Merge branch 'work.dcache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114                       unsigned long start, unsigned long nr_pages,
115                       unsigned int foll_flags, struct page **pages,
116                       struct vm_area_struct **vmas, int *nonblocking)
117 {
118         struct vm_area_struct *vma;
119         unsigned long vm_flags;
120         int i;
121
122         /* calculate required read or write permissions.
123          * If FOLL_FORCE is set, we only require the "MAY" flags.
124          */
125         vm_flags  = (foll_flags & FOLL_WRITE) ?
126                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127         vm_flags &= (foll_flags & FOLL_FORCE) ?
128                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130         for (i = 0; i < nr_pages; i++) {
131                 vma = find_vma(mm, start);
132                 if (!vma)
133                         goto finish_or_fault;
134
135                 /* protect what we can, including chardevs */
136                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137                     !(vm_flags & vma->vm_flags))
138                         goto finish_or_fault;
139
140                 if (pages) {
141                         pages[i] = virt_to_page(start);
142                         if (pages[i])
143                                 get_page(pages[i]);
144                 }
145                 if (vmas)
146                         vmas[i] = vma;
147                 start = (start + PAGE_SIZE) & PAGE_MASK;
148         }
149
150         return i;
151
152 finish_or_fault:
153         return i ? : -EFAULT;
154 }
155
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164                     unsigned int gup_flags, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         return __get_user_pages(current, current->mm, start, nr_pages,
168                                 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173                             unsigned int gup_flags, struct page **pages,
174                             int *locked)
175 {
176         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181                         struct mm_struct *mm, unsigned long start,
182                         unsigned long nr_pages, struct page **pages,
183                         unsigned int gup_flags)
184 {
185         long ret;
186         down_read(&mm->mmap_sem);
187         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188                                 NULL, NULL);
189         up_read(&mm->mmap_sem);
190         return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194                              struct page **pages, unsigned int gup_flags)
195 {
196         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197                                          pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212         unsigned long *pfn)
213 {
214         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215                 return -EINVAL;
216
217         *pfn = address >> PAGE_SHIFT;
218         return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226         kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232         /*
233          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234          * returns only a logical address.
235          */
236         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242         return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247         void *ret;
248
249         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250         if (ret) {
251                 struct vm_area_struct *vma;
252
253                 down_write(&current->mm->mmap_sem);
254                 vma = find_vma(current->mm, (unsigned long)ret);
255                 if (vma)
256                         vma->vm_flags |= VM_USERMAP;
257                 up_write(&current->mm->mmap_sem);
258         }
259
260         return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266         return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272         return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278         /* Don't allow overflow */
279         if ((unsigned long) buf + count < count)
280                 count = -(unsigned long) buf;
281
282         memcpy(buf, addr, count);
283         return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288         /* Don't allow overflow */
289         if ((unsigned long) addr + count < count)
290                 count = -(unsigned long) addr;
291
292         memcpy(addr, buf, count);
293         return count;
294 }
295
296 /*
297  *      vmalloc  -  allocate virtually contiguous memory
298  *
299  *      @size:          allocation size
300  *
301  *      Allocate enough pages to cover @size from the page level
302  *      allocator and map them into contiguous kernel virtual space.
303  *
304  *      For tight control over page level allocator and protection flags
305  *      use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314  *      vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *      @size:          allocation size
317  *
318  *      Allocate enough pages to cover @size from the page level
319  *      allocator and map them into contiguous kernel virtual space.
320  *      The memory allocated is set to zero.
321  *
322  *      For tight control over page level allocator and protection flags
323  *      use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328                         PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:       allocation size
335  * @node:       numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345         return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:       allocation size
352  * @node:       numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363         return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370
371 /**
372  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *      @size:          allocation size
374  *
375  *      Kernel-internal function to allocate enough pages to cover @size
376  *      the page level allocator and map them into contiguous and
377  *      executable kernel virtual space.
378  *
379  *      For tight control over page level allocator and protection flags
380  *      use __vmalloc() instead.
381  */
382
383 void *vmalloc_exec(unsigned long size)
384 {
385         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *      @size:          allocation size
391  *
392  *      Allocate enough 32bit PA addressable pages to cover @size from the
393  *      page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *      @size:          allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413         /*
414          * We'll have to sort out the ZONE_DMA bits for 64-bit,
415          * but for now this can simply use vmalloc_user() directly.
416          */
417         return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423         BUG();
424         return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427
428 void vunmap(const void *addr)
429 {
430         BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436         BUG();
437         return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443         BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459
460 /**
461  *      alloc_vm_area - allocate a range of kernel address space
462  *      @size:          size of the area
463  *
464  *      Returns:        NULL on failure, vm_struct on success
465  *
466  *      This function reserves a range of kernel address space, and
467  *      allocates pagetables to map that range.  No actual mappings
468  *      are created.  If the kernel address space is not shared
469  *      between processes, it syncs the pagetable across all
470  *      processes.
471  */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474         BUG();
475         return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478
479 void free_vm_area(struct vm_struct *area)
480 {
481         BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486                    struct page *page)
487 {
488         return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491
492 /*
493  *  sys_brk() for the most part doesn't need the global kernel
494  *  lock, except when an application is doing something nasty
495  *  like trying to un-brk an area that has already been mapped
496  *  to a regular file.  in this case, the unmapping will need
497  *  to invoke file system routines that need the global lock.
498  */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501         struct mm_struct *mm = current->mm;
502
503         if (brk < mm->start_brk || brk > mm->context.end_brk)
504                 return mm->brk;
505
506         if (mm->brk == brk)
507                 return mm->brk;
508
509         /*
510          * Always allow shrinking brk
511          */
512         if (brk <= mm->brk) {
513                 mm->brk = brk;
514                 return brk;
515         }
516
517         /*
518          * Ok, looks good - let it rip.
