Merge tag 'zonefs-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[sfrench/cifs-2.6.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630                                 pmd_t pmd)
631 {
632         unsigned long pfn = pmd_pfn(pmd);
633
634         /*
635          * There is no pmd_special() but there may be special pmds, e.g.
636          * in a direct-access (dax) mapping, so let's just replicate the
637          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
638          */
639         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640                 if (vma->vm_flags & VM_MIXEDMAP) {
641                         if (!pfn_valid(pfn))
642                                 return NULL;
643                         goto out;
644                 } else {
645                         unsigned long off;
646                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
647                         if (pfn == vma->vm_pgoff + off)
648                                 return NULL;
649                         if (!is_cow_mapping(vma->vm_flags))
650                                 return NULL;
651                 }
652         }
653
654         if (pmd_devmap(pmd))
655                 return NULL;
656         if (is_huge_zero_pmd(pmd))
657                 return NULL;
658         if (unlikely(pfn > highest_memmap_pfn))
659                 return NULL;
660
661         /*
662          * NOTE! We still have PageReserved() pages in the page tables.
663          * eg. VDSO mappings can cause them to exist.
664          */
665 out:
666         return pfn_to_page(pfn);
667 }
668 #endif
669
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671                                   struct page *page, unsigned long address,
672                                   pte_t *ptep)
673 {
674         pte_t pte;
675         swp_entry_t entry;
676
677         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678         if (pte_swp_soft_dirty(*ptep))
679                 pte = pte_mksoft_dirty(pte);
680
681         entry = pte_to_swp_entry(*ptep);
682         if (pte_swp_uffd_wp(*ptep))
683                 pte = pte_mkuffd_wp(pte);
684         else if (is_writable_device_exclusive_entry(entry))
685                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686
687         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688
689         /*
690          * No need to take a page reference as one was already
691          * created when the swap entry was made.
692          */
693         if (PageAnon(page))
694                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
695         else
696                 /*
697                  * Currently device exclusive access only supports anonymous
698                  * memory so the entry shouldn't point to a filebacked page.
699                  */
700                 WARN_ON_ONCE(1);
701
702         set_pte_at(vma->vm_mm, address, ptep, pte);
703
704         /*
705          * No need to invalidate - it was non-present before. However
706          * secondary CPUs may have mappings that need invalidating.
707          */
708         update_mmu_cache(vma, address, ptep);
709 }
710
711 /*
712  * Tries to restore an exclusive pte if the page lock can be acquired without
713  * sleeping.
714  */
715 static int
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717                         unsigned long addr)
718 {
719         swp_entry_t entry = pte_to_swp_entry(*src_pte);
720         struct page *page = pfn_swap_entry_to_page(entry);
721
722         if (trylock_page(page)) {
723                 restore_exclusive_pte(vma, page, addr, src_pte);
724                 unlock_page(page);
725                 return 0;
726         }
727
728         return -EBUSY;
729 }
730
731 /*
732  * copy one vm_area from one task to the other. Assumes the page tables
733  * already present in the new task to be cleared in the whole range
734  * covered by this vma.
735  */
736
737 static unsigned long
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
741 {
742         unsigned long vm_flags = dst_vma->vm_flags;
743         pte_t pte = *src_pte;
744         struct page *page;
745         swp_entry_t entry = pte_to_swp_entry(pte);
746
747         if (likely(!non_swap_entry(entry))) {
748                 if (swap_duplicate(entry) < 0)
749                         return -EIO;
750
751                 /* make sure dst_mm is on swapoff's mmlist. */
752                 if (unlikely(list_empty(&dst_mm->mmlist))) {
753                         spin_lock(&mmlist_lock);
754                         if (list_empty(&dst_mm->mmlist))
755                                 list_add(&dst_mm->mmlist,
756                                                 &src_mm->mmlist);
757                         spin_unlock(&mmlist_lock);
758                 }
759                 /* Mark the swap entry as shared. */
760                 if (pte_swp_exclusive(*src_pte)) {
761                         pte = pte_swp_clear_exclusive(*src_pte);
762                         set_pte_at(src_mm, addr, src_pte, pte);
763                 }
764                 rss[MM_SWAPENTS]++;
765         } else if (is_migration_entry(entry)) {
766                 page = pfn_swap_entry_to_page(entry);
767
768                 rss[mm_counter(page)]++;
769
770                 if (!is_readable_migration_entry(entry) &&
771                                 is_cow_mapping(vm_flags)) {
772                         /*
773                          * COW mappings require pages in both parent and child
774                          * to be set to read. A previously exclusive entry is
775                          * now shared.
