Merge branch 'for-4.5/nvme' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
105         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
106         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128         struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                         mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370                                                 pgoff_t start, pgoff_t end)
371 {
372         struct radix_tree_iter iter;
373         void **slot;
374         struct page *page;
375         unsigned long swapped = 0;
376
377         rcu_read_lock();
378
379 restart:
380         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381                 if (iter.index >= end)
382                         break;
383
384                 page = radix_tree_deref_slot(slot);
385
386                 /*
387                  * This should only be possible to happen at index 0, so we
388                  * don't need to reset the counter, nor do we risk infinite
389                  * restarts.
390                  */
391                 if (radix_tree_deref_retry(page))
392                         goto restart;
393
394                 if (radix_tree_exceptional_entry(page))
395                         swapped++;
396
397                 if (need_resched()) {
398                         cond_resched_rcu();
399                         start = iter.index + 1;
400                         goto restart;
401                 }
402         }
403
404         rcu_read_unlock();
405
406         return swapped << PAGE_SHIFT;
407 }
408
409 /*
410  * Determine (in bytes) how many of the shmem object's pages mapped by the
411  * given vma is swapped out.
412  *
413  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414  * as long as the inode doesn't go away and racy results are not a problem.
415  */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418         struct inode *inode = file_inode(vma->vm_file);
419         struct shmem_inode_info *info = SHMEM_I(inode);
420         struct address_space *mapping = inode->i_mapping;
421         unsigned long swapped;
422
423         /* Be careful as we don't hold info->lock */
424         swapped = READ_ONCE(info->swapped);
425
426         /*
427          * The easier cases are when the shmem object has nothing in swap, or
428          * the vma maps it whole. Then we can simply use the stats that we
429          * already track.
430          */
431         if (!swapped)
432                 return 0;
433
434         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435                 return swapped << PAGE_SHIFT;
436
437         /* Here comes the more involved part */
438         return shmem_partial_swap_usage(mapping,
439                         linear_page_index(vma, vma->vm_start),
440                         linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445  */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448         struct pagevec pvec;
449         pgoff_t indices[PAGEVEC_SIZE];
450         pgoff_t index = 0;
451
452         pagevec_init(&pvec, 0);
453         /*
454          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455          */
456         while (!mapping_unevictable(mapping)) {
457                 /*
458                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460                  */
461                 pvec.nr = find_get_entries(mapping, index,
462                                            PAGEVEC_SIZE, pvec.pages, indices);
463                 if (!pvec.nr)
464                         break;
465                 index = indices[pvec.nr - 1] + 1;
466                 pagevec_remove_exceptionals(&pvec);
467                 check_move_unevictable_pages(pvec.pages, pvec.nr);
468                 pagevec_release(&pvec);
469                 cond_resched();
470         }
471 }
472
473 /*
474  * Remove range of pages and swap entries from radix tree, and free them.
475  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476  */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478                                                                  bool unfalloc)
479 {
480         struct address_space *mapping = inode->i_mapping;
481         struct shmem_inode_info *info = SHMEM_I(inode);
482         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486         struct pagevec pvec;
487         pgoff_t indices[PAGEVEC_SIZE];
488         long nr_swaps_freed = 0;
489         pgoff_t index;
490         int i;
491
492         if (lend == -1)
493                 end = -1;       /* unsigned, so actually very big */
494
495         pagevec_init(&pvec, 0);
496         index = start;
497         while (index < end) {
498                 pvec.nr = find_get_entries(mapping, index,
499                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
500                         pvec.pages, indices);
501                 if (!pvec.nr)
502                         break;
503                 for (i = 0; i < pagevec_count(&pvec); i++) {
504                         struct page *page = pvec.pages[i];
505
506                         index = indices[i];
507                         if (index >= end)
508                                 break;
509
510                         if (radix_tree_exceptional_entry(page)) {
511                                 if (unfalloc)
512                                         continue;
513                                 nr_swaps_freed += !shmem_free_swap(mapping,
514                                                                 index, page);
515                                 continue;
516                         }
517
518                         if (!trylock_page(page))
519                                 continue;
520                         if (!unfalloc || !PageUptodate(page)) {
521                                 if (page->mapping == mapping) {
522                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
523                                         truncate_inode_page(mapping, page);
524                                 }
525                         }
526                         unlock_page(page);
527                 }
528                 pagevec_remove_exceptionals(&pvec);
529                 pagevec_release(&pvec);
530                 cond_resched();
531                 index++;
532         }
533
534         if (partial_start) {
535                 struct page *page = NULL;
536                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537                 if (page) {
538                         unsigned int top = PAGE_CACHE_SIZE;
539                         if (start > end) {
540                                 top = partial_end;
541                                 partial_end = 0;
542                         }
543                         zero_user_segment(page, partial_start, top);
544                         set_page_dirty(page);
545                         unlock_page(page);
546                         page_cache_release(page);
547                 }
548         }
549         if (partial_end) {
550                 struct page *page = NULL;
551                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552                 if (page) {
553                         zero_user_segment(page, 0, partial_end);
554                         set_page_dirty(page);
555                         unlock_page(page);
556                         page_cache_release(page);
557                 }
558         }
559         if (start >= end)
560                 return;
561
562         index = start;
563         while (index < end) {
564                 cond_resched();
565
566                 pvec.nr = find_get_entries(mapping, index,
567                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568                                 pvec.pages, indices);
569                 if (!pvec.nr) {
570                         /* If all gone or hole-punch or unfalloc, we're done */
571                         if (index == start || end != -1)
572                                 break;
573                         /* But if truncating, restart to make sure all gone */
574                         index = start;
575                         continue;
576                 }
577                 for (i = 0; i < pagevec_count(&pvec); i++) {
578                         struct page *page = pvec.pages[i];
579
580                         index = indices[i];
581                         if (index >= end)
582                                 break;
583
584                         if (radix_tree_exceptional_entry(page)) {
585                                 if (unfalloc)
586                                         continue;
587                                 if (shmem_free_swap(mapping, index, page)) {
588                                         /* Swap was replaced by page: retry */
589                                         index--;
590                                         break;
591                                 }
592                                 nr_swaps_freed++;
593                                 continue;
594                         }
595
596                         lock_page(page);
597                         if (!unfalloc || !PageUptodate(page)) {
598                                 if (page->mapping == mapping) {
599                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
600                                         truncate_inode_page(mapping, page);
601                                 } else {
602                                         /* Page was replaced by swap: retry */
603                                         unlock_page(page);
604                                         index--;
605                                         break;
606                                 }
607                         }
608                         unlock_page(page);
609                 }
610                 pagevec_remove_exceptionals(&pvec);
611                 pagevec_release(&pvec);
612                 index++;
613         }
614
615         spin_lock(&info->lock);
616         info->swapped -= nr_swaps_freed;
617         shmem_recalc_inode(inode);
618         spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623         shmem_undo_range(inode, lstart, lend, false);
624         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629                          struct kstat *stat)
630 {
631         struct inode *inode = dentry->d_inode;
632         struct shmem_inode_info *info = SHMEM_I(inode);
633
634         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635                 spin_lock(&info->lock);
636                 shmem_recalc_inode(inode);
637                 spin_unlock(&info->lock);
638         }
639         generic_fillattr(inode, stat);
640         return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645         struct inode *inode = d_inode(dentry);
646         struct shmem_inode_info *info = SHMEM_I(inode);
647         int error;
648
649         error = inode_change_ok(inode, attr);
650         if (error)
651                 return error;
652
653         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654                 loff_t oldsize = inode->i_size;
655                 loff_t newsize = attr->ia_size;
656
657                 /* protected by i_mutex */
658                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660                         return -EPERM;
661
662                 if (newsize != oldsize) {
663                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
664                                         oldsize, newsize);
665                         if (error)
666                                 return error;
667                         i_size_write(inode, newsize);
668                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669                 }
670                 if (newsize <= oldsize) {
671                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
672                         if (oldsize > holebegin)
673                                 unmap_mapping_range(inode->i_mapping,
674                                                         holebegin, 0, 1);
675                         if (info->alloced)
676                                 shmem_truncate_range(inode,
677                                                         newsize, (loff_t)-1);
678                         /* unmap again to remove racily COWed private pages */
679                         if (oldsize > holebegin)
680                                 unmap_mapping_range(inode->i_mapping,
681                                                         holebegin, 0, 1);
682                 }
683         }
684
685         setattr_copy(inode, attr);
686         if (attr->ia_valid & ATTR_MODE)
687                 error = posix_acl_chmod(inode, inode->i_mode);
688         return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693         struct shmem_inode_info *info = SHMEM_I(inode);
694
695         if (inode->i_mapping->a_ops == &shmem_aops) {
696                 shmem_unacct_size(info->flags, inode->i_size);
697                 inode->i_size = 0;
698                 shmem_truncate_range(inode, 0, (loff_t)-1);
699                 if (!list_empty(&info->swaplist)) {
700                         mutex_lock(&shmem_swaplist_mutex);
701                         list_del_init(&info->swaplist);
702                         mutex_unlock(&shmem_swaplist_mutex);
703                 }
704         } else
705                 kfree(info->symlink);
706
707         simple_xattrs_free(&info->xattrs);
708         WARN_ON(inode->i_blocks);
709         shmem_free_inode(inode->i_sb);
710         clear_inode(inode);
711 }
712
713 /*
714  * If swap found in inode, free it and move page from swapcache to filecache.
715  */
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717                              swp_entry_t swap, struct page **pagep)
718 {
719         struct address_space *mapping = info->vfs_inode.i_mapping;
720         void *radswap;
721         pgoff_t index;
722         gfp_t gfp;
723         int error = 0;
724
725         radswap = swp_to_radix_entry(swap);
726         index = radix_tree_locate_item(&mapping->page_tree, radswap);
727         if (index == -1)
728                 return -EAGAIN; /* tell shmem_unuse we found nothing */
729
730         /*
731          * Move _head_ to start search for next from here.
732          * But be careful: shmem_evict_inode checks list_empty without taking
733          * mutex, and there's an instant in list_move_tail when info->swaplist
734          * would appear empty, if it were the only one on shmem_swaplist.
735          */
736         if (shmem_swaplist.next != &info->swaplist)
737                 list_move_tail(&shmem_swaplist, &info->swaplist);
738
739         gfp = mapping_gfp_mask(mapping);
740         if (shmem_should_replace_page(*pagep, gfp)) {
741                 mutex_unlock(&shmem_swaplist_mutex);
742                 error = shmem_replace_page(pagep, gfp, info, index);
743                 mutex_lock(&shmem_swaplist_mutex);
744                 /*
745                  * We needed to drop mutex to make that restrictive page
746                  * allocation, but the inode might have been freed while we
747                  * dropped it: although a racing shmem_evict_inode() cannot
748                  * complete without emptying the radix_tree, our page lock
749                  * on this swapcache page is not enough to prevent that -
750                  * free_swap_and_cache() of our swap entry will only
751                  * trylock_page(), removing swap from radix_tree whatever.
752                  *
753                  * We must not proceed to shmem_add_to_page_cache() if the
754                  * inode has been freed, but of course we cannot rely on
755                  * inode or mapping or info to check that.  However, we can
756                  * safely check if our swap entry is still in use (and here
757                  * it can't have got reused for another page): if it's still
758                  * in use, then the inode cannot have been freed yet, and we
759                  * can safely proceed (if it's no longer in use, that tells
760                  * nothing about the inode, but we don't need to unuse swap).
761                  */
762                 if (!page_swapcount(*pagep))
763                         error = -ENOENT;
764         }
765
766         /*
767          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768          * but also to hold up shmem_evict_inode(): so inode cannot be freed
769          * beneath us (pagelock doesn't help until the page is in pagecache).
770          */
771         if (!error)
772                 error = shmem_add_to_page_cache(*pagep, mapping, index,
773                                                 radswap);
774         if (error != -ENOMEM) {
775                 /*
776                  * Truncation and eviction use free_swap_and_cache(), which
777                  * only does trylock page: if we raced, best clean up here.
778                  */
779                 delete_from_swap_cache(*pagep);
780                 set_page_dirty(*pagep);
781                 if (!error) {
782                         spin_lock(&info->lock);
783                         info->swapped--;
784                         spin_unlock(&info->lock);
785                         swap_free(swap);
786                 }
787         }
788         return error;
789 }
790
791 /*
792  * Search through swapped inodes to find and replace swap by page.