519          */
520         flush_icache_range(mm->brk, brk);
521         return mm->brk = brk;
522 }
523
524 /*
525  * initialise the percpu counter for VM and region record slabs
526  */
527 void __init mmap_init(void)
528 {
529         int ret;
530
531         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
532         VM_BUG_ON(ret);
533         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
534 }
535
536 /*
537  * validate the region tree
538  * - the caller must hold the region lock
539  */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543         struct vm_region *region, *last;
544         struct rb_node *p, *lastp;
545
546         lastp = rb_first(&nommu_region_tree);
547         if (!lastp)
548                 return;
549
550         last = rb_entry(lastp, struct vm_region, vm_rb);
551         BUG_ON(last->vm_end <= last->vm_start);
552         BUG_ON(last->vm_top < last->vm_end);
553
554         while ((p = rb_next(lastp))) {
555                 region = rb_entry(p, struct vm_region, vm_rb);
556                 last = rb_entry(lastp, struct vm_region, vm_rb);
557
558                 BUG_ON(region->vm_end <= region->vm_start);
559                 BUG_ON(region->vm_top < region->vm_end);
560                 BUG_ON(region->vm_start < last->vm_top);
561
562                 lastp = p;
563         }
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570
571 /*
572  * add a region into the global tree
573  */
574 static void add_nommu_region(struct vm_region *region)
575 {
576         struct vm_region *pregion;
577         struct rb_node **p, *parent;
578
579         validate_nommu_regions();
580
581         parent = NULL;
582         p = &nommu_region_tree.rb_node;
583         while (*p) {
584                 parent = *p;
585                 pregion = rb_entry(parent, struct vm_region, vm_rb);
586                 if (region->vm_start < pregion->vm_start)
587                         p = &(*p)->rb_left;
588                 else if (region->vm_start > pregion->vm_start)
589                         p = &(*p)->rb_right;
590                 else if (pregion == region)
591                         return;
592                 else
593                         BUG();
594         }
595
596         rb_link_node(&region->vm_rb, parent, p);
597         rb_insert_color(&region->vm_rb, &nommu_region_tree);
598
599         validate_nommu_regions();
600 }
601
602 /*
603  * delete a region from the global tree
604  */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607         BUG_ON(!nommu_region_tree.rb_node);
608
609         validate_nommu_regions();
610         rb_erase(&region->vm_rb, &nommu_region_tree);
611         validate_nommu_regions();
612 }
613
614 /*
615  * free a contiguous series of pages
616  */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619         for (; from < to; from += PAGE_SIZE) {
620                 struct page *page = virt_to_page(from);
621
622                 atomic_long_dec(&mmap_pages_allocated);
623                 put_page(page);
624         }
625 }
626
627 /*
628  * release a reference to a region
629  * - the caller must hold the region semaphore for writing, which this releases
630  * - the region may not have been added to the tree yet, in which case vm_top
631  *   will equal vm_start
632  */
633 static void __put_nommu_region(struct vm_region *region)
634         __releases(nommu_region_sem)
635 {
636         BUG_ON(!nommu_region_tree.rb_node);
637
638         if (--region->vm_usage == 0) {
639                 if (region->vm_top > region->vm_start)
640                         delete_nommu_region(region);
641                 up_write(&nommu_region_sem);
642
643                 if (region->vm_file)
644                         fput(region->vm_file);
645
646                 /* IO memory and memory shared directly out of the pagecache
647                  * from ramfs/tmpfs mustn't be released here */
648                 if (region->vm_flags & VM_MAPPED_COPY)
649                         free_page_series(region->vm_start, region->vm_top);
650                 kmem_cache_free(vm_region_jar, region);
651         } else {
652                 up_write(&nommu_region_sem);
653         }
654 }
655
656 /*
657  * release a reference to a region
658  */
659 static void put_nommu_region(struct vm_region *region)
660 {
661         down_write(&nommu_region_sem);
662         __put_nommu_region(region);
663 }
664
665 /*
666  * add a VMA into a process's mm_struct in the appropriate place in the list
667  * and tree and add to the address space's page tree also if not an anonymous
668  * page
669  * - should be called with mm->mmap_sem held writelocked
670  */
671 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
672 {
673         struct vm_area_struct *pvma, *prev;
674         struct address_space *mapping;
675         struct rb_node **p, *parent, *rb_prev;
676
677         BUG_ON(!vma->vm_region);
678
679         mm->map_count++;
680         vma->vm_mm = mm;
681
682         /* add the VMA to the mapping */
683         if (vma->vm_file) {
684                 mapping = vma->vm_file->f_mapping;
685
686                 i_mmap_lock_write(mapping);
687                 flush_dcache_mmap_lock(mapping);
688                 vma_interval_tree_insert(vma, &mapping->i_mmap);
689                 flush_dcache_mmap_unlock(mapping);
690                 i_mmap_unlock_write(mapping);
691         }
692
693         /* add the VMA to the tree */
694         parent = rb_prev = NULL;
695         p = &mm->mm_rb.rb_node;
696         while (*p) {
697                 parent = *p;
698                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
699
700                 /* sort by: start addr, end addr, VMA struct addr in that order
701                  * (the latter is necessary as we may get identical VMAs) */
702                 if (vma->vm_start < pvma->vm_start)
703                         p = &(*p)->rb_left;
704                 else if (vma->vm_start > pvma->vm_start) {
705                         rb_prev = parent;
706                         p = &(*p)->rb_right;
707                 } else if (vma->vm_end < pvma->vm_end)
708                         p = &(*p)->rb_left;
709                 else if (vma->vm_end > pvma->vm_end) {
710                         rb_prev = parent;
711                         p = &(*p)->rb_right;
712                 } else if (vma < pvma)
713                         p = &(*p)->rb_left;
714                 else if (vma > pvma) {
715                         rb_prev = parent;
716                         p = &(*p)->rb_right;
717                 } else
718                         BUG();
719         }
720
721         rb_link_node(&vma->vm_rb, parent, p);
722         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
723
724         /* add VMA to the VMA list also */
725         prev = NULL;
726         if (rb_prev)
727                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
728
729         __vma_link_list(mm, vma, prev, parent);
730 }
731
732 /*
733  * delete a VMA from its owning mm_struct and address space
734  */
735 static void delete_vma_from_mm(struct vm_area_struct *vma)
736 {
737         int i;
738         struct address_space *mapping;
739         struct mm_struct *mm = vma->vm_mm;
740         struct task_struct *curr = current;
741
742         mm->map_count--;
743         for (i = 0; i < VMACACHE_SIZE; i++) {
744                 /* if the vma is cached, invalidate the entire cache */
745                 if (curr->vmacache.vmas[i] == vma) {
746                         vmacache_invalidate(mm);
747                         break;
748                 }
