Merge tag 'sound-fix-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         xa_lock_irq(&mapping->i_pages);
471
472         pslot = radix_tree_lookup_slot(&mapping->i_pages,
473                                         page_index(page));
474
475         expected_count += hpage_nr_pages(page) + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot,
478                                         &mapping->i_pages.xa_lock) != page) {
479                 xa_unlock_irq(&mapping->i_pages);
480                 return -EAGAIN;
481         }
482
483         if (!page_ref_freeze(page, expected_count)) {
484                 xa_unlock_irq(&mapping->i_pages);
485                 return -EAGAIN;
486         }
487
488         /*
489          * In the async migration case of moving a page with buffers, lock the
490          * buffers using trylock before the mapping is moved. If the mapping
491          * was moved, we later failed to lock the buffers and could not move
492          * the mapping back due to an elevated page count, we would have to
493          * block waiting on other references to be dropped.
494          */
495         if (mode == MIGRATE_ASYNC && head &&
496                         !buffer_migrate_lock_buffers(head, mode)) {
497                 page_ref_unfreeze(page, expected_count);
498                 xa_unlock_irq(&mapping->i_pages);
499                 return -EAGAIN;
500         }
501
502         /*
503          * Now we know that no one else is looking at the page:
504          * no turning back from here.
505          */
506         newpage->index = page->index;
507         newpage->mapping = page->mapping;
508         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509         if (PageSwapBacked(page)) {
510                 __SetPageSwapBacked(newpage);
511                 if (PageSwapCache(page)) {
512                         SetPageSwapCache(newpage);
513                         set_page_private(newpage, page_private(page));
514                 }
515         } else {
516                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
517         }
518
519         /* Move dirty while page refs frozen and newpage not yet exposed */
520         dirty = PageDirty(page);
521         if (dirty) {
522                 ClearPageDirty(page);
523                 SetPageDirty(newpage);
524         }
525
526         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527         if (PageTransHuge(page)) {
528                 int i;
529                 int index = page_index(page);
530
531                 for (i = 1; i < HPAGE_PMD_NR; i++) {
532                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
533                                                        index + i);
534                         radix_tree_replace_slot(&mapping->i_pages, pslot,
535                                                 newpage + i);
536                 }
537         }
538
539         /*
540          * Drop cache reference from old page by unfreezing
541          * to one less reference.
542          * We know this isn't the last reference.
543          */
544         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
545
546         xa_unlock(&mapping->i_pages);
547         /* Leave irq disabled to prevent preemption while updating stats */
548
549         /*
550          * If moved to a different zone then also account
551          * the page for that zone. Other VM counters will be
552          * taken care of when we establish references to the
553          * new page and drop references to the old page.
554          *
555          * Note that anonymous pages are accounted for
556          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557          * are mapped to swap space.
558          */
559         if (newzone != oldzone) {
560                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
561                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
562                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
563                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
564                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
565                 }
566                 if (dirty && mapping_cap_account_dirty(mapping)) {
567                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
568                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
569                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
570                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
571                 }
572         }
573         local_irq_enable();
574
575         return MIGRATEPAGE_SUCCESS;
576 }
577 EXPORT_SYMBOL(migrate_page_move_mapping);
578
579 /*
580  * The expected number of remaining references is the same as that
581  * of migrate_page_move_mapping().
582  */
583 int migrate_huge_page_move_mapping(struct address_space *mapping,
584                                    struct page *newpage, struct page *page)
585 {
586         int expected_count;
587         void **pslot;
588
589         xa_lock_irq(&mapping->i_pages);
590
591         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
592
593         expected_count = 2 + page_has_private(page);
594         if (page_count(page) != expected_count ||
595                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
596                 xa_unlock_irq(&mapping->i_pages);
597                 return -EAGAIN;
598         }
599
600         if (!page_ref_freeze(page, expected_count)) {
601                 xa_unlock_irq(&mapping->i_pages);
602                 return -EAGAIN;
603         }
604
605         newpage->index = page->index;
606         newpage->mapping = page->mapping;
607
608         get_page(newpage);
609
610         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
611
612         page_ref_unfreeze(page, expected_count - 1);
613
614         xa_unlock_irq(&mapping->i_pages);
615
616         return MIGRATEPAGE_SUCCESS;
617 }
618
619 /*
620  * Gigantic pages are so large that we do not guarantee that page++ pointer
621  * arithmetic will work across the entire page.  We need something more
622  * specialized.
623  */
624 static void __copy_gigantic_page(struct page *dst, struct page *src,
625                                 int nr_pages)
626 {
627         int i;
628         struct page *dst_base = dst;
629         struct page *src_base = src;
630
631         for (i = 0; i < nr_pages; ) {
632                 cond_resched();
633                 copy_highpage(dst, src);
634
635                 i++;
636                 dst = mem_map_next(dst, dst_base, i);
637                 src = mem_map_next(src, src_base, i);
638         }
639 }
640
641 static void copy_huge_page(struct page *dst, struct page *src)
642 {
643         int i;
644         int nr_pages;
645
646         if (PageHuge(src)) {
647                 /* hugetlbfs page */
648                 struct hstate *h = page_hstate(src);
649                 nr_pages = pages_per_huge_page(h);
650
651                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
652                         __copy_gigantic_page(dst, src, nr_pages);
653                         return;
654                 }
655         } else {
656                 /* thp page */
657                 BUG_ON(!PageTransHuge(src));
658                 nr_pages = hpage_nr_pages(src);
659         }
660
661         for (i = 0; i < nr_pages; i++) {
662                 cond_resched();
663                 copy_highpage(dst + i, src + i);
664         }
665 }
666
667 /*
668  * Copy the page to its new location
669  */
670 void migrate_page_states(struct page *newpage, struct page *page)
671 {
672         int cpupid;
673
674         if (PageError(page))
675                 SetPageError(newpage);
676         if (PageReferenced(page))
677                 SetPageReferenced(newpage);
678         if (PageUptodate(page))
679                 SetPageUptodate(newpage);
680         if (TestClearPageActive(page)) {
681                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
682                 SetPageActive(newpage);
683         } else if (TestClearPageUnevictable(page))
684                 SetPageUnevictable(newpage);
685         if (PageChecked(page))
686                 SetPageChecked(newpage);
687         if (PageMappedToDisk(page))
688                 SetPageMappedToDisk(newpage);
689
690         /* Move dirty on pages not done by migrate_page_move_mapping() */
691         if (PageDirty(page))
692                 SetPageDirty(newpage);
693
694         if (page_is_young(page))
695                 set_page_young(newpage);
696         if (page_is_idle(page))
697                 set_page_idle(newpage);
698
699         /*
700          * Copy NUMA information to the new page, to prevent over-eager
701          * future migrations of this same page.
702          */
703         cpupid = page_cpupid_xchg_last(page, -1);
704         page_cpupid_xchg_last(newpage, cpupid);
705
706         ksm_migrate_page(newpage, page);
707         /*
708          * Please do not reorder this without considering how mm/ksm.c's
709          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
710          */
711         if (PageSwapCache(page))
712                 ClearPageSwapCache(page);
713         ClearPagePrivate(page);
714         set_page_private(page, 0);
715
716         /*
717          * If any waiters have accumulated on the new page then
718          * wake them up.
719          */
720         if (PageWriteback(newpage))
721                 end_page_writeback(newpage);
722
723         copy_page_owner(page, newpage);
724
725         mem_cgroup_migrate(page, newpage);
726 }
727 EXPORT_SYMBOL(migrate_page_states);
728
729 void migrate_page_copy(struct page *newpage, struct page *page)
730 {
731         if (PageHuge(page) || PageTransHuge(page))
732                 copy_huge_page(newpage, page);
733         else
734                 copy_highpage(newpage, page);
735
736         migrate_page_states(newpage, page);
737 }
738 EXPORT_SYMBOL(migrate_page_copy);
739
740 /************************************************************
741  *                    Migration functions
742  ***********************************************************/
743
744 /*
745  * Common logic to directly migrate a single LRU page suitable for
746  * pages that do not use PagePrivate/PagePrivate2.
747  *
748  * Pages are locked upon entry and exit.
749  */
750 int migrate_page(struct address_space *mapping,
751                 struct page *newpage, struct page *page,
752                 enum migrate_mode mode)
753 {
754         int rc;
755
756         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
757
758         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
759
760         if (rc != MIGRATEPAGE_SUCCESS)
761                 return rc;
762
763         if (mode != MIGRATE_SYNC_NO_COPY)
764                 migrate_page_copy(newpage, page);
765         else
766                 migrate_page_states(newpage, page);
767         return MIGRATEPAGE_SUCCESS;
768 }
769 EXPORT_SYMBOL(migrate_page);
770
771 #ifdef CONFIG_BLOCK
772 /*
773  * Migration function for pages with buffers. This function can only be used
774  * if the underlying filesystem guarantees that no other references to "page"
775  * exist.