793  */
794 int shmem_unuse(swp_entry_t swap, struct page *page)
795 {
796         struct list_head *this, *next;
797         struct shmem_inode_info *info;
798         struct mem_cgroup *memcg;
799         int error = 0;
800
801         /*
802          * There's a faint possibility that swap page was replaced before
803          * caller locked it: caller will come back later with the right page.
804          */
805         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
806                 goto out;
807
808         /*
809          * Charge page using GFP_KERNEL while we can wait, before taking
810          * the shmem_swaplist_mutex which might hold up shmem_writepage().
811          * Charged back to the user (not to caller) when swap account is used.
812          */
813         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
814                         false);
815         if (error)
816                 goto out;
817         /* No radix_tree_preload: swap entry keeps a place for page in tree */
818         error = -EAGAIN;
819
820         mutex_lock(&shmem_swaplist_mutex);
821         list_for_each_safe(this, next, &shmem_swaplist) {
822                 info = list_entry(this, struct shmem_inode_info, swaplist);
823                 if (info->swapped)
824                         error = shmem_unuse_inode(info, swap, &page);
825                 else
826                         list_del_init(&info->swaplist);
827                 cond_resched();
828                 if (error != -EAGAIN)
829                         break;
830                 /* found nothing in this: move on to search the next */
831         }
832         mutex_unlock(&shmem_swaplist_mutex);
833
834         if (error) {
835                 if (error != -ENOMEM)
836                         error = 0;
837                 mem_cgroup_cancel_charge(page, memcg, false);
838         } else
839                 mem_cgroup_commit_charge(page, memcg, true, false);
840 out:
841         unlock_page(page);
842         page_cache_release(page);
843         return error;
844 }
845
846 /*
847  * Move the page from the page cache to the swap cache.
848  */
849 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
850 {
851         struct shmem_inode_info *info;
852         struct address_space *mapping;
853         struct inode *inode;
854         swp_entry_t swap;
855         pgoff_t index;
856
857         BUG_ON(!PageLocked(page));
858         mapping = page->mapping;
859         index = page->index;
860         inode = mapping->host;
861         info = SHMEM_I(inode);
862         if (info->flags & VM_LOCKED)
863                 goto redirty;
864         if (!total_swap_pages)
865                 goto redirty;
866
867         /*
868          * Our capabilities prevent regular writeback or sync from ever calling
869          * shmem_writepage; but a stacking filesystem might use ->writepage of
870          * its underlying filesystem, in which case tmpfs should write out to
871          * swap only in response to memory pressure, and not for the writeback
872          * threads or sync.
873          */
874         if (!wbc->for_reclaim) {
875                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
876                 goto redirty;
877         }
878
879         /*
880          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
881          * value into swapfile.c, the only way we can correctly account for a
882          * fallocated page arriving here is now to initialize it and write it.
883          *
884          * That's okay for a page already fallocated earlier, but if we have
885          * not yet completed the fallocation, then (a) we want to keep track
886          * of this page in case we have to undo it, and (b) it may not be a
887          * good idea to continue anyway, once we're pushing into swap.  So
888          * reactivate the page, and let shmem_fallocate() quit when too many.
889          */
890         if (!PageUptodate(page)) {
891                 if (inode->i_private) {
892                         struct shmem_falloc *shmem_falloc;
893                         spin_lock(&inode->i_lock);
894                         shmem_falloc = inode->i_private;
895                         if (shmem_falloc &&
896                             !shmem_falloc->waitq &&
897                             index >= shmem_falloc->start &&
898                             index < shmem_falloc->next)
899                                 shmem_falloc->nr_unswapped++;
900                         else
901                                 shmem_falloc = NULL;
902                         spin_unlock(&inode->i_lock);
903                         if (shmem_falloc)
904                                 goto redirty;
905                 }
906                 clear_highpage(page);
907                 flush_dcache_page(page);
908                 SetPageUptodate(page);
909         }
910
911         swap = get_swap_page();
912         if (!swap.val)
913                 goto redirty;
914
915         if (mem_cgroup_try_charge_swap(page, swap))
916                 goto free_swap;
917
918         /*
919          * Add inode to shmem_unuse()'s list of swapped-out inodes,
920          * if it's not already there.  Do it now before the page is
921          * moved to swap cache, when its pagelock no longer protects
922          * the inode from eviction.  But don't unlock the mutex until
923          * we've incremented swapped, because shmem_unuse_inode() will
924          * prune a !swapped inode from the swaplist under this mutex.
925          */
926         mutex_lock(&shmem_swaplist_mutex);
927         if (list_empty(&info->swaplist))
928                 list_add_tail(&info->swaplist, &shmem_swaplist);
929
930         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
931                 spin_lock(&info->lock);
932                 shmem_recalc_inode(inode);
933                 info->swapped++;
934                 spin_unlock(&info->lock);
935
936                 swap_shmem_alloc(swap);
937                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
938
939                 mutex_unlock(&shmem_swaplist_mutex);
940                 BUG_ON(page_mapped(page));
941                 swap_writepage(page, wbc);
942                 return 0;
943         }
944
945         mutex_unlock(&shmem_swaplist_mutex);
946 free_swap:
947         swapcache_free(swap);
948 redirty:
949         set_page_dirty(page);
950         if (wbc->for_reclaim)
951                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
952         unlock_page(page);
953         return 0;
954 }
955
956 #ifdef CONFIG_NUMA
957 #ifdef CONFIG_TMPFS
958 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
959 {
960         char buffer[64];
961
962         if (!mpol || mpol->mode == MPOL_DEFAULT)
963                 return;         /* show nothing */
964
965         mpol_to_str(buffer, sizeof(buffer), mpol);
966
967         seq_printf(seq, ",mpol=%s", buffer);
968 }
969
970 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
971 {
972         struct mempolicy *mpol = NULL;
973         if (sbinfo->mpol) {
974                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
975                 mpol = sbinfo->mpol;
976                 mpol_get(mpol);
977                 spin_unlock(&sbinfo->stat_lock);
978         }
979         return mpol;
980 }
981 #endif /* CONFIG_TMPFS */
982
983 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
984                         struct shmem_inode_info *info, pgoff_t index)
985 {
986         struct vm_area_struct pvma;
987         struct page *page;
988
989         /* Create a pseudo vma that just contains the policy */
990         pvma.vm_start = 0;
991         /* Bias interleave by inode number to distribute better across nodes */
992         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
993         pvma.vm_ops = NULL;
994         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
995
996         page = swapin_readahead(swap, gfp, &pvma, 0);
997
998         /* Drop reference taken by mpol_shared_policy_lookup() */
999         mpol_cond_put(pvma.vm_policy);
1000
1001         return page;
1002 }
1003
1004 static struct page *shmem_alloc_page(gfp_t gfp,
1005                         struct shmem_inode_info *info, pgoff_t index)
1006 {
1007         struct vm_area_struct pvma;
1008         struct page *page;
1009
1010         /* Create a pseudo vma that just contains the policy */
1011         pvma.vm_start = 0;
1012         /* Bias interleave by inode number to distribute better across nodes */
1013         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1014         pvma.vm_ops = NULL;
1015         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1016
1017         page = alloc_page_vma(gfp, &pvma, 0);
1018
1019         /* Drop reference taken by mpol_shared_policy_lookup() */
1020         mpol_cond_put(pvma.vm_policy);
1021
1022         return page;
1023 }
1024 #else /* !CONFIG_NUMA */
1025 #ifdef CONFIG_TMPFS
1026 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1027 {
1028 }
1029 #endif /* CONFIG_TMPFS */
1030
1031 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1032                         struct shmem_inode_info *info, pgoff_t index)
1033 {
1034         return swapin_readahead(swap, gfp, NULL, 0);
1035 }
1036
1037 static inline struct page *shmem_alloc_page(gfp_t gfp,
1038                         struct shmem_inode_info *info, pgoff_t index)
1039 {
1040         return alloc_page(gfp);
1041 }
1042 #endif /* CONFIG_NUMA */
1043
1044 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1045 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1046 {
1047         return NULL;
1048 }
1049 #endif
1050
1051 /*
1052  * When a page is moved from swapcache to shmem filecache (either by the
1053  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1054  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1055  * ignorance of the mapping it belongs to.  If that mapping has special
1056  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1057  * we may need to copy to a suitable page before moving to filecache.
1058  *
1059  * In a future release, this may well be extended to respect cpuset and
1060  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1061  * but for now it is a simple matter of zone.
1062  */
1063 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1064 {
1065         return page_zonenum(page) > gfp_zone(gfp);
1066 }
1067
1068 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1069                                 struct shmem_inode_info *info, pgoff_t index)
1070 {
1071         struct page *oldpage, *newpage;
1072         struct address_space *swap_mapping;
1073         pgoff_t swap_index;
1074         int error;
1075
1076         oldpage = *pagep;
1077         swap_index = page_private(oldpage);
1078         swap_mapping = page_mapping(oldpage);
1079
1080         /*
1081          * We have arrived here because our zones are constrained, so don't
1082          * limit chance of success by further cpuset and node constraints.
1083          */
1084         gfp &= ~GFP_CONSTRAINT_MASK;
1085         newpage = shmem_alloc_page(gfp, info, index);
1086         if (!newpage)
1087                 return -ENOMEM;
1088
1089         page_cache_get(newpage);
1090         copy_highpage(newpage, oldpage);
1091         flush_dcache_page(newpage);
1092
1093         __SetPageLocked(newpage);
1094         SetPageUptodate(newpage);
1095         SetPageSwapBacked(newpage);
1096         set_page_private(newpage, swap_index);
1097         SetPageSwapCache(newpage);
1098
1099         /*
1100          * Our caller will very soon move newpage out of swapcache, but it's
1101          * a nice clean interface for us to replace oldpage by newpage there.
1102          */
1103         spin_lock_irq(&swap_mapping->tree_lock);
1104         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1105                                                                    newpage);
1106         if (!error) {
1107                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1108                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1109         }
1110         spin_unlock_irq(&swap_mapping->tree_lock);
1111
1112         if (unlikely(error)) {
1113                 /*
1114                  * Is this possible?  I think not, now that our callers check
1115                  * both PageSwapCache and page_private after getting page lock;
1116                  * but be defensive.  Reverse old to newpage for clear and free.
1117                  */
1118                 oldpage = newpage;
1119         } else {
1120                 mem_cgroup_replace_page(oldpage, newpage);
1121                 lru_cache_add_anon(newpage);
1122                 *pagep = newpage;
1123         }
1124
1125         ClearPageSwapCache(oldpage);
1126         set_page_private(oldpage, 0);
1127
1128         unlock_page(oldpage);
1129         page_cache_release(oldpage);
1130         page_cache_release(oldpage);
1131         return error;
1132 }
1133
1134 /*
1135  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1136  *
1137  * If we allocate a new one we do not mark it dirty. That's up to the
1138  * vm. If we swap it in we mark it dirty since we also free the swap
1139  * entry since a page cannot live in both the swap and page cache
1140  */
1141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1142         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1143 {
1144         struct address_space *mapping = inode->i_mapping;
1145         struct shmem_inode_info *info;
1146         struct shmem_sb_info *sbinfo;
1147         struct mem_cgroup *memcg;
1148         struct page *page;
1149         swp_entry_t swap;
1150         int error;
1151         int once = 0;
1152         int alloced = 0;
1153
1154         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1155                 return -EFBIG;
1156 repeat:
1157         swap.val = 0;
1158         page = find_lock_entry(mapping, index);
1159         if (radix_tree_exceptional_entry(page)) {
1160                 swap = radix_to_swp_entry(page);
1161                 page = NULL;
1162         }
1163
1164         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1165             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1166                 error = -EINVAL;
1167                 goto unlock;
1168         }
1169
1170         if (page && sgp == SGP_WRITE)
1171                 mark_page_accessed(page);
1172
1173         /* fallocated page? */
1174         if (page && !PageUptodate(page)) {
1175                 if (sgp != SGP_READ)
1176                         goto clear;
1177                 unlock_page(page);
1178                 page_cache_release(page);
1179                 page = NULL;
1180         }
1181         if (page || (sgp == SGP_READ && !swap.val)) {
1182                 *pagep = page;
1183                 return 0;
1184         }
1185
1186         /*
1187          * Fast cache lookup did not find it:
1188          * bring it back from swap or allocate.
