mm: lock a vma before stack expansion
[sfrench/cifs-2.6.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158                         unsigned long start, unsigned long end, gfp_t gfp)
159 {
160         vmi->mas.index = start;
161         vmi->mas.last = end - 1;
162         mas_store_gfp(&vmi->mas, NULL, gfp);
163         if (unlikely(mas_is_err(&vmi->mas)))
164                 return -ENOMEM;
165
166         return 0;
167 }
168
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179         unsigned long mapped_addr;
180
181         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182         if (IS_ERR_VALUE(mapped_addr))
183                 return mapped_addr;
184
185         return mlock_future_ok(current->mm, current->mm->def_flags, len)
186                 ? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189                 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long newbrk, oldbrk, origbrk;
193         struct mm_struct *mm = current->mm;
194         struct vm_area_struct *brkvma, *next = NULL;
195         unsigned long min_brk;
196         bool populate = false;
197         LIST_HEAD(uf);
198         struct vma_iterator vmi;
199
200         if (mmap_write_lock_killable(mm))
201                 return -EINTR;
202
203         origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206         /*
207          * CONFIG_COMPAT_BRK can still be overridden by setting
208          * randomize_va_space to 2, which will still cause mm->start_brk
209          * to be arbitrarily shifted
210          */
211         if (current->brk_randomized)
212                 min_brk = mm->start_brk;
213         else
214                 min_brk = mm->end_data;
215 #else
216         min_brk = mm->start_brk;
217 #endif
218         if (brk < min_brk)
219                 goto out;
220
221         /*
222          * Check against rlimit here. If this check is done later after the test
223          * of oldbrk with newbrk then it can escape the test and let the data
224          * segment grow beyond its set limit the in case where the limit is
225          * not page aligned -Ram Gupta
226          */
227         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228                               mm->end_data, mm->start_data))
229                 goto out;
230
231         newbrk = PAGE_ALIGN(brk);
232         oldbrk = PAGE_ALIGN(mm->brk);
233         if (oldbrk == newbrk) {
234                 mm->brk = brk;
235                 goto success;
236         }
237
238         /* Always allow shrinking brk. */
239         if (brk <= mm->brk) {
240                 /* Search one past newbrk */
241                 vma_iter_init(&vmi, mm, newbrk);
242                 brkvma = vma_find(&vmi, oldbrk);
243                 if (!brkvma || brkvma->vm_start >= oldbrk)
244                         goto out; /* mapping intersects with an existing non-brk vma. */
245                 /*
246                  * mm->brk must be protected by write mmap_lock.
247                  * do_vma_munmap() will drop the lock on success,  so update it
248                  * before calling do_vma_munmap().
249                  */
250                 mm->brk = brk;
251                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
252                         goto out;
253
254                 goto success_unlocked;
255         }
256
257         if (check_brk_limits(oldbrk, newbrk - oldbrk))
258                 goto out;
259
260         /*
261          * Only check if the next VMA is within the stack_guard_gap of the
262          * expansion area
263          */
264         vma_iter_init(&vmi, mm, oldbrk);
265         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267                 goto out;
268
269         brkvma = vma_prev_limit(&vmi, mm->start_brk);
270         /* Ok, looks good - let it rip. */
271         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
272                 goto out;
273
274         mm->brk = brk;
275         if (mm->def_flags & VM_LOCKED)
276                 populate = true;
277
278 success:
279         mmap_write_unlock(mm);
280 success_unlocked:
281         userfaultfd_unmap_complete(mm, &uf);
282         if (populate)
283                 mm_populate(oldbrk, newbrk - oldbrk);
284         return brk;
285
286 out:
287         mm->brk = origbrk;
288         mmap_write_unlock(mm);
289         return origbrk;
290 }
291
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
294 {
295         int bug = 0;
296         int i = 0;
297         struct vm_area_struct *vma;
298         VMA_ITERATOR(vmi, mm, 0);
299
300         mt_validate(&mm->mm_mt);
301         for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303                 struct anon_vma *anon_vma = vma->anon_vma;
304                 struct anon_vma_chain *avc;
305 #endif
306                 unsigned long vmi_start, vmi_end;
307                 bool warn = 0;
308
309                 vmi_start = vma_iter_addr(&vmi);
310                 vmi_end = vma_iter_end(&vmi);
311                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
312                         warn = 1;
313
314                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
315                         warn = 1;
316
317                 if (warn) {
318                         pr_emerg("issue in %s\n", current->comm);
319                         dump_stack();
320                         dump_vma(vma);
321                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
322                                  vmi_start, vmi_end - 1);
323                         vma_iter_dump_tree(&vmi);
324                 }
325
326 #ifdef CONFIG_DEBUG_VM_RB
327                 if (anon_vma) {
328                         anon_vma_lock_read(anon_vma);
329                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330                                 anon_vma_interval_tree_verify(avc);
331                         anon_vma_unlock_read(anon_vma);
332                 }
333 #endif
334                 i++;
335         }
336         if (i != mm->map_count) {
337                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
338                 bug = 1;
339         }
340         VM_BUG_ON_MM(bug, mm);
341 }
342
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
346
347 /*
348  * vma has some anon_vma assigned, and is already inserted on that
349  * anon_vma's interval trees.
350  *
351  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352  * vma must be removed from the anon_vma's interval trees using
353  * anon_vma_interval_tree_pre_update_vma().
354  *
355  * After the update, the vma will be reinserted using
356  * anon_vma_interval_tree_post_update_vma().
357  *
358  * The entire update must be protected by exclusive mmap_lock and by
359  * the root anon_vma's mutex.
360  */
361 static inline void
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
363 {
364         struct anon_vma_chain *avc;
365
366         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
368 }
369
370 static inline void
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
372 {
373         struct anon_vma_chain *avc;
374
375         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
377 }
378
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380                 unsigned long addr, unsigned long end)
381 {
382         VMA_ITERATOR(vmi, mm, addr);
383         struct vm_area_struct *vma;
384         unsigned long nr_pages = 0;
385
386         for_each_vma_range(vmi, vma, end) {
387                 unsigned long vm_start = max(addr, vma->vm_start);
388                 unsigned long vm_end = min(end, vma->vm_end);
389
390                 nr_pages += PHYS_PFN(vm_end - vm_start);
391         }
392
393         return nr_pages;
394 }
395
396 static void __vma_link_file(struct vm_area_struct *vma,
397                             struct address_space *mapping)
398 {
399         if (vma->vm_flags & VM_SHARED)
400                 mapping_allow_writable(mapping);
401
402         flush_dcache_mmap_lock(mapping);
403         vma_interval_tree_insert(vma, &mapping->i_mmap);
404         flush_dcache_mmap_unlock(mapping);
405 }
406
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
408 {
409         VMA_ITERATOR(vmi, mm, 0);
410         struct address_space *mapping = NULL;
411
412         if (vma_iter_prealloc(&vmi))
413                 return -ENOMEM;
414
415         if (vma->vm_file) {
416                 mapping = vma->vm_file->f_mapping;
417                 i_mmap_lock_write(mapping);
418         }
419
420         vma_iter_store(&vmi, vma);
421
422         if (mapping) {
423                 __vma_link_file(vma, mapping);
424                 i_mmap_unlock_write(mapping);
425         }
426
427         mm->map_count++;
428         validate_mm(mm);
429         return 0;
430 }
431
432 /*
433  * init_multi_vma_prep() - Initializer for struct vma_prepare
434  * @vp: The vma_prepare struct
435  * @vma: The vma that will be altered once locked
436  * @next: The next vma if it is to be adjusted
437  * @remove: The first vma to be removed
438  * @remove2: The second vma to be removed
439  */
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441                 struct vm_area_struct *vma, struct vm_area_struct *next,
442                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
443 {
444         memset(vp, 0, sizeof(struct vma_prepare));
445         vp->vma = vma;
446         vp->anon_vma = vma->anon_vma;
447         vp->remove = remove;
448         vp->remove2 = remove2;
449         vp->adj_next = next;
450         if (!vp->anon_vma && next)
451                 vp->anon_vma = next->anon_vma;
452
453         vp->file = vma->vm_file;
454         if (vp->file)
455                 vp->mapping = vma->vm_file->f_mapping;
456
457 }
458
459 /*
460  * init_vma_prep() - Initializer wrapper for vma_prepare struct
461  * @vp: The vma_prepare struct
462  * @vma: The vma that will be altered once locked
463  */
464 static inline void init_vma_prep(struct vma_prepare *vp,
465                                  struct vm_area_struct *vma)
466 {
467         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
468 }
469
470
471 /*
472  * vma_prepare() - Helper function for handling locking VMAs prior to altering
473  * @vp: The initialized vma_prepare struct
474  */
475 static inline void vma_prepare(struct vma_prepare *vp)
476 {
477         vma_start_write(vp->vma);
478         if (vp->adj_next)
479                 vma_start_write(vp->adj_next);
480         /* vp->insert is always a newly created VMA, no need for locking */
481         if (vp->remove)
482                 vma_start_write(vp->remove);
483         if (vp->remove2)
484                 vma_start_write(vp->remove2);
485
486         if (vp->file) {
487                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
488
489                 if (vp->adj_next)
490                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491                                       vp->adj_next->vm_end);
492
493                 i_mmap_lock_write(vp->mapping);
494                 if (vp->insert && vp->insert->vm_file) {
495                         /*
496                          * Put into interval tree now, so instantiated pages
497                          * are visible to arm/parisc __flush_dcache_page
498                          * throughout; but we cannot insert into address
499                          * space until vma start or end is updated.
500                          */
501                         __vma_link_file(vp->insert,
502                                         vp->insert->vm_file->f_mapping);
503                 }
504         }
505
506         if (vp->anon_vma) {
507                 anon_vma_lock_write(vp->anon_vma);
508                 anon_vma_interval_tree_pre_update_vma(vp->vma);
509                 if (vp->adj_next)
510                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
511         }
512
513         if (vp->file) {
514                 flush_dcache_mmap_lock(vp->mapping);
515                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
516                 if (vp->adj_next)
517                         vma_interval_tree_remove(vp->adj_next,
518                                                  &vp->mapping->i_mmap);
519         }
520
521 }
522
523 /*
524  * vma_complete- Helper function for handling the unlocking after altering VMAs,
525  * or for inserting a VMA.
526  *
527  * @vp: The vma_prepare struct
528  * @vmi: The vma iterator
529  * @mm: The mm_struct
530  */
531 static inline void vma_complete(struct vma_prepare *vp,
532                                 struct vma_iterator *vmi, struct mm_struct *mm)
533 {
534         if (vp->file) {
535                 if (vp->adj_next)
536                         vma_interval_tree_insert(vp->adj_next,
537                                                  &vp->mapping->i_mmap);
538                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539                 flush_dcache_mmap_unlock(vp->mapping);
540         }
541
542         if (vp->remove && vp->file) {
543                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
544                 if (vp->remove2)
545                         __remove_shared_vm_struct(vp->remove2, vp->file,
546                                                   vp->mapping);
547         } else if (vp->insert) {
548                 /*
549                  * split_vma has split insert from vma, and needs
550                  * us to insert it before dropping the locks
551                  * (it may either follow vma or precede it).
552                  */
553                 vma_iter_store(vmi, vp->insert);
554                 mm->map_count++;
555         }
556
557         if (vp->anon_vma) {
558                 anon_vma_interval_tree_post_update_vma(vp->vma);
559                 if (vp->adj_next)
560                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
561                 anon_vma_unlock_write(vp->anon_vma);
562         }
563
564         if (vp->file) {
565                 i_mmap_unlock_write(vp->mapping);
566                 uprobe_mmap(vp->vma);
567
568                 if (vp->adj_next)
569                         uprobe_mmap(vp->adj_next);
570         }
571
572         if (vp->remove) {
573 again:
574                 vma_mark_detached(vp->remove, true);
575                 if (vp->file) {
576                         uprobe_munmap(vp->remove, vp->remove->vm_start,
577                                       vp->remove->vm_end);
578                         fput(vp->file);
579                 }
580                 if (vp->remove->anon_vma)
581                         anon_vma_merge(vp->vma, vp->remove);
582                 mm->map_count--;
583                 mpol_put(vma_policy(vp->remove));
584                 if (!vp->remove2)
585                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586                 vm_area_free(vp->remove);
587
588                 /*
589                  * In mprotect's case 6 (see comments on vma_merge),
590                  * we are removing both mid and next vmas
591                  */
592                 if (vp->remove2) {
593                         vp->remove = vp->remove2;
594                         vp->remove2 = NULL;
595                         goto again;
596                 }
597         }
598         if (vp->insert && vp->file)
599                 uprobe_mmap(vp->insert);
600 }
601
602 /*
603  * dup_anon_vma() - Helper function to duplicate anon_vma
604  * @dst: The destination VMA
605  * @src: The source VMA
606  *
607  * Returns: 0 on success.
608  */
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610                                struct vm_area_struct *src)
611 {
612         /*
613          * Easily overlooked: when mprotect shifts the boundary, make sure the
614          * expanding vma has anon_vma set if the shrinking vma had, to cover any
615          * anon pages imported.
616          */
617         if (src->anon_vma && !dst->anon_vma) {
618                 dst->anon_vma = src->anon_vma;
619                 return anon_vma_clone(dst, src);
620         }
621
622         return 0;
623 }
624
625 /*
626  * vma_expand - Expand an existing VMA
627  *
628  * @vmi: The vma iterator
629  * @vma: The vma to expand
630  * @start: The start of the vma
631  * @end: The exclusive end of the vma
632  * @pgoff: The page offset of vma
633  * @next: The current of next vma.
634  *
635  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
636  * expand over @next if it's different from @vma and @end == @next->vm_end.
637  * Checking if the @vma can expand and merge with @next needs to be handled by
638  * the caller.
