1088cef6ef8be0f0cd90ce476527abbaa631d9ab
[sfrench/cifs-2.6.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 #include <linux/ptrace.h>
45
46 #include <asm/tlbflush.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/migrate.h>
50
51 #include "internal.h"
52
53 /*
54  * migrate_prep() needs to be called before we start compiling a list of pages
55  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
56  * undesirable, use migrate_prep_local()
57  */
58 int migrate_prep(void)
59 {
60         /*
61          * Clear the LRU lists so pages can be isolated.
62          * Note that pages may be moved off the LRU after we have
63          * drained them. Those pages will fail to migrate like other
64          * pages that may be busy.
65          */
66         lru_add_drain_all();
67
68         return 0;
69 }
70
71 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
72 int migrate_prep_local(void)
73 {
74         lru_add_drain();
75
76         return 0;
77 }
78
79 int isolate_movable_page(struct page *page, isolate_mode_t mode)
80 {
81         struct address_space *mapping;
82
83         /*
84          * Avoid burning cycles with pages that are yet under __free_pages(),
85          * or just got freed under us.
86          *
87          * In case we 'win' a race for a movable page being freed under us and
88          * raise its refcount preventing __free_pages() from doing its job
89          * the put_page() at the end of this block will take care of
90          * release this page, thus avoiding a nasty leakage.
91          */
92         if (unlikely(!get_page_unless_zero(page)))
93                 goto out;
94
95         /*
96          * Check PageMovable before holding a PG_lock because page's owner
97          * assumes anybody doesn't touch PG_lock of newly allocated page
98          * so unconditionally grapping the lock ruins page's owner side.
99          */
100         if (unlikely(!__PageMovable(page)))
101                 goto out_putpage;
102         /*
103          * As movable pages are not isolated from LRU lists, concurrent
104          * compaction threads can race against page migration functions
105          * as well as race against the releasing a page.
106          *
107          * In order to avoid having an already isolated movable page
108          * being (wrongly) re-isolated while it is under migration,
109          * or to avoid attempting to isolate pages being released,
110          * lets be sure we have the page lock
111          * before proceeding with the movable page isolation steps.
112          */
113         if (unlikely(!trylock_page(page)))
114                 goto out_putpage;
115
116         if (!PageMovable(page) || PageIsolated(page))
117                 goto out_no_isolated;
118
119         mapping = page_mapping(page);
120         VM_BUG_ON_PAGE(!mapping, page);
121
122         if (!mapping->a_ops->isolate_page(page, mode))
123                 goto out_no_isolated;
124
125         /* Driver shouldn't use PG_isolated bit of page->flags */
126         WARN_ON_ONCE(PageIsolated(page));
127         __SetPageIsolated(page);
128         unlock_page(page);
129
130         return 0;
131
132 out_no_isolated:
133         unlock_page(page);
134 out_putpage:
135         put_page(page);
136 out:
137         return -EBUSY;
138 }
139
140 /* It should be called on page which is PG_movable */
141 void putback_movable_page(struct page *page)
142 {
143         struct address_space *mapping;
144
145         VM_BUG_ON_PAGE(!PageLocked(page), page);
146         VM_BUG_ON_PAGE(!PageMovable(page), page);
147         VM_BUG_ON_PAGE(!PageIsolated(page), page);
148
149         mapping = page_mapping(page);
150         mapping->a_ops->putback_page(page);
151         __ClearPageIsolated(page);
152 }
153
154 /*
155  * Put previously isolated pages back onto the appropriate lists
156  * from where they were once taken off for compaction/migration.
157  *
158  * This function shall be used whenever the isolated pageset has been
159  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
160  * and isolate_huge_page().
161  */
162 void putback_movable_pages(struct list_head *l)
163 {
164         struct page *page;
165         struct page *page2;
166
167         list_for_each_entry_safe(page, page2, l, lru) {
168                 if (unlikely(PageHuge(page))) {
169                         putback_active_hugepage(page);
170                         continue;
171                 }
172                 list_del(&page->lru);
173                 /*
174                  * We isolated non-lru movable page so here we can use
175                  * __PageMovable because LRU page's mapping cannot have
176                  * PAGE_MAPPING_MOVABLE.
177                  */
178                 if (unlikely(__PageMovable(page))) {
179                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
180                         lock_page(page);
181                         if (PageMovable(page))
182                                 putback_movable_page(page);
183                         else
184                                 __ClearPageIsolated(page);
185                         unlock_page(page);
186                         put_page(page);
187                 } else {
188                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
189                                         page_is_file_cache(page), -hpage_nr_pages(page));
190                         putback_lru_page(page);
191                 }
192         }
193 }
194
195 /*
196  * Restore a potential migration pte to a working pte entry
197  */
198 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
199                                  unsigned long addr, void *old)
200 {
201         struct page_vma_mapped_walk pvmw = {
202                 .page = old,
203                 .vma = vma,
204                 .address = addr,
205                 .flags = PVMW_SYNC | PVMW_MIGRATION,
206         };
207         struct page *new;
208         pte_t pte;
209         swp_entry_t entry;
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         while (page_vma_mapped_walk(&pvmw)) {
213                 if (PageKsm(page))
214                         new = page;
215                 else
216                         new = page - pvmw.page->index +
217                                 linear_page_index(vma, pvmw.address);
218
219 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
220                 /* PMD-mapped THP migration entry */
221                 if (!pvmw.pte) {
222                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
223                         remove_migration_pmd(&pvmw, new);
224                         continue;
225                 }
226 #endif
227
228                 get_page(new);
229                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
230                 if (pte_swp_soft_dirty(*pvmw.pte))
231                         pte = pte_mksoft_dirty(pte);
232
233                 /*
234                  * Recheck VMA as permissions can change since migration started
235                  */
236                 entry = pte_to_swp_entry(*pvmw.pte);
237                 if (is_write_migration_entry(entry))
238                         pte = maybe_mkwrite(pte, vma);
239
240                 flush_dcache_page(new);
241 #ifdef CONFIG_HUGETLB_PAGE
242                 if (PageHuge(new)) {
243                         pte = pte_mkhuge(pte);
244                         pte = arch_make_huge_pte(pte, vma, new, 0);
245                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
246                         if (PageAnon(new))
247                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
248                         else
249                                 page_dup_rmap(new, true);
250                 } else
251 #endif
252                 {
253                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
254
255                         if (PageAnon(new))
256                                 page_add_anon_rmap(new, vma, pvmw.address, false);
257                         else
258                                 page_add_file_rmap(new, false);
259                 }
260                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
261                         mlock_vma_page(new);
262
263                 /* No need to invalidate - it was non-present before */
264                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
265         }
266
267         return true;
268 }
269
270 /*
271  * Get rid of all migration entries and replace them by
272  * references to the indicated page.
273  */
274 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
275 {
276         struct rmap_walk_control rwc = {
277                 .rmap_one = remove_migration_pte,
278                 .arg = old,
279         };
280
281         if (locked)
282                 rmap_walk_locked(new, &rwc);
283         else
284                 rmap_walk(new, &rwc);
285 }
286
287 /*
288  * Something used the pte of a page under migration. We need to
289  * get to the page and wait until migration is finished.
290  * When we return from this function the fault will be retried.
291  */
292 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
293                                 spinlock_t *ptl)
294 {
295         pte_t pte;
296         swp_entry_t entry;
297         struct page *page;
298
299         spin_lock(ptl);
300         pte = *ptep;
301         if (!is_swap_pte(pte))
302                 goto out;
303
304         entry = pte_to_swp_entry(pte);
305         if (!is_migration_entry(entry))
306                 goto out;
307
308         page = migration_entry_to_page(entry);
309
310         /*
311          * Once radix-tree replacement of page migration started, page_count
312          * *must* be zero. And, we don't want to call wait_on_page_locked()
313          * against a page without get_page().