776  */
777 int buffer_migrate_page(struct address_space *mapping,
778                 struct page *newpage, struct page *page, enum migrate_mode mode)
779 {
780         struct buffer_head *bh, *head;
781         int rc;
782
783         if (!page_has_buffers(page))
784                 return migrate_page(mapping, newpage, page, mode);
785
786         head = page_buffers(page);
787
788         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
789
790         if (rc != MIGRATEPAGE_SUCCESS)
791                 return rc;
792
793         /*
794          * In the async case, migrate_page_move_mapping locked the buffers
795          * with an IRQ-safe spinlock held. In the sync case, the buffers
796          * need to be locked now
797          */
798         if (mode != MIGRATE_ASYNC)
799                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
800
801         ClearPagePrivate(page);
802         set_page_private(newpage, page_private(page));
803         set_page_private(page, 0);
804         put_page(page);
805         get_page(newpage);
806
807         bh = head;
808         do {
809                 set_bh_page(bh, newpage, bh_offset(bh));
810                 bh = bh->b_this_page;
811
812         } while (bh != head);
813
814         SetPagePrivate(newpage);
815
816         if (mode != MIGRATE_SYNC_NO_COPY)
817                 migrate_page_copy(newpage, page);
818         else
819                 migrate_page_states(newpage, page);
820
821         bh = head;
822         do {
823                 unlock_buffer(bh);
824                 put_bh(bh);
825                 bh = bh->b_this_page;
826
827         } while (bh != head);
828
829         return MIGRATEPAGE_SUCCESS;
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832 #endif
833
834 /*
835  * Writeback a page to clean the dirty state
836  */
837 static int writeout(struct address_space *mapping, struct page *page)
838 {
839         struct writeback_control wbc = {
840                 .sync_mode = WB_SYNC_NONE,
841                 .nr_to_write = 1,
842                 .range_start = 0,
843                 .range_end = LLONG_MAX,
844                 .for_reclaim = 1
845         };
846         int rc;
847
848         if (!mapping->a_ops->writepage)
849                 /* No write method for the address space */
850                 return -EINVAL;
851
852         if (!clear_page_dirty_for_io(page))
853                 /* Someone else already triggered a write */
854                 return -EAGAIN;
855
856         /*
857          * A dirty page may imply that the underlying filesystem has
858          * the page on some queue. So the page must be clean for
859          * migration. Writeout may mean we loose the lock and the
860          * page state is no longer what we checked for earlier.
861          * At this point we know that the migration attempt cannot
862          * be successful.
863          */
864         remove_migration_ptes(page, page, false);
865
866         rc = mapping->a_ops->writepage(page, &wbc);
867
868         if (rc != AOP_WRITEPAGE_ACTIVATE)
869                 /* unlocked. Relock */
870                 lock_page(page);
871
872         return (rc < 0) ? -EIO : -EAGAIN;
873 }
874
875 /*
876  * Default handling if a filesystem does not provide a migration function.
877  */
878 static int fallback_migrate_page(struct address_space *mapping,
879         struct page *newpage, struct page *page, enum migrate_mode mode)
880 {
881         if (PageDirty(page)) {
882                 /* Only writeback pages in full synchronous migration */
883                 switch (mode) {
884                 case MIGRATE_SYNC:
885                 case MIGRATE_SYNC_NO_COPY:
886                         break;
887                 default:
888                         return -EBUSY;
889                 }
890                 return writeout(mapping, page);
891         }
892
893         /*
894          * Buffers may be managed in a filesystem specific way.
895          * We must have no buffers or drop them.
896          */
897         if (page_has_private(page) &&
898             !try_to_release_page(page, GFP_KERNEL))
899                 return -EAGAIN;
900
901         return migrate_page(mapping, newpage, page, mode);
902 }
903
904 /*
905  * Move a page to a newly allocated page
906  * The page is locked and all ptes have been successfully removed.
907  *
908  * The new page will have replaced the old page if this function
909  * is successful.
910  *
911  * Return value:
912  *   < 0 - error code
913  *  MIGRATEPAGE_SUCCESS - success
914  */
915 static int move_to_new_page(struct page *newpage, struct page *page,
916                                 enum migrate_mode mode)
917 {
918         struct address_space *mapping;
919         int rc = -EAGAIN;
920         bool is_lru = !__PageMovable(page);
921
922         VM_BUG_ON_PAGE(!PageLocked(page), page);
923         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
924
925         mapping = page_mapping(page);
926
927         if (likely(is_lru)) {
928                 if (!mapping)
929                         rc = migrate_page(mapping, newpage, page, mode);
930                 else if (mapping->a_ops->migratepage)
931                         /*
932                          * Most pages have a mapping and most filesystems
933                          * provide a migratepage callback. Anonymous pages
934                          * are part of swap space which also has its own
935                          * migratepage callback. This is the most common path
936                          * for page migration.
937                          */
938                         rc = mapping->a_ops->migratepage(mapping, newpage,
939                                                         page, mode);
940                 else
941                         rc = fallback_migrate_page(mapping, newpage,
942                                                         page, mode);
943         } else {
944                 /*
945                  * In case of non-lru page, it could be released after
946                  * isolation step. In that case, we shouldn't try migration.
947                  */
948                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
949                 if (!PageMovable(page)) {
950                         rc = MIGRATEPAGE_SUCCESS;
951                         __ClearPageIsolated(page);
952                         goto out;
953                 }
954
955                 rc = mapping->a_ops->migratepage(mapping, newpage,
956                                                 page, mode);
957                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
958                         !PageIsolated(page));
959         }
960
961         /*
962          * When successful, old pagecache page->mapping must be cleared before
963          * page is freed; but stats require that PageAnon be left as PageAnon.
964          */
965         if (rc == MIGRATEPAGE_SUCCESS) {
966                 if (__PageMovable(page)) {
967                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
968
969                         /*
970                          * We clear PG_movable under page_lock so any compactor
971                          * cannot try to migrate this page.
972                          */
973                         __ClearPageIsolated(page);
974                 }
975
976                 /*
977                  * Anonymous and movable page->mapping will be cleard by
978                  * free_pages_prepare so don't reset it here for keeping
979                  * the type to work PageAnon, for example.
980                  */
981                 if (!PageMappingFlags(page))
982                         page->mapping = NULL;
983         }
984 out:
985         return rc;
986 }
987
988 static int __unmap_and_move(struct page *page, struct page *newpage,
989                                 int force, enum migrate_mode mode)
990 {
991         int rc = -EAGAIN;
992         int page_was_mapped = 0;
993         struct anon_vma *anon_vma = NULL;
994         bool is_lru = !__PageMovable(page);
995
996         if (!trylock_page(page)) {
997                 if (!force || mode == MIGRATE_ASYNC)
998                         goto out;
999
1000                 /*
1001                  * It's not safe for direct compaction to call lock_page.
1002                  * For example, during page readahead pages are added locked
1003                  * to the LRU. Later, when the IO completes the pages are
1004                  * marked uptodate and unlocked. However, the queueing
1005                  * could be merging multiple pages for one bio (e.g.
1006                  * mpage_readpages). If an allocation happens for the
1007                  * second or third page, the process can end up locking
1008                  * the same page twice and deadlocking. Rather than
1009                  * trying to be clever about what pages can be locked,
1010                  * avoid the use of lock_page for direct compaction
1011                  * altogether.
1012                  */
1013                 if (current->flags & PF_MEMALLOC)
1014                         goto out;
1015
1016                 lock_page(page);
1017         }
1018
1019         if (PageWriteback(page)) {
1020                 /*
1021                  * Only in the case of a full synchronous migration is it
1022                  * necessary to wait for PageWriteback. In the async case,
1023                  * the retry loop is too short and in the sync-light case,
1024                  * the overhead of stalling is too much
1025                  */
1026                 switch (mode) {
1027                 case MIGRATE_SYNC:
1028                 case MIGRATE_SYNC_NO_COPY:
1029                         break;
1030                 default:
1031                         rc = -EBUSY;
1032                         goto out_unlock;
1033                 }
1034                 if (!force)
1035                         goto out_unlock;
1036                 wait_on_page_writeback(page);
1037         }
1038
1039         /*
1040          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041          * we cannot notice that anon_vma is freed while we migrates a page.
1042          * This get_anon_vma() delays freeing anon_vma pointer until the end
1043          * of migration. File cache pages are no problem because of page_lock()
1044          * File Caches may use write_page() or lock_page() in migration, then,
1045          * just care Anon page here.
1046          *
1047          * Only page_get_anon_vma() understands the subtleties of
1048          * getting a hold on an anon_vma from outside one of its mms.
1049          * But if we cannot get anon_vma, then we won't need it anyway,
1050          * because that implies that the anon page is no longer mapped
1051          * (and cannot be remapped so long as we hold the page lock).
1052          */
1053         if (PageAnon(page) && !PageKsm(page))
1054                 anon_vma = page_get_anon_vma(page);
1055
1056         /*
1057          * Block others from accessing the new page when we get around to
1058          * establishing additional references. We are usually the only one
1059          * holding a reference to newpage at this point. We used to have a BUG
1060          * here if trylock_page(newpage) fails, but would like to allow for
1061          * cases where there might be a race with the previous use of newpage.
1062          * This is much like races on refcount of oldpage: just don't BUG().
1063          */
1064         if (unlikely(!trylock_page(newpage)))
1065                 goto out_unlock;
1066
1067         if (unlikely(!is_lru)) {
1068                 rc = move_to_new_page(newpage, page, mode);
1069                 goto out_unlock_both;
1070         }
1071
1072         /*
1073          * Corner case handling:
1074          * 1. When a new swap-cache page is read into, it is added to the LRU
1075          * and treated as swapcache but it has no rmap yet.
1076          * Calling try_to_unmap() against a page->mapping==NULL page will
1077          * trigger a BUG.  So handle it here.
1078          * 2. An orphaned page (see truncate_complete_page) might have
1079          * fs-private metadata. The page can be picked up due to memory
1080          * offlining.  Everywhere else except page reclaim, the page is
1081          * invisible to the vm, so the page can not be migrated.  So try to
1082          * free the metadata, so the page can be freed.
1083          */
1084         if (!page->mapping) {
1085                 VM_BUG_ON_PAGE(PageAnon(page), page);
1086                 if (page_has_private(page)) {
1087                         try_to_free_buffers(page);
1088                         goto out_unlock_both;
1089                 }
1090         } else if (page_mapped(page)) {
1091                 /* Establish migration ptes */
1092                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093                                 page);
1094                 try_to_unmap(page,
1095                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096                 page_was_mapped = 1;
1097         }
1098
1099         if (!page_mapped(page))
1100                 rc = move_to_new_page(newpage, page, mode);
1101
1102         if (page_was_mapped)
1103                 remove_migration_ptes(page,
1104                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105
1106 out_unlock_both:
1107         unlock_page(newpage);
1108 out_unlock:
1109         /* Drop an anon_vma reference if we took one */
1110         if (anon_vma)
1111                 put_anon_vma(anon_vma);
1112         unlock_page(page);
1113 out:
1114         /*
1115          * If migration is successful, decrease refcount of the newpage
1116          * which will not free the page because new page owner increased
1117          * refcounter. As well, if it is LRU page, add the page to LRU
1118          * list in here.