776                          */
777                         entry = make_readable_migration_entry(
778                                                         swp_offset(entry));
779                         pte = swp_entry_to_pte(entry);
780                         if (pte_swp_soft_dirty(*src_pte))
781                                 pte = pte_swp_mksoft_dirty(pte);
782                         if (pte_swp_uffd_wp(*src_pte))
783                                 pte = pte_swp_mkuffd_wp(pte);
784                         set_pte_at(src_mm, addr, src_pte, pte);
785                 }
786         } else if (is_device_private_entry(entry)) {
787                 page = pfn_swap_entry_to_page(entry);
788
789                 /*
790                  * Update rss count even for unaddressable pages, as
791                  * they should treated just like normal pages in this
792                  * respect.
793                  *
794                  * We will likely want to have some new rss counters
795                  * for unaddressable pages, at some point. But for now
796                  * keep things as they are.
797                  */
798                 get_page(page);
799                 rss[mm_counter(page)]++;
800                 /* Cannot fail as these pages cannot get pinned. */
801                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
802
803                 /*
804                  * We do not preserve soft-dirty information, because so
805                  * far, checkpoint/restore is the only feature that
806                  * requires that. And checkpoint/restore does not work
807                  * when a device driver is involved (you cannot easily
808                  * save and restore device driver state).
809                  */
810                 if (is_writable_device_private_entry(entry) &&
811                     is_cow_mapping(vm_flags)) {
812                         entry = make_readable_device_private_entry(
813                                                         swp_offset(entry));
814                         pte = swp_entry_to_pte(entry);
815                         if (pte_swp_uffd_wp(*src_pte))
816                                 pte = pte_swp_mkuffd_wp(pte);
817                         set_pte_at(src_mm, addr, src_pte, pte);
818                 }
819         } else if (is_device_exclusive_entry(entry)) {
820                 /*
821                  * Make device exclusive entries present by restoring the
822                  * original entry then copying as for a present pte. Device
823                  * exclusive entries currently only support private writable
824                  * (ie. COW) mappings.
825                  */
826                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828                         return -EBUSY;
829                 return -ENOENT;
830         } else if (is_pte_marker_entry(entry)) {
831                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
832                         set_pte_at(dst_mm, addr, dst_pte, pte);
833                 return 0;
834         }
835         if (!userfaultfd_wp(dst_vma))
836                 pte = pte_swp_clear_uffd_wp(pte);
837         set_pte_at(dst_mm, addr, dst_pte, pte);
838         return 0;
839 }
840
841 /*
842  * Copy a present and normal page.
843  *
844  * NOTE! The usual case is that this isn't required;
845  * instead, the caller can just increase the page refcount
846  * and re-use the pte the traditional way.
847  *
848  * And if we need a pre-allocated page but don't yet have
849  * one, return a negative error to let the preallocation
850  * code know so that it can do so outside the page table
851  * lock.
852  */
853 static inline int
854 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
855                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
856                   struct page **prealloc, struct page *page)
857 {
858         struct page *new_page;
859         pte_t pte;
860
861         new_page = *prealloc;
862         if (!new_page)
863                 return -EAGAIN;
864
865         /*
866          * We have a prealloc page, all good!  Take it
867          * over and copy the page & arm it.
868          */
869         *prealloc = NULL;
870         copy_user_highpage(new_page, page, addr, src_vma);
871         __SetPageUptodate(new_page);
872         page_add_new_anon_rmap(new_page, dst_vma, addr);
873         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
874         rss[mm_counter(new_page)]++;
875
876         /* All done, just insert the new page copy in the child */
877         pte = mk_pte(new_page, dst_vma->vm_page_prot);
878         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
879         if (userfaultfd_pte_wp(dst_vma, *src_pte))
880                 /* Uffd-wp needs to be delivered to dest pte as well */
881                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
882         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
883         return 0;
884 }
885
886 /*
887  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
888  * is required to copy this pte.
889  */
890 static inline int
891 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
892                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
893                  struct page **prealloc)
894 {
895         struct mm_struct *src_mm = src_vma->vm_mm;
896         unsigned long vm_flags = src_vma->vm_flags;
897         pte_t pte = *src_pte;
898         struct page *page;
899
900         page = vm_normal_page(src_vma, addr, pte);
901         if (page && PageAnon(page)) {
902                 /*
903                  * If this page may have been pinned by the parent process,
904                  * copy the page immediately for the child so that we'll always
905                  * guarantee the pinned page won't be randomly replaced in the
906                  * future.