314          * So, we use get_page_unless_zero(), here. Even failed, page fault
315          * will occur again.
316          */
317         if (!get_page_unless_zero(page))
318                 goto out;
319         pte_unmap_unlock(ptep, ptl);
320         wait_on_page_locked(page);
321         put_page(page);
322         return;
323 out:
324         pte_unmap_unlock(ptep, ptl);
325 }
326
327 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
328                                 unsigned long address)
329 {
330         spinlock_t *ptl = pte_lockptr(mm, pmd);
331         pte_t *ptep = pte_offset_map(pmd, address);
332         __migration_entry_wait(mm, ptep, ptl);
333 }
334
335 void migration_entry_wait_huge(struct vm_area_struct *vma,
336                 struct mm_struct *mm, pte_t *pte)
337 {
338         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
339         __migration_entry_wait(mm, pte, ptl);
340 }
341
342 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
343 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
344 {
345         spinlock_t *ptl;
346         struct page *page;
347
348         ptl = pmd_lock(mm, pmd);
349         if (!is_pmd_migration_entry(*pmd))
350                 goto unlock;
351         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
352         if (!get_page_unless_zero(page))
353                 goto unlock;
354         spin_unlock(ptl);
355         wait_on_page_locked(page);
356         put_page(page);
357         return;
358 unlock:
359         spin_unlock(ptl);
360 }
361 #endif
362
363 #ifdef CONFIG_BLOCK
364 /* Returns true if all buffers are successfully locked */
365 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
366                                                         enum migrate_mode mode)
367 {
368         struct buffer_head *bh = head;
369
370         /* Simple case, sync compaction */
371         if (mode != MIGRATE_ASYNC) {
372                 do {
373                         get_bh(bh);
374                         lock_buffer(bh);
375                         bh = bh->b_this_page;
376
377                 } while (bh != head);
378
379                 return true;
380         }
381
382         /* async case, we cannot block on lock_buffer so use trylock_buffer */
383         do {
384                 get_bh(bh);
385                 if (!trylock_buffer(bh)) {
386                         /*
387                          * We failed to lock the buffer and cannot stall in
388                          * async migration. Release the taken locks
389                          */
390                         struct buffer_head *failed_bh = bh;
391                         put_bh(failed_bh);
392                         bh = head;
393                         while (bh != failed_bh) {
394                                 unlock_buffer(bh);
395                                 put_bh(bh);
396                                 bh = bh->b_this_page;
397                         }
398                         return false;
399                 }
400
401                 bh = bh->b_this_page;
402         } while (bh != head);
403         return true;
404 }
405 #else
406 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
407                                                         enum migrate_mode mode)
408 {
409         return true;
410 }
411 #endif /* CONFIG_BLOCK */
412
413 /*
414  * Replace the page in the mapping.
415  *
416  * The number of remaining references must be:
417  * 1 for anonymous pages without a mapping
418  * 2 for pages with a mapping
419  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
420  */
421 int migrate_page_move_mapping(struct address_space *mapping,
422                 struct page *newpage, struct page *page,
423                 struct buffer_head *head, enum migrate_mode mode,
424                 int extra_count)
425 {
426         struct zone *oldzone, *newzone;
427         int dirty;
428         int expected_count = 1 + extra_count;
429         void **pslot;
430
431         if (!mapping) {
432                 /* Anonymous page without mapping */
433                 if (page_count(page) != expected_count)
434                         return -EAGAIN;
435
436                 /* No turning back from here */
437                 newpage->index = page->index;
438                 newpage->mapping = page->mapping;
439                 if (PageSwapBacked(page))
440                         __SetPageSwapBacked(newpage);
441
442                 return MIGRATEPAGE_SUCCESS;
443         }
444
445         oldzone = page_zone(page);
446         newzone = page_zone(newpage);
447
448         spin_lock_irq(&mapping->tree_lock);
449
450         pslot = radix_tree_lookup_slot(&mapping->page_tree,
451                                         page_index(page));
452
453         expected_count += 1 + page_has_private(page);
454         if (page_count(page) != expected_count ||
455                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
456                 spin_unlock_irq(&mapping->tree_lock);
457                 return -EAGAIN;
458         }
459
460         if (!page_ref_freeze(page, expected_count)) {
461                 spin_unlock_irq(&mapping->tree_lock);
462                 return -EAGAIN;
463         }
464
465         /*
466          * In the async migration case of moving a page with buffers, lock the
467          * buffers using trylock before the mapping is moved. If the mapping
468          * was moved, we later failed to lock the buffers and could not move
469          * the mapping back due to an elevated page count, we would have to
470          * block waiting on other references to be dropped.
471          */
472         if (mode == MIGRATE_ASYNC && head &&
473                         !buffer_migrate_lock_buffers(head, mode)) {
474                 page_ref_unfreeze(page, expected_count);
475                 spin_unlock_irq(&mapping->tree_lock);
476                 return -EAGAIN;
477         }
478
479         /*
480          * Now we know that no one else is looking at the page:
481          * no turning back from here.
482          */
483         newpage->index = page->index;
484         newpage->mapping = page->mapping;
485         get_page(newpage);      /* add cache reference */
486         if (PageSwapBacked(page)) {
487                 __SetPageSwapBacked(newpage);
488                 if (PageSwapCache(page)) {
489                         SetPageSwapCache(newpage);
490                         set_page_private(newpage, page_private(page));
491                 }
492         } else {
493                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
494         }
495
496         /* Move dirty while page refs frozen and newpage not yet exposed */
497         dirty = PageDirty(page);
498         if (dirty) {
499                 ClearPageDirty(page);
500                 SetPageDirty(newpage);
501         }
502
503         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
504
505         /*
506          * Drop cache reference from old page by unfreezing
507          * to one less reference.
508          * We know this isn't the last reference.
509          */
510         page_ref_unfreeze(page, expected_count - 1);
511
512         spin_unlock(&mapping->tree_lock);
513         /* Leave irq disabled to prevent preemption while updating stats */
514
515         /*
516          * If moved to a different zone then also account
517          * the page for that zone. Other VM counters will be
518          * taken care of when we establish references to the
519          * new page and drop references to the old page.
520          *
521          * Note that anonymous pages are accounted for
522          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
523          * are mapped to swap space.
524          */
525         if (newzone != oldzone) {
526                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
527                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
528                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
529                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
530                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
531                 }
532                 if (dirty && mapping_cap_account_dirty(mapping)) {
533                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
534                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
535                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
536                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
537                 }
538         }
539         local_irq_enable();
540
541         return MIGRATEPAGE_SUCCESS;
542 }
543 EXPORT_SYMBOL(migrate_page_move_mapping);
544
545 /*
546  * The expected number of remaining references is the same as that
547  * of migrate_page_move_mapping().
548  */
549 int migrate_huge_page_move_mapping(struct address_space *mapping,
550                                    struct page *newpage, struct page *page)
551 {
552         int expected_count;
553         void **pslot;
554
555         spin_lock_irq(&mapping->tree_lock);
556
557         pslot = radix_tree_lookup_slot(&mapping->page_tree,
558                                         page_index(page));
559
560         expected_count = 2 + page_has_private(page);
561         if (page_count(page) != expected_count ||
562                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
563                 spin_unlock_irq(&mapping->tree_lock);
564                 return -EAGAIN;
565         }
566
567         if (!page_ref_freeze(page, expected_count)) {
568                 spin_unlock_irq(&mapping->tree_lock);
569                 return -EAGAIN;
570         }
571
572         newpage->index = page->index;
573         newpage->mapping = page->mapping;
574
575         get_page(newpage);
576
577         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
578
579         page_ref_unfreeze(page, expected_count - 1);
580
581         spin_unlock_irq(&mapping->tree_lock);
582
583         return MIGRATEPAGE_SUCCESS;
584 }
585
586 /*
587  * Gigantic pages are so large that we do not guarantee that page++ pointer
588  * arithmetic will work across the entire page.  We need something more
589  * specialized.