1119          */
1120         if (rc == MIGRATEPAGE_SUCCESS) {
1121                 if (unlikely(__PageMovable(newpage)))
1122                         put_page(newpage);
1123                 else
1124                         putback_lru_page(newpage);
1125         }
1126
1127         return rc;
1128 }
1129
1130 /*
1131  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1132  * around it.
1133  */
1134 #if defined(CONFIG_ARM) && \
1135         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1136 #define ICE_noinline noinline
1137 #else
1138 #define ICE_noinline
1139 #endif
1140
1141 /*
1142  * Obtain the lock on page, remove all ptes and migrate the page
1143  * to the newly allocated page in newpage.
1144  */
1145 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1146                                    free_page_t put_new_page,
1147                                    unsigned long private, struct page *page,
1148                                    int force, enum migrate_mode mode,
1149                                    enum migrate_reason reason)
1150 {
1151         int rc = MIGRATEPAGE_SUCCESS;
1152         struct page *newpage;
1153
1154         if (!thp_migration_supported() && PageTransHuge(page))
1155                 return -ENOMEM;
1156
1157         newpage = get_new_page(page, private);
1158         if (!newpage)
1159                 return -ENOMEM;
1160
1161         if (page_count(page) == 1) {
1162                 /* page was freed from under us. So we are done. */
1163                 ClearPageActive(page);
1164                 ClearPageUnevictable(page);
1165                 if (unlikely(__PageMovable(page))) {
1166                         lock_page(page);
1167                         if (!PageMovable(page))
1168                                 __ClearPageIsolated(page);
1169                         unlock_page(page);
1170                 }
1171                 if (put_new_page)
1172                         put_new_page(newpage, private);
1173                 else
1174                         put_page(newpage);
1175                 goto out;
1176         }
1177
1178         rc = __unmap_and_move(page, newpage, force, mode);
1179         if (rc == MIGRATEPAGE_SUCCESS)
1180                 set_page_owner_migrate_reason(newpage, reason);
1181
1182 out:
1183         if (rc != -EAGAIN) {
1184                 /*
1185                  * A page that has been migrated has all references
1186                  * removed and will be freed. A page that has not been
1187                  * migrated will have kepts its references and be
1188                  * restored.
1189                  */
1190                 list_del(&page->lru);
1191
1192                 /*
1193                  * Compaction can migrate also non-LRU pages which are
1194                  * not accounted to NR_ISOLATED_*. They can be recognized
1195                  * as __PageMovable
1196                  */
1197                 if (likely(!__PageMovable(page)))
1198                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1199                                         page_is_file_cache(page), -hpage_nr_pages(page));
1200         }
1201
1202         /*
1203          * If migration is successful, releases reference grabbed during
1204          * isolation. Otherwise, restore the page to right list unless
1205          * we want to retry.
1206          */
1207         if (rc == MIGRATEPAGE_SUCCESS) {
1208                 put_page(page);
1209                 if (reason == MR_MEMORY_FAILURE) {
1210                         /*
1211                          * Set PG_HWPoison on just freed page
1212                          * intentionally. Although it's rather weird,
1213                          * it's how HWPoison flag works at the moment.
1214                          */
1215                         if (!test_set_page_hwpoison(page))
1216                                 num_poisoned_pages_inc();
1217                 }
1218         } else {
1219                 if (rc != -EAGAIN) {
1220                         if (likely(!__PageMovable(page))) {
1221                                 putback_lru_page(page);
1222                                 goto put_new;
1223                         }
1224
1225                         lock_page(page);
1226                         if (PageMovable(page))
1227                                 putback_movable_page(page);
1228                         else
1229                                 __ClearPageIsolated(page);
1230                         unlock_page(page);
1231                         put_page(page);
1232                 }
1233 put_new:
1234                 if (put_new_page)
1235                         put_new_page(newpage, private);
1236                 else
1237                         put_page(newpage);
1238         }
1239
1240         return rc;
1241 }
1242
1243 /*
1244  * Counterpart of unmap_and_move_page() for hugepage migration.
1245  *
1246  * This function doesn't wait the completion of hugepage I/O
1247  * because there is no race between I/O and migration for hugepage.
1248  * Note that currently hugepage I/O occurs only in direct I/O
1249  * where no lock is held and PG_writeback is irrelevant,
1250  * and writeback status of all subpages are counted in the reference
1251  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252  * under direct I/O, the reference of the head page is 512 and a bit more.)
1253  * This means that when we try to migrate hugepage whose subpages are
1254  * doing direct I/O, some references remain after try_to_unmap() and
1255  * hugepage migration fails without data corruption.
1256  *
1257  * There is also no race when direct I/O is issued on the page under migration,
1258  * because then pte is replaced with migration swap entry and direct I/O code
1259  * will wait in the page fault for migration to complete.
1260  */
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262                                 free_page_t put_new_page, unsigned long private,
1263                                 struct page *hpage, int force,
1264                                 enum migrate_mode mode, int reason)
1265 {
1266         int rc = -EAGAIN;
1267         int page_was_mapped = 0;
1268         struct page *new_hpage;
1269         struct anon_vma *anon_vma = NULL;
1270
1271         /*
1272          * Movability of hugepages depends on architectures and hugepage size.
1273          * This check is necessary because some callers of hugepage migration
1274          * like soft offline and memory hotremove don't walk through page
1275          * tables or check whether the hugepage is pmd-based or not before
1276          * kicking migration.
1277          */
1278         if (!hugepage_migration_supported(page_hstate(hpage))) {
1279                 putback_active_hugepage(hpage);
1280                 return -ENOSYS;
1281         }
1282
1283         new_hpage = get_new_page(hpage, private);
1284         if (!new_hpage)
1285                 return -ENOMEM;
1286
1287         if (!trylock_page(hpage)) {
1288                 if (!force)
1289                         goto out;
1290                 switch (mode) {
1291                 case MIGRATE_SYNC:
1292                 case MIGRATE_SYNC_NO_COPY:
1293                         break;
1294                 default:
1295                         goto out;
1296                 }
1297                 lock_page(hpage);
1298         }
1299
1300         if (PageAnon(hpage))
1301                 anon_vma = page_get_anon_vma(hpage);
1302
1303         if (unlikely(!trylock_page(new_hpage)))
1304                 goto put_anon;
1305
1306         if (page_mapped(hpage)) {
1307                 try_to_unmap(hpage,
1308                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1309                 page_was_mapped = 1;
1310         }
1311
1312         if (!page_mapped(hpage))
1313                 rc = move_to_new_page(new_hpage, hpage, mode);
1314
1315         if (page_was_mapped)
1316                 remove_migration_ptes(hpage,
1317                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1318
1319         unlock_page(new_hpage);
1320
1321 put_anon:
1322         if (anon_vma)
1323                 put_anon_vma(anon_vma);
1324
1325         if (rc == MIGRATEPAGE_SUCCESS) {
1326                 move_hugetlb_state(hpage, new_hpage, reason);
1327                 put_new_page = NULL;
1328         }
1329
1330         unlock_page(hpage);
1331 out:
1332         if (rc != -EAGAIN)
1333                 putback_active_hugepage(hpage);
1334         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1335                 num_poisoned_pages_inc();
1336
1337         /*
1338          * If migration was not successful and there's a freeing callback, use
1339          * it.  Otherwise, put_page() will drop the reference grabbed during
1340          * isolation.
1341          */
1342         if (put_new_page)
1343                 put_new_page(new_hpage, private);
1344         else
1345                 putback_active_hugepage(new_hpage);
1346
1347         return rc;
1348 }
1349
1350 /*
1351  * migrate_pages - migrate the pages specified in a list, to the free pages
1352  *                 supplied as the target for the page migration
1353  *
1354  * @from:               The list of pages to be migrated.
1355  * @get_new_page:       The function used to allocate free pages to be used
1356  *                      as the target of the page migration.
1357  * @put_new_page:       The function used to free target pages if migration
1358  *                      fails, or NULL if no special handling is necessary.
1359  * @private:            Private data to be passed on to get_new_page()
1360  * @mode:               The migration mode that specifies the constraints for
1361  *                      page migration, if any.
1362  * @reason:             The reason for page migration.
1363  *
1364  * The function returns after 10 attempts or if no pages are movable any more
1365  * because the list has become empty or no retryable pages exist any more.
1366  * The caller should call putback_movable_pages() to return pages to the LRU
1367  * or free list only if ret != 0.
1368  *
1369  * Returns the number of pages that were not migrated, or an error code.
1370  */
1371 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1372                 free_page_t put_new_page, unsigned long private,
1373                 enum migrate_mode mode, int reason)
1374 {
1375         int retry = 1;
1376         int nr_failed = 0;
1377         int nr_succeeded = 0;
1378         int pass = 0;
1379         struct page *page;
1380         struct page *page2;
1381         int swapwrite = current->flags & PF_SWAPWRITE;
1382         int rc;
1383
1384         if (!swapwrite)
1385                 current->flags |= PF_SWAPWRITE;
1386
1387         for(pass = 0; pass < 10 && retry; pass++) {
1388                 retry = 0;
1389
1390                 list_for_each_entry_safe(page, page2, from, lru) {
1391 retry:
1392                         cond_resched();
1393
1394                         if (PageHuge(page))
1395                                 rc = unmap_and_move_huge_page(get_new_page,
1396                                                 put_new_page, private, page,
1397                                                 pass > 2, mode, reason);
1398                         else
1399                                 rc = unmap_and_move(get_new_page, put_new_page,
1400                                                 private, page, pass > 2, mode,
1401                                                 reason);
1402
1403                         switch(rc) {
1404                         case -ENOMEM:
1405                                 /*
1406                                  * THP migration might be unsupported or the
1407                                  * allocation could've failed so we should
1408                                  * retry on the same page with the THP split
1409                                  * to base pages.