907                  */
908                 get_page(page);
909                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
910                         /* Page maybe pinned, we have to copy. */
911                         put_page(page);
912                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
913                                                  addr, rss, prealloc, page);
914                 }
915                 rss[mm_counter(page)]++;
916         } else if (page) {
917                 get_page(page);
918                 page_dup_file_rmap(page, false);
919                 rss[mm_counter(page)]++;
920         }
921
922         /*
923          * If it's a COW mapping, write protect it both
924          * in the parent and the child
925          */
926         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
927                 ptep_set_wrprotect(src_mm, addr, src_pte);
928                 pte = pte_wrprotect(pte);
929         }
930         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
931
932         /*
933          * If it's a shared mapping, mark it clean in
934          * the child
935          */
936         if (vm_flags & VM_SHARED)
937                 pte = pte_mkclean(pte);
938         pte = pte_mkold(pte);
939
940         if (!userfaultfd_wp(dst_vma))
941                 pte = pte_clear_uffd_wp(pte);
942
943         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944         return 0;
945 }
946
947 static inline struct page *
948 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
949                    unsigned long addr)
950 {
951         struct page *new_page;
952
953         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
954         if (!new_page)
955                 return NULL;
956
957         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
958                 put_page(new_page);
959                 return NULL;
960         }
961         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
962
963         return new_page;
964 }
965
966 static int
967 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
968                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
969                unsigned long end)
970 {
971         struct mm_struct *dst_mm = dst_vma->vm_mm;
972         struct mm_struct *src_mm = src_vma->vm_mm;
973         pte_t *orig_src_pte, *orig_dst_pte;
974         pte_t *src_pte, *dst_pte;
975         spinlock_t *src_ptl, *dst_ptl;
976         int progress, ret = 0;
977         int rss[NR_MM_COUNTERS];
978         swp_entry_t entry = (swp_entry_t){0};
979         struct page *prealloc = NULL;
980
981 again:
982         progress = 0;
983         init_rss_vec(rss);
984
985         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
986         if (!dst_pte) {
987                 ret = -ENOMEM;
988                 goto out;
989         }
990         src_pte = pte_offset_map(src_pmd, addr);
991         src_ptl = pte_lockptr(src_mm, src_pmd);
992         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
993         orig_src_pte = src_pte;
994         orig_dst_pte = dst_pte;
995         arch_enter_lazy_mmu_mode();
996
997         do {
998                 /*
999                  * We are holding two locks at this point - either of them
1000                  * could generate latencies in another task on another CPU.
1001                  */
1002                 if (progress >= 32) {
1003                         progress = 0;
1004                         if (need_resched() ||
1005                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1006                                 break;
1007                 }
1008                 if (pte_none(*src_pte)) {
1009                         progress++;
1010                         continue;
1011                 }
1012                 if (unlikely(!pte_present(*src_pte))) {
1013                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1014                                                   dst_pte, src_pte,
1015                                                   dst_vma, src_vma,
1016                                                   addr, rss);
1017                         if (ret == -EIO) {
1018                                 entry = pte_to_swp_entry(*src_pte);
1019                                 break;
1020                         } else if (ret == -EBUSY) {
1021                                 break;
1022                         } else if (!ret) {
1023                                 progress += 8;
1024                                 continue;
1025                         }
1026
1027                         /*
1028                          * Device exclusive entry restored, continue by copying
1029                          * the now present pte.
1030                          */
1031                         WARN_ON_ONCE(ret != -ENOENT);
1032                 }
1033                 /* copy_present_pte() will clear `*prealloc' if consumed */
1034                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1035                                        addr, rss, &prealloc);
1036                 /*
1037                  * If we need a pre-allocated page for this pte, drop the
1038                  * locks, allocate, and try again.
1039                  */
1040                 if (unlikely(ret == -EAGAIN))
1041                         break;
1042                 if (unlikely(prealloc)) {
1043                         /*
1044                          * pre-alloc page cannot be reused by next time so as
1045                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1046                          * will allocate page according to address).  This
1047                          * could only happen if one pinned pte changed.
