pfn_to_section(start_pfn);
794         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
795                 ret = -EEXIST;
796                 goto out;
797         }
798
799         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
800
801         section_mark_present(ms);
802
803         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
804
805 out:
806         pgdat_resize_unlock(pgdat, &flags);
807         if (ret <= 0) {
808                 kfree(usemap);
809                 __kfree_section_memmap(memmap);
810         }
811         return ret;
812 }
813
814 #ifdef CONFIG_MEMORY_HOTREMOVE
815 #ifdef CONFIG_MEMORY_FAILURE
816 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
817 {
818         int i;
819
820         if (!memmap)
821                 return;
822
823         for (i = 0; i < nr_pages; i++) {
824                 if (PageHWPoison(&memmap[i])) {
825                         atomic_long_sub(1, &num_poisoned_pages);
826                         ClearPageHWPoison(&memmap[i]);
827                 }
828         }
829 }
830 #else
831 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
832 {
833 }
834 #endif
835
836 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
837 {
838         struct page *usemap_page;
839
840         if (!usemap)
841                 return;
842
843         usemap_page = virt_to_page(usemap);
844         /*
845          * Check to see if allocation came from hot-plug-add
846          */
847         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
848                 kfree(usemap);
849                 if (memmap)
850                         __kfree_section_memmap(memmap);
851                 return;
852         }
853
854         /*
855          * The usemap came from bootmem. This is packed with other usemaps
856          * on the section which has pgdat at boot time. Just keep it as is now.
857          */
858
859         if (memmap)
860                 free_map_bootmem(memmap);
861 }
862
863 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
864                 unsigned long map_offset)
865 {
866         struct page *memmap = NULL;
867         unsigned long *usemap = NULL, flags;
868         struct pglist_data *pgdat = zone->zone_pgdat;
869
870         pgdat_resize_lock(pgdat, &flags);
871         if (ms->section_mem_map) {
872                 usemap = ms->pageblock_flags;
873                 memmap = sparse_decode_mem_map(ms->section_mem_map,
874                                                 __section_nr(ms));
875                 ms->section_mem_map = 0;
876                 ms->pageblock_flags = NULL;
877         }
878         pgdat_resize_unlock(pgdat, &flags);
879
880         clear_hwpoisoned_pages(memmap + map_offset,
881                         PAGES_PER_SECTION - map_offset);
882         free_section_usemap(memmap, usemap);
883 }
884 #endif /* CONFIG_MEMORY_HOTREMOVE */
885 #endif /* CONFIG_MEMORY_HOTPLUG */