590  */
591 static void __copy_gigantic_page(struct page *dst, struct page *src,
592                                 int nr_pages)
593 {
594         int i;
595         struct page *dst_base = dst;
596         struct page *src_base = src;
597
598         for (i = 0; i < nr_pages; ) {
599                 cond_resched();
600                 copy_highpage(dst, src);
601
602                 i++;
603                 dst = mem_map_next(dst, dst_base, i);
604                 src = mem_map_next(src, src_base, i);
605         }
606 }
607
608 static void copy_huge_page(struct page *dst, struct page *src)
609 {
610         int i;
611         int nr_pages;
612
613         if (PageHuge(src)) {
614                 /* hugetlbfs page */
615                 struct hstate *h = page_hstate(src);
616                 nr_pages = pages_per_huge_page(h);
617
618                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
619                         __copy_gigantic_page(dst, src, nr_pages);
620                         return;
621                 }
622         } else {
623                 /* thp page */
624                 BUG_ON(!PageTransHuge(src));
625                 nr_pages = hpage_nr_pages(src);
626         }
627
628         for (i = 0; i < nr_pages; i++) {
629                 cond_resched();
630                 copy_highpage(dst + i, src + i);
631         }
632 }
633
634 /*
635  * Copy the page to its new location
636  */
637 void migrate_page_copy(struct page *newpage, struct page *page)
638 {
639         int cpupid;
640
641         if (PageHuge(page) || PageTransHuge(page))
642                 copy_huge_page(newpage, page);
643         else
644                 copy_highpage(newpage, page);
645
646         if (PageError(page))
647                 SetPageError(newpage);
648         if (PageReferenced(page))
649                 SetPageReferenced(newpage);
650         if (PageUptodate(page))
651                 SetPageUptodate(newpage);
652         if (TestClearPageActive(page)) {
653                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
654                 SetPageActive(newpage);
655         } else if (TestClearPageUnevictable(page))
656                 SetPageUnevictable(newpage);
657         if (PageChecked(page))
658                 SetPageChecked(newpage);
659         if (PageMappedToDisk(page))
660                 SetPageMappedToDisk(newpage);
661
662         /* Move dirty on pages not done by migrate_page_move_mapping() */
663         if (PageDirty(page))
664                 SetPageDirty(newpage);
665
666         if (page_is_young(page))
667                 set_page_young(newpage);
668         if (page_is_idle(page))
669                 set_page_idle(newpage);
670
671         /*
672          * Copy NUMA information to the new page, to prevent over-eager
673          * future migrations of this same page.
674          */
675         cpupid = page_cpupid_xchg_last(page, -1);
676         page_cpupid_xchg_last(newpage, cpupid);
677
678         ksm_migrate_page(newpage, page);
679         /*
680          * Please do not reorder this without considering how mm/ksm.c's
681          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
682          */
683         if (PageSwapCache(page))
684                 ClearPageSwapCache(page);
685         ClearPagePrivate(page);
686         set_page_private(page, 0);
687
688         /*
689          * If any waiters have accumulated on the new page then
690          * wake them up.
691          */
692         if (PageWriteback(newpage))
693                 end_page_writeback(newpage);
694
695         copy_page_owner(page, newpage);
696
697         mem_cgroup_migrate(page, newpage);
698 }
699 EXPORT_SYMBOL(migrate_page_copy);
700
701 /************************************************************
702  *                    Migration functions
703  ***********************************************************/
704
705 /*
706  * Common logic to directly migrate a single LRU page suitable for
707  * pages that do not use PagePrivate/PagePrivate2.
708  *
709  * Pages are locked upon entry and exit.
710  */
711 int migrate_page(struct address_space *mapping,
712                 struct page *newpage, struct page *page,
713                 enum migrate_mode mode)
714 {
715         int rc;
716
717         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
718
719         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
720
721         if (rc != MIGRATEPAGE_SUCCESS)
722                 return rc;
723
724         migrate_page_copy(newpage, page);
725         return MIGRATEPAGE_SUCCESS;
726 }
727 EXPORT_SYMBOL(migrate_page);
728
729 #ifdef CONFIG_BLOCK
730 /*
731  * Migration function for pages with buffers. This function can only be used
732  * if the underlying filesystem guarantees that no other references to "page"
733  * exist.
734  */
735 int buffer_migrate_page(struct address_space *mapping,
736                 struct page *newpage, struct page *page, enum migrate_mode mode)
737 {
738         struct buffer_head *bh, *head;
739         int rc;
740
741         if (!page_has_buffers(page))
742                 return migrate_page(mapping, newpage, page, mode);
743
744         head = page_buffers(page);
745
746         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
747
748         if (rc != MIGRATEPAGE_SUCCESS)
749                 return rc;
750
751         /*
752          * In the async case, migrate_page_move_mapping locked the buffers
753          * with an IRQ-safe spinlock held. In the sync case, the buffers
754          * need to be locked now
755          */
756         if (mode != MIGRATE_ASYNC)
757                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
758
759         ClearPagePrivate(page);
760         set_page_private(newpage, page_private(page));
761         set_page_private(page, 0);
762         put_page(page);
763         get_page(newpage);
764
765         bh = head;
766         do {
767                 set_bh_page(bh, newpage, bh_offset(bh));
768                 bh = bh->b_this_page;
769
770         } while (bh != head);
771
772         SetPagePrivate(newpage);
773
774         migrate_page_copy(newpage, page);
775
776         bh = head;
777         do {
778                 unlock_buffer(bh);
779                 put_bh(bh);
780                 bh = bh->b_this_page;
781
782         } while (bh != head);
783
784         return MIGRATEPAGE_SUCCESS;
785 }
786 EXPORT_SYMBOL(buffer_migrate_page);
787 #endif
788
789 /*
790  * Writeback a page to clean the dirty state
791  */
792 static int writeout(struct address_space *mapping, struct page *page)
793 {
794         struct writeback_control wbc = {
795                 .sync_mode = WB_SYNC_NONE,
796                 .nr_to_write = 1,
797                 .range_start = 0,
798                 .range_end = LLONG_MAX,
799                 .for_reclaim = 1
800         };
801         int rc;
802
803         if (!mapping->a_ops->writepage)
804                 /* No write method for the address space */
805                 return -EINVAL;
806
807         if (!clear_page_dirty_for_io(page))
808                 /* Someone else already triggered a write */
809                 return -EAGAIN;
810
811         /*
812          * A dirty page may imply that the underlying filesystem has
813          * the page on some queue. So the page must be clean for
814          * migration. Writeout may mean we loose the lock and the
815          * page state is no longer what we checked for earlier.
816          * At this point we know that the migration attempt cannot
817          * be successful.
818          */
819         remove_migration_ptes(page, page, false);
820
821         rc = mapping->a_ops->writepage(page, &wbc);
822
823         if (rc != AOP_WRITEPAGE_ACTIVATE)
824                 /* unlocked. Relock */
825                 lock_page(page);
826
827         return (rc < 0) ? -EIO : -EAGAIN;
828 }
829
830 /*
831  * Default handling if a filesystem does not provide a migration function.
832  */
833 static int fallback_migrate_page(struct address_space *mapping,
834         struct page *newpage, struct page *page, enum migrate_mode mode)
835 {
836         if (PageDirty(page)) {
837                 /* Only writeback pages in full synchronous migration */
838                 if (mode != MIGRATE_SYNC)
839                         return -EBUSY;
840                 return writeout(mapping, page);
841         }
842
843         /*
844          * Buffers may be managed in a filesystem specific way.
845          * We must have no buffers or drop them.