1048                          */
1049                         put_page(prealloc);
1050                         prealloc = NULL;
1051                 }
1052                 progress += 8;
1053         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1054
1055         arch_leave_lazy_mmu_mode();
1056         spin_unlock(src_ptl);
1057         pte_unmap(orig_src_pte);
1058         add_mm_rss_vec(dst_mm, rss);
1059         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1060         cond_resched();
1061
1062         if (ret == -EIO) {
1063                 VM_WARN_ON_ONCE(!entry.val);
1064                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1065                         ret = -ENOMEM;
1066                         goto out;
1067                 }
1068                 entry.val = 0;
1069         } else if (ret == -EBUSY) {
1070                 goto out;
1071         } else if (ret ==  -EAGAIN) {
1072                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1073                 if (!prealloc)
1074                         return -ENOMEM;
1075         } else if (ret) {
1076                 VM_WARN_ON_ONCE(1);
1077         }
1078
1079         /* We've captured and resolved the error. Reset, try again. */
1080         ret = 0;
1081
1082         if (addr != end)
1083                 goto again;
1084 out:
1085         if (unlikely(prealloc))
1086                 put_page(prealloc);
1087         return ret;
1088 }
1089
1090 static inline int
1091 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1092                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1093                unsigned long end)
1094 {
1095         struct mm_struct *dst_mm = dst_vma->vm_mm;
1096         struct mm_struct *src_mm = src_vma->vm_mm;
1097         pmd_t *src_pmd, *dst_pmd;
1098         unsigned long next;
1099
1100         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1101         if (!dst_pmd)
1102                 return -ENOMEM;
1103         src_pmd = pmd_offset(src_pud, addr);
1104         do {
1105                 next = pmd_addr_end(addr, end);
1106                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1107                         || pmd_devmap(*src_pmd)) {
1108                         int err;
1109                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1110                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1111                                             addr, dst_vma, src_vma);
1112                         if (err == -ENOMEM)
1113                                 return -ENOMEM;
1114                         if (!err)
1115                                 continue;
1116                         /* fall through */
1117                 }
1118                 if (pmd_none_or_clear_bad(src_pmd))
1119                         continue;
1120                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1121                                    addr, next))
1122                         return -ENOMEM;
1123         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1124         return 0;
1125 }
1126
1127 static inline int
1128 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1130                unsigned long end)
1131 {
1132         struct mm_struct *dst_mm = dst_vma->vm_mm;
1133         struct mm_struct *src_mm = src_vma->vm_mm;
1134         pud_t *src_pud, *dst_pud;
1135         unsigned long next;
1136
1137         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1138         if (!dst_pud)
1139                 return -ENOMEM;
1140         src_pud = pud_offset(src_p4d, addr);
1141         do {
1142                 next = pud_addr_end(addr, end);
1143                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1144                         int err;
1145
1146                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1147                         err = copy_huge_pud(dst_mm, src_mm,
1148                                             dst_pud, src_pud, addr, src_vma);
1149                         if (err == -ENOMEM)
1150                                 return -ENOMEM;
1151                         if (!err)
1152                                 continue;
1153                         /* fall through */
1154                 }
1155                 if (pud_none_or_clear_bad(src_pud))
1156                         continue;
1157                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1158                                    addr, next))
1159                         return -ENOMEM;
1160         } while (dst_pud++, src_pud++, addr = next, addr != end);
1161         return 0;
1162 }
1163
1164 static inline int
1165 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1167                unsigned long end)
1168 {
1169         struct mm_struct *dst_mm = dst_vma->vm_mm;
1170         p4d_t *src_p4d, *dst_p4d;
1171         unsigned long next;
1172
1173         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1174         if (!dst_p4d)
1175                 return -ENOMEM;
1176         src_p4d = p4d_offset(src_pgd, addr);
1177         do {
1178                 next = p4d_addr_end(addr, end);
1179                 if (p4d_none_or_clear_bad(src_p4d))
1180                         continue;
1181                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1182                                    addr, next))
1183                         return -ENOMEM;
1184         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1185         return 0;
1186 }
1187
1188 /*
1189  * Return true if the vma needs to copy the pgtable during this fork().  Return
1190  * false when we can speed up fork() by allowing lazy page faults later until
1191  * when the child accesses the memory range.
1192  */
1193 static bool
1194 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1195 {
1196         /*
1197          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1198          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1199          * contains uffd-wp protection information, that's something we can't
1200          * retrieve from page cache, and skip copying will lose those info.
1201          */
1202         if (userfaultfd_wp(dst_vma))
1203                 return true;
1204
1205         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1206                 return true;
1207
1208         if (src_vma->anon_vma)
1209                 return true;
1210
1211         /*
1212          * Don't copy ptes where a page fault will fill them correctly.  Fork
1213          * becomes much lighter when there are big shared or private readonly
1214          * mappings. The tradeoff is that copy_page_range is more efficient
1215          * than faulting.