749         }
750
751         /* remove the VMA from the mapping */
752         if (vma->vm_file) {
753                 mapping = vma->vm_file->f_mapping;
754
755                 i_mmap_lock_write(mapping);
756                 flush_dcache_mmap_lock(mapping);
757                 vma_interval_tree_remove(vma, &mapping->i_mmap);
758                 flush_dcache_mmap_unlock(mapping);
759                 i_mmap_unlock_write(mapping);
760         }
761
762         /* remove from the MM's tree and list */
763         rb_erase(&vma->vm_rb, &mm->mm_rb);
764
765         if (vma->vm_prev)
766                 vma->vm_prev->vm_next = vma->vm_next;
767         else
768                 mm->mmap = vma->vm_next;
769
770         if (vma->vm_next)
771                 vma->vm_next->vm_prev = vma->vm_prev;
772 }
773
774 /*
775  * destroy a VMA record
776  */
777 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
778 {
779         if (vma->vm_ops && vma->vm_ops->close)
780                 vma->vm_ops->close(vma);
781         if (vma->vm_file)
782                 fput(vma->vm_file);
783         put_nommu_region(vma->vm_region);
784         kmem_cache_free(vm_area_cachep, vma);
785 }
786
787 /*
788  * look up the first VMA in which addr resides, NULL if none
789  * - should be called with mm->mmap_sem at least held readlocked
790  */
791 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
792 {
793         struct vm_area_struct *vma;
794
795         /* check the cache first */
796         vma = vmacache_find(mm, addr);
797         if (likely(vma))
798                 return vma;
799
800         /* trawl the list (there may be multiple mappings in which addr
801          * resides) */
802         for (vma = mm->mmap; vma; vma = vma->vm_next) {
803                 if (vma->vm_start > addr)
804                         return NULL;
805                 if (vma->vm_end > addr) {
806                         vmacache_update(addr, vma);
807                         return vma;
808                 }
809         }
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(find_vma);
814
815 /*
816  * find a VMA
817  * - we don't extend stack VMAs under NOMMU conditions
818  */
819 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
820 {
821         return find_vma(mm, addr);
822 }
823
824 /*
825  * expand a stack to a given address
826  * - not supported under NOMMU conditions
827  */
828 int expand_stack(struct vm_area_struct *vma, unsigned long address)
829 {
830         return -ENOMEM;
831 }
832
833 /*
834  * look up the first VMA exactly that exactly matches addr
835  * - should be called with mm->mmap_sem at least held readlocked
836  */
837 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
838                                              unsigned long addr,
839                                              unsigned long len)
840 {
841         struct vm_area_struct *vma;
842         unsigned long end = addr + len;
843
844         /* check the cache first */
845         vma = vmacache_find_exact(mm, addr, end);
846         if (vma)
847                 return vma;
848
849         /* trawl the list (there may be multiple mappings in which addr
850          * resides) */
851         for (vma = mm->mmap; vma; vma = vma->vm_next) {
852                 if (vma->vm_start < addr)
853                         continue;
854                 if (vma->vm_start > addr)
855                         return NULL;
856                 if (vma->vm_end == end) {
857                         vmacache_update(addr, vma);
858                         return vma;
859                 }
860         }
861
862         return NULL;
863 }
864
865 /*
866  * determine whether a mapping should be permitted and, if so, what sort of
867  * mapping we're capable of supporting
868  */
869 static int validate_mmap_request(struct file *file,
870                                  unsigned long addr,
871                                  unsigned long len,
872                                  unsigned long prot,
873                                  unsigned long flags,
874                                  unsigned long pgoff,
875                                  unsigned long *_capabilities)
876 {
877         unsigned long capabilities, rlen;
878         int ret;
879
880         /* do the simple checks first */
881         if (flags & MAP_FIXED)
882                 return -EINVAL;
883
884         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
885             (flags & MAP_TYPE) != MAP_SHARED)
886                 return -EINVAL;
887
888         if (!len)
889                 return -EINVAL;
890
891         /* Careful about overflows.. */
892         rlen = PAGE_ALIGN(len);
893         if (!rlen || rlen > TASK_SIZE)
894                 return -ENOMEM;
895
896         /* offset overflow? */
897         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
898                 return -EOVERFLOW;
899
900         if (file) {
901                 /* files must support mmap */
902                 if (!file->f_op->mmap)
903                         return -ENODEV;
904
905                 /* work out if what we've got could possibly be shared
906                  * - we support chardevs that provide their own "memory"
907                  * - we support files/blockdevs that are memory backed
908                  */
909                 if (file->f_op->mmap_capabilities) {
910                         capabilities = file->f_op->mmap_capabilities(file);
911                 } else {
912                         /* no explicit capabilities set, so assume some
913                          * defaults */
914                         switch (file_inode(file)->i_mode & S_IFMT) {
915                         case S_IFREG:
916                         case S_IFBLK:
917                                 capabilities = NOMMU_MAP_COPY;
918                                 break;
919
920                         case S_IFCHR:
921                                 capabilities =
922                                         NOMMU_MAP_DIRECT |
923                                         NOMMU_MAP_READ |
924                                         NOMMU_MAP_WRITE;
925                                 break;
926
927                         default:
928                                 return -EINVAL;
929                         }
930                 }
931
932                 /* eliminate any capabilities that we can't support on this
933                  * device */
934                 if (!file->f_op->get_unmapped_area)
935                         capabilities &= ~NOMMU_MAP_DIRECT;
936                 if (!(file->f_mode & FMODE_CAN_READ))
937                         capabilities &= ~NOMMU_MAP_COPY;
938
939                 /* The file shall have been opened with read permission. */
940                 if (!(file->f_mode & FMODE_READ))
941                         return -EACCES;
942
943                 if (flags & MAP_SHARED) {
944                         /* do checks for writing, appending and locking */
945                         if ((prot & PROT_WRITE) &&
946                             !(file->f_mode & FMODE_WRITE))
947                                 return -EACCES;
948
949                         if (IS_APPEND(file_inode(file)) &&
950                             (file->f_mode & FMODE_WRITE))
951                                 return -EACCES;
952
953                         if (locks_verify_locked(file))
954                                 return -EAGAIN;
955
956                         if (!(capabilities & NOMMU_MAP_DIRECT))
957                                 return -ENODEV;
958