639  *
640  * Returns: 0 on success
641  */
642 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
643                unsigned long start, unsigned long end, pgoff_t pgoff,
644                struct vm_area_struct *next)
645 {
646         bool remove_next = false;
647         struct vma_prepare vp;
648
649         if (next && (vma != next) && (end == next->vm_end)) {
650                 int ret;
651
652                 remove_next = true;
653                 ret = dup_anon_vma(vma, next);
654                 if (ret)
655                         return ret;
656         }
657
658         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
659         /* Not merging but overwriting any part of next is not handled. */
660         VM_WARN_ON(next && !vp.remove &&
661                   next != vma && end > next->vm_start);
662         /* Only handles expanding */
663         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
664
665         if (vma_iter_prealloc(vmi))
666                 goto nomem;
667
668         vma_prepare(&vp);
669         vma_adjust_trans_huge(vma, start, end, 0);
670         /* VMA iterator points to previous, so set to start if necessary */
671         if (vma_iter_addr(vmi) != start)
672                 vma_iter_set(vmi, start);
673
674         vma->vm_start = start;
675         vma->vm_end = end;
676         vma->vm_pgoff = pgoff;
677         /* Note: mas must be pointing to the expanding VMA */
678         vma_iter_store(vmi, vma);
679
680         vma_complete(&vp, vmi, vma->vm_mm);
681         validate_mm(vma->vm_mm);
682         return 0;
683
684 nomem:
685         return -ENOMEM;
686 }
687
688 /*
689  * vma_shrink() - Reduce an existing VMAs memory area
690  * @vmi: The vma iterator
691  * @vma: The VMA to modify
692  * @start: The new start
693  * @end: The new end
694  *
695  * Returns: 0 on success, -ENOMEM otherwise
696  */
697 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
698                unsigned long start, unsigned long end, pgoff_t pgoff)
699 {
700         struct vma_prepare vp;
701
702         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
703
704         if (vma_iter_prealloc(vmi))
705                 return -ENOMEM;
706
707         init_vma_prep(&vp, vma);
708         vma_prepare(&vp);
709         vma_adjust_trans_huge(vma, start, end, 0);
710
711         if (vma->vm_start < start)
712                 vma_iter_clear(vmi, vma->vm_start, start);
713
714         if (vma->vm_end > end)
715                 vma_iter_clear(vmi, end, vma->vm_end);
716
717         vma->vm_start = start;
718         vma->vm_end = end;
719         vma->vm_pgoff = pgoff;
720         vma_complete(&vp, vmi, vma->vm_mm);
721         validate_mm(vma->vm_mm);
722         return 0;
723 }
724
725 /*
726  * If the vma has a ->close operation then the driver probably needs to release
727  * per-vma resources, so we don't attempt to merge those if the caller indicates
728  * the current vma may be removed as part of the merge.
729  */
730 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
731                 struct file *file, unsigned long vm_flags,
732                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
733                 struct anon_vma_name *anon_name, bool may_remove_vma)
734 {
735         /*
736          * VM_SOFTDIRTY should not prevent from VMA merging, if we
737          * match the flags but dirty bit -- the caller should mark
738          * merged VMA as dirty. If dirty bit won't be excluded from
739          * comparison, we increase pressure on the memory system forcing
740          * the kernel to generate new VMAs when old one could be
741          * extended instead.
742          */
743         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
744                 return false;
745         if (vma->vm_file != file)
746                 return false;
747         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
748                 return false;
749         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
750                 return false;
751         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
752                 return false;
753         return true;
754 }
755
756 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
757                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
758 {
759         /*
760          * The list_is_singular() test is to avoid merging VMA cloned from
761          * parents. This can improve scalability caused by anon_vma lock.
762          */
763         if ((!anon_vma1 || !anon_vma2) && (!vma ||
764                 list_is_singular(&vma->anon_vma_chain)))
765                 return true;
766         return anon_vma1 == anon_vma2;
767 }
768
769 /*
770  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
771  * in front of (at a lower virtual address and file offset than) the vma.
772  *
773  * We cannot merge two vmas if they have differently assigned (non-NULL)
774  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
775  *
776  * We don't check here for the merged mmap wrapping around the end of pagecache
777  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
778  * wrap, nor mmaps which cover the final page at index -1UL.
779  *
780  * We assume the vma may be removed as part of the merge.
781  */
782 static bool
783 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
784                 struct anon_vma *anon_vma, struct file *file,
785                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
786                 struct anon_vma_name *anon_name)
787 {
788         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
789             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
790                 if (vma->vm_pgoff == vm_pgoff)
791                         return true;
792         }
793         return false;
794 }
795
796 /*
797  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
798  * beyond (at a higher virtual address and file offset than) the vma.
799  *
800  * We cannot merge two vmas if they have differently assigned (non-NULL)
801  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
802  *
803  * We assume that vma is not removed as part of the merge.
804  */
805 static bool
806 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
807                 struct anon_vma *anon_vma, struct file *file,
808                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
809                 struct anon_vma_name *anon_name)
810 {
811         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
812             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
813                 pgoff_t vm_pglen;
814                 vm_pglen = vma_pages(vma);
815                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
816                         return true;
817         }
818         return false;
819 }
820
821 /*
822  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
823  * figure out whether that can be merged with its predecessor or its
824  * successor.  Or both (it neatly fills a hole).
825  *
826  * In most cases - when called for mmap, brk or mremap - [addr,end) is
827  * certain not to be mapped by the time vma_merge is called; but when
828  * called for mprotect, it is certain to be already mapped (either at
829  * an offset within prev, or at the start of next), and the flags of
830  * this area are about to be changed to vm_flags - and the no-change
831  * case has already been eliminated.
832  *
833  * The following mprotect cases have to be considered, where **** is
834  * the area passed down from mprotect_fixup, never extending beyond one
835  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
836  * at the same address as **** and is of the same or larger span, and
837  * NNNN the next vma after ****:
838  *
839  *     ****             ****                   ****
840  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
841  *    cannot merge    might become       might become
842  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
843  *    mmap, brk or    case 4 below       case 5 below
844  *    mremap move:
845  *                        ****               ****
846  *                    PPPP    NNNN       PPPPCCCCNNNN
847  *                    might become       might become
848  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
849  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
850  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
851  *
852  * It is important for case 8 that the vma CCCC overlapping the
853  * region **** is never going to extended over NNNN. Instead NNNN must
854  * be extended in region **** and CCCC must be removed. This way in
855  * all cases where vma_merge succeeds, the moment vma_merge drops the
856  * rmap_locks, the properties of the merged vma will be already
857  * correct for the whole merged range. Some of those properties like
858  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
859  * be correct for the whole merged range immediately after the
860  * rmap_locks are released. Otherwise if NNNN would be removed and
861  * CCCC would be extended over the NNNN range, remove_migration_ptes
862  * or other rmap walkers (if working on addresses beyond the "end"
863  * parameter) may establish ptes with the wrong permissions of CCCC
864  * instead of the right permissions of NNNN.
865  *
866  * In the code below:
867  * PPPP is represented by *prev
868  * CCCC is represented by *curr or not represented at all (NULL)
869  * NNNN is represented by *next or not represented at all (NULL)
870  * **** is not represented - it will be merged and the vma containing the
871  *      area is returned, or the function will return NULL
872  */
873 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
874                         struct vm_area_struct *prev, unsigned long addr,
875                         unsigned long end, unsigned long vm_flags,
876                         struct anon_vma *anon_vma, struct file *file,
877                         pgoff_t pgoff, struct mempolicy *policy,
878                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
879                         struct anon_vma_name *anon_name)
880 {
881         struct vm_area_struct *curr, *next, *res;
882         struct vm_area_struct *vma, *adjust, *remove, *remove2;
883         struct vma_prepare vp;
884         pgoff_t vma_pgoff;
885         int err = 0;
886         bool merge_prev = false;
887         bool merge_next = false;
888         bool vma_expanded = false;
889         unsigned long vma_start = addr;
890         unsigned long vma_end = end;
891         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
892         long adj_start = 0;
893
894         validate_mm(mm);
895         /*
896          * We later require that vma->vm_flags == vm_flags,
897          * so this tests vma->vm_flags & VM_SPECIAL, too.
898          */
899         if (vm_flags & VM_SPECIAL)
900                 return NULL;
901
902         /* Does the input range span an existing VMA? (cases 5 - 8) */
903         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
904
905         if (!curr ||                    /* cases 1 - 4 */
906             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
907                 next = vma_lookup(mm, end);
908         else
909                 next = NULL;            /* case 5 */
910
911         if (prev) {
912                 vma_start = prev->vm_start;
913                 vma_pgoff = prev->vm_pgoff;
914
915                 /* Can we merge the predecessor? */
916                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
917                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
918                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
919                         merge_prev = true;
920                         vma_prev(vmi);
921                 }
922         }
923
924         /* Can we merge the successor? */
925         if (next && mpol_equal(policy, vma_policy(next)) &&
926             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
927                                  vm_userfaultfd_ctx, anon_name)) {
928                 merge_next = true;
929         }
930
931         /* Verify some invariant that must be enforced by the caller. */
932         VM_WARN_ON(prev && addr <= prev->vm_start);
933         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
934         VM_WARN_ON(addr >= end);
935
936         if (!merge_prev && !merge_next)
937                 return NULL; /* Not mergeable. */
938
939         res = vma = prev;
940         remove = remove2 = adjust = NULL;
941
942         /* Can we merge both the predecessor and the successor? */
943         if (merge_prev && merge_next &&
944             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
945                 remove = next;                          /* case 1 */
946                 vma_end = next->vm_end;
947                 err = dup_anon_vma(prev, next);
948                 if (curr) {                             /* case 6 */
949                         remove = curr;
950                         remove2 = next;
951                         if (!next->anon_vma)
952                                 err = dup_anon_vma(prev, curr);
953                 }
954         } else if (merge_prev) {                        /* case 2 */
955                 if (curr) {
956                         err = dup_anon_vma(prev, curr);
957                         if (end == curr->vm_end) {      /* case 7 */
958                                 remove = curr;
959                         } else {                        /* case 5 */
960                                 adjust = curr;
961                                 adj_start = (end - curr->vm_start);
962                         }
963                 }
964         } else { /* merge_next */
965                 res = next;
966                 if (prev && addr < prev->vm_end) {      /* case 4 */
967                         vma_end = addr;
968                         adjust = next;
969                         adj_start = -(prev->vm_end - addr);
970                         err = dup_anon_vma(next, prev);
971                 } else {
972                         /*
973                          * Note that cases 3 and 8 are the ONLY ones where prev
974                          * is permitted to be (but is not necessarily) NULL.
975                          */
976                         vma = next;                     /* case 3 */
977                         vma_start = addr;
978                         vma_end = next->vm_end;
979                         vma_pgoff = next->vm_pgoff - pglen;
980                         if (curr) {                     /* case 8 */
981                                 vma_pgoff = curr->vm_pgoff;
982                                 remove = curr;
983                                 err = dup_anon_vma(next, curr);
984                         }
985                 }
986         }
987
988         /* Error in anon_vma clone. */
989         if (err)
990                 return NULL;
991
992         if (vma_iter_prealloc(vmi))
993                 return NULL;
994
995         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
996         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
997                    vp.anon_vma != adjust->anon_vma);
998
999         vma_prepare(&vp);
1000         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1001         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1002                 vma_expanded = true;
1003
1004         vma->vm_start = vma_start;
1005         vma->vm_end = vma_end;
1006         vma->vm_pgoff = vma_pgoff;
1007
1008         if (vma_expanded)
1009                 vma_iter_store(vmi, vma);
1010
1011         if (adj_start) {
1012                 adjust->vm_start += adj_start;
1013                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1014                 if (adj_start < 0) {
1015                         WARN_ON(vma_expanded);
1016                         vma_iter_store(vmi, next);
1017                 }
1018         }
1019
1020         vma_complete(&vp, vmi, mm);
1021         vma_iter_free(vmi);
1022         validate_mm(mm);
1023         khugepaged_enter_vma(res, vm_flags);
1024
1025         return res;
1026 }
1027
1028 /*
1029  * Rough compatibility check to quickly see if it's even worth looking
1030  * at sharing an anon_vma.
1031  *
1032  * They need to have the same vm_file, and the flags can only differ
1033  * in things that mprotect may change.
1034  *
1035  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1036  * we can merge the two vma's. For example, we refuse to merge a vma if
1037  * there is a vm_ops->close() function, because that indicates that the
1038  * driver is doing some kind of reference counting. But that doesn't
1039  * really matter for the anon_vma sharing case.
1040  */
1041 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1042 {
1043         return a->vm_end == b->vm_start &&
1044                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1045                 a->vm_file == b->vm_file &&
1046                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1047                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1048 }
1049
1050 /*
1051  * Do some basic sanity checking to see if we can re-use the anon_vma
1052  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1053  * the same as 'old', the other will be the new one that is trying
1054  * to share the anon_vma.
1055  *
1056  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1057  * the anon_vma of 'old' is concurrently in the process of being set up
1058  * by another page fault trying to merge _that_. But that's ok: if it
1059  * is being set up, that automatically means that it will be a singleton
1060  * acceptable for merging, so we can do all of this optimistically. But
1061  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1062  *
1063  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1064  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1065  * is to return an anon_vma that is "complex" due to having gone through
1066  * a fork).
1067  *
1068  * We also make sure that the two vma's are compatible (adjacent,
1069  * and with the same memory policies). That's all stable, even with just
1070  * a read lock on the mmap_lock.
1071  */
1072 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1073 {
1074         if (anon_vma_compatible(a, b)) {
1075                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1076
1077                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1078                         return anon_vma;
1079         }
1080         return NULL;
1081 }
1082
1083 /*
1084  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1085  * neighbouring vmas for a suitable anon_vma, before it goes off
1086  * to allocate a new anon_vma.  It checks because a repetitive
1087  * sequence of mprotects and faults may otherwise lead to distinct
1088  * anon_vmas being allocated, preventing vma merge in subsequent
1089  * mprotect.
1090  */
1091 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1092 {
1093         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1094         struct anon_vma *anon_vma = NULL;
1095         struct vm_area_struct *prev, *next;
1096
1097         /* Try next first. */
1098         next = mas_walk(&mas);
1099         if (next) {
1100                 anon_vma = reusable_anon_vma(next, vma, next);
1101                 if (anon_vma)
1102                         return anon_vma;
1103         }
1104
1105         prev = mas_prev(&mas, 0);
1106         VM_BUG_ON_VMA(prev != vma, vma);
1107         prev = mas_prev(&mas, 0);
1108         /* Try prev next. */
1109         if (prev)
1110                 anon_vma = reusable_anon_vma(prev, prev, vma);
1111
1112         /*
1113          * We might reach here with anon_vma == NULL if we can't find
1114          * any reusable anon_vma.
1115          * There's no absolute need to look only at touching neighbours:
1116          * we could search further afield for "compatible" anon_vmas.