1189          */
1190         info = SHMEM_I(inode);
1191         sbinfo = SHMEM_SB(inode->i_sb);
1192
1193         if (swap.val) {
1194                 /* Look it up and read it in.. */
1195                 page = lookup_swap_cache(swap);
1196                 if (!page) {
1197                         /* here we actually do the io */
1198                         if (fault_type)
1199                                 *fault_type |= VM_FAULT_MAJOR;
1200                         page = shmem_swapin(swap, gfp, info, index);
1201                         if (!page) {
1202                                 error = -ENOMEM;
1203                                 goto failed;
1204                         }
1205                 }
1206
1207                 /* We have to do this with page locked to prevent races */
1208                 lock_page(page);
1209                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1210                     !shmem_confirm_swap(mapping, index, swap)) {
1211                         error = -EEXIST;        /* try again */
1212                         goto unlock;
1213                 }
1214                 if (!PageUptodate(page)) {
1215                         error = -EIO;
1216                         goto failed;
1217                 }
1218                 wait_on_page_writeback(page);
1219
1220                 if (shmem_should_replace_page(page, gfp)) {
1221                         error = shmem_replace_page(&page, gfp, info, index);
1222                         if (error)
1223                                 goto failed;
1224                 }
1225
1226                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1227                                 false);
1228                 if (!error) {
1229                         error = shmem_add_to_page_cache(page, mapping, index,
1230                                                 swp_to_radix_entry(swap));
1231                         /*
1232                          * We already confirmed swap under page lock, and make
1233                          * no memory allocation here, so usually no possibility
1234                          * of error; but free_swap_and_cache() only trylocks a
1235                          * page, so it is just possible that the entry has been
1236                          * truncated or holepunched since swap was confirmed.
1237                          * shmem_undo_range() will have done some of the
1238                          * unaccounting, now delete_from_swap_cache() will do
1239                          * the rest.
1240                          * Reset swap.val? No, leave it so "failed" goes back to
1241                          * "repeat": reading a hole and writing should succeed.
1242                          */
1243                         if (error) {
1244                                 mem_cgroup_cancel_charge(page, memcg, false);
1245                                 delete_from_swap_cache(page);
1246                         }
1247                 }
1248                 if (error)
1249                         goto failed;
1250
1251                 mem_cgroup_commit_charge(page, memcg, true, false);
1252
1253                 spin_lock(&info->lock);
1254                 info->swapped--;
1255                 shmem_recalc_inode(inode);
1256                 spin_unlock(&info->lock);
1257
1258                 if (sgp == SGP_WRITE)
1259                         mark_page_accessed(page);
1260
1261                 delete_from_swap_cache(page);
1262                 set_page_dirty(page);
1263                 swap_free(swap);
1264
1265         } else {
1266                 if (shmem_acct_block(info->flags)) {
1267                         error = -ENOSPC;
1268                         goto failed;
1269                 }
1270                 if (sbinfo->max_blocks) {
1271                         if (percpu_counter_compare(&sbinfo->used_blocks,
1272                                                 sbinfo->max_blocks) >= 0) {
1273                                 error = -ENOSPC;
1274                                 goto unacct;
1275                         }
1276                         percpu_counter_inc(&sbinfo->used_blocks);
1277                 }
1278
1279                 page = shmem_alloc_page(gfp, info, index);
1280                 if (!page) {
1281                         error = -ENOMEM;
1282                         goto decused;
1283                 }
1284
1285                 __SetPageSwapBacked(page);
1286                 __SetPageLocked(page);
1287                 if (sgp == SGP_WRITE)
1288                         __SetPageReferenced(page);
1289
1290                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1291                                 false);
1292                 if (error)
1293                         goto decused;
1294                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1295                 if (!error) {
1296                         error = shmem_add_to_page_cache(page, mapping, index,
1297                                                         NULL);
1298                         radix_tree_preload_end();
1299                 }
1300                 if (error) {
1301                         mem_cgroup_cancel_charge(page, memcg, false);
1302                         goto decused;
1303                 }
1304                 mem_cgroup_commit_charge(page, memcg, false, false);
1305                 lru_cache_add_anon(page);
1306
1307                 spin_lock(&info->lock);
1308                 info->alloced++;
1309                 inode->i_blocks += BLOCKS_PER_PAGE;
1310                 shmem_recalc_inode(inode);
1311                 spin_unlock(&info->lock);
1312                 alloced = true;
1313
1314                 /*
1315                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1316                  */
1317                 if (sgp == SGP_FALLOC)
1318                         sgp = SGP_WRITE;
1319 clear:
1320                 /*
1321                  * Let SGP_WRITE caller clear ends if write does not fill page;
1322                  * but SGP_FALLOC on a page fallocated earlier must initialize
1323                  * it now, lest undo on failure cancel our earlier guarantee.
1324                  */
1325                 if (sgp != SGP_WRITE) {
1326                         clear_highpage(page);
1327                         flush_dcache_page(page);
1328                         SetPageUptodate(page);
1329                 }
1330                 if (sgp == SGP_DIRTY)
1331                         set_page_dirty(page);
1332         }
1333
1334         /* Perhaps the file has been truncated since we checked */
1335         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1336             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1337                 if (alloced) {
1338                         ClearPageDirty(page);
1339                         delete_from_page_cache(page);
1340                         spin_lock(&info->lock);
1341                         shmem_recalc_inode(inode);
1342                         spin_unlock(&info->lock);
1343                 }
1344                 error = -EINVAL;
1345                 goto unlock;
1346         }
1347         *pagep = page;
1348         return 0;
1349
1350         /*
1351          * Error recovery.
1352          */
1353 decused:
1354         if (sbinfo->max_blocks)
1355                 percpu_counter_add(&sbinfo->used_blocks, -1);
1356 unacct:
1357         shmem_unacct_blocks(info->flags, 1);
1358 failed:
1359         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1360                 error = -EEXIST;
1361 unlock:
1362         if (page) {
1363                 unlock_page(page);
1364                 page_cache_release(page);
1365         }
1366         if (error == -ENOSPC && !once++) {
1367                 info = SHMEM_I(inode);
1368                 spin_lock(&info->lock);
1369                 shmem_recalc_inode(inode);
1370                 spin_unlock(&info->lock);
1371                 goto repeat;
1372         }
1373         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1374                 goto repeat;
1375         return error;
1376 }
1377
1378 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1379 {
1380         struct inode *inode = file_inode(vma->vm_file);
1381         int error;
1382         int ret = VM_FAULT_LOCKED;
1383
1384         /*
1385          * Trinity finds that probing a hole which tmpfs is punching can
1386          * prevent the hole-punch from ever completing: which in turn
1387          * locks writers out with its hold on i_mutex.  So refrain from
1388          * faulting pages into the hole while it's being punched.  Although
1389          * shmem_undo_range() does remove the additions, it may be unable to
1390          * keep up, as each new page needs its own unmap_mapping_range() call,
1391          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1392          *
1393          * It does not matter if we sometimes reach this check just before the
1394          * hole-punch begins, so that one fault then races with the punch:
1395          * we just need to make racing faults a rare case.
1396          *
1397          * The implementation below would be much simpler if we just used a
1398          * standard mutex or completion: but we cannot take i_mutex in fault,
1399          * and bloating every shmem inode for this unlikely case would be sad.
1400          */
1401         if (unlikely(inode->i_private)) {
1402                 struct shmem_falloc *shmem_falloc;
1403
1404                 spin_lock(&inode->i_lock);
1405                 shmem_falloc = inode->i_private;
1406                 if (shmem_falloc &&
1407                     shmem_falloc->waitq &&
1408                     vmf->pgoff >= shmem_falloc->start &&
1409                     vmf->pgoff < shmem_falloc->next) {
1410                         wait_queue_head_t *shmem_falloc_waitq;
1411                         DEFINE_WAIT(shmem_fault_wait);
1412
1413                         ret = VM_FAULT_NOPAGE;
1414                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1415                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1416                                 /* It's polite to up mmap_sem if we can */
1417                                 up_read(&vma->vm_mm->mmap_sem);
1418                                 ret = VM_FAULT_RETRY;
1419                         }
1420
1421                         shmem_falloc_waitq = shmem_falloc->waitq;
1422                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1423                                         TASK_UNINTERRUPTIBLE);
1424                         spin_unlock(&inode->i_lock);
1425                         schedule();
1426
1427                         /*
1428                          * shmem_falloc_waitq points into the shmem_fallocate()
1429                          * stack of the hole-punching task: shmem_falloc_waitq
1430                          * is usually invalid by the time we reach here, but
1431                          * finish_wait() does not dereference it in that case;
1432                          * though i_lock needed lest racing with wake_up_all().
1433                          */
1434                         spin_lock(&inode->i_lock);
1435                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1436                         spin_unlock(&inode->i_lock);
1437                         return ret;
1438                 }
1439                 spin_unlock(&inode->i_lock);
1440         }
1441
1442         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1443         if (error)
1444                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1445
1446         if (ret & VM_FAULT_MAJOR) {
1447                 count_vm_event(PGMAJFAULT);
1448                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1449         }
1450         return ret;
1451 }
1452
1453 #ifdef CONFIG_NUMA
1454 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1455 {
1456         struct inode *inode = file_inode(vma->vm_file);
1457         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1458 }
1459
1460 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1461                                           unsigned long addr)
1462 {
1463         struct inode *inode = file_inode(vma->vm_file);
1464         pgoff_t index;
1465
1466         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1467         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1468 }
1469 #endif
1470
1471 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1472 {
1473         struct inode *inode = file_inode(file);
1474         struct shmem_inode_info *info = SHMEM_I(inode);
1475         int retval = -ENOMEM;
1476
1477         spin_lock(&info->lock);
1478         if (lock && !(info->flags & VM_LOCKED)) {
1479                 if (!user_shm_lock(inode->i_size, user))
1480                         goto out_nomem;
1481                 info->flags |= VM_LOCKED;
1482                 mapping_set_unevictable(file->f_mapping);
1483         }
1484         if (!lock && (info->flags & VM_LOCKED) && user) {
1485                 user_shm_unlock(inode->i_size, user);
1486                 info->flags &= ~VM_LOCKED;
1487                 mapping_clear_unevictable(file->f_mapping);
1488         }
1489         retval = 0;
1490
1491 out_nomem:
1492         spin_unlock(&info->lock);
1493         return retval;
1494 }
1495
1496 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498         file_accessed(file);
1499         vma->vm_ops = &shmem_vm_ops;
1500         return 0;
1501 }
1502
1503 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1504                                      umode_t mode, dev_t dev, unsigned long flags)
1505 {
1506         struct inode *inode;
1507         struct shmem_inode_info *info;
1508         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1509
1510         if (shmem_reserve_inode(sb))
1511                 return NULL;
1512
1513         inode = new_inode(sb);
1514         if (inode) {
1515                 inode->i_ino = get_next_ino();
1516                 inode_init_owner(inode, dir, mode);
1517                 inode->i_blocks = 0;
1518                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1519                 inode->i_generation = get_seconds();
1520                 info = SHMEM_I(inode);
1521                 memset(info, 0, (char *)inode - (char *)info);
1522                 spin_lock_init(&info->lock);
1523                 info->seals = F_SEAL_SEAL;
1524                 info->flags = flags & VM_NORESERVE;
1525                 INIT_LIST_HEAD(&info->swaplist);
1526                 simple_xattrs_init(&info->xattrs);
1527                 cache_no_acl(inode);
1528
1529                 switch (mode & S_IFMT) {
1530                 default:
1531                         inode->i_op = &shmem_special_inode_operations;
1532                         init_special_inode(inode, mode, dev);
1533                         break;
1534                 case S_IFREG:
1535                         inode->i_mapping->a_ops = &shmem_aops;
1536                         inode->i_op = &shmem_inode_operations;
1537                         inode->i_fop = &shmem_file_operations;
1538                         mpol_shared_policy_init(&info->policy,
1539                                                  shmem_get_sbmpol(sbinfo));
1540                         break;
1541                 case S_IFDIR:
1542                         inc_nlink(inode);
1543                         /* Some things misbehave if size == 0 on a directory */
1544                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1545                         inode->i_op = &shmem_dir_inode_operations;
1546                         inode->i_fop = &simple_dir_operations;
1547                         break;
1548                 case S_IFLNK:
1549                         /*
1550                          * Must not load anything in the rbtree,
1551                          * mpol_free_shared_policy will not be called.