959                         /* we mustn't privatise shared mappings */
960                         capabilities &= ~NOMMU_MAP_COPY;
961                 } else {
962                         /* we're going to read the file into private memory we
963                          * allocate */
964                         if (!(capabilities & NOMMU_MAP_COPY))
965                                 return -ENODEV;
966
967                         /* we don't permit a private writable mapping to be
968                          * shared with the backing device */
969                         if (prot & PROT_WRITE)
970                                 capabilities &= ~NOMMU_MAP_DIRECT;
971                 }
972
973                 if (capabilities & NOMMU_MAP_DIRECT) {
974                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
975                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
976                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
977                             ) {
978                                 capabilities &= ~NOMMU_MAP_DIRECT;
979                                 if (flags & MAP_SHARED) {
980                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
981                                         return -EINVAL;
982                                 }
983                         }
984                 }
985
986                 /* handle executable mappings and implied executable
987                  * mappings */
988                 if (path_noexec(&file->f_path)) {
989                         if (prot & PROT_EXEC)
990                                 return -EPERM;
991                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
992                         /* handle implication of PROT_EXEC by PROT_READ */
993                         if (current->personality & READ_IMPLIES_EXEC) {
994                                 if (capabilities & NOMMU_MAP_EXEC)
995                                         prot |= PROT_EXEC;
996                         }
997                 } else if ((prot & PROT_READ) &&
998                          (prot & PROT_EXEC) &&
999                          !(capabilities & NOMMU_MAP_EXEC)
1000                          ) {
1001                         /* backing file is not executable, try to copy */
1002                         capabilities &= ~NOMMU_MAP_DIRECT;
1003                 }
1004         } else {
1005                 /* anonymous mappings are always memory backed and can be
1006                  * privately mapped
1007                  */
1008                 capabilities = NOMMU_MAP_COPY;
1009
1010                 /* handle PROT_EXEC implication by PROT_READ */
1011                 if ((prot & PROT_READ) &&
1012                     (current->personality & READ_IMPLIES_EXEC))
1013                         prot |= PROT_EXEC;
1014         }
1015
1016         /* allow the security API to have its say */
1017         ret = security_mmap_addr(addr);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /* looks okay */
1022         *_capabilities = capabilities;
1023         return 0;
1024 }
1025
1026 /*
1027  * we've determined that we can make the mapping, now translate what we
1028  * now know into VMA flags
1029  */
1030 static unsigned long determine_vm_flags(struct file *file,
1031                                         unsigned long prot,
1032                                         unsigned long flags,
1033                                         unsigned long capabilities)
1034 {
1035         unsigned long vm_flags;
1036
1037         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1038         /* vm_flags |= mm->def_flags; */
1039
1040         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1041                 /* attempt to share read-only copies of mapped file chunks */
1042                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1043                 if (file && !(prot & PROT_WRITE))
1044                         vm_flags |= VM_MAYSHARE;
1045         } else {
1046                 /* overlay a shareable mapping on the backing device or inode
1047                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1048                  * romfs/cramfs */
1049                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1050                 if (flags & MAP_SHARED)
1051                         vm_flags |= VM_SHARED;
1052         }
1053
1054         /* refuse to let anyone share private mappings with this process if
1055          * it's being traced - otherwise breakpoints set in it may interfere
1056          * with another untraced process
1057          */
1058         if ((flags & MAP_PRIVATE) && current->ptrace)
1059                 vm_flags &= ~VM_MAYSHARE;
1060
1061         return vm_flags;
1062 }
1063
1064 /*
1065  * set up a shared mapping on a file (the driver or filesystem provides and
1066  * pins the storage)
1067  */
1068 static int do_mmap_shared_file(struct vm_area_struct *vma)
1069 {
1070         int ret;
1071
1072         ret = call_mmap(vma->vm_file, vma);
1073         if (ret == 0) {
1074                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1075                 return 0;
1076         }
1077         if (ret != -ENOSYS)
1078                 return ret;
1079
1080         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1081          * opposed to tried but failed) so we can only give a suitable error as
1082          * it's not possible to make a private copy if MAP_SHARED was given */
1083         return -ENODEV;
1084 }
1085
1086 /*
1087  * set up a private mapping or an anonymous shared mapping
1088  */
1089 static int do_mmap_private(struct vm_area_struct *vma,
1090                            struct vm_region *region,
1091                            unsigned long len,
1092                            unsigned long capabilities)
1093 {
1094         unsigned long total, point;
1095         void *base;
1096         int ret, order;
1097
1098         /* invoke the file's mapping function so that it can keep track of
1099          * shared mappings on devices or memory
1100          * - VM_MAYSHARE will be set if it may attempt to share
1101          */
1102         if (capabilities & NOMMU_MAP_DIRECT) {
1103                 ret = call_mmap(vma->vm_file, vma);
1104                 if (ret == 0) {
1105                         /* shouldn't return success if we're not sharing */
1106                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1107                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1108                         return 0;
1109                 }
1110                 if (ret != -ENOSYS)
1111                         return ret;
1112
1113                 /* getting an ENOSYS error indicates that direct mmap isn't
1114                  * possible (as opposed to tried but failed) so we'll try to
1115                  * make a private copy of the data and map that instead */
1116         }
1117
1118
1119         /* allocate some memory to hold the mapping
1120          * - note that this may not return a page-aligned address if the object
1121          *   we're allocating is smaller than a page
1122          */
1123         order = get_order(len);
1124         total = 1 << order;
1125         point = len >> PAGE_SHIFT;
1126
1127         /* we don't want to allocate a power-of-2 sized page set */
1128         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1129                 total = point;
1130
1131         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1132         if (!base)
1133                 goto enomem;
1134
1135         atomic_long_add(total, &mmap_pages_allocated);