1117          * But it would probably just be a waste of time searching,
1118          * or lead to too many vmas hanging off the same anon_vma.
1119          * We're trying to allow mprotect remerging later on,
1120          * not trying to minimize memory used for anon_vmas.
1121          */
1122         return anon_vma;
1123 }
1124
1125 /*
1126  * If a hint addr is less than mmap_min_addr change hint to be as
1127  * low as possible but still greater than mmap_min_addr
1128  */
1129 static inline unsigned long round_hint_to_min(unsigned long hint)
1130 {
1131         hint &= PAGE_MASK;
1132         if (((void *)hint != NULL) &&
1133             (hint < mmap_min_addr))
1134                 return PAGE_ALIGN(mmap_min_addr);
1135         return hint;
1136 }
1137
1138 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1139                         unsigned long bytes)
1140 {
1141         unsigned long locked_pages, limit_pages;
1142
1143         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1144                 return true;
1145
1146         locked_pages = bytes >> PAGE_SHIFT;
1147         locked_pages += mm->locked_vm;
1148
1149         limit_pages = rlimit(RLIMIT_MEMLOCK);
1150         limit_pages >>= PAGE_SHIFT;
1151
1152         return locked_pages <= limit_pages;
1153 }
1154
1155 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1156 {
1157         if (S_ISREG(inode->i_mode))
1158                 return MAX_LFS_FILESIZE;
1159
1160         if (S_ISBLK(inode->i_mode))
1161                 return MAX_LFS_FILESIZE;
1162
1163         if (S_ISSOCK(inode->i_mode))
1164                 return MAX_LFS_FILESIZE;
1165
1166         /* Special "we do even unsigned file positions" case */
1167         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1168                 return 0;
1169
1170         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1171         return ULONG_MAX;
1172 }
1173
1174 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1175                                 unsigned long pgoff, unsigned long len)
1176 {
1177         u64 maxsize = file_mmap_size_max(file, inode);
1178
1179         if (maxsize && len > maxsize)
1180                 return false;
1181         maxsize -= len;
1182         if (pgoff > maxsize >> PAGE_SHIFT)
1183                 return false;
1184         return true;
1185 }
1186
1187 /*
1188  * The caller must write-lock current->mm->mmap_lock.
1189  */
1190 unsigned long do_mmap(struct file *file, unsigned long addr,
1191                         unsigned long len, unsigned long prot,
1192                         unsigned long flags, unsigned long pgoff,
1193                         unsigned long *populate, struct list_head *uf)
1194 {
1195         struct mm_struct *mm = current->mm;
1196         vm_flags_t vm_flags;
1197         int pkey = 0;
1198
1199         validate_mm(mm);
1200         *populate = 0;
1201
1202         if (!len)
1203                 return -EINVAL;
1204
1205         /*
1206          * Does the application expect PROT_READ to imply PROT_EXEC?
1207          *
1208          * (the exception is when the underlying filesystem is noexec
1209          *  mounted, in which case we dont add PROT_EXEC.)
1210          */
1211         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1212                 if (!(file && path_noexec(&file->f_path)))
1213                         prot |= PROT_EXEC;
1214
1215         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1216         if (flags & MAP_FIXED_NOREPLACE)
1217                 flags |= MAP_FIXED;
1218
1219         if (!(flags & MAP_FIXED))
1220                 addr = round_hint_to_min(addr);
1221
1222         /* Careful about overflows.. */
1223         len = PAGE_ALIGN(len);
1224         if (!len)
1225                 return -ENOMEM;
1226
1227         /* offset overflow? */
1228         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1229                 return -EOVERFLOW;
1230
1231         /* Too many mappings? */
1232         if (mm->map_count > sysctl_max_map_count)
1233                 return -ENOMEM;
1234
1235         /* Obtain the address to map to. we verify (or select) it and ensure
1236          * that it represents a valid section of the address space.
1237          */
1238         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1239         if (IS_ERR_VALUE(addr))
1240                 return addr;
1241
1242         if (flags & MAP_FIXED_NOREPLACE) {
1243                 if (find_vma_intersection(mm, addr, addr + len))
1244                         return -EEXIST;
1245         }
1246
1247         if (prot == PROT_EXEC) {
1248                 pkey = execute_only_pkey(mm);
1249                 if (pkey < 0)
1250                         pkey = 0;
1251         }
1252
1253         /* Do simple checking here so the lower-level routines won't have
1254          * to. we assume access permissions have been handled by the open
1255          * of the memory object, so we don't do any here.
1256          */
1257         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1258                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1259
1260         if (flags & MAP_LOCKED)
1261                 if (!can_do_mlock())
1262                         return -EPERM;
1263
1264         if (!mlock_future_ok(mm, vm_flags, len))
1265                 return -EAGAIN;
1266
1267         if (file) {
1268                 struct inode *inode = file_inode(file);
1269                 unsigned long flags_mask;
1270
1271                 if (!file_mmap_ok(file, inode, pgoff, len))
1272                         return -EOVERFLOW;
1273
1274                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1275
1276                 switch (flags & MAP_TYPE) {
1277                 case MAP_SHARED:
1278                         /*
1279                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1280                          * flags. E.g. MAP_SYNC is dangerous to use with
1281                          * MAP_SHARED as you don't know which consistency model
1282                          * you will get. We silently ignore unsupported flags
1283                          * with MAP_SHARED to preserve backward compatibility.
1284                          */
1285                         flags &= LEGACY_MAP_MASK;
1286                         fallthrough;
1287                 case MAP_SHARED_VALIDATE:
1288                         if (flags & ~flags_mask)
1289                                 return -EOPNOTSUPP;
1290                         if (prot & PROT_WRITE) {
1291                                 if (!(file->f_mode & FMODE_WRITE))
1292                                         return -EACCES;
1293                                 if (IS_SWAPFILE(file->f_mapping->host))
1294                                         return -ETXTBSY;
1295                         }
1296
1297                         /*
1298                          * Make sure we don't allow writing to an append-only
1299                          * file..
1300                          */
1301                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1302                                 return -EACCES;
1303
1304                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1305                         if (!(file->f_mode & FMODE_WRITE))
1306                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1307                         fallthrough;
1308                 case MAP_PRIVATE:
1309                         if (!(file->f_mode & FMODE_READ))
1310                                 return -EACCES;
1311                         if (path_noexec(&file->f_path)) {
1312                                 if (vm_flags & VM_EXEC)
1313                                         return -EPERM;
1314                                 vm_flags &= ~VM_MAYEXEC;
1315                         }
1316
1317                         if (!file->f_op->mmap)
1318                                 return -ENODEV;
1319                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1320                                 return -EINVAL;
1321                         break;
1322
1323                 default:
1324                         return -EINVAL;
1325                 }
1326         } else {
1327                 switch (flags & MAP_TYPE) {
1328                 case MAP_SHARED:
1329                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1330                                 return -EINVAL;
1331                         /*
1332                          * Ignore pgoff.
1333                          */
1334                         pgoff = 0;
1335                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1336                         break;
1337                 case MAP_PRIVATE:
1338                         /*
1339                          * Set pgoff according to addr for anon_vma.
1340                          */
1341                         pgoff = addr >> PAGE_SHIFT;
1342                         break;
1343                 default:
1344                         return -EINVAL;
1345                 }
1346         }
1347
1348         /*
1349          * Set 'VM_NORESERVE' if we should not account for the
1350          * memory use of this mapping.
1351          */
1352         if (flags & MAP_NORESERVE) {
1353                 /* We honor MAP_NORESERVE if allowed to overcommit */
1354                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1355                         vm_flags |= VM_NORESERVE;
1356
1357                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1358                 if (file && is_file_hugepages(file))
1359                         vm_flags |= VM_NORESERVE;
1360         }
1361
1362         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1363         if (!IS_ERR_VALUE(addr) &&
1364             ((vm_flags & VM_LOCKED) ||
1365              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1366                 *populate = len;
1367         return addr;
1368 }
1369
1370 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1371                               unsigned long prot, unsigned long flags,
1372                               unsigned long fd, unsigned long pgoff)
1373 {
1374         struct file *file = NULL;
1375         unsigned long retval;
1376
1377         if (!(flags & MAP_ANONYMOUS)) {
1378                 audit_mmap_fd(fd, flags);
1379                 file = fget(fd);
1380                 if (!file)
1381                         return -EBADF;
1382                 if (is_file_hugepages(file)) {
1383                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1384                 } else if (unlikely(flags & MAP_HUGETLB)) {
1385                         retval = -EINVAL;
1386                         goto out_fput;
1387                 }
1388         } else if (flags & MAP_HUGETLB) {
1389                 struct hstate *hs;
1390
1391                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1392                 if (!hs)
1393                         return -EINVAL;
1394
1395                 len = ALIGN(len, huge_page_size(hs));
1396                 /*
1397                  * VM_NORESERVE is used because the reservations will be
1398                  * taken when vm_ops->mmap() is called
1399                  */
1400                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1401                                 VM_NORESERVE,
1402                                 HUGETLB_ANONHUGE_INODE,
1403                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1404                 if (IS_ERR(file))
1405                         return PTR_ERR(file);
1406         }
1407
1408         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1409 out_fput:
1410         if (file)
1411                 fput(file);
1412         return retval;
1413 }
1414
1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1416                 unsigned long, prot, unsigned long, flags,
1417                 unsigned long, fd, unsigned long, pgoff)
1418 {
1419         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1420 }
1421
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1424         unsigned long addr;
1425         unsigned long len;
1426         unsigned long prot;
1427         unsigned long flags;
1428         unsigned long fd;
1429         unsigned long offset;
1430 };
1431
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1433 {
1434         struct mmap_arg_struct a;
1435
1436         if (copy_from_user(&a, arg, sizeof(a)))
1437                 return -EFAULT;
1438         if (offset_in_page(a.offset))
1439                 return -EINVAL;
1440
1441         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442                                a.offset >> PAGE_SHIFT);
1443 }
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1445
1446 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1447 {
1448         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1449 }
1450
1451 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1452 {
1453         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1454                 (VM_WRITE | VM_SHARED);
1455 }
1456
1457 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1458 {
1459         /* No managed pages to writeback. */
1460         if (vma->vm_flags & VM_PFNMAP)
1461                 return false;
1462
1463         return vma->vm_file && vma->vm_file->f_mapping &&
1464                 mapping_can_writeback(vma->vm_file->f_mapping);
1465 }
1466
1467 /*
1468  * Does this VMA require the underlying folios to have their dirty state
1469  * tracked?
1470  */
1471 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1472 {
1473         /* Only shared, writable VMAs require dirty tracking. */
1474         if (!vma_is_shared_writable(vma))
1475                 return false;
1476
1477         /* Does the filesystem need to be notified? */
1478         if (vm_ops_needs_writenotify(vma->vm_ops))
1479                 return true;
1480
1481         /*
1482          * Even if the filesystem doesn't indicate a need for writenotify, if it
1483          * can writeback, dirty tracking is still required.
1484          */
1485         return vma_fs_can_writeback(vma);
1486 }
1487
1488 /*
1489  * Some shared mappings will want the pages marked read-only
1490  * to track write events. If so, we'll downgrade vm_page_prot
1491  * to the private version (using protection_map[] without the
1492  * VM_SHARED bit).
1493  */
1494 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1495 {
1496         /* If it was private or non-writable, the write bit is already clear */
1497         if (!vma_is_shared_writable(vma))
1498                 return 0;
1499
1500         /* The backer wishes to know when pages are first written to? */
1501         if (vm_ops_needs_writenotify(vma->vm_ops))
1502                 return 1;
1503
1504         /* The open routine did something to the protections that pgprot_modify
1505          * won't preserve? */
1506         if (pgprot_val(vm_page_prot) !=
1507             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1508                 return 0;
1509
1510         /*
1511          * Do we need to track softdirty? hugetlb does not support softdirty
1512          * tracking yet.
1513          */
1514         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1515                 return 1;
1516
1517         /* Do we need write faults for uffd-wp tracking? */
1518         if (userfaultfd_wp(vma))
1519                 return 1;
1520
1521         /* Can the mapping track the dirty pages? */
1522         return vma_fs_can_writeback(vma);
1523 }
1524
1525 /*
1526  * We account for memory if it's a private writeable mapping,
1527  * not hugepages and VM_NORESERVE wasn't set.
1528  */
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 {
1531         /*
1532          * hugetlb has its own accounting separate from the core VM
1533          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534          */
1535         if (file && is_file_hugepages(file))
1536                 return 0;
1537
1538         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1539 }
1540
1541 /**
1542  * unmapped_area() - Find an area between the low_limit and the high_limit with
1543  * the correct alignment and offset, all from @info. Note: current->mm is used
1544  * for the search.
1545  *
1546  * @info: The unmapped area information including the range [low_limit -
1547  * high_limit), the alignment offset and mask.
1548  *
1549  * Return: A memory address or -ENOMEM.
1550  */
1551 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1552 {
1553         unsigned long length, gap;
1554         unsigned long low_limit, high_limit;
1555         struct vm_area_struct *tmp;
1556
1557         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1558
1559         /* Adjust search length to account for worst case alignment overhead */
1560         length = info->length + info->align_mask;
1561         if (length < info->length)
1562                 return -ENOMEM;
1563
1564         low_limit = info->low_limit;
1565         if (low_limit < mmap_min_addr)
1566                 low_limit = mmap_min_addr;
1567         high_limit = info->high_limit;
1568 retry:
1569         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1570                 return -ENOMEM;
1571
1572         gap = mas.index;
1573         gap += (info->align_offset - gap) & info->align_mask;
1574         tmp = mas_next(&mas, ULONG_MAX);
1575         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1576                 if (vm_start_gap(tmp) < gap + length - 1) {
1577                         low_limit = tmp->vm_end;
1578                         mas_reset(&mas);
1579                         goto retry;
1580                 }
1581         } else {
1582                 tmp = mas_prev(&mas, 0);
1583                 if (tmp && vm_end_gap(tmp) > gap) {
1584                         low_limit = vm_end_gap(tmp);
1585                         mas_reset(&mas);
1586                         goto retry;
1587                 }
1588         }
1589
1590         return gap;
1591 }
1592
1593 /**
1594  * unmapped_area_topdown() - Find an area between the low_limit and the
1595  * high_limit with the correct alignment and offset at the highest available
1596  * address, all from @info. Note: current->mm is used for the search.