1410                                  *
1411                                  * Head page is retried immediately and tail
1412                                  * pages are added to the tail of the list so
1413                                  * we encounter them after the rest of the list
1414                                  * is processed.
1415                                  */
1416                                 if (PageTransHuge(page)) {
1417                                         lock_page(page);
1418                                         rc = split_huge_page_to_list(page, from);
1419                                         unlock_page(page);
1420                                         if (!rc) {
1421                                                 list_safe_reset_next(page, page2, lru);
1422                                                 goto retry;
1423                                         }
1424                                 }
1425                                 nr_failed++;
1426                                 goto out;
1427                         case -EAGAIN:
1428                                 retry++;
1429                                 break;
1430                         case MIGRATEPAGE_SUCCESS:
1431                                 nr_succeeded++;
1432                                 break;
1433                         default:
1434                                 /*
1435                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1436                                  * unlike -EAGAIN case, the failed page is
1437                                  * removed from migration page list and not
1438                                  * retried in the next outer loop.
1439                                  */
1440                                 nr_failed++;
1441                                 break;
1442                         }
1443                 }
1444         }
1445         nr_failed += retry;
1446         rc = nr_failed;
1447 out:
1448         if (nr_succeeded)
1449                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1450         if (nr_failed)
1451                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1452         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1453
1454         if (!swapwrite)
1455                 current->flags &= ~PF_SWAPWRITE;
1456
1457         return rc;
1458 }
1459
1460 #ifdef CONFIG_NUMA
1461
1462 static int store_status(int __user *status, int start, int value, int nr)
1463 {
1464         while (nr-- > 0) {
1465                 if (put_user(value, status + start))
1466                         return -EFAULT;
1467                 start++;
1468         }
1469
1470         return 0;
1471 }
1472
1473 static int do_move_pages_to_node(struct mm_struct *mm,
1474                 struct list_head *pagelist, int node)
1475 {
1476         int err;
1477
1478         if (list_empty(pagelist))
1479                 return 0;
1480
1481         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1482                         MIGRATE_SYNC, MR_SYSCALL);
1483         if (err)
1484                 putback_movable_pages(pagelist);
1485         return err;
1486 }
1487
1488 /*
1489  * Resolves the given address to a struct page, isolates it from the LRU and
1490  * puts it to the given pagelist.
1491  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1492  * queued or the page doesn't need to be migrated because it is already on
1493  * the target node
1494  */
1495 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1496                 int node, struct list_head *pagelist, bool migrate_all)
1497 {
1498         struct vm_area_struct *vma;
1499         struct page *page;
1500         unsigned int follflags;
1501         int err;
1502
1503         down_read(&mm->mmap_sem);
1504         err = -EFAULT;
1505         vma = find_vma(mm, addr);
1506         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1507                 goto out;
1508
1509         /* FOLL_DUMP to ignore special (like zero) pages */
1510         follflags = FOLL_GET | FOLL_DUMP;
1511         page = follow_page(vma, addr, follflags);
1512
1513         err = PTR_ERR(page);
1514         if (IS_ERR(page))
1515                 goto out;
1516
1517         err = -ENOENT;
1518         if (!page)
1519                 goto out;
1520
1521         err = 0;
1522         if (page_to_nid(page) == node)
1523                 goto out_putpage;
1524
1525         err = -EACCES;
1526         if (page_mapcount(page) > 1 && !migrate_all)
1527                 goto out_putpage;
1528
1529         if (PageHuge(page)) {
1530                 if (PageHead(page)) {
1531                         isolate_huge_page(page, pagelist);
1532                         err = 0;
1533                 }
1534         } else {
1535                 struct page *head;
1536
1537                 head = compound_head(page);
1538                 err = isolate_lru_page(head);
1539                 if (err)
1540                         goto out_putpage;
1541
1542                 err = 0;
1543                 list_add_tail(&head->lru, pagelist);
1544                 mod_node_page_state(page_pgdat(head),
1545                         NR_ISOLATED_ANON + page_is_file_cache(head),
1546                         hpage_nr_pages(head));
1547         }
1548 out_putpage:
1549         /*
1550          * Either remove the duplicate refcount from
1551          * isolate_lru_page() or drop the page ref if it was
1552          * not isolated.
1553          */
1554         put_page(page);
1555 out:
1556         up_read(&mm->mmap_sem);
1557         return err;
1558 }
1559
1560 /*
1561  * Migrate an array of page address onto an array of nodes and fill
1562  * the corresponding array of status.
1563  */
1564 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1565                          unsigned long nr_pages,
1566                          const void __user * __user *pages,
1567                          const int __user *nodes,
1568                          int __user *status, int flags)
1569 {
1570         int current_node = NUMA_NO_NODE;
1571         LIST_HEAD(pagelist);
1572         int start, i;
1573         int err = 0, err1;
1574
1575         migrate_prep();
1576
1577         for (i = start = 0; i < nr_pages; i++) {
1578                 const void __user *p;
1579                 unsigned long addr;
1580                 int node;
1581
1582                 err = -EFAULT;
1583                 if (get_user(p, pages + i))
1584                         goto out_flush;
1585                 if (get_user(node, nodes + i))
1586                         goto out_flush;
1587                 addr = (unsigned long)p;
1588
1589                 err = -ENODEV;
1590                 if (node < 0 || node >= MAX_NUMNODES)
1591                         goto out_flush;
1592                 if (!node_state(node, N_MEMORY))
1593                         goto out_flush;
1594
1595                 err = -EACCES;
1596                 if (!node_isset(node, task_nodes))
1597                         goto out_flush;
1598
1599                 if (current_node == NUMA_NO_NODE) {
1600                         current_node = node;
1601                         start = i;
1602                 } else if (node != current_node) {
1603                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1604                         if (err)
1605                                 goto out;
1606                         err = store_status(status, start, current_node, i - start);
1607                         if (err)
1608                                 goto out;
1609                         start = i;
1610                         current_node = node;
1611                 }
1612
1613                 /*
1614                  * Errors in the page lookup or isolation are not fatal and we simply
1615                  * report them via status
1616                  */
1617                 err = add_page_for_migration(mm, addr, current_node,
1618                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1619                 if (!err)
1620                         continue;
1621
1622                 err = store_status(status, i, err, 1);
1623                 if (err)
1624                         goto out_flush;
1625
1626                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1627                 if (err)
1628                         goto out;
1629                 if (i > start) {
1630                         err = store_status(status, start, current_node, i - start);
1631                         if (err)
1632                                 goto out;
1633                 }
1634                 current_node = NUMA_NO_NODE;
1635         }
1636 out_flush:
1637         if (list_empty(&pagelist))
1638                 return err;
1639
1640         /* Make sure we do not overwrite the existing error */
1641         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1642         if (!err1)
1643                 err1 = store_status(status, start, current_node, i - start);
1644         if (!err)
1645                 err = err1;
1646 out:
1647         return err;
1648 }
1649
1650 /*
1651  * Determine the nodes of an array of pages and store it in an array of status.
1652  */
1653 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1654                                 const void __user **pages, int *status)
1655 {
1656         unsigned long i;
1657
1658         down_read(&mm->mmap_sem);
1659
1660         for (i = 0; i < nr_pages; i++) {
1661                 unsigned long addr = (unsigned long)(*pages);
1662                 struct vm_area_struct *vma;
1663                 struct page *page;
1664                 int err = -EFAULT;
1665
1666                 vma = find_vma(mm, addr);
1667                 if (!vma || addr < vma->vm_start)
1668                         goto set_status;
1669
1670                 /* FOLL_DUMP to ignore special (like zero) pages */
1671                 page = follow_page(vma, addr, FOLL_DUMP);
1672
1673                 err = PTR_ERR(page);
1674                 if (IS_ERR(page))
1675                         goto set_status;
1676
1677                 err = page ? page_to_nid(page) : -ENOENT;
1678 set_status:
1679                 *status = err;
1680
1681                 pages++;
1682                 status++;
1683         }
1684
1685         up_read(&mm->mmap_sem);
1686 }
1687
1688 /*
1689  * Determine the nodes of a user array of pages and store it in
1690  * a user array of status.
1691  */
1692 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1693                          const void __user * __user *pages,
1694                          int __user *status)
1695 {
1696 #define DO_PAGES_STAT_CHUNK_NR 16
1697         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1698         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1699
1700         while (nr_pages) {
1701                 unsigned long chunk_nr;
1702
1703                 chunk_nr = nr_pages;
1704                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1705                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1706
1707                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1708                         break;
1709
1710                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1711
1712                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1713                         break;
1714
1715                 pages += chunk_nr;
1716                 status += chunk_nr;
1717                 nr_pages -= chunk_nr;
1718         }
1719         return nr_pages ? -EFAULT : 0;
1720 }
1721
1722 /*
1723  * Move a list of pages in the address space of the currently executing
1724  * process.
1725  */
1726 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1727                              const void __user * __user *pages,
1728                              const int __user *nodes,
1729                              int __user *status, int flags)
1730 {
1731         struct task_struct *task;
1732         struct mm_struct *mm;
1733         int err;
1734         nodemask_t task_nodes;
1735
1736         /* Check flags */
1737         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1738                 return -EINVAL;
1739
1740         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1741                 return -EPERM;
1742
1743         /* Find the mm_struct */
1744         rcu_read_lock();
1745         task = pid ? find_task_by_vpid(pid) : current;
1746         if (!task) {
1747                 rcu_read_unlock();
1748                 return -ESRCH;
1749         }
1750         get_task_struct(task);
1751
1752         /*
1753          * Check if this process has the right to modify the specified
1754          * process. Use the regular "ptrace_may_access()" checks.