1552                          */
1553                         mpol_shared_policy_init(&info->policy, NULL);
1554                         break;
1555                 }
1556         } else
1557                 shmem_free_inode(sb);
1558         return inode;
1559 }
1560
1561 bool shmem_mapping(struct address_space *mapping)
1562 {
1563         if (!mapping->host)
1564                 return false;
1565
1566         return mapping->host->i_sb->s_op == &shmem_ops;
1567 }
1568
1569 #ifdef CONFIG_TMPFS
1570 static const struct inode_operations shmem_symlink_inode_operations;
1571 static const struct inode_operations shmem_short_symlink_operations;
1572
1573 #ifdef CONFIG_TMPFS_XATTR
1574 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1575 #else
1576 #define shmem_initxattrs NULL
1577 #endif
1578
1579 static int
1580 shmem_write_begin(struct file *file, struct address_space *mapping,
1581                         loff_t pos, unsigned len, unsigned flags,
1582                         struct page **pagep, void **fsdata)
1583 {
1584         struct inode *inode = mapping->host;
1585         struct shmem_inode_info *info = SHMEM_I(inode);
1586         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1587
1588         /* i_mutex is held by caller */
1589         if (unlikely(info->seals)) {
1590                 if (info->seals & F_SEAL_WRITE)
1591                         return -EPERM;
1592                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1593                         return -EPERM;
1594         }
1595
1596         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1597 }
1598
1599 static int
1600 shmem_write_end(struct file *file, struct address_space *mapping,
1601                         loff_t pos, unsigned len, unsigned copied,
1602                         struct page *page, void *fsdata)
1603 {
1604         struct inode *inode = mapping->host;
1605
1606         if (pos + copied > inode->i_size)
1607                 i_size_write(inode, pos + copied);
1608
1609         if (!PageUptodate(page)) {
1610                 if (copied < PAGE_CACHE_SIZE) {
1611                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1612                         zero_user_segments(page, 0, from,
1613                                         from + copied, PAGE_CACHE_SIZE);
1614                 }
1615                 SetPageUptodate(page);
1616         }
1617         set_page_dirty(page);
1618         unlock_page(page);
1619         page_cache_release(page);
1620
1621         return copied;
1622 }
1623
1624 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1625 {
1626         struct file *file = iocb->ki_filp;
1627         struct inode *inode = file_inode(file);
1628         struct address_space *mapping = inode->i_mapping;
1629         pgoff_t index;
1630         unsigned long offset;
1631         enum sgp_type sgp = SGP_READ;
1632         int error = 0;
1633         ssize_t retval = 0;
1634         loff_t *ppos = &iocb->ki_pos;
1635
1636         /*
1637          * Might this read be for a stacking filesystem?  Then when reading
1638          * holes of a sparse file, we actually need to allocate those pages,
1639          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1640          */
1641         if (!iter_is_iovec(to))
1642                 sgp = SGP_DIRTY;
1643
1644         index = *ppos >> PAGE_CACHE_SHIFT;
1645         offset = *ppos & ~PAGE_CACHE_MASK;
1646
1647         for (;;) {
1648                 struct page *page = NULL;
1649                 pgoff_t end_index;
1650                 unsigned long nr, ret;
1651                 loff_t i_size = i_size_read(inode);
1652
1653                 end_index = i_size >> PAGE_CACHE_SHIFT;
1654                 if (index > end_index)
1655                         break;
1656                 if (index == end_index) {
1657                         nr = i_size & ~PAGE_CACHE_MASK;
1658                         if (nr <= offset)
1659                                 break;
1660                 }
1661
1662                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1663                 if (error) {
1664                         if (error == -EINVAL)
1665                                 error = 0;
1666                         break;
1667                 }
1668                 if (page)
1669                         unlock_page(page);
1670
1671                 /*
1672                  * We must evaluate after, since reads (unlike writes)
1673                  * are called without i_mutex protection against truncate
1674                  */
1675                 nr = PAGE_CACHE_SIZE;
1676                 i_size = i_size_read(inode);
1677                 end_index = i_size >> PAGE_CACHE_SHIFT;
1678                 if (index == end_index) {
1679                         nr = i_size & ~PAGE_CACHE_MASK;
1680                         if (nr <= offset) {
1681                                 if (page)
1682                                         page_cache_release(page);
1683                                 break;
1684                         }
1685                 }
1686                 nr -= offset;
1687
1688                 if (page) {
1689                         /*
1690                          * If users can be writing to this page using arbitrary
1691                          * virtual addresses, take care about potential aliasing
1692                          * before reading the page on the kernel side.
1693                          */
1694                         if (mapping_writably_mapped(mapping))
1695                                 flush_dcache_page(page);
1696                         /*
1697                          * Mark the page accessed if we read the beginning.
1698                          */
1699                         if (!offset)
1700                                 mark_page_accessed(page);
1701                 } else {
1702                         page = ZERO_PAGE(0);
1703                         page_cache_get(page);
1704                 }
1705
1706                 /*
1707                  * Ok, we have the page, and it's up-to-date, so
1708                  * now we can copy it to user space...
1709                  */
1710                 ret = copy_page_to_iter(page, offset, nr, to);
1711                 retval += ret;
1712                 offset += ret;
1713                 index += offset >> PAGE_CACHE_SHIFT;
1714                 offset &= ~PAGE_CACHE_MASK;
1715
1716                 page_cache_release(page);
1717                 if (!iov_iter_count(to))
1718                         break;
1719                 if (ret < nr) {
1720                         error = -EFAULT;
1721                         break;
1722                 }
1723                 cond_resched();
1724         }
1725
1726         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1727         file_accessed(file);
1728         return retval ? retval : error;
1729 }
1730
1731 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1732                                 struct pipe_inode_info *pipe, size_t len,
1733                                 unsigned int flags)
1734 {
1735         struct address_space *mapping = in->f_mapping;
1736         struct inode *inode = mapping->host;
1737         unsigned int loff, nr_pages, req_pages;
1738         struct page *pages[PIPE_DEF_BUFFERS];
1739         struct partial_page partial[PIPE_DEF_BUFFERS];
1740         struct page *page;
1741         pgoff_t index, end_index;
1742         loff_t isize, left;
1743         int error, page_nr;
1744         struct splice_pipe_desc spd = {
1745                 .pages = pages,
1746                 .partial = partial,
1747                 .nr_pages_max = PIPE_DEF_BUFFERS,
1748                 .flags = flags,
1749                 .ops = &page_cache_pipe_buf_ops,
1750                 .spd_release = spd_release_page,
1751         };
1752
1753         isize = i_size_read(inode);
1754         if (unlikely(*ppos >= isize))
1755                 return 0;
1756
1757         left = isize - *ppos;
1758         if (unlikely(left < len))
1759                 len = left;
1760
1761         if (splice_grow_spd(pipe, &spd))
1762                 return -ENOMEM;
1763
1764         index = *ppos >> PAGE_CACHE_SHIFT;
1765         loff = *ppos & ~PAGE_CACHE_MASK;
1766         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1767         nr_pages = min(req_pages, spd.nr_pages_max);
1768
1769         spd.nr_pages = find_get_pages_contig(mapping, index,
1770                                                 nr_pages, spd.pages);
1771         index += spd.nr_pages;
1772         error = 0;
1773
1774         while (spd.nr_pages < nr_pages) {
1775                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1776                 if (error)
1777                         break;
1778                 unlock_page(page);
1779                 spd.pages[spd.nr_pages++] = page;
1780                 index++;
1781         }
1782
1783         index = *ppos >> PAGE_CACHE_SHIFT;
1784         nr_pages = spd.nr_pages;
1785         spd.nr_pages = 0;
1786
1787         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1788                 unsigned int this_len;
1789
1790                 if (!len)
1791                         break;
1792
1793                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1794                 page = spd.pages[page_nr];
1795
1796                 if (!PageUptodate(page) || page->mapping != mapping) {
1797                         error = shmem_getpage(inode, index, &page,
1798                                                         SGP_CACHE, NULL);
1799                         if (error)
1800                                 break;
1801                         unlock_page(page);
1802                         page_cache_release(spd.pages[page_nr]);
1803                         spd.pages[page_nr] = page;
1804                 }
1805
1806                 isize = i_size_read(inode);
1807                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1808                 if (unlikely(!isize || index > end_index))
1809                         break;
1810
1811                 if (end_index == index) {
1812                         unsigned int plen;
1813
1814                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1815                         if (plen <= loff)
1816                                 break;
1817
1818                         this_len = min(this_len, plen - loff);
1819                         len = this_len;
1820                 }
1821
1822                 spd.partial[page_nr].offset = loff;
1823                 spd.partial[page_nr].len = this_len;
1824                 len -= this_len;
1825                 loff = 0;
1826                 spd.nr_pages++;
1827                 index++;
1828         }
1829
1830         while (page_nr < nr_pages)
1831                 page_cache_release(spd.pages[page_nr++]);
1832
1833         if (spd.nr_pages)
1834                 error = splice_to_pipe(pipe, &spd);
1835
1836         splice_shrink_spd(&spd);
1837
1838         if (error > 0) {
1839                 *ppos += error;
1840                 file_accessed(in);
1841         }
1842         return error;
1843 }
1844
1845 /*
1846  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1847  */
1848 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1849                                     pgoff_t index, pgoff_t end, int whence)
1850 {
1851         struct page *page;
1852         struct pagevec pvec;
1853         pgoff_t indices[PAGEVEC_SIZE];
1854         bool done = false;
1855         int i;
1856
1857         pagevec_init(&pvec, 0);
1858         pvec.nr = 1;            /* start small: we may be there already */
1859         while (!done) {
1860                 pvec.nr = find_get_entries(mapping, index,
1861                                         pvec.nr, pvec.pages, indices);
1862                 if (!pvec.nr) {
1863                         if (whence == SEEK_DATA)
1864                                 index = end;
1865                         break;
1866                 }
1867                 for (i = 0; i < pvec.nr; i++, index++) {
1868                         if (index < indices[i]) {
1869                                 if (whence == SEEK_HOLE) {
1870                                         done = true;
1871                                         break;
1872                                 }
1873                                 index = indices[i];
1874                         }
1875                         page = pvec.pages[i];
1876                         if (page && !radix_tree_exceptional_entry(page)) {
1877                                 if (!PageUptodate(page))
1878                                         page = NULL;
1879                         }
1880                         if (index >= end ||
1881                             (page && whence == SEEK_DATA) ||
1882                             (!page && whence == SEEK_HOLE)) {
1883                                 done = true;
1884                                 break;
1885                         }
1886                 }
1887                 pagevec_remove_exceptionals(&pvec);
1888                 pagevec_release(&pvec);
1889                 pvec.nr = PAGEVEC_SIZE;
1890                 cond_resched();
1891         }
1892         return index;
1893 }
1894
1895 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1896 {
1897         struct address_space *mapping = file->f_mapping;
1898         struct inode *inode = mapping->host;
1899         pgoff_t start, end;
1900         loff_t new_offset;
1901
1902         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1903                 return generic_file_llseek_size(file, offset, whence,
1904                                         MAX_LFS_FILESIZE, i_size_read(inode));
1905         mutex_lock(&inode->i_mutex);
1906         /* We're holding i_mutex so we can access i_size directly */
1907
1908         if (offset < 0)
1909                 offset = -EINVAL;
1910         else if (offset >= inode->i_size)
1911                 offset = -ENXIO;
1912         else {
1913                 start = offset >> PAGE_CACHE_SHIFT;
1914                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1915                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1916                 new_offset <<= PAGE_CACHE_SHIFT;
1917                 if (new_offset > offset) {
1918                         if (new_offset < inode->i_size)
1919                                 offset = new_offset;
1920                         else if (whence == SEEK_DATA)
1921                                 offset = -ENXIO;
1922                         else
1923                                 offset = inode->i_size;
1924                 }
1925         }
1926
1927         if (offset >= 0)
1928                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1929         mutex_unlock(&inode->i_mutex);
1930         return offset;
1931 }
1932
1933 /*
1934  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1935  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1936  */
1937 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1938 #define LAST_SCAN               4       /* about 150ms max */
1939
1940 static void shmem_tag_pins(struct address_space *mapping)
1941 {
1942         struct radix_tree_iter iter;
1943         void **slot;
1944         pgoff_t start;
1945         struct page *page;
1946
1947         lru_add_drain();
1948         start = 0;
1949         rcu_read_lock();
1950
1951 restart:
1952         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1953                 page = radix_tree_deref_slot(slot);
1954                 if (!page || radix_tree_exception(page)) {
1955                         if (radix_tree_deref_retry(page))
1956                                 goto restart;
1957                 } else if (page_count(page) - page_mapcount(page) > 1) {
1958                         spin_lock_irq(&mapping->tree_lock);
1959                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1960                                            SHMEM_TAG_PINNED);
1961                         spin_unlock_irq(&mapping->tree_lock);
1962                 }
1963
1964                 if (need_resched()) {
1965                         cond_resched_rcu();
1966                         start = iter.index + 1;
1967                         goto restart;
1968                 }
1969         }
1970         rcu_read_unlock();
1971 }
1972
1973 /*
1974  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1975  * via get_user_pages(), drivers might have some pending I/O without any active
1976  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1977  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1978  * them to be dropped.