1597  *
1598  * @info: The unmapped area information including the range [low_limit -
1599  * high_limit), the alignment offset and mask.
1600  *
1601  * Return: A memory address or -ENOMEM.
1602  */
1603 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1604 {
1605         unsigned long length, gap, gap_end;
1606         unsigned long low_limit, high_limit;
1607         struct vm_area_struct *tmp;
1608
1609         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1610         /* Adjust search length to account for worst case alignment overhead */
1611         length = info->length + info->align_mask;
1612         if (length < info->length)
1613                 return -ENOMEM;
1614
1615         low_limit = info->low_limit;
1616         if (low_limit < mmap_min_addr)
1617                 low_limit = mmap_min_addr;
1618         high_limit = info->high_limit;
1619 retry:
1620         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1621                 return -ENOMEM;
1622
1623         gap = mas.last + 1 - info->length;
1624         gap -= (gap - info->align_offset) & info->align_mask;
1625         gap_end = mas.last;
1626         tmp = mas_next(&mas, ULONG_MAX);
1627         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1628                 if (vm_start_gap(tmp) <= gap_end) {
1629                         high_limit = vm_start_gap(tmp);
1630                         mas_reset(&mas);
1631                         goto retry;
1632                 }
1633         } else {
1634                 tmp = mas_prev(&mas, 0);
1635                 if (tmp && vm_end_gap(tmp) > gap) {
1636                         high_limit = tmp->vm_start;
1637                         mas_reset(&mas);
1638                         goto retry;
1639                 }
1640         }
1641
1642         return gap;
1643 }
1644
1645 /*
1646  * Search for an unmapped address range.
1647  *
1648  * We are looking for a range that:
1649  * - does not intersect with any VMA;
1650  * - is contained within the [low_limit, high_limit) interval;
1651  * - is at least the desired size.
1652  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1653  */
1654 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1655 {
1656         unsigned long addr;
1657
1658         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1659                 addr = unmapped_area_topdown(info);
1660         else
1661                 addr = unmapped_area(info);
1662
1663         trace_vm_unmapped_area(addr, info);
1664         return addr;
1665 }
1666
1667 /* Get an address range which is currently unmapped.
1668  * For shmat() with addr=0.
1669  *
1670  * Ugly calling convention alert:
1671  * Return value with the low bits set means error value,
1672  * ie
1673  *      if (ret & ~PAGE_MASK)
1674  *              error = ret;
1675  *
1676  * This function "knows" that -ENOMEM has the bits set.
1677  */
1678 unsigned long
1679 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1680                           unsigned long len, unsigned long pgoff,
1681                           unsigned long flags)
1682 {
1683         struct mm_struct *mm = current->mm;
1684         struct vm_area_struct *vma, *prev;
1685         struct vm_unmapped_area_info info;
1686         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1687
1688         if (len > mmap_end - mmap_min_addr)
1689                 return -ENOMEM;
1690
1691         if (flags & MAP_FIXED)
1692                 return addr;
1693
1694         if (addr) {
1695                 addr = PAGE_ALIGN(addr);
1696                 vma = find_vma_prev(mm, addr, &prev);
1697                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1698                     (!vma || addr + len <= vm_start_gap(vma)) &&
1699                     (!prev || addr >= vm_end_gap(prev)))
1700                         return addr;
1701         }
1702
1703         info.flags = 0;
1704         info.length = len;
1705         info.low_limit = mm->mmap_base;
1706         info.high_limit = mmap_end;
1707         info.align_mask = 0;
1708         info.align_offset = 0;
1709         return vm_unmapped_area(&info);
1710 }
1711
1712 #ifndef HAVE_ARCH_UNMAPPED_AREA
1713 unsigned long
1714 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1715                        unsigned long len, unsigned long pgoff,
1716                        unsigned long flags)
1717 {
1718         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1719 }
1720 #endif
1721
1722 /*
1723  * This mmap-allocator allocates new areas top-down from below the
1724  * stack's low limit (the base):
1725  */
1726 unsigned long
1727 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1728                                   unsigned long len, unsigned long pgoff,
1729                                   unsigned long flags)
1730 {
1731         struct vm_area_struct *vma, *prev;
1732         struct mm_struct *mm = current->mm;
1733         struct vm_unmapped_area_info info;
1734         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1735
1736         /* requested length too big for entire address space */
1737         if (len > mmap_end - mmap_min_addr)
1738                 return -ENOMEM;
1739
1740         if (flags & MAP_FIXED)
1741                 return addr;
1742
1743         /* requesting a specific address */
1744         if (addr) {
1745                 addr = PAGE_ALIGN(addr);
1746                 vma = find_vma_prev(mm, addr, &prev);
1747                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1748                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1749                                 (!prev || addr >= vm_end_gap(prev)))
1750                         return addr;
1751         }
1752
1753         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1754         info.length = len;
1755         info.low_limit = PAGE_SIZE;
1756         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1757         info.align_mask = 0;
1758         info.align_offset = 0;
1759         addr = vm_unmapped_area(&info);
1760
1761         /*
1762          * A failed mmap() very likely causes application failure,
1763          * so fall back to the bottom-up function here. This scenario
1764          * can happen with large stack limits and large mmap()
1765          * allocations.
1766          */
1767         if (offset_in_page(addr)) {
1768                 VM_BUG_ON(addr != -ENOMEM);
1769                 info.flags = 0;
1770                 info.low_limit = TASK_UNMAPPED_BASE;
1771                 info.high_limit = mmap_end;
1772                 addr = vm_unmapped_area(&info);
1773         }
1774
1775         return addr;
1776 }
1777
1778 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1779 unsigned long
1780 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1781                                unsigned long len, unsigned long pgoff,
1782                                unsigned long flags)
1783 {
1784         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1785 }
1786 #endif
1787
1788 unsigned long
1789 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1790                 unsigned long pgoff, unsigned long flags)
1791 {
1792         unsigned long (*get_area)(struct file *, unsigned long,
1793                                   unsigned long, unsigned long, unsigned long);
1794
1795         unsigned long error = arch_mmap_check(addr, len, flags);
1796         if (error)
1797                 return error;
1798
1799         /* Careful about overflows.. */
1800         if (len > TASK_SIZE)
1801                 return -ENOMEM;
1802
1803         get_area = current->mm->get_unmapped_area;
1804         if (file) {
1805                 if (file->f_op->get_unmapped_area)
1806                         get_area = file->f_op->get_unmapped_area;
1807         } else if (flags & MAP_SHARED) {
1808                 /*
1809                  * mmap_region() will call shmem_zero_setup() to create a file,
1810                  * so use shmem's get_unmapped_area in case it can be huge.
1811                  * do_mmap() will clear pgoff, so match alignment.
1812                  */
1813                 pgoff = 0;
1814                 get_area = shmem_get_unmapped_area;
1815         }
1816
1817         addr = get_area(file, addr, len, pgoff, flags);
1818         if (IS_ERR_VALUE(addr))
1819                 return addr;
1820
1821         if (addr > TASK_SIZE - len)
1822                 return -ENOMEM;
1823         if (offset_in_page(addr))
1824                 return -EINVAL;
1825
1826         error = security_mmap_addr(addr);
1827         return error ? error : addr;
1828 }
1829
1830 EXPORT_SYMBOL(get_unmapped_area);
1831
1832 /**
1833  * find_vma_intersection() - Look up the first VMA which intersects the interval
1834  * @mm: The process address space.
1835  * @start_addr: The inclusive start user address.
1836  * @end_addr: The exclusive end user address.
1837  *
1838  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1839  * start_addr < end_addr.
1840  */
1841 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1842                                              unsigned long start_addr,
1843                                              unsigned long end_addr)
1844 {
1845         unsigned long index = start_addr;
1846
1847         mmap_assert_locked(mm);
1848         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1849 }
1850 EXPORT_SYMBOL(find_vma_intersection);
1851
1852 /**
1853  * find_vma() - Find the VMA for a given address, or the next VMA.
1854  * @mm: The mm_struct to check
1855  * @addr: The address
1856  *
1857  * Returns: The VMA associated with addr, or the next VMA.
1858  * May return %NULL in the case of no VMA at addr or above.
1859  */
1860 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1861 {
1862         unsigned long index = addr;
1863
1864         mmap_assert_locked(mm);
1865         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1866 }
1867 EXPORT_SYMBOL(find_vma);
1868
1869 /**
1870  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1871  * set %pprev to the previous VMA, if any.
1872  * @mm: The mm_struct to check
1873  * @addr: The address
1874  * @pprev: The pointer to set to the previous VMA
1875  *
1876  * Note that RCU lock is missing here since the external mmap_lock() is used
1877  * instead.
1878  *
1879  * Returns: The VMA associated with @addr, or the next vma.
1880  * May return %NULL in the case of no vma at addr or above.
1881  */
1882 struct vm_area_struct *
1883 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1884                         struct vm_area_struct **pprev)
1885 {
1886         struct vm_area_struct *vma;
1887         MA_STATE(mas, &mm->mm_mt, addr, addr);
1888
1889         vma = mas_walk(&mas);
1890         *pprev = mas_prev(&mas, 0);
1891         if (!vma)
1892                 vma = mas_next(&mas, ULONG_MAX);
1893         return vma;
1894 }
1895
1896 /*
1897  * Verify that the stack growth is acceptable and
1898  * update accounting. This is shared with both the
1899  * grow-up and grow-down cases.
1900  */
1901 static int acct_stack_growth(struct vm_area_struct *vma,
1902                              unsigned long size, unsigned long grow)
1903 {
1904         struct mm_struct *mm = vma->vm_mm;
1905         unsigned long new_start;
1906
1907         /* address space limit tests */
1908         if (!may_expand_vm(mm, vma->vm_flags, grow))
1909                 return -ENOMEM;
1910
1911         /* Stack limit test */
1912         if (size > rlimit(RLIMIT_STACK))
1913                 return -ENOMEM;
1914
1915         /* mlock limit tests */
1916         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1917                 return -ENOMEM;
1918
1919         /* Check to ensure the stack will not grow into a hugetlb-only region */
1920         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1921                         vma->vm_end - size;
1922         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1923                 return -EFAULT;
1924
1925         /*
1926          * Overcommit..  This must be the final test, as it will
1927          * update security statistics.
1928          */
1929         if (security_vm_enough_memory_mm(mm, grow))
1930                 return -ENOMEM;
1931
1932         return 0;
1933 }
1934
1935 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1936 /*
1937  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1938  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1939  */
1940 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1941 {
1942         struct mm_struct *mm = vma->vm_mm;
1943         struct vm_area_struct *next;
1944         unsigned long gap_addr;
1945         int error = 0;
1946         MA_STATE(mas, &mm->mm_mt, 0, 0);
1947
1948         if (!(vma->vm_flags & VM_GROWSUP))
1949                 return -EFAULT;
1950
1951         /* Guard against exceeding limits of the address space. */
1952         address &= PAGE_MASK;
1953         if (address >= (TASK_SIZE & PAGE_MASK))
1954                 return -ENOMEM;
1955         address += PAGE_SIZE;
1956
1957         /* Enforce stack_guard_gap */
1958         gap_addr = address + stack_guard_gap;
1959
1960         /* Guard against overflow */
1961         if (gap_addr < address || gap_addr > TASK_SIZE)
1962                 gap_addr = TASK_SIZE;
1963
1964         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1965         if (next && vma_is_accessible(next)) {
1966                 if (!(next->vm_flags & VM_GROWSUP))
1967                         return -ENOMEM;
1968                 /* Check that both stack segments have the same anon_vma? */
1969         }
1970
1971         if (mas_preallocate(&mas, GFP_KERNEL))
1972                 return -ENOMEM;
1973
1974         /* We must make sure the anon_vma is allocated. */
1975         if (unlikely(anon_vma_prepare(vma))) {
1976                 mas_destroy(&mas);
1977                 return -ENOMEM;
1978         }
1979
1980         /* Lock the VMA before expanding to prevent concurrent page faults */
1981         vma_start_write(vma);
1982         /*
1983          * vma->vm_start/vm_end cannot change under us because the caller
1984          * is required to hold the mmap_lock in read mode.  We need the
1985          * anon_vma lock to serialize against concurrent expand_stacks.
1986          */
1987         anon_vma_lock_write(vma->anon_vma);
1988
1989         /* Somebody else might have raced and expanded it already */
1990         if (address > vma->vm_end) {
1991                 unsigned long size, grow;
1992
1993                 size = address - vma->vm_start;
1994                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1995
1996                 error = -ENOMEM;
1997                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1998                         error = acct_stack_growth(vma, size, grow);
1999                         if (!error) {
2000                                 /*
2001                                  * We only hold a shared mmap_lock lock here, so
2002                                  * we need to protect against concurrent vma
2003                                  * expansions.  anon_vma_lock_write() doesn't
2004                                  * help here, as we don't guarantee that all
2005                                  * growable vmas in a mm share the same root
2006                                  * anon vma.  So, we reuse mm->page_table_lock
2007                                  * to guard against concurrent vma expansions.
2008                                  */
2009                                 spin_lock(&mm->page_table_lock);
2010                                 if (vma->vm_flags & VM_LOCKED)
2011                                         mm->locked_vm += grow;
2012                                 vm_stat_account(mm, vma->vm_flags, grow);
2013                                 anon_vma_interval_tree_pre_update_vma(vma);
2014                                 vma->vm_end = address;
2015                                 /* Overwrite old entry in mtree. */
2016                                 mas_set_range(&mas, vma->vm_start, address - 1);
2017                                 mas_store_prealloc(&mas, vma);
2018                                 anon_vma_interval_tree_post_update_vma(vma);
2019                                 spin_unlock(&mm->page_table_lock);
2020
2021                                 perf_event_mmap(vma);
2022                         }
2023                 }
2024         }
2025         anon_vma_unlock_write(vma->anon_vma);
2026         khugepaged_enter_vma(vma, vma->vm_flags);
2027         mas_destroy(&mas);
2028         return error;
2029 }
2030 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2031
2032 /*
2033  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2034  * mmap_lock held for writing.