1755          */
1756         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1757                 rcu_read_unlock();
1758                 err = -EPERM;
1759                 goto out;
1760         }
1761         rcu_read_unlock();
1762
1763         err = security_task_movememory(task);
1764         if (err)
1765                 goto out;
1766
1767         task_nodes = cpuset_mems_allowed(task);
1768         mm = get_task_mm(task);
1769         put_task_struct(task);
1770
1771         if (!mm)
1772                 return -EINVAL;
1773
1774         if (nodes)
1775                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1776                                     nodes, status, flags);
1777         else
1778                 err = do_pages_stat(mm, nr_pages, pages, status);
1779
1780         mmput(mm);
1781         return err;
1782
1783 out:
1784         put_task_struct(task);
1785         return err;
1786 }
1787
1788 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1789                 const void __user * __user *, pages,
1790                 const int __user *, nodes,
1791                 int __user *, status, int, flags)
1792 {
1793         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1794 }
1795
1796 #ifdef CONFIG_COMPAT
1797 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1798                        compat_uptr_t __user *, pages32,
1799                        const int __user *, nodes,
1800                        int __user *, status,
1801                        int, flags)
1802 {
1803         const void __user * __user *pages;
1804         int i;
1805
1806         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1807         for (i = 0; i < nr_pages; i++) {
1808                 compat_uptr_t p;
1809
1810                 if (get_user(p, pages32 + i) ||
1811                         put_user(compat_ptr(p), pages + i))
1812                         return -EFAULT;
1813         }
1814         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1815 }
1816 #endif /* CONFIG_COMPAT */
1817
1818 #ifdef CONFIG_NUMA_BALANCING
1819 /*
1820  * Returns true if this is a safe migration target node for misplaced NUMA
1821  * pages. Currently it only checks the watermarks which crude
1822  */
1823 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1824                                    unsigned long nr_migrate_pages)
1825 {
1826         int z;
1827
1828         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1829                 struct zone *zone = pgdat->node_zones + z;
1830
1831                 if (!populated_zone(zone))
1832                         continue;
1833
1834                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1835                 if (!zone_watermark_ok(zone, 0,
1836                                        high_wmark_pages(zone) +
1837                                        nr_migrate_pages,
1838                                        0, 0))
1839                         continue;
1840                 return true;
1841         }
1842         return false;
1843 }
1844
1845 static struct page *alloc_misplaced_dst_page(struct page *page,
1846                                            unsigned long data)
1847 {
1848         int nid = (int) data;
1849         struct page *newpage;
1850
1851         newpage = __alloc_pages_node(nid,
1852                                          (GFP_HIGHUSER_MOVABLE |
1853                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1854                                           __GFP_NORETRY | __GFP_NOWARN) &
1855                                          ~__GFP_RECLAIM, 0);
1856
1857         return newpage;
1858 }
1859
1860 /*
1861  * page migration rate limiting control.
1862  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1863  * window of time. Default here says do not migrate more than 1280M per second.
1864  */
1865 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1866 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1867
1868 /* Returns true if the node is migrate rate-limited after the update */
1869 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1870                                         unsigned long nr_pages)
1871 {
1872         /*
1873          * Rate-limit the amount of data that is being migrated to a node.
1874          * Optimal placement is no good if the memory bus is saturated and
1875          * all the time is being spent migrating!
1876          */
1877         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1878                 spin_lock(&pgdat->numabalancing_migrate_lock);
1879                 pgdat->numabalancing_migrate_nr_pages = 0;
1880                 pgdat->numabalancing_migrate_next_window = jiffies +
1881                         msecs_to_jiffies(migrate_interval_millisecs);
1882                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1883         }
1884         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1885                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1886                                                                 nr_pages);
1887                 return true;
1888         }
1889
1890         /*
1891          * This is an unlocked non-atomic update so errors are possible.
1892          * The consequences are failing to migrate when we potentiall should
1893          * have which is not severe enough to warrant locking. If it is ever
1894          * a problem, it can be converted to a per-cpu counter.
1895          */
1896         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1897         return false;
1898 }
1899
1900 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1901 {
1902         int page_lru;
1903
1904         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1905
1906         /* Avoid migrating to a node that is nearly full */
1907         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1908                 return 0;
1909
1910         if (isolate_lru_page(page))
1911                 return 0;
1912
1913         /*
1914          * migrate_misplaced_transhuge_page() skips page migration's usual
1915          * check on page_count(), so we must do it here, now that the page
1916          * has been isolated: a GUP pin, or any other pin, prevents migration.
1917          * The expected page count is 3: 1 for page's mapcount and 1 for the
1918          * caller's pin and 1 for the reference taken by isolate_lru_page().
1919          */
1920         if (PageTransHuge(page) && page_count(page) != 3) {
1921                 putback_lru_page(page);
1922                 return 0;
1923         }
1924
1925         page_lru = page_is_file_cache(page);
1926         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1927                                 hpage_nr_pages(page));
1928
1929         /*
1930          * Isolating the page has taken another reference, so the
1931          * caller's reference can be safely dropped without the page
1932          * disappearing underneath us during migration.
1933          */
1934         put_page(page);
1935         return 1;
1936 }
1937
1938 bool pmd_trans_migrating(pmd_t pmd)
1939 {
1940         struct page *page = pmd_page(pmd);
1941         return PageLocked(page);
1942 }
1943
1944 /*
1945  * Attempt to migrate a misplaced page to the specified destination
1946  * node. Caller is expected to have an elevated reference count on
1947  * the page that will be dropped by this function before returning.
1948  */
1949 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1950                            int node)
1951 {
1952         pg_data_t *pgdat = NODE_DATA(node);
1953         int isolated;
1954         int nr_remaining;
1955         LIST_HEAD(migratepages);
1956
1957         /*
1958          * Don't migrate file pages that are mapped in multiple processes
1959          * with execute permissions as they are probably shared libraries.
1960          */
1961         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1962             (vma->vm_flags & VM_EXEC))
1963                 goto out;
1964
1965         /*
1966          * Also do not migrate dirty pages as not all filesystems can move
1967          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1968          */
1969         if (page_is_file_cache(page) && PageDirty(page))
1970                 goto out;
1971
1972         /*
1973          * Rate-limit the amount of data that is being migrated to a node.
1974          * Optimal placement is no good if the memory bus is saturated and
1975          * all the time is being spent migrating!
1976          */
1977         if (numamigrate_update_ratelimit(pgdat, 1))
1978                 goto out;
1979
1980         isolated = numamigrate_isolate_page(pgdat, page);
1981         if (!isolated)
1982                 goto out;
1983
1984         list_add(&page->lru, &migratepages);
1985         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1986                                      NULL, node, MIGRATE_ASYNC,
1987                                      MR_NUMA_MISPLACED);
1988         if (nr_remaining) {
1989                 if (!list_empty(&migratepages)) {
1990                         list_del(&page->lru);
1991                         dec_node_page_state(page, NR_ISOLATED_ANON +
1992                                         page_is_file_cache(page));
1993                         putback_lru_page(page);
1994                 }
1995                 isolated = 0;
1996         } else
1997                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1998         BUG_ON(!list_empty(&migratepages));
1999         return isolated;
2000
2001 out:
2002         put_page(page);
2003         return 0;
2004 }
2005 #endif /* CONFIG_NUMA_BALANCING */
2006
2007 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2008 /*
2009  * Migrates a THP to a given target node. page must be locked and is unlocked
2010  * before returning.
2011  */
2012 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2013                                 struct vm_area_struct *vma,
2014                                 pmd_t *pmd, pmd_t entry,
2015                                 unsigned long address,
2016                                 struct page *page, int node)
2017 {
2018         spinlock_t *ptl;
2019         pg_data_t *pgdat = NODE_DATA(node);
2020         int isolated = 0;
2021         struct page *new_page = NULL;
2022         int page_lru = page_is_file_cache(page);
2023         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2024         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2025
2026         /*
2027          * Rate-limit the amount of data that is being migrated to a node.
2028          * Optimal placement is no good if the memory bus is saturated and
2029          * all the time is being spent migrating!
2030          */
2031         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2032                 goto out_dropref;
2033
2034         new_page = alloc_pages_node(node,
2035                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2036                 HPAGE_PMD_ORDER);
2037         if (!new_page)
2038                 goto out_fail;
2039         prep_transhuge_page(new_page);
2040
2041         isolated = numamigrate_isolate_page(pgdat, page);
2042         if (!isolated) {
2043                 put_page(new_page);
2044                 goto out_fail;
2045         }
2046
2047         /* Prepare a page as a migration target */
2048         __SetPageLocked(new_page);
2049         if (PageSwapBacked(page))
2050                 __SetPageSwapBacked(new_page);
2051
2052         /* anon mapping, we can simply copy page->mapping to the new page: */
2053         new_page->mapping = page->mapping;
2054         new_page->index = page->index;
2055         migrate_page_copy(new_page, page);
2056         WARN_ON(PageLRU(new_page));
2057
2058         /* Recheck the target PMD */
2059         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2060         ptl = pmd_lock(mm, pmd);
2061         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2062                 spin_unlock(ptl);
2063                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2064
2065                 /* Reverse changes made by migrate_page_copy() */
2066                 if (TestClearPageActive(new_page))
2067                         SetPageActive(page);
2068                 if (TestClearPageUnevictable(new_page))
2069                         SetPageUnevictable(page);
2070
2071                 unlock_page(new_page);
2072                 put_page(new_page);             /* Free it */
2073
2074                 /* Retake the callers reference and putback on LRU */
2075                 get_page(page);
2076                 putback_lru_page(page);
2077                 mod_node_page_state(page_pgdat(page),
2078                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2079
2080                 goto out_unlock;
2081         }
2082
2083         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2084         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2085
2086         /*
2087          * Clear the old entry under pagetable lock and establish the new PTE.
2088          * Any parallel GUP will either observe the old page blocking on the
2089          * page lock, block on the page table lock or observe the new page.
2090          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2091          * guarantee the copy is visible before the pagetable update.