846          */
847         if (page_has_private(page) &&
848             !try_to_release_page(page, GFP_KERNEL))
849                 return -EAGAIN;
850
851         return migrate_page(mapping, newpage, page, mode);
852 }
853
854 /*
855  * Move a page to a newly allocated page
856  * The page is locked and all ptes have been successfully removed.
857  *
858  * The new page will have replaced the old page if this function
859  * is successful.
860  *
861  * Return value:
862  *   < 0 - error code
863  *  MIGRATEPAGE_SUCCESS - success
864  */
865 static int move_to_new_page(struct page *newpage, struct page *page,
866                                 enum migrate_mode mode)
867 {
868         struct address_space *mapping;
869         int rc = -EAGAIN;
870         bool is_lru = !__PageMovable(page);
871
872         VM_BUG_ON_PAGE(!PageLocked(page), page);
873         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
874
875         mapping = page_mapping(page);
876
877         if (likely(is_lru)) {
878                 if (!mapping)
879                         rc = migrate_page(mapping, newpage, page, mode);
880                 else if (mapping->a_ops->migratepage)
881                         /*
882                          * Most pages have a mapping and most filesystems
883                          * provide a migratepage callback. Anonymous pages
884                          * are part of swap space which also has its own
885                          * migratepage callback. This is the most common path
886                          * for page migration.
887                          */
888                         rc = mapping->a_ops->migratepage(mapping, newpage,
889                                                         page, mode);
890                 else
891                         rc = fallback_migrate_page(mapping, newpage,
892                                                         page, mode);
893         } else {
894                 /*
895                  * In case of non-lru page, it could be released after
896                  * isolation step. In that case, we shouldn't try migration.
897                  */
898                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
899                 if (!PageMovable(page)) {
900                         rc = MIGRATEPAGE_SUCCESS;
901                         __ClearPageIsolated(page);
902                         goto out;
903                 }
904
905                 rc = mapping->a_ops->migratepage(mapping, newpage,
906                                                 page, mode);
907                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
908                         !PageIsolated(page));
909         }
910
911         /*
912          * When successful, old pagecache page->mapping must be cleared before
913          * page is freed; but stats require that PageAnon be left as PageAnon.
914          */
915         if (rc == MIGRATEPAGE_SUCCESS) {
916                 if (__PageMovable(page)) {
917                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
918
919                         /*
920                          * We clear PG_movable under page_lock so any compactor
921                          * cannot try to migrate this page.
922                          */
923                         __ClearPageIsolated(page);
924                 }
925
926                 /*
927                  * Anonymous and movable page->mapping will be cleard by
928                  * free_pages_prepare so don't reset it here for keeping
929                  * the type to work PageAnon, for example.
930                  */
931                 if (!PageMappingFlags(page))
932                         page->mapping = NULL;
933         }
934 out:
935         return rc;
936 }
937
938 static int __unmap_and_move(struct page *page, struct page *newpage,
939                                 int force, enum migrate_mode mode)
940 {
941         int rc = -EAGAIN;
942         int page_was_mapped = 0;
943         struct anon_vma *anon_vma = NULL;
944         bool is_lru = !__PageMovable(page);
945
946         if (!trylock_page(page)) {
947                 if (!force || mode == MIGRATE_ASYNC)
948                         goto out;
949
950                 /*
951                  * It's not safe for direct compaction to call lock_page.
952                  * For example, during page readahead pages are added locked
953                  * to the LRU. Later, when the IO completes the pages are
954                  * marked uptodate and unlocked. However, the queueing
955                  * could be merging multiple pages for one bio (e.g.
956                  * mpage_readpages). If an allocation happens for the
957                  * second or third page, the process can end up locking
958                  * the same page twice and deadlocking. Rather than
959                  * trying to be clever about what pages can be locked,
960                  * avoid the use of lock_page for direct compaction
961                  * altogether.
962                  */
963                 if (current->flags & PF_MEMALLOC)
964                         goto out;
965
966                 lock_page(page);
967         }
968
969         if (PageWriteback(page)) {
970                 /*
971                  * Only in the case of a full synchronous migration is it
972                  * necessary to wait for PageWriteback. In the async case,
973                  * the retry loop is too short and in the sync-light case,
974                  * the overhead of stalling is too much
975                  */
976                 if (mode != MIGRATE_SYNC) {
977                         rc = -EBUSY;
978                         goto out_unlock;
979                 }
980                 if (!force)
981                         goto out_unlock;
982                 wait_on_page_writeback(page);
983         }
984
985         /*
986          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
987          * we cannot notice that anon_vma is freed while we migrates a page.
988          * This get_anon_vma() delays freeing anon_vma pointer until the end
989          * of migration. File cache pages are no problem because of page_lock()
990          * File Caches may use write_page() or lock_page() in migration, then,
991          * just care Anon page here.
992          *
993          * Only page_get_anon_vma() understands the subtleties of
994          * getting a hold on an anon_vma from outside one of its mms.
995          * But if we cannot get anon_vma, then we won't need it anyway,
996          * because that implies that the anon page is no longer mapped
997          * (and cannot be remapped so long as we hold the page lock).
998          */
999         if (PageAnon(page) && !PageKsm(page))
1000                 anon_vma = page_get_anon_vma(page);
1001
1002         /*
1003          * Block others from accessing the new page when we get around to
1004          * establishing additional references. We are usually the only one
1005          * holding a reference to newpage at this point. We used to have a BUG
1006          * here if trylock_page(newpage) fails, but would like to allow for
1007          * cases where there might be a race with the previous use of newpage.
1008          * This is much like races on refcount of oldpage: just don't BUG().
1009          */
1010         if (unlikely(!trylock_page(newpage)))
1011                 goto out_unlock;
1012
1013         if (unlikely(!is_lru)) {
1014                 rc = move_to_new_page(newpage, page, mode);
1015                 goto out_unlock_both;
1016         }
1017
1018         /*
1019          * Corner case handling:
1020          * 1. When a new swap-cache page is read into, it is added to the LRU
1021          * and treated as swapcache but it has no rmap yet.
1022          * Calling try_to_unmap() against a page->mapping==NULL page will
1023          * trigger a BUG.  So handle it here.
1024          * 2. An orphaned page (see truncate_complete_page) might have
1025          * fs-private metadata. The page can be picked up due to memory
1026          * offlining.  Everywhere else except page reclaim, the page is
1027          * invisible to the vm, so the page can not be migrated.  So try to
1028          * free the metadata, so the page can be freed.
1029          */
1030         if (!page->mapping) {
1031                 VM_BUG_ON_PAGE(PageAnon(page), page);
1032                 if (page_has_private(page)) {
1033                         try_to_free_buffers(page);
1034                         goto out_unlock_both;
1035                 }
1036         } else if (page_mapped(page)) {
1037                 /* Establish migration ptes */
1038                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1039                                 page);
1040                 try_to_unmap(page,
1041                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1042                 page_was_mapped = 1;
1043         }
1044
1045         if (!page_mapped(page))
1046                 rc = move_to_new_page(newpage, page, mode);
1047
1048         if (page_was_mapped)
1049                 remove_migration_ptes(page,
1050                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1051
1052 out_unlock_both:
1053         unlock_page(newpage);
1054 out_unlock:
1055         /* Drop an anon_vma reference if we took one */
1056         if (anon_vma)
1057                 put_anon_vma(anon_vma);
1058         unlock_page(page);
1059 out:
1060         /*
1061          * If migration is successful, decrease refcount of the newpage
1062          * which will not free the page because new page owner increased
1063          * refcounter. As well, if it is LRU page, add the page to LRU
1064          * list in here.
1065          */
1066         if (rc == MIGRATEPAGE_SUCCESS) {
1067                 if (unlikely(__PageMovable(newpage)))
1068                         put_page(newpage);
1069                 else
1070                         putback_lru_page(newpage);
1071         }
1072
1073         return rc;
1074 }
1075
1076 /*
1077  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1078  * around it.