1979  * The caller must guarantee that no new user will acquire writable references
1980  * to those pages to avoid races.
1981  */
1982 static int shmem_wait_for_pins(struct address_space *mapping)
1983 {
1984         struct radix_tree_iter iter;
1985         void **slot;
1986         pgoff_t start;
1987         struct page *page;
1988         int error, scan;
1989
1990         shmem_tag_pins(mapping);
1991
1992         error = 0;
1993         for (scan = 0; scan <= LAST_SCAN; scan++) {
1994                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1995                         break;
1996
1997                 if (!scan)
1998                         lru_add_drain_all();
1999                 else if (schedule_timeout_killable((HZ << scan) / 200))
2000                         scan = LAST_SCAN;
2001
2002                 start = 0;
2003                 rcu_read_lock();
2004 restart:
2005                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2006                                            start, SHMEM_TAG_PINNED) {
2007
2008                         page = radix_tree_deref_slot(slot);
2009                         if (radix_tree_exception(page)) {
2010                                 if (radix_tree_deref_retry(page))
2011                                         goto restart;
2012
2013                                 page = NULL;
2014                         }
2015
2016                         if (page &&
2017                             page_count(page) - page_mapcount(page) != 1) {
2018                                 if (scan < LAST_SCAN)
2019                                         goto continue_resched;
2020
2021                                 /*
2022                                  * On the last scan, we clean up all those tags
2023                                  * we inserted; but make a note that we still
2024                                  * found pages pinned.
2025                                  */
2026                                 error = -EBUSY;
2027                         }
2028
2029                         spin_lock_irq(&mapping->tree_lock);
2030                         radix_tree_tag_clear(&mapping->page_tree,
2031                                              iter.index, SHMEM_TAG_PINNED);
2032                         spin_unlock_irq(&mapping->tree_lock);
2033 continue_resched:
2034                         if (need_resched()) {
2035                                 cond_resched_rcu();
2036                                 start = iter.index + 1;
2037                                 goto restart;
2038                         }
2039                 }
2040                 rcu_read_unlock();
2041         }
2042
2043         return error;
2044 }
2045
2046 #define F_ALL_SEALS (F_SEAL_SEAL | \
2047                      F_SEAL_SHRINK | \
2048                      F_SEAL_GROW | \
2049                      F_SEAL_WRITE)
2050
2051 int shmem_add_seals(struct file *file, unsigned int seals)
2052 {
2053         struct inode *inode = file_inode(file);
2054         struct shmem_inode_info *info = SHMEM_I(inode);
2055         int error;
2056
2057         /*
2058          * SEALING
2059          * Sealing allows multiple parties to share a shmem-file but restrict
2060          * access to a specific subset of file operations. Seals can only be
2061          * added, but never removed. This way, mutually untrusted parties can
2062          * share common memory regions with a well-defined policy. A malicious
2063          * peer can thus never perform unwanted operations on a shared object.
2064          *
2065          * Seals are only supported on special shmem-files and always affect
2066          * the whole underlying inode. Once a seal is set, it may prevent some
2067          * kinds of access to the file. Currently, the following seals are
2068          * defined:
2069          *   SEAL_SEAL: Prevent further seals from being set on this file
2070          *   SEAL_SHRINK: Prevent the file from shrinking
2071          *   SEAL_GROW: Prevent the file from growing
2072          *   SEAL_WRITE: Prevent write access to the file
2073          *
2074          * As we don't require any trust relationship between two parties, we
2075          * must prevent seals from being removed. Therefore, sealing a file
2076          * only adds a given set of seals to the file, it never touches
2077          * existing seals. Furthermore, the "setting seals"-operation can be
2078          * sealed itself, which basically prevents any further seal from being
2079          * added.
2080          *
2081          * Semantics of sealing are only defined on volatile files. Only
2082          * anonymous shmem files support sealing. More importantly, seals are
2083          * never written to disk. Therefore, there's no plan to support it on
2084          * other file types.
2085          */
2086
2087         if (file->f_op != &shmem_file_operations)
2088                 return -EINVAL;
2089         if (!(file->f_mode & FMODE_WRITE))
2090                 return -EPERM;
2091         if (seals & ~(unsigned int)F_ALL_SEALS)
2092                 return -EINVAL;
2093
2094         mutex_lock(&inode->i_mutex);
2095
2096         if (info->seals & F_SEAL_SEAL) {
2097                 error = -EPERM;
2098                 goto unlock;
2099         }
2100
2101         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2102                 error = mapping_deny_writable(file->f_mapping);
2103                 if (error)
2104                         goto unlock;
2105
2106                 error = shmem_wait_for_pins(file->f_mapping);
2107                 if (error) {
2108                         mapping_allow_writable(file->f_mapping);
2109                         goto unlock;
2110                 }
2111         }
2112
2113         info->seals |= seals;
2114         error = 0;
2115
2116 unlock:
2117         mutex_unlock(&inode->i_mutex);
2118         return error;
2119 }
2120 EXPORT_SYMBOL_GPL(shmem_add_seals);
2121
2122 int shmem_get_seals(struct file *file)
2123 {
2124         if (file->f_op != &shmem_file_operations)
2125                 return -EINVAL;
2126
2127         return SHMEM_I(file_inode(file))->seals;
2128 }
2129 EXPORT_SYMBOL_GPL(shmem_get_seals);
2130
2131 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2132 {
2133         long error;
2134
2135         switch (cmd) {
2136         case F_ADD_SEALS:
2137                 /* disallow upper 32bit */
2138                 if (arg > UINT_MAX)
2139                         return -EINVAL;
2140
2141                 error = shmem_add_seals(file, arg);
2142                 break;
2143         case F_GET_SEALS:
2144                 error = shmem_get_seals(file);
2145                 break;
2146         default:
2147                 error = -EINVAL;
2148                 break;
2149         }
2150
2151         return error;
2152 }
2153
2154 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2155                                                          loff_t len)
2156 {
2157         struct inode *inode = file_inode(file);
2158         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2159         struct shmem_inode_info *info = SHMEM_I(inode);
2160         struct shmem_falloc shmem_falloc;
2161         pgoff_t start, index, end;
2162         int error;
2163
2164         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2165                 return -EOPNOTSUPP;
2166
2167         mutex_lock(&inode->i_mutex);
2168
2169         if (mode & FALLOC_FL_PUNCH_HOLE) {
2170                 struct address_space *mapping = file->f_mapping;
2171                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2172                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2173                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2174
2175                 /* protected by i_mutex */
2176                 if (info->seals & F_SEAL_WRITE) {
2177                         error = -EPERM;
2178                         goto out;
2179                 }
2180
2181                 shmem_falloc.waitq = &shmem_falloc_waitq;
2182                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2183                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2184                 spin_lock(&inode->i_lock);
2185                 inode->i_private = &shmem_falloc;
2186                 spin_unlock(&inode->i_lock);
2187
2188                 if ((u64)unmap_end > (u64)unmap_start)
2189                         unmap_mapping_range(mapping, unmap_start,
2190                                             1 + unmap_end - unmap_start, 0);
2191                 shmem_truncate_range(inode, offset, offset + len - 1);
2192                 /* No need to unmap again: hole-punching leaves COWed pages */
2193
2194                 spin_lock(&inode->i_lock);
2195                 inode->i_private = NULL;
2196                 wake_up_all(&shmem_falloc_waitq);
2197                 spin_unlock(&inode->i_lock);
2198                 error = 0;
2199                 goto out;
2200         }
2201
2202         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2203         error = inode_newsize_ok(inode, offset + len);
2204         if (error)
2205                 goto out;
2206
2207         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2208                 error = -EPERM;
2209                 goto out;
2210         }
2211
2212         start = offset >> PAGE_CACHE_SHIFT;
2213         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2214         /* Try to avoid a swapstorm if len is impossible to satisfy */
2215         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2216                 error = -ENOSPC;
2217                 goto out;
2218         }
2219
2220         shmem_falloc.waitq = NULL;
2221         shmem_falloc.start = start;
2222         shmem_falloc.next  = start;
2223         shmem_falloc.nr_falloced = 0;
2224         shmem_falloc.nr_unswapped = 0;
2225         spin_lock(&inode->i_lock);
2226         inode->i_private = &shmem_falloc;
2227         spin_unlock(&inode->i_lock);
2228
2229         for (index = start; index < end; index++) {
2230                 struct page *page;
2231
2232                 /*
2233                  * Good, the fallocate(2) manpage permits EINTR: we may have
2234                  * been interrupted because we are using up too much memory.
2235                  */
2236                 if (signal_pending(current))
2237                         error = -EINTR;
2238                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2239                         error = -ENOMEM;
2240                 else
2241                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2242                                                                         NULL);
2243                 if (error) {
2244                         /* Remove the !PageUptodate pages we added */
2245                         shmem_undo_range(inode,
2246                                 (loff_t)start << PAGE_CACHE_SHIFT,
2247                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2248                         goto undone;
2249                 }
2250
2251                 /*
2252                  * Inform shmem_writepage() how far we have reached.
2253                  * No need for lock or barrier: we have the page lock.
2254                  */
2255                 shmem_falloc.next++;
2256                 if (!PageUptodate(page))
2257                         shmem_falloc.nr_falloced++;
2258
2259                 /*
2260                  * If !PageUptodate, leave it that way so that freeable pages
2261                  * can be recognized if we need to rollback on error later.
2262                  * But set_page_dirty so that memory pressure will swap rather
2263                  * than free the pages we are allocating (and SGP_CACHE pages
2264                  * might still be clean: we now need to mark those dirty too).
2265                  */
2266                 set_page_dirty(page);
2267                 unlock_page(page);
2268                 page_cache_release(page);
2269                 cond_resched();
2270         }
2271
2272         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2273                 i_size_write(inode, offset + len);
2274         inode->i_ctime = CURRENT_TIME;
2275 undone:
2276         spin_lock(&inode->i_lock);
2277         inode->i_private = NULL;
2278         spin_unlock(&inode->i_lock);
2279 out:
2280         mutex_unlock(&inode->i_mutex);
2281         return error;
2282 }
2283
2284 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2285 {
2286         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2287
2288         buf->f_type = TMPFS_MAGIC;
2289         buf->f_bsize = PAGE_CACHE_SIZE;
2290         buf->f_namelen = NAME_MAX;
2291         if (sbinfo->max_blocks) {
2292                 buf->f_blocks = sbinfo->max_blocks;
2293                 buf->f_bavail =
2294                 buf->f_bfree  = sbinfo->max_blocks -
2295                                 percpu_counter_sum(&sbinfo->used_blocks);
2296         }
2297         if (sbinfo->max_inodes) {
2298                 buf->f_files = sbinfo->max_inodes;
2299                 buf->f_ffree = sbinfo->free_inodes;
2300         }
2301         /* else leave those fields 0 like simple_statfs */
2302         return 0;
2303 }
2304
2305 /*
2306  * File creation. Allocate an inode, and we're done..