2092          */
2093         flush_cache_range(vma, mmun_start, mmun_end);
2094         page_add_anon_rmap(new_page, vma, mmun_start, true);
2095         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2096         set_pmd_at(mm, mmun_start, pmd, entry);
2097         update_mmu_cache_pmd(vma, address, &entry);
2098
2099         page_ref_unfreeze(page, 2);
2100         mlock_migrate_page(new_page, page);
2101         page_remove_rmap(page, true);
2102         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2103
2104         spin_unlock(ptl);
2105         /*
2106          * No need to double call mmu_notifier->invalidate_range() callback as
2107          * the above pmdp_huge_clear_flush_notify() did already call it.
2108          */
2109         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2110
2111         /* Take an "isolate" reference and put new page on the LRU. */
2112         get_page(new_page);
2113         putback_lru_page(new_page);
2114
2115         unlock_page(new_page);
2116         unlock_page(page);
2117         put_page(page);                 /* Drop the rmap reference */
2118         put_page(page);                 /* Drop the LRU isolation reference */
2119
2120         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2121         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2122
2123         mod_node_page_state(page_pgdat(page),
2124                         NR_ISOLATED_ANON + page_lru,
2125                         -HPAGE_PMD_NR);
2126         return isolated;
2127
2128 out_fail:
2129         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2130 out_dropref:
2131         ptl = pmd_lock(mm, pmd);
2132         if (pmd_same(*pmd, entry)) {
2133                 entry = pmd_modify(entry, vma->vm_page_prot);
2134                 set_pmd_at(mm, mmun_start, pmd, entry);
2135                 update_mmu_cache_pmd(vma, address, &entry);
2136         }
2137         spin_unlock(ptl);
2138
2139 out_unlock:
2140         unlock_page(page);
2141         put_page(page);
2142         return 0;
2143 }
2144 #endif /* CONFIG_NUMA_BALANCING */
2145
2146 #endif /* CONFIG_NUMA */
2147
2148 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2149 struct migrate_vma {
2150         struct vm_area_struct   *vma;
2151         unsigned long           *dst;
2152         unsigned long           *src;
2153         unsigned long           cpages;
2154         unsigned long           npages;
2155         unsigned long           start;
2156         unsigned long           end;
2157 };
2158
2159 static int migrate_vma_collect_hole(unsigned long start,
2160                                     unsigned long end,
2161                                     struct mm_walk *walk)
2162 {
2163         struct migrate_vma *migrate = walk->private;
2164         unsigned long addr;
2165
2166         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2167                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2168                 migrate->dst[migrate->npages] = 0;
2169                 migrate->npages++;
2170                 migrate->cpages++;
2171         }
2172
2173         return 0;
2174 }
2175
2176 static int migrate_vma_collect_skip(unsigned long start,
2177                                     unsigned long end,
2178                                     struct mm_walk *walk)
2179 {
2180         struct migrate_vma *migrate = walk->private;
2181         unsigned long addr;
2182
2183         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2184                 migrate->dst[migrate->npages] = 0;
2185                 migrate->src[migrate->npages++] = 0;
2186         }
2187
2188         return 0;
2189 }
2190
2191 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2192                                    unsigned long start,
2193                                    unsigned long end,
2194                                    struct mm_walk *walk)
2195 {
2196         struct migrate_vma *migrate = walk->private;
2197         struct vm_area_struct *vma = walk->vma;
2198         struct mm_struct *mm = vma->vm_mm;
2199         unsigned long addr = start, unmapped = 0;
2200         spinlock_t *ptl;
2201         pte_t *ptep;
2202
2203 again:
2204         if (pmd_none(*pmdp))
2205                 return migrate_vma_collect_hole(start, end, walk);
2206
2207         if (pmd_trans_huge(*pmdp)) {
2208                 struct page *page;
2209
2210                 ptl = pmd_lock(mm, pmdp);
2211                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2212                         spin_unlock(ptl);
2213                         goto again;
2214                 }
2215
2216                 page = pmd_page(*pmdp);
2217                 if (is_huge_zero_page(page)) {
2218                         spin_unlock(ptl);
2219                         split_huge_pmd(vma, pmdp, addr);
2220                         if (pmd_trans_unstable(pmdp))
2221                                 return migrate_vma_collect_skip(start, end,
2222                                                                 walk);
2223                 } else {
2224                         int ret;
2225
2226                         get_page(page);
2227                         spin_unlock(ptl);
2228                         if (unlikely(!trylock_page(page)))
2229                                 return migrate_vma_collect_skip(start, end,
2230                                                                 walk);
2231                         ret = split_huge_page(page);
2232                         unlock_page(page);
2233                         put_page(page);
2234                         if (ret)
2235                                 return migrate_vma_collect_skip(start, end,
2236                                                                 walk);
2237                         if (pmd_none(*pmdp))
2238                                 return migrate_vma_collect_hole(start, end,
2239                                                                 walk);
2240                 }
2241         }
2242
2243         if (unlikely(pmd_bad(*pmdp)))
2244                 return migrate_vma_collect_skip(start, end, walk);
2245
2246         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2247         arch_enter_lazy_mmu_mode();
2248
2249         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2250                 unsigned long mpfn, pfn;
2251                 struct page *page;
2252                 swp_entry_t entry;
2253                 pte_t pte;
2254
2255                 pte = *ptep;
2256                 pfn = pte_pfn(pte);
2257
2258                 if (pte_none(pte)) {
2259                         mpfn = MIGRATE_PFN_MIGRATE;
2260                         migrate->cpages++;
2261                         pfn = 0;
2262                         goto next;
2263                 }
2264
2265                 if (!pte_present(pte)) {
2266                         mpfn = pfn = 0;
2267
2268                         /*
2269                          * Only care about unaddressable device page special
2270                          * page table entry. Other special swap entries are not
2271                          * migratable, and we ignore regular swapped page.
2272                          */
2273                         entry = pte_to_swp_entry(pte);
2274                         if (!is_device_private_entry(entry))
2275                                 goto next;
2276
2277                         page = device_private_entry_to_page(entry);
2278                         mpfn = migrate_pfn(page_to_pfn(page))|
2279                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2280                         if (is_write_device_private_entry(entry))
2281                                 mpfn |= MIGRATE_PFN_WRITE;
2282                 } else {
2283                         if (is_zero_pfn(pfn)) {
2284                                 mpfn = MIGRATE_PFN_MIGRATE;
2285                                 migrate->cpages++;
2286                                 pfn = 0;
2287                                 goto next;
2288                         }
2289                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2290                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2291                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2292                 }
2293
2294                 /* FIXME support THP */
2295                 if (!page || !page->mapping || PageTransCompound(page)) {
2296                         mpfn = pfn = 0;
2297                         goto next;
2298                 }
2299                 pfn = page_to_pfn(page);
2300
2301                 /*
2302                  * By getting a reference on the page we pin it and that blocks
2303                  * any kind of migration. Side effect is that it "freezes" the
2304                  * pte.
2305                  *
2306                  * We drop this reference after isolating the page from the lru
2307                  * for non device page (device page are not on the lru and thus
2308                  * can't be dropped from it).
2309                  */
2310                 get_page(page);
2311                 migrate->cpages++;
2312
2313                 /*
2314                  * Optimize for the common case where page is only mapped once
2315                  * in one process. If we can lock the page, then we can safely
2316                  * set up a special migration page table entry now.
2317                  */
2318                 if (trylock_page(page)) {
2319                         pte_t swp_pte;
2320
2321                         mpfn |= MIGRATE_PFN_LOCKED;
2322                         ptep_get_and_clear(mm, addr, ptep);
2323
2324                         /* Setup special migration page table entry */
2325                         entry = make_migration_entry(page, mpfn &
2326                                                      MIGRATE_PFN_WRITE);
2327                         swp_pte = swp_entry_to_pte(entry);
2328                         if (pte_soft_dirty(pte))
2329                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2330                         set_pte_at(mm, addr, ptep, swp_pte);
2331
2332                         /*
2333                          * This is like regular unmap: we remove the rmap and
2334                          * drop page refcount. Page won't be freed, as we took
2335                          * a reference just above.
2336                          */
2337                         page_remove_rmap(page, false);
2338                         put_page(page);
2339
2340                         if (pte_present(pte))
2341                                 unmapped++;
2342                 }
2343
2344 next:
2345                 migrate->dst[migrate->npages] = 0;
2346                 migrate->src[migrate->npages++] = mpfn;
2347         }
2348         arch_leave_lazy_mmu_mode();
2349         pte_unmap_unlock(ptep - 1, ptl);
2350
2351         /* Only flush the TLB if we actually modified any entries */
2352         if (unmapped)
2353                 flush_tlb_range(walk->vma, start, end);
2354
2355         return 0;
2356 }
2357
2358 /*
2359  * migrate_vma_collect() - collect pages over a range of virtual addresses
2360  * @migrate: migrate struct containing all migration information
2361  *
2362  * This will walk the CPU page table. For each virtual address backed by a
2363  * valid page, it updates the src array and takes a reference on the page, in
2364  * order to pin the page until we lock it and unmap it.
2365  */
2366 static void migrate_vma_collect(struct migrate_vma *migrate)
2367 {
2368         struct mm_walk mm_walk;
2369
2370         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2371         mm_walk.pte_entry = NULL;
2372         mm_walk.pte_hole = migrate_vma_collect_hole;
2373         mm_walk.hugetlb_entry = NULL;
2374         mm_walk.test_walk = NULL;
2375         mm_walk.vma = migrate->vma;
2376         mm_walk.mm = migrate->vma->vm_mm;
2377         mm_walk.private = migrate;
2378
2379         mmu_notifier_invalidate_range_start(mm_walk.mm,
2380                                             migrate->start,
2381                                             migrate->end);
2382         walk_page_range(migrate->start, migrate->end, &mm_walk);
2383         mmu_notifier_invalidate_range_end(mm_walk.mm,
2384                                           migrate->start,
2385                                           migrate->end);
2386
2387         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2388 }
2389
2390 /*
2391  * migrate_vma_check_page() - check if page is pinned or not
2392  * @page: struct page to check
2393  *
2394  * Pinned pages cannot be migrated. This is the same test as in
2395  * migrate_page_move_mapping(), except that here we allow migration of a
2396  * ZONE_DEVICE page.