1079  */
1080 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1081 #define ICE_noinline noinline
1082 #else
1083 #define ICE_noinline
1084 #endif
1085
1086 /*
1087  * Obtain the lock on page, remove all ptes and migrate the page
1088  * to the newly allocated page in newpage.
1089  */
1090 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1091                                    free_page_t put_new_page,
1092                                    unsigned long private, struct page *page,
1093                                    int force, enum migrate_mode mode,
1094                                    enum migrate_reason reason)
1095 {
1096         int rc = MIGRATEPAGE_SUCCESS;
1097         int *result = NULL;
1098         struct page *newpage;
1099
1100         newpage = get_new_page(page, private, &result);
1101         if (!newpage)
1102                 return -ENOMEM;
1103
1104         if (page_count(page) == 1) {
1105                 /* page was freed from under us. So we are done. */
1106                 ClearPageActive(page);
1107                 ClearPageUnevictable(page);
1108                 if (unlikely(__PageMovable(page))) {
1109                         lock_page(page);
1110                         if (!PageMovable(page))
1111                                 __ClearPageIsolated(page);
1112                         unlock_page(page);
1113                 }
1114                 if (put_new_page)
1115                         put_new_page(newpage, private);
1116                 else
1117                         put_page(newpage);
1118                 goto out;
1119         }
1120
1121         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1122                 lock_page(page);
1123                 rc = split_huge_page(page);
1124                 unlock_page(page);
1125                 if (rc)
1126                         goto out;
1127         }
1128
1129         rc = __unmap_and_move(page, newpage, force, mode);
1130         if (rc == MIGRATEPAGE_SUCCESS)
1131                 set_page_owner_migrate_reason(newpage, reason);
1132
1133 out:
1134         if (rc != -EAGAIN) {
1135                 /*
1136                  * A page that has been migrated has all references
1137                  * removed and will be freed. A page that has not been
1138                  * migrated will have kepts its references and be
1139                  * restored.
1140                  */
1141                 list_del(&page->lru);
1142
1143                 /*
1144                  * Compaction can migrate also non-LRU pages which are
1145                  * not accounted to NR_ISOLATED_*. They can be recognized
1146                  * as __PageMovable
1147                  */
1148                 if (likely(!__PageMovable(page)))
1149                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1150                                         page_is_file_cache(page), -hpage_nr_pages(page));
1151         }
1152
1153         /*
1154          * If migration is successful, releases reference grabbed during
1155          * isolation. Otherwise, restore the page to right list unless
1156          * we want to retry.
1157          */
1158         if (rc == MIGRATEPAGE_SUCCESS) {
1159                 put_page(page);
1160                 if (reason == MR_MEMORY_FAILURE) {
1161                         /*
1162                          * Set PG_HWPoison on just freed page
1163                          * intentionally. Although it's rather weird,
1164                          * it's how HWPoison flag works at the moment.
1165                          */
1166                         if (!test_set_page_hwpoison(page))
1167                                 num_poisoned_pages_inc();
1168                 }
1169         } else {
1170                 if (rc != -EAGAIN) {
1171                         if (likely(!__PageMovable(page))) {
1172                                 putback_lru_page(page);
1173                                 goto put_new;
1174                         }
1175
1176                         lock_page(page);
1177                         if (PageMovable(page))
1178                                 putback_movable_page(page);
1179                         else
1180                                 __ClearPageIsolated(page);
1181                         unlock_page(page);
1182                         put_page(page);
1183                 }
1184 put_new:
1185                 if (put_new_page)
1186                         put_new_page(newpage, private);
1187                 else
1188                         put_page(newpage);
1189         }
1190
1191         if (result) {
1192                 if (rc)
1193                         *result = rc;
1194                 else
1195                         *result = page_to_nid(newpage);
1196         }
1197         return rc;
1198 }
1199
1200 /*
1201  * Counterpart of unmap_and_move_page() for hugepage migration.
1202  *
1203  * This function doesn't wait the completion of hugepage I/O
1204  * because there is no race between I/O and migration for hugepage.
1205  * Note that currently hugepage I/O occurs only in direct I/O
1206  * where no lock is held and PG_writeback is irrelevant,
1207  * and writeback status of all subpages are counted in the reference
1208  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1209  * under direct I/O, the reference of the head page is 512 and a bit more.)
1210  * This means that when we try to migrate hugepage whose subpages are
1211  * doing direct I/O, some references remain after try_to_unmap() and
1212  * hugepage migration fails without data corruption.
1213  *
1214  * There is also no race when direct I/O is issued on the page under migration,
1215  * because then pte is replaced with migration swap entry and direct I/O code
1216  * will wait in the page fault for migration to complete.
1217  */
1218 static int unmap_and_move_huge_page(new_page_t get_new_page,
1219                                 free_page_t put_new_page, unsigned long private,
1220                                 struct page *hpage, int force,
1221                                 enum migrate_mode mode, int reason)
1222 {
1223         int rc = -EAGAIN;
1224         int *result = NULL;
1225         int page_was_mapped = 0;
1226         struct page *new_hpage;
1227         struct anon_vma *anon_vma = NULL;
1228
1229         /*
1230          * Movability of hugepages depends on architectures and hugepage size.
1231          * This check is necessary because some callers of hugepage migration
1232          * like soft offline and memory hotremove don't walk through page
1233          * tables or check whether the hugepage is pmd-based or not before
1234          * kicking migration.
1235          */
1236         if (!hugepage_migration_supported(page_hstate(hpage))) {
1237                 putback_active_hugepage(hpage);
1238                 return -ENOSYS;
1239         }
1240
1241         new_hpage = get_new_page(hpage, private, &result);
1242         if (!new_hpage)
1243                 return -ENOMEM;
1244
1245         if (!trylock_page(hpage)) {
1246                 if (!force || mode != MIGRATE_SYNC)
1247                         goto out;
1248                 lock_page(hpage);
1249         }
1250
1251         if (PageAnon(hpage))
1252                 anon_vma = page_get_anon_vma(hpage);
1253
1254         if (unlikely(!trylock_page(new_hpage)))
1255                 goto put_anon;
1256
1257         if (page_mapped(hpage)) {
1258                 try_to_unmap(hpage,
1259                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1260                 page_was_mapped = 1;
1261         }
1262
1263         if (!page_mapped(hpage))
1264                 rc = move_to_new_page(new_hpage, hpage, mode);
1265
1266         if (page_was_mapped)
1267                 remove_migration_ptes(hpage,
1268                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1269
1270         unlock_page(new_hpage);
1271
1272 put_anon:
1273         if (anon_vma)
1274                 put_anon_vma(anon_vma);
1275
1276         if (rc == MIGRATEPAGE_SUCCESS) {
1277                 hugetlb_cgroup_migrate(hpage, new_hpage);
1278                 put_new_page = NULL;
1279                 set_page_owner_migrate_reason(new_hpage, reason);
1280         }
1281
1282         unlock_page(hpage);
1283 out:
1284         if (rc != -EAGAIN)
1285                 putback_active_hugepage(hpage);
1286         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1287                 num_poisoned_pages_inc();
1288
1289         /*
1290          * If migration was not successful and there's a freeing callback, use
1291          * it.  Otherwise, put_page() will drop the reference grabbed during
1292          * isolation.
1293          */
1294         if (put_new_page)
1295                 put_new_page(new_hpage, private);
1296         else
1297                 putback_active_hugepage(new_hpage);
1298
1299         if (result) {
1300                 if (rc)
1301                         *result = rc;
1302                 else
1303                         *result = page_to_nid(new_hpage);
1304         }
1305         return rc;
1306 }
1307
1308 /*
1309  * migrate_pages - migrate the pages specified in a list, to the free pages
1310  *                 supplied as the target for the page migration
1311  *
1312  * @from:               The list of pages to be migrated.