2307  */
2308 static int
2309 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2310 {
2311         struct inode *inode;
2312         int error = -ENOSPC;
2313
2314         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2315         if (inode) {
2316                 error = simple_acl_create(dir, inode);
2317                 if (error)
2318                         goto out_iput;
2319                 error = security_inode_init_security(inode, dir,
2320                                                      &dentry->d_name,
2321                                                      shmem_initxattrs, NULL);
2322                 if (error && error != -EOPNOTSUPP)
2323                         goto out_iput;
2324
2325                 error = 0;
2326                 dir->i_size += BOGO_DIRENT_SIZE;
2327                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2328                 d_instantiate(dentry, inode);
2329                 dget(dentry); /* Extra count - pin the dentry in core */
2330         }
2331         return error;
2332 out_iput:
2333         iput(inode);
2334         return error;
2335 }
2336
2337 static int
2338 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2339 {
2340         struct inode *inode;
2341         int error = -ENOSPC;
2342
2343         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2344         if (inode) {
2345                 error = security_inode_init_security(inode, dir,
2346                                                      NULL,
2347                                                      shmem_initxattrs, NULL);
2348                 if (error && error != -EOPNOTSUPP)
2349                         goto out_iput;
2350                 error = simple_acl_create(dir, inode);
2351                 if (error)
2352                         goto out_iput;
2353                 d_tmpfile(dentry, inode);
2354         }
2355         return error;
2356 out_iput:
2357         iput(inode);
2358         return error;
2359 }
2360
2361 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2362 {
2363         int error;
2364
2365         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2366                 return error;
2367         inc_nlink(dir);
2368         return 0;
2369 }
2370
2371 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2372                 bool excl)
2373 {
2374         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2375 }
2376
2377 /*
2378  * Link a file..
2379  */
2380 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2381 {
2382         struct inode *inode = d_inode(old_dentry);
2383         int ret;
2384
2385         /*
2386          * No ordinary (disk based) filesystem counts links as inodes;
2387          * but each new link needs a new dentry, pinning lowmem, and
2388          * tmpfs dentries cannot be pruned until they are unlinked.
2389          */
2390         ret = shmem_reserve_inode(inode->i_sb);
2391         if (ret)
2392                 goto out;
2393
2394         dir->i_size += BOGO_DIRENT_SIZE;
2395         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2396         inc_nlink(inode);
2397         ihold(inode);   /* New dentry reference */
2398         dget(dentry);           /* Extra pinning count for the created dentry */
2399         d_instantiate(dentry, inode);
2400 out:
2401         return ret;
2402 }
2403
2404 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2405 {
2406         struct inode *inode = d_inode(dentry);
2407
2408         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2409                 shmem_free_inode(inode->i_sb);
2410
2411         dir->i_size -= BOGO_DIRENT_SIZE;
2412         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2413         drop_nlink(inode);
2414         dput(dentry);   /* Undo the count from "create" - this does all the work */
2415         return 0;
2416 }
2417
2418 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2419 {
2420         if (!simple_empty(dentry))
2421                 return -ENOTEMPTY;
2422
2423         drop_nlink(d_inode(dentry));
2424         drop_nlink(dir);
2425         return shmem_unlink(dir, dentry);
2426 }
2427
2428 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2429 {
2430         bool old_is_dir = d_is_dir(old_dentry);
2431         bool new_is_dir = d_is_dir(new_dentry);
2432
2433         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2434                 if (old_is_dir) {
2435                         drop_nlink(old_dir);
2436                         inc_nlink(new_dir);
2437                 } else {
2438                         drop_nlink(new_dir);
2439                         inc_nlink(old_dir);
2440                 }
2441         }
2442         old_dir->i_ctime = old_dir->i_mtime =
2443         new_dir->i_ctime = new_dir->i_mtime =
2444         d_inode(old_dentry)->i_ctime =
2445         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2446
2447         return 0;
2448 }
2449
2450 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2451 {
2452         struct dentry *whiteout;
2453         int error;
2454
2455         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2456         if (!whiteout)
2457                 return -ENOMEM;
2458
2459         error = shmem_mknod(old_dir, whiteout,
2460                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2461         dput(whiteout);
2462         if (error)
2463                 return error;
2464
2465         /*
2466          * Cheat and hash the whiteout while the old dentry is still in
2467          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2468          *
2469          * d_lookup() will consistently find one of them at this point,
2470          * not sure which one, but that isn't even important.
2471          */
2472         d_rehash(whiteout);
2473         return 0;
2474 }
2475
2476 /*
2477  * The VFS layer already does all the dentry stuff for rename,
2478  * we just have to decrement the usage count for the target if
2479  * it exists so that the VFS layer correctly free's it when it
2480  * gets overwritten.
2481  */
2482 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2483 {
2484         struct inode *inode = d_inode(old_dentry);
2485         int they_are_dirs = S_ISDIR(inode->i_mode);
2486
2487         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2488                 return -EINVAL;
2489
2490         if (flags & RENAME_EXCHANGE)
2491                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2492
2493         if (!simple_empty(new_dentry))
2494                 return -ENOTEMPTY;
2495
2496         if (flags & RENAME_WHITEOUT) {
2497                 int error;
2498
2499                 error = shmem_whiteout(old_dir, old_dentry);
2500                 if (error)
2501                         return error;
2502         }
2503
2504         if (d_really_is_positive(new_dentry)) {
2505                 (void) shmem_unlink(new_dir, new_dentry);
2506                 if (they_are_dirs) {
2507                         drop_nlink(d_inode(new_dentry));
2508                         drop_nlink(old_dir);
2509                 }
2510         } else if (they_are_dirs) {
2511                 drop_nlink(old_dir);
2512                 inc_nlink(new_dir);
2513         }
2514
2515         old_dir->i_size -= BOGO_DIRENT_SIZE;
2516         new_dir->i_size += BOGO_DIRENT_SIZE;
2517         old_dir->i_ctime = old_dir->i_mtime =
2518         new_dir->i_ctime = new_dir->i_mtime =
2519         inode->i_ctime = CURRENT_TIME;
2520         return 0;
2521 }
2522
2523 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2524 {
2525         int error;
2526         int len;
2527         struct inode *inode;
2528         struct page *page;
2529         struct shmem_inode_info *info;
2530
2531         len = strlen(symname) + 1;
2532         if (len > PAGE_CACHE_SIZE)
2533                 return -ENAMETOOLONG;
2534
2535         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2536         if (!inode)
2537                 return -ENOSPC;
2538
2539         error = security_inode_init_security(inode, dir, &dentry->d_name,
2540                                              shmem_initxattrs, NULL);
2541         if (error) {
2542                 if (error != -EOPNOTSUPP) {
2543                         iput(inode);
2544                         return error;
2545                 }
2546                 error = 0;
2547         }
2548
2549         info = SHMEM_I(inode);
2550         inode->i_size = len-1;
2551         if (len <= SHORT_SYMLINK_LEN) {
2552                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2553                 if (!info->symlink) {
2554                         iput(inode);
2555                         return -ENOMEM;
2556                 }
2557                 inode->i_op = &shmem_short_symlink_operations;
2558                 inode->i_link = info->symlink;
2559         } else {
2560                 inode_nohighmem(inode);
2561                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2562                 if (error) {
2563                         iput(inode);
2564                         return error;
2565                 }
2566                 inode->i_mapping->a_ops = &shmem_aops;
2567                 inode->i_op = &shmem_symlink_inode_operations;
2568                 memcpy(page_address(page), symname, len);
2569                 SetPageUptodate(page);
2570                 set_page_dirty(page);
2571                 unlock_page(page);
2572                 page_cache_release(page);
2573         }
2574         dir->i_size += BOGO_DIRENT_SIZE;
2575         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2576         d_instantiate(dentry, inode);
2577         dget(dentry);
2578         return 0;
2579 }
2580
2581 static void shmem_put_link(void *arg)
2582 {
2583         mark_page_accessed(arg);
2584         put_page(arg);
2585 }
2586
2587 static const char *shmem_get_link(struct dentry *dentry,
2588                                   struct inode *inode,
2589                                   struct delayed_call *done)
2590 {
2591         struct page *page = NULL;
2592         int error;
2593         if (!dentry) {
2594                 page = find_get_page(inode->i_mapping, 0);
2595                 if (!page)
2596                         return ERR_PTR(-ECHILD);
2597                 if (!PageUptodate(page)) {
2598                         put_page(page);
2599                         return ERR_PTR(-ECHILD);
2600                 }
2601         } else {
2602                 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2603                 if (error)
2604                         return ERR_PTR(error);
2605                 unlock_page(page);
2606         }
2607         set_delayed_call(done, shmem_put_link, page);
2608         return page_address(page);
2609 }
2610
2611 #ifdef CONFIG_TMPFS_XATTR
2612 /*
2613  * Superblocks without xattr inode operations may get some security.* xattr
2614  * support from the LSM "for free". As soon as we have any other xattrs
2615  * like ACLs, we also need to implement the security.* handlers at
2616  * filesystem level, though.
2617  */
2618
2619 /*
2620  * Callback for security_inode_init_security() for acquiring xattrs.
2621  */
2622 static int shmem_initxattrs(struct inode *inode,
2623                             const struct xattr *xattr_array,
2624                             void *fs_info)
2625 {
2626         struct shmem_inode_info *info = SHMEM_I(inode);
2627         const struct xattr *xattr;
2628         struct simple_xattr *new_xattr;
2629         size_t len;
2630
2631         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2632                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2633                 if (!new_xattr)
2634                         return -ENOMEM;
2635
2636                 len = strlen(xattr->name) + 1;
2637                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2638                                           GFP_KERNEL);
2639                 if (!new_xattr->name) {
2640                         kfree(new_xattr);
2641                         return -ENOMEM;
2642                 }
2643
2644                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2645                        XATTR_SECURITY_PREFIX_LEN);
2646                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2647                        xattr->name, len);
2648
2649                 simple_xattr_list_add(&info->xattrs, new_xattr);
2650         }
2651
2652         return 0;
2653 }
2654
2655 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2656                                    struct dentry *dentry, const char *name,
2657                                    void *buffer, size_t size)
2658 {
2659         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2660
2661         name = xattr_full_name(handler, name);
2662         return simple_xattr_get(&info->xattrs, name, buffer, size);
2663 }
2664
2665 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2666                                    struct dentry *dentry, const char *name,
2667                                    const void *value, size_t size, int flags)
2668 {
2669         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2670
2671         name = xattr_full_name(handler, name);
2672         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2673 }
2674
2675 static const struct xattr_handler shmem_security_xattr_handler = {
2676         .prefix = XATTR_SECURITY_PREFIX,
2677         .get = shmem_xattr_handler_get,
2678         .set = shmem_xattr_handler_set,
2679 };
2680
2681 static const struct xattr_handler shmem_trusted_xattr_handler = {
2682         .prefix = XATTR_TRUSTED_PREFIX,
2683         .get = shmem_xattr_handler_get,
2684         .set = shmem_xattr_handler_set,
2685 };
2686
2687 static const struct xattr_handler *shmem_xattr_handlers[] = {
2688 #ifdef CONFIG_TMPFS_POSIX_ACL
2689         &posix_acl_access_xattr_handler,
2690         &posix_acl_default_xattr_handler,
2691 #endif
2692         &shmem_security_xattr_handler,
2693         &shmem_trusted_xattr_handler,
2694         NULL
2695 };
2696
2697 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2698 {
2699         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2700         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2701 }
2702 #endif /* CONFIG_TMPFS_XATTR */
2703
2704 static const struct inode_operations shmem_short_symlink_operations = {
2705         .readlink       = generic_readlink,
2706         .get_link       = simple_get_link,
2707 #ifdef CONFIG_TMPFS_XATTR
2708         .setxattr       = generic_setxattr,
2709         .getxattr       = generic_getxattr,
2710         .listxattr      = shmem_listxattr,
2711         .removexattr    = generic_removexattr,
2712 #endif
2713 };
2714
2715 static const struct inode_operations shmem_symlink_inode_operations = {
2716         .readlink       = generic_readlink,
2717         .get_link       = shmem_get_link,
2718 #ifdef CONFIG_TMPFS_XATTR
2719         .setxattr       = generic_setxattr,
2720         .getxattr       = generic_getxattr,
2721         .listxattr      = shmem_listxattr,
2722         .removexattr    = generic_removexattr,
2723 #endif
2724 };
2725
2726 static struct dentry *shmem_get_parent(struct dentry *child)
2727 {
2728         return ERR_PTR(-ESTALE);
2729 }
2730
2731 static int shmem_match(struct inode *ino, void *vfh)
2732 {
2733         __u32 *fh = vfh;
2734         __u64 inum = fh[2];
2735         inum = (inum << 32) | fh[1];
2736         return ino->i_ino == inum && fh[0] == ino->i_generation;
2737 }
2738
2739 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2740                 struct fid *fid, int fh_len, int fh_type)
2741 {
2742         struct inode *inode;
2743         struct dentry *dentry = NULL;
2744         u64 inum;
2745
2746         if (fh_len < 3)
2747                 return NULL;
2748
2749         inum = fid->raw[2];
2750         inum = (inum << 32) | fid->raw[1];
2751
2752         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2753                         shmem_match, fid->raw);
2754         if (inode) {
2755                 dentry = d_find_alias(inode);
2756                 iput(inode);
2757         }
2758
2759         return dentry;
2760 }
2761
2762 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2763                                 struct inode *parent)
2764 {
2765         if (*len < 3) {
2766                 *len = 3;
2767                 return FILEID_INVALID;
2768         }
2769
2770         if (inode_unhashed(inode)) {
2771                 /* Unfortunately insert_inode_hash is not idempotent,
2772                  * so as we hash inodes here rather than at creation
2773                  * time, we need a lock to ensure we only try
2774                  * to do it once
2775                  */
2776                 static DEFINE_SPINLOCK(lock);
2777                 spin_lock(&lock);
2778                 if (inode_unhashed(inode))
2779                         __insert_inode_hash(inode,
2780                                             inode->i_ino + inode->i_generation);
2781                 spin_unlock(&lock);
2782         }
2783
2784         fh[0] = inode->i_generation;
2785         fh[1] = inode->i_ino;
2786         fh[2] = ((__u64)inode->i_ino) >> 32;
2787
2788         *len = 3;
2789         return 1;
2790 }
2791
2792 static const struct export_operations shmem_export_ops = {
2793         .get_parent     = shmem_get_parent,
2794         .encode_fh      = shmem_encode_fh,
2795         .fh_to_dentry   = shmem_fh_to_dentry,
2796 };
2797
2798 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2799                                bool remount)
2800 {
2801         char *this_char, *value, *rest;
2802         struct mempolicy *mpol = NULL;
2803         uid_t uid;
2804         gid_t gid;
2805
2806         while (options != NULL) {
2807                 this_char = options;
2808                 for (;;) {
2809                         /*
2810                          * NUL-terminate this option: unfortunately,
2811                          * mount options form a comma-separated list,
2812                          * but mpol's nodelist may also contain commas.