2035  */
2036 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2037 {
2038         struct mm_struct *mm = vma->vm_mm;
2039         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2040         struct vm_area_struct *prev;
2041         int error = 0;
2042
2043         if (!(vma->vm_flags & VM_GROWSDOWN))
2044                 return -EFAULT;
2045
2046         address &= PAGE_MASK;
2047         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2048                 return -EPERM;
2049
2050         /* Enforce stack_guard_gap */
2051         prev = mas_prev(&mas, 0);
2052         /* Check that both stack segments have the same anon_vma? */
2053         if (prev) {
2054                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2055                     vma_is_accessible(prev) &&
2056                     (address - prev->vm_end < stack_guard_gap))
2057                         return -ENOMEM;
2058         }
2059
2060         if (mas_preallocate(&mas, GFP_KERNEL))
2061                 return -ENOMEM;
2062
2063         /* We must make sure the anon_vma is allocated. */
2064         if (unlikely(anon_vma_prepare(vma))) {
2065                 mas_destroy(&mas);
2066                 return -ENOMEM;
2067         }
2068
2069         /* Lock the VMA before expanding to prevent concurrent page faults */
2070         vma_start_write(vma);
2071         /*
2072          * vma->vm_start/vm_end cannot change under us because the caller
2073          * is required to hold the mmap_lock in read mode.  We need the
2074          * anon_vma lock to serialize against concurrent expand_stacks.
2075          */
2076         anon_vma_lock_write(vma->anon_vma);
2077
2078         /* Somebody else might have raced and expanded it already */
2079         if (address < vma->vm_start) {
2080                 unsigned long size, grow;
2081
2082                 size = vma->vm_end - address;
2083                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2084
2085                 error = -ENOMEM;
2086                 if (grow <= vma->vm_pgoff) {
2087                         error = acct_stack_growth(vma, size, grow);
2088                         if (!error) {
2089                                 /*
2090                                  * We only hold a shared mmap_lock lock here, so
2091                                  * we need to protect against concurrent vma
2092                                  * expansions.  anon_vma_lock_write() doesn't
2093                                  * help here, as we don't guarantee that all
2094                                  * growable vmas in a mm share the same root
2095                                  * anon vma.  So, we reuse mm->page_table_lock
2096                                  * to guard against concurrent vma expansions.
2097                                  */
2098                                 spin_lock(&mm->page_table_lock);
2099                                 if (vma->vm_flags & VM_LOCKED)
2100                                         mm->locked_vm += grow;
2101                                 vm_stat_account(mm, vma->vm_flags, grow);
2102                                 anon_vma_interval_tree_pre_update_vma(vma);
2103                                 vma->vm_start = address;
2104                                 vma->vm_pgoff -= grow;
2105                                 /* Overwrite old entry in mtree. */
2106                                 mas_set_range(&mas, address, vma->vm_end - 1);
2107                                 mas_store_prealloc(&mas, vma);
2108                                 anon_vma_interval_tree_post_update_vma(vma);
2109                                 spin_unlock(&mm->page_table_lock);
2110
2111                                 perf_event_mmap(vma);
2112                         }
2113                 }
2114         }
2115         anon_vma_unlock_write(vma->anon_vma);
2116         khugepaged_enter_vma(vma, vma->vm_flags);
2117         mas_destroy(&mas);
2118         return error;
2119 }
2120
2121 /* enforced gap between the expanding stack and other mappings. */
2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2123
2124 static int __init cmdline_parse_stack_guard_gap(char *p)
2125 {
2126         unsigned long val;
2127         char *endptr;
2128
2129         val = simple_strtoul(p, &endptr, 10);
2130         if (!*endptr)
2131                 stack_guard_gap = val << PAGE_SHIFT;
2132
2133         return 1;
2134 }
2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2136
2137 #ifdef CONFIG_STACK_GROWSUP
2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2139 {
2140         return expand_upwards(vma, address);
2141 }
2142
2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2144 {
2145         struct vm_area_struct *vma, *prev;
2146
2147         addr &= PAGE_MASK;
2148         vma = find_vma_prev(mm, addr, &prev);
2149         if (vma && (vma->vm_start <= addr))
2150                 return vma;
2151         if (!prev)
2152                 return NULL;
2153         if (expand_stack_locked(prev, addr))
2154                 return NULL;
2155         if (prev->vm_flags & VM_LOCKED)
2156                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2157         return prev;
2158 }
2159 #else
2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2161 {
2162         if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2163                 return -EINVAL;
2164         return expand_downwards(vma, address);
2165 }
2166
2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2168 {
2169         struct vm_area_struct *vma;
2170         unsigned long start;
2171
2172         addr &= PAGE_MASK;
2173         vma = find_vma(mm, addr);
2174         if (!vma)
2175                 return NULL;
2176         if (vma->vm_start <= addr)
2177                 return vma;
2178         start = vma->vm_start;
2179         if (expand_stack_locked(vma, addr))
2180                 return NULL;
2181         if (vma->vm_flags & VM_LOCKED)
2182                 populate_vma_page_range(vma, addr, start, NULL);
2183         return vma;
2184 }
2185 #endif
2186
2187 /*
2188  * IA64 has some horrid mapping rules: it can expand both up and down,
2189  * but with various special rules.
2190  *
2191  * We'll get rid of this architecture eventually, so the ugliness is
2192  * temporary.
2193  */
2194 #ifdef CONFIG_IA64
2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2196 {
2197         return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2198                 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2199 }
2200
2201 /*
2202  * IA64 stacks grow down, but there's a special register backing store
2203  * that can grow up. Only sequentially, though, so the new address must
2204  * match vm_end.
2205  */
2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2207 {
2208         if (!vma_expand_ok(vma, addr))
2209                 return -EFAULT;
2210         if (vma->vm_end != (addr & PAGE_MASK))
2211                 return -EFAULT;
2212         return expand_upwards(vma, addr);
2213 }
2214
2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2216 {
2217         if (!vma_expand_ok(vma, addr))
2218                 return -EFAULT;
2219         return expand_downwards(vma, addr);
2220 }
2221
2222 #elif defined(CONFIG_STACK_GROWSUP)
2223
2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2225 #define vma_expand_down(vma, addr) (-EFAULT)
2226
2227 #else
2228
2229 #define vma_expand_up(vma,addr) (-EFAULT)
2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2231
2232 #endif
2233
2234 /*
2235  * expand_stack(): legacy interface for page faulting. Don't use unless
2236  * you have to.
2237  *
2238  * This is called with the mm locked for reading, drops the lock, takes
2239  * the lock for writing, tries to look up a vma again, expands it if
2240  * necessary, and downgrades the lock to reading again.
2241  *
2242  * If no vma is found or it can't be expanded, it returns NULL and has
2243  * dropped the lock.
2244  */
2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2246 {
2247         struct vm_area_struct *vma, *prev;
2248
2249         mmap_read_unlock(mm);
2250         if (mmap_write_lock_killable(mm))
2251                 return NULL;
2252
2253         vma = find_vma_prev(mm, addr, &prev);
2254         if (vma && vma->vm_start <= addr)
2255                 goto success;
2256
2257         if (prev && !vma_expand_up(prev, addr)) {
2258                 vma = prev;
2259                 goto success;
2260         }
2261
2262         if (vma && !vma_expand_down(vma, addr))
2263                 goto success;
2264
2265         mmap_write_unlock(mm);
2266         return NULL;
2267
2268 success:
2269         mmap_write_downgrade(mm);
2270         return vma;
2271 }
2272
2273 /*
2274  * Ok - we have the memory areas we should free on a maple tree so release them,
2275  * and do the vma updates.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2280 {
2281         unsigned long nr_accounted = 0;
2282         struct vm_area_struct *vma;
2283
2284         /* Update high watermark before we lower total_vm */
2285         update_hiwater_vm(mm);
2286         mas_for_each(mas, vma, ULONG_MAX) {
2287                 long nrpages = vma_pages(vma);
2288
2289                 if (vma->vm_flags & VM_ACCOUNT)
2290                         nr_accounted += nrpages;
2291                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2292                 remove_vma(vma, false);
2293         }
2294         vm_unacct_memory(nr_accounted);
2295         validate_mm(mm);
2296 }
2297
2298 /*
2299  * Get rid of page table information in the indicated region.
2300  *
2301  * Called with the mm semaphore held.
2302  */
2303 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2304                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2305                 struct vm_area_struct *next,
2306                 unsigned long start, unsigned long end, bool mm_wr_locked)
2307 {
2308         struct mmu_gather tlb;
2309
2310         lru_add_drain();
2311         tlb_gather_mmu(&tlb, mm);
2312         update_hiwater_rss(mm);
2313         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2314         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2315                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2316                                  mm_wr_locked);
2317         tlb_finish_mmu(&tlb);
2318 }
2319
2320 /*
2321  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2322  * has already been checked or doesn't make sense to fail.
2323  * VMA Iterator will point to the end VMA.
2324  */
2325 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326                 unsigned long addr, int new_below)
2327 {
2328         struct vma_prepare vp;
2329         struct vm_area_struct *new;
2330         int err;
2331
2332         validate_mm(vma->vm_mm);
2333
2334         WARN_ON(vma->vm_start >= addr);
2335         WARN_ON(vma->vm_end <= addr);
2336
2337         if (vma->vm_ops && vma->vm_ops->may_split) {
2338                 err = vma->vm_ops->may_split(vma, addr);
2339                 if (err)
2340                         return err;
2341         }
2342
2343         new = vm_area_dup(vma);
2344         if (!new)
2345                 return -ENOMEM;
2346
2347         err = -ENOMEM;
2348         if (vma_iter_prealloc(vmi))
2349                 goto out_free_vma;
2350
2351         if (new_below) {
2352                 new->vm_end = addr;
2353         } else {
2354                 new->vm_start = addr;
2355                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2356         }
2357
2358         err = vma_dup_policy(vma, new);
2359         if (err)
2360                 goto out_free_vmi;
2361
2362         err = anon_vma_clone(new, vma);
2363         if (err)
2364                 goto out_free_mpol;
2365
2366         if (new->vm_file)
2367                 get_file(new->vm_file);
2368
2369         if (new->vm_ops && new->vm_ops->open)
2370                 new->vm_ops->open(new);
2371
2372         init_vma_prep(&vp, vma);
2373         vp.insert = new;
2374         vma_prepare(&vp);
2375         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2376
2377         if (new_below) {
2378                 vma->vm_start = addr;
2379                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2380         } else {
2381                 vma->vm_end = addr;
2382         }
2383
2384         /* vma_complete stores the new vma */
2385         vma_complete(&vp, vmi, vma->vm_mm);
2386
2387         /* Success. */
2388         if (new_below)
2389                 vma_next(vmi);
2390         validate_mm(vma->vm_mm);
2391         return 0;
2392
2393 out_free_mpol:
2394         mpol_put(vma_policy(new));
2395 out_free_vmi:
2396         vma_iter_free(vmi);
2397 out_free_vma:
2398         vm_area_free(new);
2399         validate_mm(vma->vm_mm);
2400         return err;
2401 }
2402
2403 /*
2404  * Split a vma into two pieces at address 'addr', a new vma is allocated
2405  * either for the first part or the tail.
2406  */
2407 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2408               unsigned long addr, int new_below)
2409 {
2410         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2411                 return -ENOMEM;
2412
2413         return __split_vma(vmi, vma, addr, new_below);
2414 }
2415
2416 /*
2417  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2418  * @vmi: The vma iterator
2419  * @vma: The starting vm_area_struct
2420  * @mm: The mm_struct
2421  * @start: The aligned start address to munmap.
2422  * @end: The aligned end address to munmap.
2423  * @uf: The userfaultfd list_head
2424  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2425  * success.
2426  *
2427  * Return: 0 on success and drops the lock if so directed, error and leaves the
2428  * lock held otherwise.
2429  */
2430 static int
2431 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2432                     struct mm_struct *mm, unsigned long start,
2433                     unsigned long end, struct list_head *uf, bool unlock)
2434 {
2435         struct vm_area_struct *prev, *next = NULL;
2436         struct maple_tree mt_detach;
2437         int count = 0;
2438         int error = -ENOMEM;
2439         unsigned long locked_vm = 0;
2440         MA_STATE(mas_detach, &mt_detach, 0, 0);
2441         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2442         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2443
2444         /*
2445          * If we need to split any vma, do it now to save pain later.
2446          *
2447          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2448          * unmapped vm_area_struct will remain in use: so lower split_vma
2449          * places tmp vma above, and higher split_vma places tmp vma below.
2450          */
2451
2452         /* Does it split the first one? */
2453         if (start > vma->vm_start) {
2454
2455                 /*
2456                  * Make sure that map_count on return from munmap() will
2457                  * not exceed its limit; but let map_count go just above
2458                  * its limit temporarily, to help free resources as expected.
2459                  */
2460                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2461                         goto map_count_exceeded;
2462
2463                 error = __split_vma(vmi, vma, start, 0);
2464                 if (error)
2465                         goto start_split_failed;
2466
2467                 vma = vma_iter_load(vmi);
2468         }
2469
2470         prev = vma_prev(vmi);
2471         if (unlikely((!prev)))
2472                 vma_iter_set(vmi, start);
2473
2474         /*
2475          * Detach a range of VMAs from the mm. Using next as a temp variable as
2476          * it is always overwritten.
2477          */
2478         for_each_vma_range(*vmi, next, end) {
2479                 /* Does it split the end? */
2480                 if (next->vm_end > end) {
2481                         error = __split_vma(vmi, next, end, 0);
2482                         if (error)
2483                                 goto end_split_failed;
2484                 }
2485                 vma_start_write(next);
2486                 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2487                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2488                 if (error)
2489                         goto munmap_gather_failed;
2490                 vma_mark_detached(next, true);
2491                 if (next->vm_flags & VM_LOCKED)
2492                         locked_vm += vma_pages(next);
2493
2494                 count++;
2495                 if (unlikely(uf)) {
2496                         /*
2497                          * If userfaultfd_unmap_prep returns an error the vmas
2498                          * will remain split, but userland will get a
2499                          * highly unexpected error anyway. This is no
2500                          * different than the case where the first of the two
2501                          * __split_vma fails, but we don't undo the first
2502                          * split, despite we could. This is unlikely enough
2503                          * failure that it's not worth optimizing it for.