1313  * @get_new_page:       The function used to allocate free pages to be used
1314  *                      as the target of the page migration.
1315  * @put_new_page:       The function used to free target pages if migration
1316  *                      fails, or NULL if no special handling is necessary.
1317  * @private:            Private data to be passed on to get_new_page()
1318  * @mode:               The migration mode that specifies the constraints for
1319  *                      page migration, if any.
1320  * @reason:             The reason for page migration.
1321  *
1322  * The function returns after 10 attempts or if no pages are movable any more
1323  * because the list has become empty or no retryable pages exist any more.
1324  * The caller should call putback_movable_pages() to return pages to the LRU
1325  * or free list only if ret != 0.
1326  *
1327  * Returns the number of pages that were not migrated, or an error code.
1328  */
1329 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1330                 free_page_t put_new_page, unsigned long private,
1331                 enum migrate_mode mode, int reason)
1332 {
1333         int retry = 1;
1334         int nr_failed = 0;
1335         int nr_succeeded = 0;
1336         int pass = 0;
1337         struct page *page;
1338         struct page *page2;
1339         int swapwrite = current->flags & PF_SWAPWRITE;
1340         int rc;
1341
1342         if (!swapwrite)
1343                 current->flags |= PF_SWAPWRITE;
1344
1345         for(pass = 0; pass < 10 && retry; pass++) {
1346                 retry = 0;
1347
1348                 list_for_each_entry_safe(page, page2, from, lru) {
1349                         cond_resched();
1350
1351                         if (PageHuge(page))
1352                                 rc = unmap_and_move_huge_page(get_new_page,
1353                                                 put_new_page, private, page,
1354                                                 pass > 2, mode, reason);
1355                         else
1356                                 rc = unmap_and_move(get_new_page, put_new_page,
1357                                                 private, page, pass > 2, mode,
1358                                                 reason);
1359
1360                         switch(rc) {
1361                         case -ENOMEM:
1362                                 nr_failed++;
1363                                 goto out;
1364                         case -EAGAIN:
1365                                 retry++;
1366                                 break;
1367                         case MIGRATEPAGE_SUCCESS:
1368                                 nr_succeeded++;
1369                                 break;
1370                         default:
1371                                 /*
1372                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1373                                  * unlike -EAGAIN case, the failed page is
1374                                  * removed from migration page list and not
1375                                  * retried in the next outer loop.
1376                                  */
1377                                 nr_failed++;
1378                                 break;
1379                         }
1380                 }
1381         }
1382         nr_failed += retry;
1383         rc = nr_failed;
1384 out:
1385         if (nr_succeeded)
1386                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1387         if (nr_failed)
1388                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1389         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1390
1391         if (!swapwrite)
1392                 current->flags &= ~PF_SWAPWRITE;
1393
1394         return rc;
1395 }
1396
1397 #ifdef CONFIG_NUMA
1398 /*
1399  * Move a list of individual pages
1400  */
1401 struct page_to_node {
1402         unsigned long addr;
1403         struct page *page;
1404         int node;
1405         int status;
1406 };
1407
1408 static struct page *new_page_node(struct page *p, unsigned long private,
1409                 int **result)
1410 {
1411         struct page_to_node *pm = (struct page_to_node *)private;
1412
1413         while (pm->node != MAX_NUMNODES && pm->page != p)
1414                 pm++;
1415
1416         if (pm->node == MAX_NUMNODES)
1417                 return NULL;
1418
1419         *result = &pm->status;
1420
1421         if (PageHuge(p))
1422                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1423                                         pm->node);
1424         else if (thp_migration_supported() && PageTransHuge(p)) {
1425                 struct page *thp;
1426
1427                 thp = alloc_pages_node(pm->node,
1428                         (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1429                         HPAGE_PMD_ORDER);
1430                 if (!thp)
1431                         return NULL;
1432                 prep_transhuge_page(thp);
1433                 return thp;
1434         } else
1435                 return __alloc_pages_node(pm->node,
1436                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1437 }
1438
1439 /*
1440  * Move a set of pages as indicated in the pm array. The addr
1441  * field must be set to the virtual address of the page to be moved
1442  * and the node number must contain a valid target node.
1443  * The pm array ends with node = MAX_NUMNODES.
1444  */
1445 static int do_move_page_to_node_array(struct mm_struct *mm,
1446                                       struct page_to_node *pm,
1447                                       int migrate_all)
1448 {
1449         int err;
1450         struct page_to_node *pp;
1451         LIST_HEAD(pagelist);
1452
1453         down_read(&mm->mmap_sem);
1454
1455         /*
1456          * Build a list of pages to migrate
1457          */
1458         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1459                 struct vm_area_struct *vma;
1460                 struct page *page;
1461                 struct page *head;
1462                 unsigned int follflags;
1463
1464                 err = -EFAULT;
1465                 vma = find_vma(mm, pp->addr);
1466                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1467                         goto set_status;
1468
1469                 /* FOLL_DUMP to ignore special (like zero) pages */
1470                 follflags = FOLL_GET | FOLL_DUMP;
1471                 if (!thp_migration_supported())
1472                         follflags |= FOLL_SPLIT;
1473                 page = follow_page(vma, pp->addr, follflags);
1474
1475                 err = PTR_ERR(page);
1476                 if (IS_ERR(page))
1477                         goto set_status;
1478
1479                 err = -ENOENT;
1480                 if (!page)
1481                         goto set_status;
1482
1483                 err = page_to_nid(page);
1484
1485                 if (err == pp->node)
1486                         /*
1487                          * Node already in the right place
1488                          */
1489                         goto put_and_set;
1490
1491                 err = -EACCES;
1492                 if (page_mapcount(page) > 1 &&
1493                                 !migrate_all)
1494                         goto put_and_set;
1495
1496                 if (PageHuge(page)) {
1497                         if (PageHead(page)) {
1498                                 isolate_huge_page(page, &pagelist);
1499                                 err = 0;
1500                                 pp->page = page;
1501                         }
1502                         goto put_and_set;
1503                 }
1504
1505                 pp->page = compound_head(page);
1506                 head = compound_head(page);
1507                 err = isolate_lru_page(head);
1508                 if (!err) {
1509                         list_add_tail(&head->lru, &pagelist);
1510                         mod_node_page_state(page_pgdat(head),
1511                                 NR_ISOLATED_ANON + page_is_file_cache(head),
1512                                 hpage_nr_pages(head));
1513                 }
1514 put_and_set:
1515                 /*
1516                  * Either remove the duplicate refcount from
1517                  * isolate_lru_page() or drop the page ref if it was
1518                  * not isolated.
1519                  */
1520                 put_page(page);
1521 set_status:
1522                 pp->status = err;
1523         }
1524
1525         err = 0;
1526         if (!list_empty(&pagelist)) {
1527                 err = migrate_pages(&pagelist, new_page_node, NULL,
1528                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1529                 if (err)
1530                         putback_movable_pages(&pagelist);
1531         }
1532
1533         up_read(&mm->mmap_sem);
1534         return err;
1535 }
1536
1537 /*
1538  * Migrate an array of page address onto an array of nodes and fill
1539  * the corresponding array of status.