2813                          */
2814                         options = strchr(options, ',');
2815                         if (options == NULL)
2816                                 break;
2817                         options++;
2818                         if (!isdigit(*options)) {
2819                                 options[-1] = '\0';
2820                                 break;
2821                         }
2822                 }
2823                 if (!*this_char)
2824                         continue;
2825                 if ((value = strchr(this_char,'=')) != NULL) {
2826                         *value++ = 0;
2827                 } else {
2828                         printk(KERN_ERR
2829                             "tmpfs: No value for mount option '%s'\n",
2830                             this_char);
2831                         goto error;
2832                 }
2833
2834                 if (!strcmp(this_char,"size")) {
2835                         unsigned long long size;
2836                         size = memparse(value,&rest);
2837                         if (*rest == '%') {
2838                                 size <<= PAGE_SHIFT;
2839                                 size *= totalram_pages;
2840                                 do_div(size, 100);
2841                                 rest++;
2842                         }
2843                         if (*rest)
2844                                 goto bad_val;
2845                         sbinfo->max_blocks =
2846                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2847                 } else if (!strcmp(this_char,"nr_blocks")) {
2848                         sbinfo->max_blocks = memparse(value, &rest);
2849                         if (*rest)
2850                                 goto bad_val;
2851                 } else if (!strcmp(this_char,"nr_inodes")) {
2852                         sbinfo->max_inodes = memparse(value, &rest);
2853                         if (*rest)
2854                                 goto bad_val;
2855                 } else if (!strcmp(this_char,"mode")) {
2856                         if (remount)
2857                                 continue;
2858                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2859                         if (*rest)
2860                                 goto bad_val;
2861                 } else if (!strcmp(this_char,"uid")) {
2862                         if (remount)
2863                                 continue;
2864                         uid = simple_strtoul(value, &rest, 0);
2865                         if (*rest)
2866                                 goto bad_val;
2867                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2868                         if (!uid_valid(sbinfo->uid))
2869                                 goto bad_val;
2870                 } else if (!strcmp(this_char,"gid")) {
2871                         if (remount)
2872                                 continue;
2873                         gid = simple_strtoul(value, &rest, 0);
2874                         if (*rest)
2875                                 goto bad_val;
2876                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2877                         if (!gid_valid(sbinfo->gid))
2878                                 goto bad_val;
2879                 } else if (!strcmp(this_char,"mpol")) {
2880                         mpol_put(mpol);
2881                         mpol = NULL;
2882                         if (mpol_parse_str(value, &mpol))
2883                                 goto bad_val;
2884                 } else {
2885                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2886                                this_char);
2887                         goto error;
2888                 }
2889         }
2890         sbinfo->mpol = mpol;
2891         return 0;
2892
2893 bad_val:
2894         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2895                value, this_char);
2896 error:
2897         mpol_put(mpol);
2898         return 1;
2899
2900 }
2901
2902 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2903 {
2904         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2905         struct shmem_sb_info config = *sbinfo;
2906         unsigned long inodes;
2907         int error = -EINVAL;
2908
2909         config.mpol = NULL;
2910         if (shmem_parse_options(data, &config, true))
2911                 return error;
2912
2913         spin_lock(&sbinfo->stat_lock);
2914         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2915         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2916                 goto out;
2917         if (config.max_inodes < inodes)
2918                 goto out;
2919         /*
2920          * Those tests disallow limited->unlimited while any are in use;
2921          * but we must separately disallow unlimited->limited, because
2922          * in that case we have no record of how much is already in use.
2923          */
2924         if (config.max_blocks && !sbinfo->max_blocks)
2925                 goto out;
2926         if (config.max_inodes && !sbinfo->max_inodes)
2927                 goto out;
2928
2929         error = 0;
2930         sbinfo->max_blocks  = config.max_blocks;
2931         sbinfo->max_inodes  = config.max_inodes;
2932         sbinfo->free_inodes = config.max_inodes - inodes;
2933
2934         /*
2935          * Preserve previous mempolicy unless mpol remount option was specified.
2936          */
2937         if (config.mpol) {
2938                 mpol_put(sbinfo->mpol);
2939                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2940         }
2941 out:
2942         spin_unlock(&sbinfo->stat_lock);
2943         return error;
2944 }
2945
2946 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2947 {
2948         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2949
2950         if (sbinfo->max_blocks != shmem_default_max_blocks())
2951                 seq_printf(seq, ",size=%luk",
2952                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2953         if (sbinfo->max_inodes != shmem_default_max_inodes())
2954                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2955         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2956                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2957         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2958                 seq_printf(seq, ",uid=%u",
2959                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2960         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2961                 seq_printf(seq, ",gid=%u",
2962                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2963         shmem_show_mpol(seq, sbinfo->mpol);
2964         return 0;
2965 }
2966
2967 #define MFD_NAME_PREFIX "memfd:"
2968 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2969 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2970
2971 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2972
2973 SYSCALL_DEFINE2(memfd_create,
2974                 const char __user *, uname,
2975                 unsigned int, flags)
2976 {
2977         struct shmem_inode_info *info;
2978         struct file *file;
2979         int fd, error;
2980         char *name;
2981         long len;
2982
2983         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2984                 return -EINVAL;
2985
2986         /* length includes terminating zero */
2987         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2988         if (len <= 0)
2989                 return -EFAULT;
2990         if (len > MFD_NAME_MAX_LEN + 1)
2991                 return -EINVAL;
2992
2993         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2994         if (!name)
2995                 return -ENOMEM;
2996
2997         strcpy(name, MFD_NAME_PREFIX);
2998         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2999                 error = -EFAULT;
3000                 goto err_name;
3001         }
3002
3003         /* terminating-zero may have changed after strnlen_user() returned */
3004         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3005                 error = -EFAULT;
3006                 goto err_name;
3007         }
3008
3009         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3010         if (fd < 0) {
3011                 error = fd;
3012                 goto err_name;
3013         }
3014
3015         file = shmem_file_setup(name, 0, VM_NORESERVE);
3016         if (IS_ERR(file)) {
3017                 error = PTR_ERR(file);
3018                 goto err_fd;
3019         }
3020         info = SHMEM_I(file_inode(file));
3021         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3022         file->f_flags |= O_RDWR | O_LARGEFILE;
3023         if (flags & MFD_ALLOW_SEALING)
3024                 info->seals &= ~F_SEAL_SEAL;
3025
3026         fd_install(fd, file);
3027         kfree(name);
3028         return fd;
3029
3030 err_fd:
3031         put_unused_fd(fd);
3032 err_name:
3033         kfree(name);
3034         return error;
3035 }
3036
3037 #endif /* CONFIG_TMPFS */
3038
3039 static void shmem_put_super(struct super_block *sb)
3040 {
3041         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3042
3043         percpu_counter_destroy(&sbinfo->used_blocks);
3044         mpol_put(sbinfo->mpol);
3045         kfree(sbinfo);
3046         sb->s_fs_info = NULL;
3047 }
3048
3049 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3050 {
3051         struct inode *inode;
3052         struct shmem_sb_info *sbinfo;
3053         int err = -ENOMEM;
3054
3055         /* Round up to L1_CACHE_BYTES to resist false sharing */
3056         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3057                                 L1_CACHE_BYTES), GFP_KERNEL);
3058         if (!sbinfo)
3059                 return -ENOMEM;
3060
3061         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3062         sbinfo->uid = current_fsuid();
3063         sbinfo->gid = current_fsgid();
3064         sb->s_fs_info = sbinfo;
3065
3066 #ifdef CONFIG_TMPFS
3067         /*
3068          * Per default we only allow half of the physical ram per
3069          * tmpfs instance, limiting inodes to one per page of lowmem;
3070          * but the internal instance is left unlimited.