2397  */
2398 static bool migrate_vma_check_page(struct page *page)
2399 {
2400         /*
2401          * One extra ref because caller holds an extra reference, either from
2402          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2403          * a device page.
2404          */
2405         int extra = 1;
2406
2407         /*
2408          * FIXME support THP (transparent huge page), it is bit more complex to
2409          * check them than regular pages, because they can be mapped with a pmd
2410          * or with a pte (split pte mapping).
2411          */
2412         if (PageCompound(page))
2413                 return false;
2414
2415         /* Page from ZONE_DEVICE have one extra reference */
2416         if (is_zone_device_page(page)) {
2417                 /*
2418                  * Private page can never be pin as they have no valid pte and
2419                  * GUP will fail for those. Yet if there is a pending migration
2420                  * a thread might try to wait on the pte migration entry and
2421                  * will bump the page reference count. Sadly there is no way to
2422                  * differentiate a regular pin from migration wait. Hence to
2423                  * avoid 2 racing thread trying to migrate back to CPU to enter
2424                  * infinite loop (one stoping migration because the other is
2425                  * waiting on pte migration entry). We always return true here.
2426                  *
2427                  * FIXME proper solution is to rework migration_entry_wait() so
2428                  * it does not need to take a reference on page.
2429                  */
2430                 if (is_device_private_page(page))
2431                         return true;
2432
2433                 /*
2434                  * Only allow device public page to be migrated and account for
2435                  * the extra reference count imply by ZONE_DEVICE pages.
2436                  */
2437                 if (!is_device_public_page(page))
2438                         return false;
2439                 extra++;
2440         }
2441
2442         /* For file back page */
2443         if (page_mapping(page))
2444                 extra += 1 + page_has_private(page);
2445
2446         if ((page_count(page) - extra) > page_mapcount(page))
2447                 return false;
2448
2449         return true;
2450 }
2451
2452 /*
2453  * migrate_vma_prepare() - lock pages and isolate them from the lru
2454  * @migrate: migrate struct containing all migration information
2455  *
2456  * This locks pages that have been collected by migrate_vma_collect(). Once each
2457  * page is locked it is isolated from the lru (for non-device pages). Finally,
2458  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2459  * migrated by concurrent kernel threads.
2460  */
2461 static void migrate_vma_prepare(struct migrate_vma *migrate)
2462 {
2463         const unsigned long npages = migrate->npages;
2464         const unsigned long start = migrate->start;
2465         unsigned long addr, i, restore = 0;
2466         bool allow_drain = true;
2467
2468         lru_add_drain();
2469
2470         for (i = 0; (i < npages) && migrate->cpages; i++) {
2471                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2472                 bool remap = true;
2473
2474                 if (!page)
2475                         continue;
2476
2477                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2478                         /*
2479                          * Because we are migrating several pages there can be
2480                          * a deadlock between 2 concurrent migration where each
2481                          * are waiting on each other page lock.
2482                          *
2483                          * Make migrate_vma() a best effort thing and backoff
2484                          * for any page we can not lock right away.
2485                          */
2486                         if (!trylock_page(page)) {
2487                                 migrate->src[i] = 0;
2488                                 migrate->cpages--;
2489                                 put_page(page);
2490                                 continue;
2491                         }
2492                         remap = false;
2493                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2494                 }
2495
2496                 /* ZONE_DEVICE pages are not on LRU */
2497                 if (!is_zone_device_page(page)) {
2498                         if (!PageLRU(page) && allow_drain) {
2499                                 /* Drain CPU's pagevec */
2500                                 lru_add_drain_all();
2501                                 allow_drain = false;
2502                         }
2503
2504                         if (isolate_lru_page(page)) {
2505                                 if (remap) {
2506                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2507                                         migrate->cpages--;
2508                                         restore++;
2509                                 } else {
2510                                         migrate->src[i] = 0;
2511                                         unlock_page(page);
2512                                         migrate->cpages--;
2513                                         put_page(page);
2514                                 }
2515                                 continue;
2516                         }
2517
2518                         /* Drop the reference we took in collect */
2519                         put_page(page);
2520                 }
2521
2522                 if (!migrate_vma_check_page(page)) {
2523                         if (remap) {
2524                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2525                                 migrate->cpages--;
2526                                 restore++;
2527
2528                                 if (!is_zone_device_page(page)) {
2529                                         get_page(page);
2530                                         putback_lru_page(page);
2531                                 }
2532                         } else {
2533                                 migrate->src[i] = 0;
2534                                 unlock_page(page);
2535                                 migrate->cpages--;
2536
2537                                 if (!is_zone_device_page(page))
2538                                         putback_lru_page(page);
2539                                 else
2540                                         put_page(page);
2541                         }
2542                 }
2543         }
2544
2545         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2546                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2547
2548                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2549                         continue;
2550
2551                 remove_migration_pte(page, migrate->vma, addr, page);
2552
2553                 migrate->src[i] = 0;
2554                 unlock_page(page);
2555                 put_page(page);
2556                 restore--;
2557         }
2558 }
2559
2560 /*
2561  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2562  * @migrate: migrate struct containing all migration information
2563  *
2564  * Replace page mapping (CPU page table pte) with a special migration pte entry
2565  * and check again if it has been pinned. Pinned pages are restored because we
2566  * cannot migrate them.
2567  *
2568  * This is the last step before we call the device driver callback to allocate
2569  * destination memory and copy contents of original page over to new page.
2570  */
2571 static void migrate_vma_unmap(struct migrate_vma *migrate)
2572 {
2573         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2574         const unsigned long npages = migrate->npages;
2575         const unsigned long start = migrate->start;
2576         unsigned long addr, i, restore = 0;
2577
2578         for (i = 0; i < npages; i++) {
2579                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2580
2581                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2582                         continue;
2583
2584                 if (page_mapped(page)) {
2585                         try_to_unmap(page, flags);
2586                         if (page_mapped(page))
2587                                 goto restore;
2588                 }
2589
2590                 if (migrate_vma_check_page(page))
2591                         continue;
2592
2593 restore:
2594                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2595                 migrate->cpages--;
2596                 restore++;
2597         }
2598
2599         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2600                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2601
2602                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2603                         continue;
2604
2605                 remove_migration_ptes(page, page, false);
2606
2607                 migrate->src[i] = 0;
2608                 unlock_page(page);
2609                 restore--;
2610
2611                 if (is_zone_device_page(page))
2612                         put_page(page);
2613                 else
2614                         putback_lru_page(page);
2615         }
2616 }
2617
2618 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2619                                     unsigned long addr,
2620                                     struct page *page,
2621                                     unsigned long *src,
2622                                     unsigned long *dst)
2623 {
2624         struct vm_area_struct *vma = migrate->vma;
2625         struct mm_struct *mm = vma->vm_mm;
2626         struct mem_cgroup *memcg;
2627         bool flush = false;
2628         spinlock_t *ptl;
2629         pte_t entry;
2630         pgd_t *pgdp;
2631         p4d_t *p4dp;
2632         pud_t *pudp;
2633         pmd_t *pmdp;
2634         pte_t *ptep;
2635
2636         /* Only allow populating anonymous memory */
2637         if (!vma_is_anonymous(vma))
2638                 goto abort;
2639
2640         pgdp = pgd_offset(mm, addr);
2641         p4dp = p4d_alloc(mm, pgdp, addr);
2642         if (!p4dp)
2643                 goto abort;
2644         pudp = pud_alloc(mm, p4dp, addr);
2645         if (!pudp)
2646                 goto abort;
2647         pmdp = pmd_alloc(mm, pudp, addr);
2648         if (!pmdp)
2649                 goto abort;
2650
2651         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2652                 goto abort;
2653
2654         /*
2655          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2656          * pte_offset_map() on pmds where a huge pmd might be created
2657          * from a different thread.
2658          *
2659          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2660          * parallel threads are excluded by other means.
2661          *
2662          * Here we only have down_read(mmap_sem).
2663          */
2664         if (pte_alloc(mm, pmdp, addr))
2665                 goto abort;
2666
2667         /* See the comment in pte_alloc_one_map() */
2668         if (unlikely(pmd_trans_unstable(pmdp)))
2669                 goto abort;
2670
2671         if (unlikely(anon_vma_prepare(vma)))
2672                 goto abort;
2673         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2674                 goto abort;
2675
2676         /*
2677          * The memory barrier inside __SetPageUptodate makes sure that
2678          * preceding stores to the page contents become visible before
2679          * the set_pte_at() write.
2680          */
2681         __SetPageUptodate(page);
2682
2683         if (is_zone_device_page(page)) {
2684                 if (is_device_private_page(page)) {
2685                         swp_entry_t swp_entry;
2686
2687                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2688                         entry = swp_entry_to_pte(swp_entry);
2689                 } else if (is_device_public_page(page)) {
2690                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2691                         if (vma->vm_flags & VM_WRITE)
2692                                 entry = pte_mkwrite(pte_mkdirty(entry));
2693                         entry = pte_mkdevmap(entry);
2694                 }
2695         } else {
2696                 entry = mk_pte(page, vma->vm_page_prot);
2697                 if (vma->vm_flags & VM_WRITE)
2698                         entry = pte_mkwrite(pte_mkdirty(entry));
2699         }
2700
2701         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2702
2703         if (pte_present(*ptep)) {
2704                 unsigned long pfn = pte_pfn(*ptep);
2705
2706                 if (!is_zero_pfn(pfn)) {
2707                         pte_unmap_unlock(ptep, ptl);
2708                         mem_cgroup_cancel_charge(page, memcg, false);
2709                         goto abort;
2710                 }
2711                 flush = true;
2712         } else if (!pte_none(*ptep)) {
2713                 pte_unmap_unlock(ptep, ptl);
2714                 mem_cgroup_cancel_charge(page, memcg, false);
2715                 goto abort;
2716         }
2717
2718         /*
2719          * Check for usefaultfd but do not deliver the fault. Instead,
2720          * just back off.