1540  */
1541 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1542                          unsigned long nr_pages,
1543                          const void __user * __user *pages,
1544                          const int __user *nodes,
1545                          int __user *status, int flags)
1546 {
1547         struct page_to_node *pm;
1548         unsigned long chunk_nr_pages;
1549         unsigned long chunk_start;
1550         int err;
1551
1552         err = -ENOMEM;
1553         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1554         if (!pm)
1555                 goto out;
1556
1557         migrate_prep();
1558
1559         /*
1560          * Store a chunk of page_to_node array in a page,
1561          * but keep the last one as a marker
1562          */
1563         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1564
1565         for (chunk_start = 0;
1566              chunk_start < nr_pages;
1567              chunk_start += chunk_nr_pages) {
1568                 int j;
1569
1570                 if (chunk_start + chunk_nr_pages > nr_pages)
1571                         chunk_nr_pages = nr_pages - chunk_start;
1572
1573                 /* fill the chunk pm with addrs and nodes from user-space */
1574                 for (j = 0; j < chunk_nr_pages; j++) {
1575                         const void __user *p;
1576                         int node;
1577
1578                         err = -EFAULT;
1579                         if (get_user(p, pages + j + chunk_start))
1580                                 goto out_pm;
1581                         pm[j].addr = (unsigned long) p;
1582
1583                         if (get_user(node, nodes + j + chunk_start))
1584                                 goto out_pm;
1585
1586                         err = -ENODEV;
1587                         if (node < 0 || node >= MAX_NUMNODES)
1588                                 goto out_pm;
1589
1590                         if (!node_state(node, N_MEMORY))
1591                                 goto out_pm;
1592
1593                         err = -EACCES;
1594                         if (!node_isset(node, task_nodes))
1595                                 goto out_pm;
1596
1597                         pm[j].node = node;
1598                 }
1599
1600                 /* End marker for this chunk */
1601                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1602
1603                 /* Migrate this chunk */
1604                 err = do_move_page_to_node_array(mm, pm,
1605                                                  flags & MPOL_MF_MOVE_ALL);
1606                 if (err < 0)
1607                         goto out_pm;
1608
1609                 /* Return status information */
1610                 for (j = 0; j < chunk_nr_pages; j++)
1611                         if (put_user(pm[j].status, status + j + chunk_start)) {
1612                                 err = -EFAULT;
1613                                 goto out_pm;
1614                         }
1615         }
1616         err = 0;
1617
1618 out_pm:
1619         free_page((unsigned long)pm);
1620 out:
1621         return err;
1622 }
1623
1624 /*
1625  * Determine the nodes of an array of pages and store it in an array of status.
1626  */
1627 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1628                                 const void __user **pages, int *status)
1629 {
1630         unsigned long i;
1631
1632         down_read(&mm->mmap_sem);
1633
1634         for (i = 0; i < nr_pages; i++) {
1635                 unsigned long addr = (unsigned long)(*pages);
1636                 struct vm_area_struct *vma;
1637                 struct page *page;
1638                 int err = -EFAULT;
1639
1640                 vma = find_vma(mm, addr);
1641                 if (!vma || addr < vma->vm_start)
1642                         goto set_status;
1643
1644                 /* FOLL_DUMP to ignore special (like zero) pages */
1645                 page = follow_page(vma, addr, FOLL_DUMP);
1646
1647                 err = PTR_ERR(page);
1648                 if (IS_ERR(page))
1649                         goto set_status;
1650
1651                 err = page ? page_to_nid(page) : -ENOENT;
1652 set_status:
1653                 *status = err;
1654
1655                 pages++;
1656                 status++;
1657         }
1658
1659         up_read(&mm->mmap_sem);
1660 }
1661
1662 /*
1663  * Determine the nodes of a user array of pages and store it in
1664  * a user array of status.
1665  */
1666 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1667                          const void __user * __user *pages,
1668                          int __user *status)
1669 {
1670 #define DO_PAGES_STAT_CHUNK_NR 16
1671         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1672         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1673
1674         while (nr_pages) {
1675                 unsigned long chunk_nr;
1676
1677                 chunk_nr = nr_pages;
1678                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1679                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1680
1681                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1682                         break;
1683
1684                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1685
1686                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1687                         break;
1688
1689                 pages += chunk_nr;
1690                 status += chunk_nr;
1691                 nr_pages -= chunk_nr;
1692         }
1693         return nr_pages ? -EFAULT : 0;
1694 }
1695
1696 /*
1697  * Move a list of pages in the address space of the currently executing
1698  * process.
1699  */
1700 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1701                 const void __user * __user *, pages,
1702                 const int __user *, nodes,
1703                 int __user *, status, int, flags)
1704 {
1705         struct task_struct *task;
1706         struct mm_struct *mm;
1707         int err;
1708         nodemask_t task_nodes;
1709
1710         /* Check flags */
1711         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1712                 return -EINVAL;
1713
1714         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1715                 return -EPERM;
1716
1717         /* Find the mm_struct */
1718         rcu_read_lock();
1719         task = pid ? find_task_by_vpid(pid) : current;
1720         if (!task) {
1721                 rcu_read_unlock();
1722                 return -ESRCH;
1723         }
1724         get_task_struct(task);
1725
1726         /*
1727          * Check if this process has the right to modify the specified
1728          * process. Use the regular "ptrace_may_access()" checks.
1729          */
1730         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1731                 rcu_read_unlock();
1732                 err = -EPERM;
1733                 goto out;
1734         }
1735         rcu_read_unlock();
1736
1737         err = security_task_movememory(task);
1738         if (err)
1739                 goto out;
1740
1741         task_nodes = cpuset_mems_allowed(task);
1742         mm = get_task_mm(task);
1743         put_task_struct(task);
1744
1745         if (!mm)
1746                 return -EINVAL;
1747
1748         if (nodes)
1749                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1750                                     nodes, status, flags);
1751         else
1752                 err = do_pages_stat(mm, nr_pages, pages, status);
1753
1754         mmput(mm);
1755         return err;
1756
1757 out:
1758         put_task_struct(task);
1759         return err;
1760 }
1761
1762 #ifdef CONFIG_NUMA_BALANCING
1763 /*
1764  * Returns true if this is a safe migration target node for misplaced NUMA
1765  * pages. Currently it only checks the watermarks which crude
1766  */
1767 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1768                                    unsigned long nr_migrate_pages)
1769 {
1770         int z;
1771
1772         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1773                 struct zone *zone = pgdat->node_zones + z;
1774
1775                 if (!populated_zone(zone))
1776                         continue;
1777
1778                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1779                 if (!zone_watermark_ok(zone, 0,
1780                                        high_wmark_pages(zone) +
1781                                        nr_migrate_pages,
1782                                        0, 0))
1783                         continue;
1784                 return true;
1785         }
1786         return false;
1787 }
1788
1789 static struct page *alloc_misplaced_dst_page(struct page *page,
1790                                            unsigned long data,
1791                                            int **result)
1792 {
1793         int nid = (int) data;
1794         struct page *newpage;
1795
1796         newpage = __alloc_pages_node(nid,
1797                                          (GFP_HIGHUSER_MOVABLE |
1798                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1799                                           __GFP_NORETRY | __GFP_NOWARN) &
1800                                          ~__GFP_RECLAIM, 0);
1801
1802         return newpage;
1803 }
1804
1805 /*
1806  * page migration rate limiting control.
1807  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1808  * window of time. Default here says do not migrate more than 1280M per second.
1809  */
1810 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1811 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1812
1813 /* Returns true if the node is migrate rate-limited after the update */
1814 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1815                                         unsigned long nr_pages)
1816 {
1817         /*
1818          * Rate-limit the amount of data that is being migrated to a node.
1819          * Optimal placement is no good if the memory bus is saturated and
1820          * all the time is being spent migrating!
1821          */
1822         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1823                 spin_lock(&pgdat->numabalancing_migrate_lock);
1824                 pgdat->numabalancing_migrate_nr_pages = 0;
1825                 pgdat->numabalancing_migrate_next_window = jiffies +
1826                         msecs_to_jiffies(migrate_interval_millisecs);
1827                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1828         }
1829         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1830                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1831                                                                 nr_pages);
1832                 return true;
1833         }
1834
1835         /*
1836          * This is an unlocked non-atomic update so errors are possible.