1136
1137         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1138         region->vm_start = (unsigned long) base;
1139         region->vm_end   = region->vm_start + len;
1140         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1141
1142         vma->vm_start = region->vm_start;
1143         vma->vm_end   = region->vm_start + len;
1144
1145         if (vma->vm_file) {
1146                 /* read the contents of a file into the copy */
1147                 loff_t fpos;
1148
1149                 fpos = vma->vm_pgoff;
1150                 fpos <<= PAGE_SHIFT;
1151
1152                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1153                 if (ret < 0)
1154                         goto error_free;
1155
1156                 /* clear the last little bit */
1157                 if (ret < len)
1158                         memset(base + ret, 0, len - ret);
1159
1160         }
1161
1162         return 0;
1163
1164 error_free:
1165         free_page_series(region->vm_start, region->vm_top);
1166         region->vm_start = vma->vm_start = 0;
1167         region->vm_end   = vma->vm_end = 0;
1168         region->vm_top   = 0;
1169         return ret;
1170
1171 enomem:
1172         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173                len, current->pid, current->comm);
1174         show_free_areas(0, NULL);
1175         return -ENOMEM;
1176 }
1177
1178 /*
1179  * handle mapping creation for uClinux
1180  */
1181 unsigned long do_mmap(struct file *file,
1182                         unsigned long addr,
1183                         unsigned long len,
1184                         unsigned long prot,
1185                         unsigned long flags,
1186                         vm_flags_t vm_flags,
1187                         unsigned long pgoff,
1188                         unsigned long *populate,
1189                         struct list_head *uf)
1190 {
1191         struct vm_area_struct *vma;
1192         struct vm_region *region;
1193         struct rb_node *rb;
1194         unsigned long capabilities, result;
1195         int ret;
1196
1197         *populate = 0;
1198
1199         /* decide whether we should attempt the mapping, and if so what sort of
1200          * mapping */
1201         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202                                     &capabilities);
1203         if (ret < 0)
1204                 return ret;
1205
1206         /* we ignore the address hint */
1207         addr = 0;
1208         len = PAGE_ALIGN(len);
1209
1210         /* we've determined that we can make the mapping, now translate what we
1211          * now know into VMA flags */
1212         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213
1214         /* we're going to need to record the mapping */
1215         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216         if (!region)
1217                 goto error_getting_region;
1218
1219         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1220         if (!vma)
1221                 goto error_getting_vma;
1222
1223         region->vm_usage = 1;
1224         region->vm_flags = vm_flags;
1225         region->vm_pgoff = pgoff;
1226
1227         INIT_LIST_HEAD(&vma->anon_vma_chain);
1228         vma->vm_flags = vm_flags;
1229         vma->vm_pgoff = pgoff;
1230
1231         if (file) {
1232                 region->vm_file = get_file(file);
1233                 vma->vm_file = get_file(file);
1234         }
1235
1236         down_write(&nommu_region_sem);
1237
1238         /* if we want to share, we need to check for regions created by other
1239          * mmap() calls that overlap with our proposed mapping
1240          * - we can only share with a superset match on most regular files
1241          * - shared mappings on character devices and memory backed files are
1242          *   permitted to overlap inexactly as far as we are concerned for in
1243          *   these cases, sharing is handled in the driver or filesystem rather
1244          *   than here
1245          */
1246         if (vm_flags & VM_MAYSHARE) {
1247                 struct vm_region *pregion;
1248                 unsigned long pglen, rpglen, pgend, rpgend, start;
1249
1250                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251                 pgend = pgoff + pglen;
1252
1253                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1255
1256                         if (!(pregion->vm_flags & VM_MAYSHARE))
1257                                 continue;
1258
1259                         /* search for overlapping mappings on the same file */
1260                         if (file_inode(pregion->vm_file) !=
1261                             file_inode(file))
1262                                 continue;
1263
1264                         if (pregion->vm_pgoff >= pgend)
1265                                 continue;
1266
1267                         rpglen = pregion->vm_end - pregion->vm_start;
1268                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269                         rpgend = pregion->vm_pgoff + rpglen;
1270                         if (pgoff >= rpgend)
1271                                 continue;
1272
1273                         /* handle inexactly overlapping matches between
1274                          * mappings */
1275                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277                                 /* new mapping is not a subset of the region */
1278                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1279                                         goto sharing_violation;
1280                                 continue;
1281                         }
1282
1283                         /* we've found a region we can share */
1284                         pregion->vm_usage++;
1285                         vma->vm_region = pregion;
1286                         start = pregion->vm_start;
1287                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288                         vma->vm_start = start;
1289                         vma->vm_end = start + len;
1290
1291                         if (pregion->vm_flags & VM_MAPPED_COPY)
1292                                 vma->vm_flags |= VM_MAPPED_COPY;
1293                         else {
1294                                 ret = do_mmap_shared_file(vma);
1295                                 if (ret < 0) {
1296                                         vma->vm_region = NULL;
1297                                         vma->vm_start = 0;
1298                                         vma->vm_end = 0;
1299                                         pregion->vm_usage--;
1300                                         pregion = NULL;
1301                                         goto error_just_free;
1302                                 }
1303                         }
1304                         fput(region->vm_file);
1305                         kmem_cache_free(vm_region_jar, region);
1306                         region = pregion;
1307                         result = start;
1308                         goto share;
1309                 }
1310
1311                 /* obtain the address at which to make a shared mapping
1312                  * - this is the hook for quasi-memory character devices to
1313                  *   tell us the location of a shared mapping
1314                  */
1315                 if (capabilities & NOMMU_MAP_DIRECT) {
1316                         addr = file->f_op->get_unmapped_area(file, addr, len,
1317                                                              pgoff, flags);