2721          */
2722         if (userfaultfd_missing(vma)) {
2723                 pte_unmap_unlock(ptep, ptl);
2724                 mem_cgroup_cancel_charge(page, memcg, false);
2725                 goto abort;
2726         }
2727
2728         inc_mm_counter(mm, MM_ANONPAGES);
2729         page_add_new_anon_rmap(page, vma, addr, false);
2730         mem_cgroup_commit_charge(page, memcg, false, false);
2731         if (!is_zone_device_page(page))
2732                 lru_cache_add_active_or_unevictable(page, vma);
2733         get_page(page);
2734
2735         if (flush) {
2736                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2737                 ptep_clear_flush_notify(vma, addr, ptep);
2738                 set_pte_at_notify(mm, addr, ptep, entry);
2739                 update_mmu_cache(vma, addr, ptep);
2740         } else {
2741                 /* No need to invalidate - it was non-present before */
2742                 set_pte_at(mm, addr, ptep, entry);
2743                 update_mmu_cache(vma, addr, ptep);
2744         }
2745
2746         pte_unmap_unlock(ptep, ptl);
2747         *src = MIGRATE_PFN_MIGRATE;
2748         return;
2749
2750 abort:
2751         *src &= ~MIGRATE_PFN_MIGRATE;
2752 }
2753
2754 /*
2755  * migrate_vma_pages() - migrate meta-data from src page to dst page
2756  * @migrate: migrate struct containing all migration information
2757  *
2758  * This migrates struct page meta-data from source struct page to destination
2759  * struct page. This effectively finishes the migration from source page to the
2760  * destination page.
2761  */
2762 static void migrate_vma_pages(struct migrate_vma *migrate)
2763 {
2764         const unsigned long npages = migrate->npages;
2765         const unsigned long start = migrate->start;
2766         struct vm_area_struct *vma = migrate->vma;
2767         struct mm_struct *mm = vma->vm_mm;
2768         unsigned long addr, i, mmu_start;
2769         bool notified = false;
2770
2771         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2772                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2773                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2774                 struct address_space *mapping;
2775                 int r;
2776
2777                 if (!newpage) {
2778                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779                         continue;
2780                 }
2781
2782                 if (!page) {
2783                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2784                                 continue;
2785                         }
2786                         if (!notified) {
2787                                 mmu_start = addr;
2788                                 notified = true;
2789                                 mmu_notifier_invalidate_range_start(mm,
2790                                                                 mmu_start,
2791                                                                 migrate->end);
2792                         }
2793                         migrate_vma_insert_page(migrate, addr, newpage,
2794                                                 &migrate->src[i],
2795                                                 &migrate->dst[i]);
2796                         continue;
2797                 }
2798
2799                 mapping = page_mapping(page);
2800
2801                 if (is_zone_device_page(newpage)) {
2802                         if (is_device_private_page(newpage)) {
2803                                 /*
2804                                  * For now only support private anonymous when
2805                                  * migrating to un-addressable device memory.
2806                                  */
2807                                 if (mapping) {
2808                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2809                                         continue;
2810                                 }
2811                         } else if (!is_device_public_page(newpage)) {
2812                                 /*
2813                                  * Other types of ZONE_DEVICE page are not
2814                                  * supported.
2815                                  */
2816                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2817                                 continue;
2818                         }
2819                 }
2820
2821                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2822                 if (r != MIGRATEPAGE_SUCCESS)
2823                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2824         }
2825
2826         /*
2827          * No need to double call mmu_notifier->invalidate_range() callback as
2828          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2829          * did already call it.
2830          */
2831         if (notified)
2832                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2833                                                        migrate->end);
2834 }
2835
2836 /*
2837  * migrate_vma_finalize() - restore CPU page table entry
2838  * @migrate: migrate struct containing all migration information
2839  *
2840  * This replaces the special migration pte entry with either a mapping to the
2841  * new page if migration was successful for that page, or to the original page
2842  * otherwise.
2843  *
2844  * This also unlocks the pages and puts them back on the lru, or drops the extra
2845  * refcount, for device pages.
2846  */
2847 static void migrate_vma_finalize(struct migrate_vma *migrate)
2848 {
2849         const unsigned long npages = migrate->npages;
2850         unsigned long i;
2851
2852         for (i = 0; i < npages; i++) {
2853                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2854                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2855
2856                 if (!page) {
2857                         if (newpage) {
2858                                 unlock_page(newpage);
2859                                 put_page(newpage);
2860                         }
2861                         continue;
2862                 }
2863
2864                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2865                         if (newpage) {
2866                                 unlock_page(newpage);
2867                                 put_page(newpage);
2868                         }
2869                         newpage = page;
2870                 }
2871
2872                 remove_migration_ptes(page, newpage, false);
2873                 unlock_page(page);
2874                 migrate->cpages--;
2875
2876                 if (is_zone_device_page(page))
2877                         put_page(page);
2878                 else
2879                         putback_lru_page(page);
2880
2881                 if (newpage != page) {
2882                         unlock_page(newpage);
2883                         if (is_zone_device_page(newpage))
2884                                 put_page(newpage);
2885                         else
2886                                 putback_lru_page(newpage);
2887                 }
2888         }
2889 }
2890
2891 /*
2892  * migrate_vma() - migrate a range of memory inside vma
2893  *
2894  * @ops: migration callback for allocating destination memory and copying
2895  * @vma: virtual memory area containing the range to be migrated
2896  * @start: start address of the range to migrate (inclusive)
2897  * @end: end address of the range to migrate (exclusive)
2898  * @src: array of hmm_pfn_t containing source pfns
2899  * @dst: array of hmm_pfn_t containing destination pfns
2900  * @private: pointer passed back to each of the callback
2901  * Returns: 0 on success, error code otherwise
2902  *
2903  * This function tries to migrate a range of memory virtual address range, using
2904  * callbacks to allocate and copy memory from source to destination. First it
2905  * collects all the pages backing each virtual address in the range, saving this
2906  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2907  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2908  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2909  * in the corresponding src array entry. It then restores any pages that are
2910  * pinned, by remapping and unlocking those pages.
2911  *
2912  * At this point it calls the alloc_and_copy() callback. For documentation on
2913  * what is expected from that callback, see struct migrate_vma_ops comments in
2914  * include/linux/migrate.h
2915  *
2916  * After the alloc_and_copy() callback, this function goes over each entry in
2917  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2918  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2919  * then the function tries to migrate struct page information from the source
2920  * struct page to the destination struct page. If it fails to migrate the struct
2921  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2922  * array.
2923  *
2924  * At this point all successfully migrated pages have an entry in the src
2925  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2926  * array entry with MIGRATE_PFN_VALID flag set.
2927  *
2928  * It then calls the finalize_and_map() callback. See comments for "struct
2929  * migrate_vma_ops", in include/linux/migrate.h for details about
2930  * finalize_and_map() behavior.
2931  *
2932  * After the finalize_and_map() callback, for successfully migrated pages, this
2933  * function updates the CPU page table to point to new pages, otherwise it
2934  * restores the CPU page table to point to the original source pages.
2935  *
2936  * Function returns 0 after the above steps, even if no pages were migrated
2937  * (The function only returns an error if any of the arguments are invalid.)
2938  *
2939  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2940  * unsigned long entries.
2941  */
2942 int migrate_vma(const struct migrate_vma_ops *ops,
2943                 struct vm_area_struct *vma,
2944                 unsigned long start,
2945                 unsigned long end,
2946                 unsigned long *src,
2947                 unsigned long *dst,
2948                 void *private)
2949 {
2950         struct migrate_vma migrate;
2951
2952         /* Sanity check the arguments */
2953         start &= PAGE_MASK;
2954         end &= PAGE_MASK;
2955         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2956                         vma_is_dax(vma))
2957                 return -EINVAL;
2958         if (start < vma->vm_start || start >= vma->vm_end)
2959                 return -EINVAL;
2960         if (end <= vma->vm_start || end > vma->vm_end)
2961                 return -EINVAL;
2962         if (!ops || !src || !dst || start >= end)
2963                 return -EINVAL;
2964
2965         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2966         migrate.src = src;
2967         migrate.dst = dst;
2968         migrate.start = start;
2969         migrate.npages = 0;
2970         migrate.cpages = 0;
2971         migrate.end = end;
2972         migrate.vma = vma;
2973
2974         /* Collect, and try to unmap source pages */
2975         migrate_vma_collect(&migrate);
2976         if (!migrate.cpages)
2977                 return 0;
2978
2979         /* Lock and isolate page */
2980         migrate_vma_prepare(&migrate);
2981         if (!migrate.cpages)
2982                 return 0;
2983
2984         /* Unmap pages */
2985         migrate_vma_unmap(&migrate);
2986         if (!migrate.cpages)
2987                 return 0;
2988
2989         /*
2990          * At this point pages are locked and unmapped, and thus they have
2991          * stable content and can safely be copied to destination memory that
2992          * is allocated by the callback.
2993          *
2994          * Note that migration can fail in migrate_vma_struct_page() for each
2995          * individual page.
2996          */
2997         ops->alloc_and_copy(vma, src, dst, start, end, private);
2998
2999         /* This does the real migration of struct page */
3000         migrate_vma_pages(&migrate);
3001
3002         ops->finalize_and_map(vma, src, dst, start, end, private);
3003
3004         /* Unlock and remap pages */
3005         migrate_vma_finalize(&migrate);
3006
3007         return 0;
3008 }
3009 EXPORT_SYMBOL(migrate_vma);
3010 #endif /* defined(MIGRATE_VMA_HELPER) */