1837          * The consequences are failing to migrate when we potentiall should
1838          * have which is not severe enough to warrant locking. If it is ever
1839          * a problem, it can be converted to a per-cpu counter.
1840          */
1841         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1842         return false;
1843 }
1844
1845 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1846 {
1847         int page_lru;
1848
1849         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1850
1851         /* Avoid migrating to a node that is nearly full */
1852         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1853                 return 0;
1854
1855         if (isolate_lru_page(page))
1856                 return 0;
1857
1858         /*
1859          * migrate_misplaced_transhuge_page() skips page migration's usual
1860          * check on page_count(), so we must do it here, now that the page
1861          * has been isolated: a GUP pin, or any other pin, prevents migration.
1862          * The expected page count is 3: 1 for page's mapcount and 1 for the
1863          * caller's pin and 1 for the reference taken by isolate_lru_page().
1864          */
1865         if (PageTransHuge(page) && page_count(page) != 3) {
1866                 putback_lru_page(page);
1867                 return 0;
1868         }
1869
1870         page_lru = page_is_file_cache(page);
1871         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1872                                 hpage_nr_pages(page));
1873
1874         /*
1875          * Isolating the page has taken another reference, so the
1876          * caller's reference can be safely dropped without the page
1877          * disappearing underneath us during migration.
1878          */
1879         put_page(page);
1880         return 1;
1881 }
1882
1883 bool pmd_trans_migrating(pmd_t pmd)
1884 {
1885         struct page *page = pmd_page(pmd);
1886         return PageLocked(page);
1887 }
1888
1889 /*
1890  * Attempt to migrate a misplaced page to the specified destination
1891  * node. Caller is expected to have an elevated reference count on
1892  * the page that will be dropped by this function before returning.
1893  */
1894 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1895                            int node)
1896 {
1897         pg_data_t *pgdat = NODE_DATA(node);
1898         int isolated;
1899         int nr_remaining;
1900         LIST_HEAD(migratepages);
1901
1902         /*
1903          * Don't migrate file pages that are mapped in multiple processes
1904          * with execute permissions as they are probably shared libraries.
1905          */
1906         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1907             (vma->vm_flags & VM_EXEC))
1908                 goto out;
1909
1910         /*
1911          * Rate-limit the amount of data that is being migrated to a node.
1912          * Optimal placement is no good if the memory bus is saturated and
1913          * all the time is being spent migrating!
1914          */
1915         if (numamigrate_update_ratelimit(pgdat, 1))
1916                 goto out;
1917
1918         isolated = numamigrate_isolate_page(pgdat, page);
1919         if (!isolated)
1920                 goto out;
1921
1922         list_add(&page->lru, &migratepages);
1923         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1924                                      NULL, node, MIGRATE_ASYNC,
1925                                      MR_NUMA_MISPLACED);
1926         if (nr_remaining) {
1927                 if (!list_empty(&migratepages)) {
1928                         list_del(&page->lru);
1929                         dec_node_page_state(page, NR_ISOLATED_ANON +
1930                                         page_is_file_cache(page));
1931                         putback_lru_page(page);
1932                 }
1933                 isolated = 0;
1934         } else
1935                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1936         BUG_ON(!list_empty(&migratepages));
1937         return isolated;
1938
1939 out:
1940         put_page(page);
1941         return 0;
1942 }
1943 #endif /* CONFIG_NUMA_BALANCING */
1944
1945 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1946 /*
1947  * Migrates a THP to a given target node. page must be locked and is unlocked
1948  * before returning.
1949  */
1950 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1951                                 struct vm_area_struct *vma,
1952                                 pmd_t *pmd, pmd_t entry,
1953                                 unsigned long address,
1954                                 struct page *page, int node)
1955 {
1956         spinlock_t *ptl;
1957         pg_data_t *pgdat = NODE_DATA(node);
1958         int isolated = 0;
1959         struct page *new_page = NULL;
1960         int page_lru = page_is_file_cache(page);
1961         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1962         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1963
1964         /*
1965          * Rate-limit the amount of data that is being migrated to a node.
1966          * Optimal placement is no good if the memory bus is saturated and
1967          * all the time is being spent migrating!
1968          */
1969         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1970                 goto out_dropref;
1971
1972         new_page = alloc_pages_node(node,
1973                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1974                 HPAGE_PMD_ORDER);
1975         if (!new_page)
1976                 goto out_fail;
1977         prep_transhuge_page(new_page);
1978
1979         isolated = numamigrate_isolate_page(pgdat, page);
1980         if (!isolated) {
1981                 put_page(new_page);
1982                 goto out_fail;
1983         }
1984
1985         /* Prepare a page as a migration target */
1986         __SetPageLocked(new_page);
1987         if (PageSwapBacked(page))
1988                 __SetPageSwapBacked(new_page);
1989
1990         /* anon mapping, we can simply copy page->mapping to the new page: */
1991         new_page->mapping = page->mapping;
1992         new_page->index = page->index;
1993         migrate_page_copy(new_page, page);
1994         WARN_ON(PageLRU(new_page));
1995
1996         /* Recheck the target PMD */
1997         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1998         ptl = pmd_lock(mm, pmd);
1999         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2000                 spin_unlock(ptl);
2001                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2002
2003                 /* Reverse changes made by migrate_page_copy() */
2004                 if (TestClearPageActive(new_page))
2005                         SetPageActive(page);
2006                 if (TestClearPageUnevictable(new_page))
2007                         SetPageUnevictable(page);
2008
2009                 unlock_page(new_page);
2010                 put_page(new_page);             /* Free it */
2011
2012                 /* Retake the callers reference and putback on LRU */
2013                 get_page(page);
2014                 putback_lru_page(page);
2015                 mod_node_page_state(page_pgdat(page),
2016                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2017
2018                 goto out_unlock;
2019         }
2020
2021         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2022         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2023
2024         /*
2025          * Clear the old entry under pagetable lock and establish the new PTE.
2026          * Any parallel GUP will either observe the old page blocking on the
2027          * page lock, block on the page table lock or observe the new page.
2028          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2029          * guarantee the copy is visible before the pagetable update.
2030          */
2031         flush_cache_range(vma, mmun_start, mmun_end);
2032         page_add_anon_rmap(new_page, vma, mmun_start, true);
2033         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2034         set_pmd_at(mm, mmun_start, pmd, entry);
2035         update_mmu_cache_pmd(vma, address, &entry);
2036
2037         page_ref_unfreeze(page, 2);
2038         mlock_migrate_page(new_page, page);
2039         page_remove_rmap(page, true);
2040         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2041
2042         spin_unlock(ptl);
2043         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2044
2045         /* Take an "isolate" reference and put new page on the LRU. */
2046         get_page(new_page);
2047         putback_lru_page(new_page);
2048
2049         unlock_page(new_page);
2050         unlock_page(page);
2051         put_page(page);                 /* Drop the rmap reference */
2052         put_page(page);                 /* Drop the LRU isolation reference */
2053
2054         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2055         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2056
2057         mod_node_page_state(page_pgdat(page),
2058                         NR_ISOLATED_ANON + page_lru,
2059                         -HPAGE_PMD_NR);
2060         return isolated;
2061
2062 out_fail:
2063         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2064 out_dropref:
2065         ptl = pmd_lock(mm, pmd);
2066         if (pmd_same(*pmd, entry)) {
2067                 entry = pmd_modify(entry, vma->vm_page_prot);
2068                 set_pmd_at(mm, mmun_start, pmd, entry);
2069                 update_mmu_cache_pmd(vma, address, &entry);
2070         }
2071         spin_unlock(ptl);
2072
2073 out_unlock:
2074         unlock_page(page);
2075         put_page(page);
2076         return 0;
2077 }
2078 #endif /* CONFIG_NUMA_BALANCING */
2079
2080 #endif /* CONFIG_NUMA */