2504                          */
2505                         error = userfaultfd_unmap_prep(next, start, end, uf);
2506
2507                         if (error)
2508                                 goto userfaultfd_error;
2509                 }
2510 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2511                 BUG_ON(next->vm_start < start);
2512                 BUG_ON(next->vm_start > end);
2513 #endif
2514         }
2515
2516         if (vma_iter_end(vmi) > end)
2517                 next = vma_iter_load(vmi);
2518
2519         if (!next)
2520                 next = vma_next(vmi);
2521
2522 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2523         /* Make sure no VMAs are about to be lost. */
2524         {
2525                 MA_STATE(test, &mt_detach, start, end - 1);
2526                 struct vm_area_struct *vma_mas, *vma_test;
2527                 int test_count = 0;
2528
2529                 vma_iter_set(vmi, start);
2530                 rcu_read_lock();
2531                 vma_test = mas_find(&test, end - 1);
2532                 for_each_vma_range(*vmi, vma_mas, end) {
2533                         BUG_ON(vma_mas != vma_test);
2534                         test_count++;
2535                         vma_test = mas_next(&test, end - 1);
2536                 }
2537                 rcu_read_unlock();
2538                 BUG_ON(count != test_count);
2539         }
2540 #endif
2541         vma_iter_set(vmi, start);
2542         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2543         if (error)
2544                 goto clear_tree_failed;
2545
2546         /* Point of no return */
2547         mm->locked_vm -= locked_vm;
2548         mm->map_count -= count;
2549         if (unlock)
2550                 mmap_write_downgrade(mm);
2551
2552         /*
2553          * We can free page tables without write-locking mmap_lock because VMAs
2554          * were isolated before we downgraded mmap_lock.
2555          */
2556         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2557         /* Statistics and freeing VMAs */
2558         mas_set(&mas_detach, start);
2559         remove_mt(mm, &mas_detach);
2560         __mt_destroy(&mt_detach);
2561         validate_mm(mm);
2562         if (unlock)
2563                 mmap_read_unlock(mm);
2564
2565         return 0;
2566
2567 clear_tree_failed:
2568 userfaultfd_error:
2569 munmap_gather_failed:
2570 end_split_failed:
2571         mas_set(&mas_detach, 0);
2572         mas_for_each(&mas_detach, next, end)
2573                 vma_mark_detached(next, false);
2574
2575         __mt_destroy(&mt_detach);
2576 start_split_failed:
2577 map_count_exceeded:
2578         validate_mm(mm);
2579         return error;
2580 }
2581
2582 /*
2583  * do_vmi_munmap() - munmap a given range.
2584  * @vmi: The vma iterator
2585  * @mm: The mm_struct
2586  * @start: The start address to munmap
2587  * @len: The length of the range to munmap
2588  * @uf: The userfaultfd list_head
2589  * @unlock: set to true if the user wants to drop the mmap_lock on success
2590  *
2591  * This function takes a @mas that is either pointing to the previous VMA or set
2592  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2593  * aligned and any arch_unmap work will be preformed.
2594  *
2595  * Return: 0 on success and drops the lock if so directed, error and leaves the
2596  * lock held otherwise.
2597  */
2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2599                   unsigned long start, size_t len, struct list_head *uf,
2600                   bool unlock)
2601 {
2602         unsigned long end;
2603         struct vm_area_struct *vma;
2604
2605         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2606                 return -EINVAL;
2607
2608         end = start + PAGE_ALIGN(len);
2609         if (end == start)
2610                 return -EINVAL;
2611
2612          /* arch_unmap() might do unmaps itself.  */
2613         arch_unmap(mm, start, end);
2614
2615         /* Find the first overlapping VMA */
2616         vma = vma_find(vmi, end);
2617         if (!vma) {
2618                 if (unlock)
2619                         mmap_write_unlock(mm);
2620                 return 0;
2621         }
2622
2623         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2624 }
2625
2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2627  * @mm: The mm_struct
2628  * @start: The start address to munmap
2629  * @len: The length to be munmapped.
2630  * @uf: The userfaultfd list_head
2631  *
2632  * Return: 0 on success, error otherwise.
2633  */
2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2635               struct list_head *uf)
2636 {
2637         VMA_ITERATOR(vmi, mm, start);
2638
2639         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2640 }
2641
2642 unsigned long mmap_region(struct file *file, unsigned long addr,
2643                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2644                 struct list_head *uf)
2645 {
2646         struct mm_struct *mm = current->mm;
2647         struct vm_area_struct *vma = NULL;
2648         struct vm_area_struct *next, *prev, *merge;
2649         pgoff_t pglen = len >> PAGE_SHIFT;
2650         unsigned long charged = 0;
2651         unsigned long end = addr + len;
2652         unsigned long merge_start = addr, merge_end = end;
2653         pgoff_t vm_pgoff;
2654         int error;
2655         VMA_ITERATOR(vmi, mm, addr);
2656
2657         /* Check against address space limit. */
2658         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2659                 unsigned long nr_pages;
2660
2661                 /*
2662                  * MAP_FIXED may remove pages of mappings that intersects with
2663                  * requested mapping. Account for the pages it would unmap.
2664                  */
2665                 nr_pages = count_vma_pages_range(mm, addr, end);
2666
2667                 if (!may_expand_vm(mm, vm_flags,
2668                                         (len >> PAGE_SHIFT) - nr_pages))
2669                         return -ENOMEM;
2670         }
2671
2672         /* Unmap any existing mapping in the area */
2673         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2674                 return -ENOMEM;
2675
2676         /*
2677          * Private writable mapping: check memory availability
2678          */
2679         if (accountable_mapping(file, vm_flags)) {
2680                 charged = len >> PAGE_SHIFT;
2681                 if (security_vm_enough_memory_mm(mm, charged))
2682                         return -ENOMEM;
2683                 vm_flags |= VM_ACCOUNT;
2684         }
2685
2686         next = vma_next(&vmi);
2687         prev = vma_prev(&vmi);
2688         if (vm_flags & VM_SPECIAL)
2689                 goto cannot_expand;
2690
2691         /* Attempt to expand an old mapping */
2692         /* Check next */
2693         if (next && next->vm_start == end && !vma_policy(next) &&
2694             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2695                                  NULL_VM_UFFD_CTX, NULL)) {
2696                 merge_end = next->vm_end;
2697                 vma = next;
2698                 vm_pgoff = next->vm_pgoff - pglen;
2699         }
2700
2701         /* Check prev */
2702         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2703             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2704                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2705                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2706                                        NULL_VM_UFFD_CTX, NULL))) {
2707                 merge_start = prev->vm_start;
2708                 vma = prev;
2709                 vm_pgoff = prev->vm_pgoff;
2710         }
2711
2712
2713         /* Actually expand, if possible */
2714         if (vma &&
2715             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2716                 khugepaged_enter_vma(vma, vm_flags);
2717                 goto expanded;
2718         }
2719
2720 cannot_expand:
2721         if (prev)
2722                 vma_iter_next_range(&vmi);
2723
2724         /*
2725          * Determine the object being mapped and call the appropriate
2726          * specific mapper. the address has already been validated, but
2727          * not unmapped, but the maps are removed from the list.
2728          */
2729         vma = vm_area_alloc(mm);
2730         if (!vma) {
2731                 error = -ENOMEM;
2732                 goto unacct_error;
2733         }
2734
2735         vma_iter_set(&vmi, addr);
2736         vma->vm_start = addr;
2737         vma->vm_end = end;
2738         vm_flags_init(vma, vm_flags);
2739         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2740         vma->vm_pgoff = pgoff;
2741
2742         if (file) {
2743                 if (vm_flags & VM_SHARED) {
2744                         error = mapping_map_writable(file->f_mapping);
2745                         if (error)
2746                                 goto free_vma;
2747                 }
2748
2749                 vma->vm_file = get_file(file);
2750                 error = call_mmap(file, vma);
2751                 if (error)
2752                         goto unmap_and_free_vma;
2753
2754                 /*
2755                  * Expansion is handled above, merging is handled below.
2756                  * Drivers should not alter the address of the VMA.
2757                  */
2758                 error = -EINVAL;
2759                 if (WARN_ON((addr != vma->vm_start)))
2760                         goto close_and_free_vma;
2761
2762                 vma_iter_set(&vmi, addr);
2763                 /*
2764                  * If vm_flags changed after call_mmap(), we should try merge
2765                  * vma again as we may succeed this time.
2766                  */
2767                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2768                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2769                                     vma->vm_end, vma->vm_flags, NULL,
2770                                     vma->vm_file, vma->vm_pgoff, NULL,
2771                                     NULL_VM_UFFD_CTX, NULL);
2772                         if (merge) {
2773                                 /*
2774                                  * ->mmap() can change vma->vm_file and fput
2775                                  * the original file. So fput the vma->vm_file
2776                                  * here or we would add an extra fput for file
2777                                  * and cause general protection fault
2778                                  * ultimately.
2779                                  */
2780                                 fput(vma->vm_file);
2781                                 vm_area_free(vma);
2782                                 vma = merge;
2783                                 /* Update vm_flags to pick up the change. */
2784                                 vm_flags = vma->vm_flags;
2785                                 goto unmap_writable;
2786                         }
2787                 }
2788
2789                 vm_flags = vma->vm_flags;
2790         } else if (vm_flags & VM_SHARED) {
2791                 error = shmem_zero_setup(vma);
2792                 if (error)
2793                         goto free_vma;
2794         } else {
2795                 vma_set_anonymous(vma);
2796         }
2797
2798         if (map_deny_write_exec(vma, vma->vm_flags)) {
2799                 error = -EACCES;
2800                 goto close_and_free_vma;
2801         }
2802
2803         /* Allow architectures to sanity-check the vm_flags */
2804         error = -EINVAL;
2805         if (!arch_validate_flags(vma->vm_flags))
2806                 goto close_and_free_vma;
2807
2808         error = -ENOMEM;
2809         if (vma_iter_prealloc(&vmi))
2810                 goto close_and_free_vma;
2811
2812         if (vma->vm_file)
2813                 i_mmap_lock_write(vma->vm_file->f_mapping);
2814
2815         vma_iter_store(&vmi, vma);
2816         mm->map_count++;
2817         if (vma->vm_file) {
2818                 if (vma->vm_flags & VM_SHARED)
2819                         mapping_allow_writable(vma->vm_file->f_mapping);
2820
2821                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2822                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2823                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2824                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2825         }
2826
2827         /*
2828          * vma_merge() calls khugepaged_enter_vma() either, the below
2829          * call covers the non-merge case.
2830          */
2831         khugepaged_enter_vma(vma, vma->vm_flags);
2832
2833         /* Once vma denies write, undo our temporary denial count */
2834 unmap_writable:
2835         if (file && vm_flags & VM_SHARED)
2836                 mapping_unmap_writable(file->f_mapping);
2837         file = vma->vm_file;
2838         ksm_add_vma(vma);
2839 expanded:
2840         perf_event_mmap(vma);
2841
2842         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2843         if (vm_flags & VM_LOCKED) {
2844                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2845                                         is_vm_hugetlb_page(vma) ||
2846                                         vma == get_gate_vma(current->mm))
2847                         vm_flags_clear(vma, VM_LOCKED_MASK);
2848                 else
2849                         mm->locked_vm += (len >> PAGE_SHIFT);
2850         }
2851
2852         if (file)
2853                 uprobe_mmap(vma);
2854
2855         /*
2856          * New (or expanded) vma always get soft dirty status.
2857          * Otherwise user-space soft-dirty page tracker won't
2858          * be able to distinguish situation when vma area unmapped,
2859          * then new mapped in-place (which must be aimed as
2860          * a completely new data area).
2861          */
2862         vm_flags_set(vma, VM_SOFTDIRTY);
2863
2864         vma_set_page_prot(vma);
2865
2866         validate_mm(mm);
2867         return addr;
2868
2869 close_and_free_vma:
2870         if (file && vma->vm_ops && vma->vm_ops->close)
2871                 vma->vm_ops->close(vma);
2872
2873         if (file || vma->vm_file) {
2874 unmap_and_free_vma:
2875                 fput(vma->vm_file);
2876                 vma->vm_file = NULL;
2877
2878                 /* Undo any partial mapping done by a device driver. */
2879                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2880                              vma->vm_end, true);
2881         }
2882         if (file && (vm_flags & VM_SHARED))
2883                 mapping_unmap_writable(file->f_mapping);
2884 free_vma:
2885         vm_area_free(vma);
2886 unacct_error:
2887         if (charged)
2888                 vm_unacct_memory(charged);
2889         validate_mm(mm);
2890         return error;
2891 }
2892
2893 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2894 {
2895         int ret;
2896         struct mm_struct *mm = current->mm;
2897         LIST_HEAD(uf);
2898         VMA_ITERATOR(vmi, mm, start);
2899
2900         if (mmap_write_lock_killable(mm))
2901                 return -EINTR;
2902
2903         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2904         if (ret || !unlock)
2905                 mmap_write_unlock(mm);
2906
2907         userfaultfd_unmap_complete(mm, &uf);
2908         return ret;
2909 }
2910
2911 int vm_munmap(unsigned long start, size_t len)
2912 {
2913         return __vm_munmap(start, len, false);
2914 }
2915 EXPORT_SYMBOL(vm_munmap);
2916
2917 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2918 {
2919         addr = untagged_addr(addr);
2920         return __vm_munmap(addr, len, true);
2921 }
2922
2923
2924 /*
2925  * Emulation of deprecated remap_file_pages() syscall.
2926  */
2927 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2928                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2929 {
2930
2931         struct mm_struct *mm = current->mm;
2932         struct vm_area_struct *vma;
2933         unsigned long populate = 0;
2934         unsigned long ret = -EINVAL;
2935         struct file *file;
2936
2937         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2938                      current->comm, current->pid);
2939
2940         if (prot)
2941                 return ret;
2942         start = start & PAGE_MASK;
2943         size = size & PAGE_MASK;
2944
2945         if (start + size <= start)
2946                 return ret;
2947
2948         /* Does pgoff wrap? */
2949         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2950                 return ret;
2951
2952         if (mmap_write_lock_killable(mm))
2953                 return -EINTR;
2954
2955         vma = vma_lookup(mm, start);
2956
2957         if (!vma || !(vma->vm_flags & VM_SHARED))
2958                 goto out;
2959
2960         if (start + size > vma->vm_end) {
2961                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2962                 struct vm_area_struct *next, *prev = vma;
2963
2964                 for_each_vma_range(vmi, next, start + size) {
2965                         /* hole between vmas ? */
2966                         if (next->vm_start != prev->vm_end)
2967                                 goto out;
2968
2969                         if (next->vm_file != vma->vm_file)
2970                                 goto out;
2971
2972                         if (next->vm_flags != vma->vm_flags)
2973                                 goto out;
2974
2975                         if (start + size <= next->vm_end)
2976                                 break;
2977
2978                         prev = next;
2979                 }
2980
2981                 if (!next)
2982                         goto out;
2983         }
2984
2985         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2986         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2987         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2988
2989         flags &= MAP_NONBLOCK;
2990         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2991         if (vma->vm_flags & VM_LOCKED)
2992                 flags |= MAP_LOCKED;
2993
2994         file = get_file(vma->vm_file);
2995         ret = do_mmap(vma->vm_file, start, size,
2996                         prot, flags, pgoff, &populate, NULL);
2997         fput(file);
2998 out:
2999         mmap_write_unlock(mm);
3000         if (populate)
3001                 mm_populate(ret, populate);
3002         if (!IS_ERR_VALUE(ret))
3003                 ret = 0;
3004         return ret;
3005 }
3006
3007 /*
3008  * do_vma_munmap() - Unmap a full or partial vma.