1318                         if (IS_ERR_VALUE(addr)) {
1319                                 ret = addr;
1320                                 if (ret != -ENOSYS)
1321                                         goto error_just_free;
1322
1323                                 /* the driver refused to tell us where to site
1324                                  * the mapping so we'll have to attempt to copy
1325                                  * it */
1326                                 ret = -ENODEV;
1327                                 if (!(capabilities & NOMMU_MAP_COPY))
1328                                         goto error_just_free;
1329
1330                                 capabilities &= ~NOMMU_MAP_DIRECT;
1331                         } else {
1332                                 vma->vm_start = region->vm_start = addr;
1333                                 vma->vm_end = region->vm_end = addr + len;
1334                         }
1335                 }
1336         }
1337
1338         vma->vm_region = region;
1339
1340         /* set up the mapping
1341          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342          */
1343         if (file && vma->vm_flags & VM_SHARED)
1344                 ret = do_mmap_shared_file(vma);
1345         else
1346                 ret = do_mmap_private(vma, region, len, capabilities);
1347         if (ret < 0)
1348                 goto error_just_free;
1349         add_nommu_region(region);
1350
1351         /* clear anonymous mappings that don't ask for uninitialized data */
1352         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353                 memset((void *)region->vm_start, 0,
1354                        region->vm_end - region->vm_start);
1355
1356         /* okay... we have a mapping; now we have to register it */
1357         result = vma->vm_start;
1358
1359         current->mm->total_vm += len >> PAGE_SHIFT;
1360
1361 share:
1362         add_vma_to_mm(current->mm, vma);
1363
1364         /* we flush the region from the icache only when the first executable
1365          * mapping of it is made  */
1366         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367                 flush_icache_range(region->vm_start, region->vm_end);
1368                 region->vm_icache_flushed = true;
1369         }
1370
1371         up_write(&nommu_region_sem);
1372
1373         return result;
1374
1375 error_just_free:
1376         up_write(&nommu_region_sem);
1377 error:
1378         if (region->vm_file)
1379                 fput(region->vm_file);
1380         kmem_cache_free(vm_region_jar, region);
1381         if (vma->vm_file)
1382                 fput(vma->vm_file);
1383         kmem_cache_free(vm_area_cachep, vma);
1384         return ret;
1385
1386 sharing_violation:
1387         up_write(&nommu_region_sem);
1388         pr_warn("Attempt to share mismatched mappings\n");
1389         ret = -EINVAL;
1390         goto error;
1391
1392 error_getting_vma:
1393         kmem_cache_free(vm_region_jar, region);
1394         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395                         len, current->pid);
1396         show_free_areas(0, NULL);
1397         return -ENOMEM;
1398
1399 error_getting_region:
1400         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401                         len, current->pid);
1402         show_free_areas(0, NULL);
1403         return -ENOMEM;
1404 }
1405
1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407                               unsigned long prot, unsigned long flags,
1408                               unsigned long fd, unsigned long pgoff)
1409 {
1410         struct file *file = NULL;
1411         unsigned long retval = -EBADF;
1412
1413         audit_mmap_fd(fd, flags);
1414         if (!(flags & MAP_ANONYMOUS)) {
1415                 file = fget(fd);
1416                 if (!file)
1417                         goto out;
1418         }
1419
1420         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423
1424         if (file)
1425                 fput(file);
1426 out:
1427         return retval;
1428 }
1429
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431                 unsigned long, prot, unsigned long, flags,
1432                 unsigned long, fd, unsigned long, pgoff)
1433 {
1434         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435 }
1436
1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1438 struct mmap_arg_struct {
1439         unsigned long addr;
1440         unsigned long len;
1441         unsigned long prot;
1442         unsigned long flags;
1443         unsigned long fd;
1444         unsigned long offset;
1445 };
1446
1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448 {
1449         struct mmap_arg_struct a;
1450
1451         if (copy_from_user(&a, arg, sizeof(a)))
1452                 return -EFAULT;
1453         if (offset_in_page(a.offset))
1454                 return -EINVAL;
1455
1456         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457                                a.offset >> PAGE_SHIFT);
1458 }
1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460
1461 /*
1462  * split a vma into two pieces at address 'addr', a new vma is allocated either
1463  * for the first part or the tail.
1464  */
1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466               unsigned long addr, int new_below)
1467 {
1468         struct vm_area_struct *new;
1469         struct vm_region *region;
1470         unsigned long npages;
1471
1472         /* we're only permitted to split anonymous regions (these should have
1473          * only a single usage on the region) */
1474         if (vma->vm_file)
1475                 return -ENOMEM;
1476
1477         if (mm->map_count >= sysctl_max_map_count)
1478                 return -ENOMEM;
1479
1480         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481         if (!region)
1482                 return -ENOMEM;
1483
1484         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1485         if (!new) {
1486                 kmem_cache_free(vm_region_jar, region);
1487                 return -ENOMEM;
1488         }
1489
1490         /* most fields are the same, copy all, and then fixup */
1491         *new = *vma;
1492         *region = *vma->vm_region;
1493         new->vm_region = region;
1494
1495         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1496
1497         if (new_below) {
1498                 region->vm_top = region->vm_end = new->vm_end = addr;
1499         } else {
1500                 region->vm_start = new->vm_start = addr;
1501                 region->vm_pgoff = new->vm_pgoff += npages;
1502         }
1503
1504         if (new->vm_ops && new->vm_ops->open)
1505                 new->vm_ops->open(new);
1506
1507         delete_vma_from_mm(vma);
1508         down_write(&nommu_region_sem);
1509         delete_nommu_region(vma->vm_region);
1510         if (new_below) {
1511                 vma->vm_region->vm_start = vma->vm_start = addr;
1512                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1513         } else {
1514                 vma->vm_region->vm_end = vma->vm_end = addr;
1515                 vma->vm_region->vm_top = addr;
1516         }
1517         add_nommu_region(vma->vm_region);
1518         add_nommu_region(new->vm_region);
1519         up_write(&nommu_region_sem);
1520         add_vma_to_mm(mm, vma);
1521         add_vma_to_mm(mm, new);
1522         return 0;
1523 }
1524
1525 /*
1526  * shrink a VMA by removing the specified chunk from either the beginning or
1527  * the end
1528  */