3071          */
3072         if (!(sb->s_flags & MS_KERNMOUNT)) {
3073                 sbinfo->max_blocks = shmem_default_max_blocks();
3074                 sbinfo->max_inodes = shmem_default_max_inodes();
3075                 if (shmem_parse_options(data, sbinfo, false)) {
3076                         err = -EINVAL;
3077                         goto failed;
3078                 }
3079         } else {
3080                 sb->s_flags |= MS_NOUSER;
3081         }
3082         sb->s_export_op = &shmem_export_ops;
3083         sb->s_flags |= MS_NOSEC;
3084 #else
3085         sb->s_flags |= MS_NOUSER;
3086 #endif
3087
3088         spin_lock_init(&sbinfo->stat_lock);
3089         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3090                 goto failed;
3091         sbinfo->free_inodes = sbinfo->max_inodes;
3092
3093         sb->s_maxbytes = MAX_LFS_FILESIZE;
3094         sb->s_blocksize = PAGE_CACHE_SIZE;
3095         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3096         sb->s_magic = TMPFS_MAGIC;
3097         sb->s_op = &shmem_ops;
3098         sb->s_time_gran = 1;
3099 #ifdef CONFIG_TMPFS_XATTR
3100         sb->s_xattr = shmem_xattr_handlers;
3101 #endif
3102 #ifdef CONFIG_TMPFS_POSIX_ACL
3103         sb->s_flags |= MS_POSIXACL;
3104 #endif
3105
3106         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3107         if (!inode)
3108                 goto failed;
3109         inode->i_uid = sbinfo->uid;
3110         inode->i_gid = sbinfo->gid;
3111         sb->s_root = d_make_root(inode);
3112         if (!sb->s_root)
3113                 goto failed;
3114         return 0;
3115
3116 failed:
3117         shmem_put_super(sb);
3118         return err;
3119 }
3120
3121 static struct kmem_cache *shmem_inode_cachep;
3122
3123 static struct inode *shmem_alloc_inode(struct super_block *sb)
3124 {
3125         struct shmem_inode_info *info;
3126         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3127         if (!info)
3128                 return NULL;
3129         return &info->vfs_inode;
3130 }
3131
3132 static void shmem_destroy_callback(struct rcu_head *head)
3133 {
3134         struct inode *inode = container_of(head, struct inode, i_rcu);
3135         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3136 }
3137
3138 static void shmem_destroy_inode(struct inode *inode)
3139 {
3140         if (S_ISREG(inode->i_mode))
3141                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3142         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3143 }
3144
3145 static void shmem_init_inode(void *foo)
3146 {
3147         struct shmem_inode_info *info = foo;
3148         inode_init_once(&info->vfs_inode);
3149 }
3150
3151 static int shmem_init_inodecache(void)
3152 {
3153         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3154                                 sizeof(struct shmem_inode_info),
3155                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3156         return 0;
3157 }
3158
3159 static void shmem_destroy_inodecache(void)
3160 {
3161         kmem_cache_destroy(shmem_inode_cachep);
3162 }
3163
3164 static const struct address_space_operations shmem_aops = {
3165         .writepage      = shmem_writepage,
3166         .set_page_dirty = __set_page_dirty_no_writeback,
3167 #ifdef CONFIG_TMPFS
3168         .write_begin    = shmem_write_begin,
3169         .write_end      = shmem_write_end,
3170 #endif
3171 #ifdef CONFIG_MIGRATION
3172         .migratepage    = migrate_page,
3173 #endif
3174         .error_remove_page = generic_error_remove_page,
3175 };
3176
3177 static const struct file_operations shmem_file_operations = {
3178         .mmap           = shmem_mmap,
3179 #ifdef CONFIG_TMPFS
3180         .llseek         = shmem_file_llseek,
3181         .read_iter      = shmem_file_read_iter,
3182         .write_iter     = generic_file_write_iter,
3183         .fsync          = noop_fsync,
3184         .splice_read    = shmem_file_splice_read,
3185         .splice_write   = iter_file_splice_write,
3186         .fallocate      = shmem_fallocate,
3187 #endif
3188 };
3189
3190 static const struct inode_operations shmem_inode_operations = {
3191         .getattr        = shmem_getattr,
3192         .setattr        = shmem_setattr,
3193 #ifdef CONFIG_TMPFS_XATTR
3194         .setxattr       = generic_setxattr,
3195         .getxattr       = generic_getxattr,
3196         .listxattr      = shmem_listxattr,
3197         .removexattr    = generic_removexattr,
3198         .set_acl        = simple_set_acl,
3199 #endif
3200 };
3201
3202 static const struct inode_operations shmem_dir_inode_operations = {
3203 #ifdef CONFIG_TMPFS
3204         .create         = shmem_create,
3205         .lookup         = simple_lookup,
3206         .link           = shmem_link,
3207         .unlink         = shmem_unlink,
3208         .symlink        = shmem_symlink,
3209         .mkdir          = shmem_mkdir,
3210         .rmdir          = shmem_rmdir,
3211         .mknod          = shmem_mknod,
3212         .rename2        = shmem_rename2,
3213         .tmpfile        = shmem_tmpfile,
3214 #endif
3215 #ifdef CONFIG_TMPFS_XATTR
3216         .setxattr       = generic_setxattr,
3217         .getxattr       = generic_getxattr,
3218         .listxattr      = shmem_listxattr,
3219         .removexattr    = generic_removexattr,
3220 #endif
3221 #ifdef CONFIG_TMPFS_POSIX_ACL
3222         .setattr        = shmem_setattr,
3223         .set_acl        = simple_set_acl,
3224 #endif
3225 };
3226
3227 static const struct inode_operations shmem_special_inode_operations = {
3228 #ifdef CONFIG_TMPFS_XATTR
3229         .setxattr       = generic_setxattr,
3230         .getxattr       = generic_getxattr,
3231         .listxattr      = shmem_listxattr,
3232         .removexattr    = generic_removexattr,
3233 #endif
3234 #ifdef CONFIG_TMPFS_POSIX_ACL
3235         .setattr        = shmem_setattr,
3236         .set_acl        = simple_set_acl,
3237 #endif
3238 };
3239
3240 static const struct super_operations shmem_ops = {
3241         .alloc_inode    = shmem_alloc_inode,
3242         .destroy_inode  = shmem_destroy_inode,
3243 #ifdef CONFIG_TMPFS
3244         .statfs         = shmem_statfs,
3245         .remount_fs     = shmem_remount_fs,
3246         .show_options   = shmem_show_options,
3247 #endif
3248         .evict_inode    = shmem_evict_inode,
3249         .drop_inode     = generic_delete_inode,
3250         .put_super      = shmem_put_super,
3251 };
3252
3253 static const struct vm_operations_struct shmem_vm_ops = {
3254         .fault          = shmem_fault,
3255         .map_pages      = filemap_map_pages,
3256 #ifdef CONFIG_NUMA
3257         .set_policy     = shmem_set_policy,
3258         .get_policy     = shmem_get_policy,
3259 #endif
3260 };
3261
3262 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3263         int flags, const char *dev_name, void *data)
3264 {
3265         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3266 }
3267
3268 static struct file_system_type shmem_fs_type = {
3269         .owner          = THIS_MODULE,
3270         .name           = "tmpfs",
3271         .mount          = shmem_mount,
3272         .kill_sb        = kill_litter_super,
3273         .fs_flags       = FS_USERNS_MOUNT,
3274 };
3275
3276 int __init shmem_init(void)
3277 {
3278         int error;
3279
3280         /* If rootfs called this, don't re-init */
3281         if (shmem_inode_cachep)
3282                 return 0;
3283
3284         error = shmem_init_inodecache();
3285         if (error)
3286                 goto out3;
3287
3288         error = register_filesystem(&shmem_fs_type);
3289         if (error) {
3290                 printk(KERN_ERR "Could not register tmpfs\n");
3291                 goto out2;
3292         }
3293
3294         shm_mnt = kern_mount(&shmem_fs_type);
3295         if (IS_ERR(shm_mnt)) {
3296                 error = PTR_ERR(shm_mnt);
3297                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3298                 goto out1;
3299         }
3300         return 0;
3301
3302 out1:
3303         unregister_filesystem(&shmem_fs_type);
3304 out2:
3305         shmem_destroy_inodecache();
3306 out3:
3307         shm_mnt = ERR_PTR(error);
3308         return error;
3309 }
3310
3311 #else /* !CONFIG_SHMEM */
3312
3313 /*
3314  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3315  *
3316  * This is intended for small system where the benefits of the full
3317  * shmem code (swap-backed and resource-limited) are outweighed by
3318  * their complexity. On systems without swap this code should be
3319  * effectively equivalent, but much lighter weight.
3320  */
3321
3322 static struct file_system_type shmem_fs_type = {
3323         .name           = "tmpfs",
3324         .mount          = ramfs_mount,
3325         .kill_sb        = kill_litter_super,
3326         .fs_flags       = FS_USERNS_MOUNT,
3327 };
3328
3329 int __init shmem_init(void)
3330 {
3331         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3332
3333         shm_mnt = kern_mount(&shmem_fs_type);
3334         BUG_ON(IS_ERR(shm_mnt));
3335
3336         return 0;
3337 }
3338
3339 int shmem_unuse(swp_entry_t swap, struct page *page)
3340 {
3341         return 0;
3342 }
3343
3344 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3345 {
3346         return 0;
3347 }
3348
3349 void shmem_unlock_mapping(struct address_space *mapping)
3350 {
3351 }
3352
3353 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3354 {
3355         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3356 }
3357 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3358
3359 #define shmem_vm_ops                            generic_file_vm_ops
3360 #define shmem_file_operations                   ramfs_file_operations
3361 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3362 #define shmem_acct_size(flags, size)            0
3363 #define shmem_unacct_size(flags, size)          do {} while (0)
3364
3365 #endif /* CONFIG_SHMEM */
3366
3367 /* common code */
3368
3369 static struct dentry_operations anon_ops = {
3370         .d_dname = simple_dname
3371 };
3372
3373 static struct file *__shmem_file_setup(const char *name, loff_t size,
3374                                        unsigned long flags, unsigned int i_flags)
3375 {
3376         struct file *res;
3377         struct inode *inode;
3378         struct path path;
3379         struct super_block *sb;
3380         struct qstr this;
3381
3382         if (IS_ERR(shm_mnt))
3383                 return ERR_CAST(shm_mnt);
3384
3385         if (size < 0 || size > MAX_LFS_FILESIZE)
3386                 return ERR_PTR(-EINVAL);
3387
3388         if (shmem_acct_size(flags, size))
3389                 return ERR_PTR(-ENOMEM);
3390
3391         res = ERR_PTR(-ENOMEM);
3392         this.name = name;
3393         this.len = strlen(name);
3394         this.hash = 0; /* will go */
3395         sb = shm_mnt->mnt_sb;
3396         path.mnt = mntget(shm_mnt);
3397         path.dentry = d_alloc_pseudo(sb, &this);
3398         if (!path.dentry)
3399                 goto put_memory;
3400         d_set_d_op(path.dentry, &anon_ops);
3401
3402         res = ERR_PTR(-ENOSPC);
3403         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3404         if (!inode)
3405                 goto put_memory;
3406
3407         inode->i_flags |= i_flags;
3408         d_instantiate(path.dentry, inode);
3409         inode->i_size = size;
3410         clear_nlink(inode);     /* It is unlinked */
3411         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3412         if (IS_ERR(res))
3413                 goto put_path;
3414
3415         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3416                   &shmem_file_operations);
3417         if (IS_ERR(res))
3418                 goto put_path;
3419
3420         return res;
3421
3422 put_memory:
3423         shmem_unacct_size(flags, size);
3424 put_path:
3425         path_put(&path);
3426         return res;
3427 }
3428
3429 /**
3430  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3431  *      kernel internal.  There will be NO LSM permission checks against the
3432  *      underlying inode.  So users of this interface must do LSM checks at a
3433  *      higher layer.  The users are the big_key and shm implementations.  LSM
3434  *      checks are provided at the key or shm level rather than the inode.
3435  * @name: name for dentry (to be seen in /proc/<pid>/maps
3436  * @size: size to be set for the file
3437  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3438  */
3439 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3440 {
3441         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3442 }
3443
3444 /**
3445  * shmem_file_setup - get an unlinked file living in tmpfs
3446  * @name: name for dentry (to be seen in /proc/<pid>/maps
3447  * @size: size to be set for the file
3448  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3449  */
3450 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3451 {
3452         return __shmem_file_setup(name, size, flags, 0);
3453 }
3454 EXPORT_SYMBOL_GPL(shmem_file_setup);
3455
3456 /**
3457  * shmem_zero_setup - setup a shared anonymous mapping
3458  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3459  */
3460 int shmem_zero_setup(struct vm_area_struct *vma)
3461 {
3462         struct file *file;
3463         loff_t size = vma->vm_end - vma->vm_start;
3464
3465         /*
3466          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3467          * between XFS directory reading and selinux: since this file is only
3468          * accessible to the user through its mapping, use S_PRIVATE flag to
3469          * bypass file security, in the same way as shmem_kernel_file_setup().
3470          */
3471         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3472         if (IS_ERR(file))
3473                 return PTR_ERR(file);
3474
3475         if (vma->vm_file)
3476                 fput(vma->vm_file);
3477         vma->vm_file = file;
3478         vma->vm_ops = &shmem_vm_ops;
3479         return 0;
3480 }
3481
3482 /**
3483  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3484  * @mapping:    the page's address_space
3485  * @index:      the page index
3486  * @gfp:        the page allocator flags to use if allocating
3487  *
3488  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3489  * with any new page allocations done using the specified allocation flags.
3490  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3491  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3492  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3493  *
3494  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3495  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3496  */
3497 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3498                                          pgoff_t index, gfp_t gfp)
3499 {
3500 #ifdef CONFIG_SHMEM
3501         struct inode *inode = mapping->host;
3502         struct page *page;
3503         int error;
3504
3505         BUG_ON(mapping->a_ops != &shmem_aops);
3506         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3507         if (error)
3508                 page = ERR_PTR(error);
3509         else
3510                 unlock_page(page);
3511         return page;
3512 #else
3513         /*
3514          * The tiny !SHMEM case uses ramfs without swap
3515          */
3516         return read_cache_page_gfp(mapping, index, gfp);
3517 #endif
3518 }
3519 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);