3009  * @vmi: The vma iterator pointing at the vma
3010  * @vma: The first vma to be munmapped
3011  * @start: the start of the address to unmap
3012  * @end: The end of the address to unmap
3013  * @uf: The userfaultfd list_head
3014  * @unlock: Drop the lock on success
3015  *
3016  * unmaps a VMA mapping when the vma iterator is already in position.
3017  * Does not handle alignment.
3018  *
3019  * Return: 0 on success drops the lock of so directed, error on failure and will
3020  * still hold the lock.
3021  */
3022 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3023                 unsigned long start, unsigned long end, struct list_head *uf,
3024                 bool unlock)
3025 {
3026         struct mm_struct *mm = vma->vm_mm;
3027
3028         arch_unmap(mm, start, end);
3029         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3030 }
3031
3032 /*
3033  * do_brk_flags() - Increase the brk vma if the flags match.
3034  * @vmi: The vma iterator
3035  * @addr: The start address
3036  * @len: The length of the increase
3037  * @vma: The vma,
3038  * @flags: The VMA Flags
3039  *
3040  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3041  * do not match then create a new anonymous VMA.  Eventually we may be able to
3042  * do some brk-specific accounting here.
3043  */
3044 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3045                 unsigned long addr, unsigned long len, unsigned long flags)
3046 {
3047         struct mm_struct *mm = current->mm;
3048         struct vma_prepare vp;
3049
3050         validate_mm(mm);
3051         /*
3052          * Check against address space limits by the changed size
3053          * Note: This happens *after* clearing old mappings in some code paths.
3054          */
3055         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3056         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3057                 return -ENOMEM;
3058
3059         if (mm->map_count > sysctl_max_map_count)
3060                 return -ENOMEM;
3061
3062         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3063                 return -ENOMEM;
3064
3065         /*
3066          * Expand the existing vma if possible; Note that singular lists do not
3067          * occur after forking, so the expand will only happen on new VMAs.
3068          */
3069         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3070             can_vma_merge_after(vma, flags, NULL, NULL,
3071                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3072                 if (vma_iter_prealloc(vmi))
3073                         goto unacct_fail;
3074
3075                 init_vma_prep(&vp, vma);
3076                 vma_prepare(&vp);
3077                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3078                 vma->vm_end = addr + len;
3079                 vm_flags_set(vma, VM_SOFTDIRTY);
3080                 vma_iter_store(vmi, vma);
3081
3082                 vma_complete(&vp, vmi, mm);
3083                 khugepaged_enter_vma(vma, flags);
3084                 goto out;
3085         }
3086
3087         /* create a vma struct for an anonymous mapping */
3088         vma = vm_area_alloc(mm);
3089         if (!vma)
3090                 goto unacct_fail;
3091
3092         vma_set_anonymous(vma);
3093         vma->vm_start = addr;
3094         vma->vm_end = addr + len;
3095         vma->vm_pgoff = addr >> PAGE_SHIFT;
3096         vm_flags_init(vma, flags);
3097         vma->vm_page_prot = vm_get_page_prot(flags);
3098         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3099                 goto mas_store_fail;
3100
3101         mm->map_count++;
3102         ksm_add_vma(vma);
3103 out:
3104         perf_event_mmap(vma);
3105         mm->total_vm += len >> PAGE_SHIFT;
3106         mm->data_vm += len >> PAGE_SHIFT;
3107         if (flags & VM_LOCKED)
3108                 mm->locked_vm += (len >> PAGE_SHIFT);
3109         vm_flags_set(vma, VM_SOFTDIRTY);
3110         validate_mm(mm);
3111         return 0;
3112
3113 mas_store_fail:
3114         vm_area_free(vma);
3115 unacct_fail:
3116         vm_unacct_memory(len >> PAGE_SHIFT);
3117         return -ENOMEM;
3118 }
3119
3120 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3121 {
3122         struct mm_struct *mm = current->mm;
3123         struct vm_area_struct *vma = NULL;
3124         unsigned long len;
3125         int ret;
3126         bool populate;
3127         LIST_HEAD(uf);
3128         VMA_ITERATOR(vmi, mm, addr);
3129
3130         len = PAGE_ALIGN(request);
3131         if (len < request)
3132                 return -ENOMEM;
3133         if (!len)
3134                 return 0;
3135
3136         if (mmap_write_lock_killable(mm))
3137                 return -EINTR;
3138
3139         /* Until we need other flags, refuse anything except VM_EXEC. */
3140         if ((flags & (~VM_EXEC)) != 0)
3141                 return -EINVAL;
3142
3143         ret = check_brk_limits(addr, len);
3144         if (ret)
3145                 goto limits_failed;
3146
3147         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3148         if (ret)
3149                 goto munmap_failed;
3150
3151         vma = vma_prev(&vmi);
3152         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3153         populate = ((mm->def_flags & VM_LOCKED) != 0);
3154         mmap_write_unlock(mm);
3155         userfaultfd_unmap_complete(mm, &uf);
3156         if (populate && !ret)
3157                 mm_populate(addr, len);
3158         return ret;
3159
3160 munmap_failed:
3161 limits_failed:
3162         mmap_write_unlock(mm);
3163         return ret;
3164 }
3165 EXPORT_SYMBOL(vm_brk_flags);
3166
3167 int vm_brk(unsigned long addr, unsigned long len)
3168 {
3169         return vm_brk_flags(addr, len, 0);
3170 }
3171 EXPORT_SYMBOL(vm_brk);
3172
3173 /* Release all mmaps. */
3174 void exit_mmap(struct mm_struct *mm)
3175 {
3176         struct mmu_gather tlb;
3177         struct vm_area_struct *vma;
3178         unsigned long nr_accounted = 0;
3179         MA_STATE(mas, &mm->mm_mt, 0, 0);
3180         int count = 0;
3181
3182         /* mm's last user has gone, and its about to be pulled down */
3183         mmu_notifier_release(mm);
3184
3185         mmap_read_lock(mm);
3186         arch_exit_mmap(mm);
3187
3188         vma = mas_find(&mas, ULONG_MAX);
3189         if (!vma) {
3190                 /* Can happen if dup_mmap() received an OOM */
3191                 mmap_read_unlock(mm);
3192                 return;
3193         }
3194
3195         lru_add_drain();
3196         flush_cache_mm(mm);
3197         tlb_gather_mmu_fullmm(&tlb, mm);
3198         /* update_hiwater_rss(mm) here? but nobody should be looking */
3199         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3200         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3201         mmap_read_unlock(mm);
3202
3203         /*
3204          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3205          * because the memory has been already freed.
3206          */
3207         set_bit(MMF_OOM_SKIP, &mm->flags);
3208         mmap_write_lock(mm);
3209         mt_clear_in_rcu(&mm->mm_mt);
3210         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3211                       USER_PGTABLES_CEILING, true);
3212         tlb_finish_mmu(&tlb);
3213
3214         /*
3215          * Walk the list again, actually closing and freeing it, with preemption
3216          * enabled, without holding any MM locks besides the unreachable
3217          * mmap_write_lock.
3218          */
3219         do {
3220                 if (vma->vm_flags & VM_ACCOUNT)
3221                         nr_accounted += vma_pages(vma);
3222                 remove_vma(vma, true);
3223                 count++;
3224                 cond_resched();
3225         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3226
3227         BUG_ON(count != mm->map_count);
3228
3229         trace_exit_mmap(mm);
3230         __mt_destroy(&mm->mm_mt);
3231         mmap_write_unlock(mm);
3232         vm_unacct_memory(nr_accounted);
3233 }
3234
3235 /* Insert vm structure into process list sorted by address
3236  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3237  * then i_mmap_rwsem is taken here.
3238  */
3239 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3240 {
3241         unsigned long charged = vma_pages(vma);
3242
3243
3244         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3245                 return -ENOMEM;
3246
3247         if ((vma->vm_flags & VM_ACCOUNT) &&
3248              security_vm_enough_memory_mm(mm, charged))
3249                 return -ENOMEM;
3250
3251         /*
3252          * The vm_pgoff of a purely anonymous vma should be irrelevant
3253          * until its first write fault, when page's anon_vma and index
3254          * are set.  But now set the vm_pgoff it will almost certainly
3255          * end up with (unless mremap moves it elsewhere before that
3256          * first wfault), so /proc/pid/maps tells a consistent story.
3257          *
3258          * By setting it to reflect the virtual start address of the
3259          * vma, merges and splits can happen in a seamless way, just
3260          * using the existing file pgoff checks and manipulations.
3261          * Similarly in do_mmap and in do_brk_flags.
3262          */
3263         if (vma_is_anonymous(vma)) {
3264                 BUG_ON(vma->anon_vma);
3265                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3266         }
3267
3268         if (vma_link(mm, vma)) {
3269                 vm_unacct_memory(charged);
3270                 return -ENOMEM;
3271         }
3272
3273         return 0;
3274 }
3275
3276 /*
3277  * Copy the vma structure to a new location in the same mm,
3278  * prior to moving page table entries, to effect an mremap move.
3279  */
3280 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3281         unsigned long addr, unsigned long len, pgoff_t pgoff,
3282         bool *need_rmap_locks)
3283 {
3284         struct vm_area_struct *vma = *vmap;
3285         unsigned long vma_start = vma->vm_start;
3286         struct mm_struct *mm = vma->vm_mm;
3287         struct vm_area_struct *new_vma, *prev;
3288         bool faulted_in_anon_vma = true;
3289         VMA_ITERATOR(vmi, mm, addr);
3290
3291         validate_mm(mm);
3292         /*
3293          * If anonymous vma has not yet been faulted, update new pgoff
3294          * to match new location, to increase its chance of merging.
3295          */
3296         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3297                 pgoff = addr >> PAGE_SHIFT;
3298                 faulted_in_anon_vma = false;
3299         }
3300
3301         new_vma = find_vma_prev(mm, addr, &prev);
3302         if (new_vma && new_vma->vm_start < addr + len)
3303                 return NULL;    /* should never get here */
3304
3305         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3306                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3307                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3308         if (new_vma) {
3309                 /*
3310                  * Source vma may have been merged into new_vma
3311                  */
3312                 if (unlikely(vma_start >= new_vma->vm_start &&
3313                              vma_start < new_vma->vm_end)) {
3314                         /*
3315                          * The only way we can get a vma_merge with
3316                          * self during an mremap is if the vma hasn't
3317                          * been faulted in yet and we were allowed to
3318                          * reset the dst vma->vm_pgoff to the
3319                          * destination address of the mremap to allow
3320                          * the merge to happen. mremap must change the
3321                          * vm_pgoff linearity between src and dst vmas
3322                          * (in turn preventing a vma_merge) to be
3323                          * safe. It is only safe to keep the vm_pgoff
3324                          * linear if there are no pages mapped yet.
3325                          */
3326                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3327                         *vmap = vma = new_vma;
3328                 }
3329                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3330         } else {
3331                 new_vma = vm_area_dup(vma);
3332                 if (!new_vma)
3333                         goto out;
3334                 new_vma->vm_start = addr;
3335                 new_vma->vm_end = addr + len;
3336                 new_vma->vm_pgoff = pgoff;
3337                 if (vma_dup_policy(vma, new_vma))
3338                         goto out_free_vma;
3339                 if (anon_vma_clone(new_vma, vma))
3340                         goto out_free_mempol;
3341                 if (new_vma->vm_file)
3342                         get_file(new_vma->vm_file);
3343                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3344                         new_vma->vm_ops->open(new_vma);
3345                 vma_start_write(new_vma);
3346                 if (vma_link(mm, new_vma))
3347                         goto out_vma_link;
3348                 *need_rmap_locks = false;
3349         }
3350         validate_mm(mm);
3351         return new_vma;
3352
3353 out_vma_link:
3354         if (new_vma->vm_ops && new_vma->vm_ops->close)
3355                 new_vma->vm_ops->close(new_vma);
3356
3357         if (new_vma->vm_file)
3358                 fput(new_vma->vm_file);
3359
3360         unlink_anon_vmas(new_vma);
3361 out_free_mempol:
3362         mpol_put(vma_policy(new_vma));
3363 out_free_vma:
3364         vm_area_free(new_vma);
3365 out:
3366         validate_mm(mm);
3367         return NULL;
3368 }
3369
3370 /*
3371  * Return true if the calling process may expand its vm space by the passed
3372  * number of pages
3373  */
3374 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3375 {
3376         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3377                 return false;
3378
3379         if (is_data_mapping(flags) &&
3380             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3381                 /* Workaround for Valgrind */
3382                 if (rlimit(RLIMIT_DATA) == 0 &&
3383                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3384                         return true;
3385
3386                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3387                              current->comm, current->pid,
3388                              (mm->data_vm + npages) << PAGE_SHIFT,
3389                              rlimit(RLIMIT_DATA),
3390                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3391
3392                 if (!ignore_rlimit_data)
3393                         return false;
3394         }
3395
3396         return true;
3397 }
3398
3399 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3400 {
3401         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3402
3403         if (is_exec_mapping(flags))
3404                 mm->exec_vm += npages;
3405         else if (is_stack_mapping(flags))
3406                 mm->stack_vm += npages;
3407         else if (is_data_mapping(flags))
3408                 mm->data_vm += npages;
3409 }
3410
3411 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3412
3413 /*
3414  * Having a close hook prevents vma merging regardless of flags.