1529 static int shrink_vma(struct mm_struct *mm,
1530                       struct vm_area_struct *vma,
1531                       unsigned long from, unsigned long to)
1532 {
1533         struct vm_region *region;
1534
1535         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1536          * and list */
1537         delete_vma_from_mm(vma);
1538         if (from > vma->vm_start)
1539                 vma->vm_end = from;
1540         else
1541                 vma->vm_start = to;
1542         add_vma_to_mm(mm, vma);
1543
1544         /* cut the backing region down to size */
1545         region = vma->vm_region;
1546         BUG_ON(region->vm_usage != 1);
1547
1548         down_write(&nommu_region_sem);
1549         delete_nommu_region(region);
1550         if (from > region->vm_start) {
1551                 to = region->vm_top;
1552                 region->vm_top = region->vm_end = from;
1553         } else {
1554                 region->vm_start = to;
1555         }
1556         add_nommu_region(region);
1557         up_write(&nommu_region_sem);
1558
1559         free_page_series(from, to);
1560         return 0;
1561 }
1562
1563 /*
1564  * release a mapping
1565  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1566  *   VMA, though it need not cover the whole VMA
1567  */
1568 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1569 {
1570         struct vm_area_struct *vma;
1571         unsigned long end;
1572         int ret;
1573
1574         len = PAGE_ALIGN(len);
1575         if (len == 0)
1576                 return -EINVAL;
1577
1578         end = start + len;
1579
1580         /* find the first potentially overlapping VMA */
1581         vma = find_vma(mm, start);
1582         if (!vma) {
1583                 static int limit;
1584                 if (limit < 5) {
1585                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1586                                         current->pid, current->comm,
1587                                         start, start + len - 1);
1588                         limit++;
1589                 }
1590                 return -EINVAL;
1591         }
1592
1593         /* we're allowed to split an anonymous VMA but not a file-backed one */
1594         if (vma->vm_file) {
1595                 do {
1596                         if (start > vma->vm_start)
1597                                 return -EINVAL;
1598                         if (end == vma->vm_end)
1599                                 goto erase_whole_vma;
1600                         vma = vma->vm_next;
1601                 } while (vma);
1602                 return -EINVAL;
1603         } else {
1604                 /* the chunk must be a subset of the VMA found */
1605                 if (start == vma->vm_start && end == vma->vm_end)
1606                         goto erase_whole_vma;
1607                 if (start < vma->vm_start || end > vma->vm_end)
1608                         return -EINVAL;
1609                 if (offset_in_page(start))
1610                         return -EINVAL;
1611                 if (end != vma->vm_end && offset_in_page(end))
1612                         return -EINVAL;
1613                 if (start != vma->vm_start && end != vma->vm_end) {
1614                         ret = split_vma(mm, vma, start, 1);
1615                         if (ret < 0)
1616                                 return ret;
1617                 }
1618                 return shrink_vma(mm, vma, start, end);
1619         }
1620
1621 erase_whole_vma:
1622         delete_vma_from_mm(vma);
1623         delete_vma(mm, vma);
1624         return 0;
1625 }
1626 EXPORT_SYMBOL(do_munmap);
1627
1628 int vm_munmap(unsigned long addr, size_t len)
1629 {
1630         struct mm_struct *mm = current->mm;
1631         int ret;
1632
1633         down_write(&mm->mmap_sem);
1634         ret = do_munmap(mm, addr, len, NULL);
1635         up_write(&mm->mmap_sem);
1636         return ret;
1637 }
1638 EXPORT_SYMBOL(vm_munmap);
1639
1640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1641 {
1642         return vm_munmap(addr, len);
1643 }
1644
1645 /*
1646  * release all the mappings made in a process's VM space
1647  */
1648 void exit_mmap(struct mm_struct *mm)
1649 {
1650         struct vm_area_struct *vma;
1651
1652         if (!mm)
1653                 return;
1654
1655         mm->total_vm = 0;
1656
1657         while ((vma = mm->mmap)) {
1658                 mm->mmap = vma->vm_next;
1659                 delete_vma_from_mm(vma);
1660                 delete_vma(mm, vma);
1661                 cond_resched();
1662         }
1663 }
1664
1665 int vm_brk(unsigned long addr, unsigned long len)
1666 {
1667         return -ENOMEM;
1668 }
1669
1670 /*
1671  * expand (or shrink) an existing mapping, potentially moving it at the same
1672  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1673  *
1674  * under NOMMU conditions, we only permit changing a mapping's size, and only
1675  * as long as it stays within the region allocated by do_mmap_private() and the
1676  * block is not shareable
1677  *
1678  * MREMAP_FIXED is not supported under NOMMU conditions
1679  */
1680 static unsigned long do_mremap(unsigned long addr,
1681                         unsigned long old_len, unsigned long new_len,
1682                         unsigned long flags, unsigned long new_addr)
1683 {
1684         struct vm_area_struct *vma;
1685
1686         /* insanity checks first */
1687         old_len = PAGE_ALIGN(old_len);
1688         new_len = PAGE_ALIGN(new_len);
1689         if (old_len == 0 || new_len == 0)
1690                 return (unsigned long) -EINVAL;
1691
1692         if (offset_in_page(addr))
1693                 return -EINVAL;
1694
1695         if (flags & MREMAP_FIXED && new_addr != addr)
1696                 return (unsigned long) -EINVAL;
1697
1698         vma = find_vma_exact(current->mm, addr, old_len);
1699         if (!vma)
1700                 return (unsigned long) -EINVAL;
1701
1702         if (vma->vm_end != vma->vm_start + old_len)
1703                 return (unsigned long) -EFAULT;
1704
1705         if (vma->vm_flags & VM_MAYSHARE)
1706                 return (unsigned long) -EPERM;
1707
1708         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1709                 return (unsigned long) -ENOMEM;
1710
1711         /* all checks complete - do it */
1712         vma->vm_end = vma->vm_start + new_len;
1713         return vma->vm_start;
1714 }
1715
1716 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1717                 unsigned long, new_len, unsigned long, flags,
1718                 unsigned long, new_addr)
1719 {
1720         unsigned long ret;
1721
1722         down_write(&current->mm->mmap_sem);
1723         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1724         up_write(&current->mm->mmap_sem);
1725         return ret;
1726 }
1727
1728 struct page *follow_page_mask(struct vm_area_struct *vma,
1729                               unsigned long address, unsigned int flags,
1730                               unsigned int *page_mask)
1731 {
1732         *page_mask = 0;
1733         return NULL;
1734 }
1735
1736 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1737                 unsigned long pfn, unsigned long size, pgprot_t prot)
1738 {
1739         if (addr != (pfn << PAGE_SHIFT))
1740                 return -EINVAL;
1741
1742         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1743         return 0;
1744 }
1745 EXPORT_SYMBOL(remap_pfn_range);
1746
1747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1748 {
1749         unsigned long pfn = start >> PAGE_SHIFT;