3415  */
3416 static void special_mapping_close(struct vm_area_struct *vma)
3417 {
3418 }
3419
3420 static const char *special_mapping_name(struct vm_area_struct *vma)
3421 {
3422         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3423 }
3424
3425 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3426 {
3427         struct vm_special_mapping *sm = new_vma->vm_private_data;
3428
3429         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3430                 return -EFAULT;
3431
3432         if (sm->mremap)
3433                 return sm->mremap(sm, new_vma);
3434
3435         return 0;
3436 }
3437
3438 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3439 {
3440         /*
3441          * Forbid splitting special mappings - kernel has expectations over
3442          * the number of pages in mapping. Together with VM_DONTEXPAND
3443          * the size of vma should stay the same over the special mapping's
3444          * lifetime.
3445          */
3446         return -EINVAL;
3447 }
3448
3449 static const struct vm_operations_struct special_mapping_vmops = {
3450         .close = special_mapping_close,
3451         .fault = special_mapping_fault,
3452         .mremap = special_mapping_mremap,
3453         .name = special_mapping_name,
3454         /* vDSO code relies that VVAR can't be accessed remotely */
3455         .access = NULL,
3456         .may_split = special_mapping_split,
3457 };
3458
3459 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3460         .close = special_mapping_close,
3461         .fault = special_mapping_fault,
3462 };
3463
3464 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3465 {
3466         struct vm_area_struct *vma = vmf->vma;
3467         pgoff_t pgoff;
3468         struct page **pages;
3469
3470         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3471                 pages = vma->vm_private_data;
3472         } else {
3473                 struct vm_special_mapping *sm = vma->vm_private_data;
3474
3475                 if (sm->fault)
3476                         return sm->fault(sm, vmf->vma, vmf);
3477
3478                 pages = sm->pages;
3479         }
3480
3481         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3482                 pgoff--;
3483
3484         if (*pages) {
3485                 struct page *page = *pages;
3486                 get_page(page);
3487                 vmf->page = page;
3488                 return 0;
3489         }
3490
3491         return VM_FAULT_SIGBUS;
3492 }
3493
3494 static struct vm_area_struct *__install_special_mapping(
3495         struct mm_struct *mm,
3496         unsigned long addr, unsigned long len,
3497         unsigned long vm_flags, void *priv,
3498         const struct vm_operations_struct *ops)
3499 {
3500         int ret;
3501         struct vm_area_struct *vma;
3502
3503         validate_mm(mm);
3504         vma = vm_area_alloc(mm);
3505         if (unlikely(vma == NULL))
3506                 return ERR_PTR(-ENOMEM);
3507
3508         vma->vm_start = addr;
3509         vma->vm_end = addr + len;
3510
3511         vm_flags_init(vma, (vm_flags | mm->def_flags |
3512                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3513         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3514
3515         vma->vm_ops = ops;
3516         vma->vm_private_data = priv;
3517
3518         ret = insert_vm_struct(mm, vma);
3519         if (ret)
3520                 goto out;
3521
3522         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3523
3524         perf_event_mmap(vma);
3525
3526         validate_mm(mm);
3527         return vma;
3528
3529 out:
3530         vm_area_free(vma);
3531         validate_mm(mm);
3532         return ERR_PTR(ret);
3533 }
3534
3535 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3536         const struct vm_special_mapping *sm)
3537 {
3538         return vma->vm_private_data == sm &&
3539                 (vma->vm_ops == &special_mapping_vmops ||
3540                  vma->vm_ops == &legacy_special_mapping_vmops);
3541 }
3542
3543 /*
3544  * Called with mm->mmap_lock held for writing.
3545  * Insert a new vma covering the given region, with the given flags.
3546  * Its pages are supplied by the given array of struct page *.
3547  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3548  * The region past the last page supplied will always produce SIGBUS.
3549  * The array pointer and the pages it points to are assumed to stay alive
3550  * for as long as this mapping might exist.
3551  */
3552 struct vm_area_struct *_install_special_mapping(
3553         struct mm_struct *mm,
3554         unsigned long addr, unsigned long len,
3555         unsigned long vm_flags, const struct vm_special_mapping *spec)
3556 {
3557         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3558                                         &special_mapping_vmops);
3559 }
3560
3561 int install_special_mapping(struct mm_struct *mm,
3562                             unsigned long addr, unsigned long len,
3563                             unsigned long vm_flags, struct page **pages)
3564 {
3565         struct vm_area_struct *vma = __install_special_mapping(
3566                 mm, addr, len, vm_flags, (void *)pages,
3567                 &legacy_special_mapping_vmops);
3568
3569         return PTR_ERR_OR_ZERO(vma);
3570 }
3571
3572 static DEFINE_MUTEX(mm_all_locks_mutex);
3573
3574 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3575 {
3576         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3577                 /*
3578                  * The LSB of head.next can't change from under us
3579                  * because we hold the mm_all_locks_mutex.
3580                  */
3581                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3582                 /*
3583                  * We can safely modify head.next after taking the
3584                  * anon_vma->root->rwsem. If some other vma in this mm shares
3585                  * the same anon_vma we won't take it again.
3586                  *
3587                  * No need of atomic instructions here, head.next
3588                  * can't change from under us thanks to the
3589                  * anon_vma->root->rwsem.
3590                  */
3591                 if (__test_and_set_bit(0, (unsigned long *)
3592                                        &anon_vma->root->rb_root.rb_root.rb_node))
3593                         BUG();
3594         }
3595 }
3596
3597 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3598 {
3599         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3600                 /*
3601                  * AS_MM_ALL_LOCKS can't change from under us because
3602                  * we hold the mm_all_locks_mutex.
3603                  *
3604                  * Operations on ->flags have to be atomic because
3605                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3606                  * mm_all_locks_mutex, there may be other cpus
3607                  * changing other bitflags in parallel to us.
3608                  */
3609                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3610                         BUG();
3611                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3612         }
3613 }
3614
3615 /*
3616  * This operation locks against the VM for all pte/vma/mm related
3617  * operations that could ever happen on a certain mm. This includes
3618  * vmtruncate, try_to_unmap, and all page faults.
3619  *
3620  * The caller must take the mmap_lock in write mode before calling
3621  * mm_take_all_locks(). The caller isn't allowed to release the
3622  * mmap_lock until mm_drop_all_locks() returns.
3623  *
3624  * mmap_lock in write mode is required in order to block all operations
3625  * that could modify pagetables and free pages without need of
3626  * altering the vma layout. It's also needed in write mode to avoid new
3627  * anon_vmas to be associated with existing vmas.
3628  *
3629  * A single task can't take more than one mm_take_all_locks() in a row
3630  * or it would deadlock.
3631  *
3632  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3633  * mapping->flags avoid to take the same lock twice, if more than one
3634  * vma in this mm is backed by the same anon_vma or address_space.
3635  *
3636  * We take locks in following order, accordingly to comment at beginning
3637  * of mm/rmap.c:
3638  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3639  *     hugetlb mapping);
3640  *   - all vmas marked locked
3641  *   - all i_mmap_rwsem locks;
3642  *   - all anon_vma->rwseml
3643  *
3644  * We can take all locks within these types randomly because the VM code
3645  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3646  * mm_all_locks_mutex.
3647  *
3648  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3649  * that may have to take thousand of locks.
3650  *
3651  * mm_take_all_locks() can fail if it's interrupted by signals.
3652  */
3653 int mm_take_all_locks(struct mm_struct *mm)
3654 {
3655         struct vm_area_struct *vma;
3656         struct anon_vma_chain *avc;
3657         MA_STATE(mas, &mm->mm_mt, 0, 0);
3658
3659         mmap_assert_write_locked(mm);
3660
3661         mutex_lock(&mm_all_locks_mutex);
3662
3663         mas_for_each(&mas, vma, ULONG_MAX) {
3664                 if (signal_pending(current))
3665                         goto out_unlock;
3666                 vma_start_write(vma);
3667         }
3668
3669         mas_set(&mas, 0);
3670         mas_for_each(&mas, vma, ULONG_MAX) {
3671                 if (signal_pending(current))
3672                         goto out_unlock;
3673                 if (vma->vm_file && vma->vm_file->f_mapping &&
3674                                 is_vm_hugetlb_page(vma))
3675                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3676         }
3677
3678         mas_set(&mas, 0);
3679         mas_for_each(&mas, vma, ULONG_MAX) {
3680                 if (signal_pending(current))
3681                         goto out_unlock;
3682                 if (vma->vm_file && vma->vm_file->f_mapping &&
3683                                 !is_vm_hugetlb_page(vma))
3684                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3685         }
3686
3687         mas_set(&mas, 0);
3688         mas_for_each(&mas, vma, ULONG_MAX) {
3689                 if (signal_pending(current))
3690                         goto out_unlock;
3691                 if (vma->anon_vma)
3692                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3693                                 vm_lock_anon_vma(mm, avc->anon_vma);
3694         }
3695
3696         return 0;
3697
3698 out_unlock:
3699         mm_drop_all_locks(mm);
3700         return -EINTR;
3701 }
3702
3703 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3704 {
3705         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3706                 /*
3707                  * The LSB of head.next can't change to 0 from under
3708                  * us because we hold the mm_all_locks_mutex.
3709                  *
3710                  * We must however clear the bitflag before unlocking
3711                  * the vma so the users using the anon_vma->rb_root will
3712                  * never see our bitflag.
3713                  *
3714                  * No need of atomic instructions here, head.next
3715                  * can't change from under us until we release the
3716                  * anon_vma->root->rwsem.
3717                  */
3718                 if (!__test_and_clear_bit(0, (unsigned long *)
3719                                           &anon_vma->root->rb_root.rb_root.rb_node))
3720                         BUG();
3721                 anon_vma_unlock_write(anon_vma);
3722         }
3723 }
3724
3725 static void vm_unlock_mapping(struct address_space *mapping)
3726 {
3727         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3728                 /*
3729                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3730                  * because we hold the mm_all_locks_mutex.
3731                  */
3732                 i_mmap_unlock_write(mapping);
3733                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3734                                         &mapping->flags))
3735                         BUG();
3736         }
3737 }
3738
3739 /*
3740  * The mmap_lock cannot be released by the caller until
3741  * mm_drop_all_locks() returns.
3742  */
3743 void mm_drop_all_locks(struct mm_struct *mm)
3744 {
3745         struct vm_area_struct *vma;
3746         struct anon_vma_chain *avc;
3747         MA_STATE(mas, &mm->mm_mt, 0, 0);
3748
3749         mmap_assert_write_locked(mm);
3750         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3751
3752         mas_for_each(&mas, vma, ULONG_MAX) {
3753                 if (vma->anon_vma)
3754                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3755                                 vm_unlock_anon_vma(avc->anon_vma);
3756                 if (vma->vm_file && vma->vm_file->f_mapping)
3757                         vm_unlock_mapping(vma->vm_file->f_mapping);
3758         }
3759         vma_end_write_all(mm);
3760
3761         mutex_unlock(&mm_all_locks_mutex);
3762 }
3763
3764 /*
3765  * initialise the percpu counter for VM
3766  */
3767 void __init mmap_init(void)
3768 {
3769         int ret;
3770
3771         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3772         VM_BUG_ON(ret);
3773 }
3774
3775 /*
3776  * Initialise sysctl_user_reserve_kbytes.
3777  *
3778  * This is intended to prevent a user from starting a single memory hogging
3779  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3780  * mode.
3781  *
3782  * The default value is min(3% of free memory, 128MB)
3783  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3784  */
3785 static int init_user_reserve(void)
3786 {
3787         unsigned long free_kbytes;
3788
3789         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3790
3791         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3792         return 0;
3793 }
3794 subsys_initcall(init_user_reserve);
3795
3796 /*
3797  * Initialise sysctl_admin_reserve_kbytes.
3798  *
3799  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3800  * to log in and kill a memory hogging process.
3801  *
3802  * Systems with more than 256MB will reserve 8MB, enough to recover
3803  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3804  * only reserve 3% of free pages by default.
3805  */
3806 static int init_admin_reserve(void)
3807 {
3808         unsigned long free_kbytes;
3809
3810         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3811
3812         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3813         return 0;
3814 }
3815 subsys_initcall(init_admin_reserve);
3816
3817 /*
3818  * Reinititalise user and admin reserves if memory is added or removed.
3819  *
3820  * The default user reserve max is 128MB, and the default max for the
3821  * admin reserve is 8MB. These are usually, but not always, enough to
3822  * enable recovery from a memory hogging process using login/sshd, a shell,
3823  * and tools like top. It may make sense to increase or even disable the
3824  * reserve depending on the existence of swap or variations in the recovery
3825  * tools. So, the admin may have changed them.
3826  *
3827  * If memory is added and the reserves have been eliminated or increased above
3828  * the default max, then we'll trust the admin.
3829  *
3830  * If memory is removed and there isn't enough free memory, then we
3831  * need to reset the reserves.
3832  *
3833  * Otherwise keep the reserve set by the admin.
3834  */
3835 static int reserve_mem_notifier(struct notifier_block *nb,
3836                              unsigned long action, void *data)
3837 {
3838         unsigned long tmp, free_kbytes;
3839
3840         switch (action) {
3841         case MEM_ONLINE:
3842                 /* Default max is 128MB. Leave alone if modified by operator. */
3843                 tmp = sysctl_user_reserve_kbytes;
3844                 if (0 < tmp && tmp < (1UL << 17))
3845                         init_user_reserve();
3846
3847                 /* Default max is 8MB.  Leave alone if modified by operator. */
3848                 tmp = sysctl_admin_reserve_kbytes;
3849                 if (0 < tmp && tmp < (1UL << 13))
3850                         init_admin_reserve();
3851
3852                 break;
3853         case MEM_OFFLINE:
3854                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3855
3856                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3857                         init_user_reserve();
3858                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3859                                 sysctl_user_reserve_kbytes);
3860                 }
3861
3862                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3863                         init_admin_reserve();
3864                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3865                                 sysctl_admin_reserve_kbytes);
3866                 }
3867                 break;
3868         default:
3869                 break;
3870         }
3871         return NOTIFY_OK;
3872 }
3873
3874 static int __meminit init_reserve_notifier(void)
3875 {
3876         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3877                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3878
3879         return 0;
3880 }
3881 subsys_initcall(init_reserve_notifier);