1750         unsigned long vm_len = vma->vm_end - vma->vm_start;
1751
1752         pfn += vma->vm_pgoff;
1753         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1754 }
1755 EXPORT_SYMBOL(vm_iomap_memory);
1756
1757 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1758                         unsigned long pgoff)
1759 {
1760         unsigned int size = vma->vm_end - vma->vm_start;
1761
1762         if (!(vma->vm_flags & VM_USERMAP))
1763                 return -EINVAL;
1764
1765         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1766         vma->vm_end = vma->vm_start + size;
1767
1768         return 0;
1769 }
1770 EXPORT_SYMBOL(remap_vmalloc_range);
1771
1772 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1773         unsigned long len, unsigned long pgoff, unsigned long flags)
1774 {
1775         return -ENOMEM;
1776 }
1777
1778 int filemap_fault(struct vm_fault *vmf)
1779 {
1780         BUG();
1781         return 0;
1782 }
1783 EXPORT_SYMBOL(filemap_fault);
1784
1785 void filemap_map_pages(struct vm_fault *vmf,
1786                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1787 {
1788         BUG();
1789 }
1790 EXPORT_SYMBOL(filemap_map_pages);
1791
1792 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1793                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1794 {
1795         struct vm_area_struct *vma;
1796         int write = gup_flags & FOLL_WRITE;
1797
1798         down_read(&mm->mmap_sem);
1799
1800         /* the access must start within one of the target process's mappings */
1801         vma = find_vma(mm, addr);
1802         if (vma) {
1803                 /* don't overrun this mapping */
1804                 if (addr + len >= vma->vm_end)
1805                         len = vma->vm_end - addr;
1806
1807                 /* only read or write mappings where it is permitted */
1808                 if (write && vma->vm_flags & VM_MAYWRITE)
1809                         copy_to_user_page(vma, NULL, addr,
1810                                          (void *) addr, buf, len);
1811                 else if (!write && vma->vm_flags & VM_MAYREAD)
1812                         copy_from_user_page(vma, NULL, addr,
1813                                             buf, (void *) addr, len);
1814                 else
1815                         len = 0;
1816         } else {
1817                 len = 0;
1818         }
1819
1820         up_read(&mm->mmap_sem);
1821
1822         return len;
1823 }
1824
1825 /**
1826  * access_remote_vm - access another process' address space
1827  * @mm:         the mm_struct of the target address space
1828  * @addr:       start address to access
1829  * @buf:        source or destination buffer
1830  * @len:        number of bytes to transfer
1831  * @gup_flags:  flags modifying lookup behaviour
1832  *
1833  * The caller must hold a reference on @mm.
1834  */
1835 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1836                 void *buf, int len, unsigned int gup_flags)
1837 {
1838         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1839 }
1840
1841 /*
1842  * Access another process' address space.
1843  * - source/target buffer must be kernel space
1844  */
1845 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1846                 unsigned int gup_flags)
1847 {
1848         struct mm_struct *mm;
1849
1850         if (addr + len < addr)
1851                 return 0;
1852
1853         mm = get_task_mm(tsk);
1854         if (!mm)
1855                 return 0;
1856
1857         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1858
1859         mmput(mm);
1860         return len;
1861 }
1862 EXPORT_SYMBOL_GPL(access_process_vm);
1863
1864 /**
1865  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1866  * @inode: The inode to check
1867  * @size: The current filesize of the inode
1868  * @newsize: The proposed filesize of the inode
1869  *
1870  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1871  * make sure that that any outstanding VMAs aren't broken and then shrink the
1872  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1873  * automatically grant mappings that are too large.
1874  */
1875 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1876                                 size_t newsize)
1877 {
1878         struct vm_area_struct *vma;
1879         struct vm_region *region;
1880         pgoff_t low, high;
1881         size_t r_size, r_top;
1882
1883         low = newsize >> PAGE_SHIFT;
1884         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1885
1886         down_write(&nommu_region_sem);
1887         i_mmap_lock_read(inode->i_mapping);
1888
1889         /* search for VMAs that fall within the dead zone */
1890         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1891                 /* found one - only interested if it's shared out of the page
1892                  * cache */
1893                 if (vma->vm_flags & VM_SHARED) {
1894                         i_mmap_unlock_read(inode->i_mapping);
1895                         up_write(&nommu_region_sem);
1896                         return -ETXTBSY; /* not quite true, but near enough */
1897                 }
1898         }
1899
1900         /* reduce any regions that overlap the dead zone - if in existence,
1901          * these will be pointed to by VMAs that don't overlap the dead zone
1902          *
1903          * we don't check for any regions that start beyond the EOF as there
1904          * shouldn't be any
1905          */
1906         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1907                 if (!(vma->vm_flags & VM_SHARED))
1908                         continue;
1909
1910                 region = vma->vm_region;
1911                 r_size = region->vm_top - region->vm_start;
1912                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1913
1914                 if (r_top > newsize) {
1915                         region->vm_top -= r_top - newsize;
1916                         if (region->vm_end > region->vm_top)
1917                                 region->vm_end = region->vm_top;
1918                 }
1919         }
1920
1921         i_mmap_unlock_read(inode->i_mapping);
1922         up_write(&nommu_region_sem);
1923         return 0;
1924 }
1925
1926 /*
1927  * Initialise sysctl_user_reserve_kbytes.
1928  *
1929  * This is intended to prevent a user from starting a single memory hogging
1930  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1931  * mode.
1932  *
1933  * The default value is min(3% of free memory, 128MB)
1934  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1935  */
1936 static int __meminit init_user_reserve(void)
1937 {
1938         unsigned long free_kbytes;
1939
1940         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1941
1942         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1943         return 0;
1944 }
1945 subsys_initcall(init_user_reserve);
1946
1947 /*
1948  * Initialise sysctl_admin_reserve_kbytes.
1949  *
1950  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1951  * to log in and kill a memory hogging process.
1952  *
1953  * Systems with more than 256MB will reserve 8MB, enough to recover
1954  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1955  * only reserve 3% of free pages by default.
1956  */
1957 static int __meminit init_admin_reserve(void)
1958 {
1959         unsigned long free_kbytes;
1960
1961         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962
1963         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1964         return 0;
1965 }
1966 subsys_initcall(init_admin_reserve);