1216          */
1217         return false;
1218 }
1219
1220 int
1221 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1222 {
1223         pgd_t *src_pgd, *dst_pgd;
1224         unsigned long next;
1225         unsigned long addr = src_vma->vm_start;
1226         unsigned long end = src_vma->vm_end;
1227         struct mm_struct *dst_mm = dst_vma->vm_mm;
1228         struct mm_struct *src_mm = src_vma->vm_mm;
1229         struct mmu_notifier_range range;
1230         bool is_cow;
1231         int ret;
1232
1233         if (!vma_needs_copy(dst_vma, src_vma))
1234                 return 0;
1235
1236         if (is_vm_hugetlb_page(src_vma))
1237                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1238
1239         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1240                 /*
1241                  * We do not free on error cases below as remove_vma
1242                  * gets called on error from higher level routine
1243                  */
1244                 ret = track_pfn_copy(src_vma);
1245                 if (ret)
1246                         return ret;
1247         }
1248
1249         /*
1250          * We need to invalidate the secondary MMU mappings only when
1251          * there could be a permission downgrade on the ptes of the
1252          * parent mm. And a permission downgrade will only happen if
1253          * is_cow_mapping() returns true.
1254          */
1255         is_cow = is_cow_mapping(src_vma->vm_flags);
1256
1257         if (is_cow) {
1258                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1259                                         0, src_vma, src_mm, addr, end);
1260                 mmu_notifier_invalidate_range_start(&range);
1261                 /*
1262                  * Disabling preemption is not needed for the write side, as
1263                  * the read side doesn't spin, but goes to the mmap_lock.
1264                  *
1265                  * Use the raw variant of the seqcount_t write API to avoid
1266                  * lockdep complaining about preemptibility.
1267                  */
1268                 mmap_assert_write_locked(src_mm);
1269                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1270         }
1271
1272         ret = 0;
1273         dst_pgd = pgd_offset(dst_mm, addr);
1274         src_pgd = pgd_offset(src_mm, addr);
1275         do {
1276                 next = pgd_addr_end(addr, end);
1277                 if (pgd_none_or_clear_bad(src_pgd))
1278                         continue;
1279                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1280                                             addr, next))) {
1281                         ret = -ENOMEM;
1282                         break;
1283                 }
1284         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1285
1286         if (is_cow) {
1287                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1288                 mmu_notifier_invalidate_range_end(&range);
1289         }
1290         return ret;
1291 }
1292
1293 /* Whether we should zap all COWed (private) pages too */
1294 static inline bool should_zap_cows(struct zap_details *details)
1295 {
1296         /* By default, zap all pages */
1297         if (!details)
1298                 return true;
1299
1300         /* Or, we zap COWed pages only if the caller wants to */
1301         return details->even_cows;
1302 }
1303
1304 /* Decides whether we should zap this page with the page pointer specified */
1305 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1306 {
1307         /* If we can make a decision without *page.. */
1308         if (should_zap_cows(details))
1309                 return true;
1310
1311         /* E.g. the caller passes NULL for the case of a zero page */
1312         if (!page)
1313                 return true;
1314
1315         /* Otherwise we should only zap non-anon pages */
1316         return !PageAnon(page);
1317 }
1318
1319 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1320 {
1321         if (!details)
1322                 return false;
1323
1324         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1325 }
1326
1327 /*
1328  * This function makes sure that we'll replace the none pte with an uffd-wp
1329  * swap special pte marker when necessary. Must be with the pgtable lock held.
1330  */
1331 static inline void
1332 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1333                               unsigned long addr, pte_t *pte,
1334                               struct zap_details *details, pte_t pteval)
1335 {
1336         if (zap_drop_file_uffd_wp(details))
1337                 return;
1338
1339         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1340 }
1341
1342 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1343                                 struct vm_area_struct *vma, pmd_t *pmd,
1344                                 unsigned long addr, unsigned long end,
1345                                 struct zap_details *details)
1346 {
1347         struct mm_struct *mm = tlb->mm;
1348         int force_flush = 0;
1349         int rss[NR_MM_COUNTERS];
1350         spinlock_t *ptl;
1351         pte_t *start_pte;
1352         pte_t *pte;
1353         swp_entry_t entry;
1354
1355         tlb_change_page_size(tlb, PAGE_SIZE);
1356 again:
1357         init_rss_vec(rss);
1358         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1359         pte = start_pte;
1360         flush_tlb_batched_pending(mm);
1361         arch_enter_lazy_mmu_mode();
1362         do {
1363                 pte_t ptent = *pte;
1364                 struct page *page;
1365
1366                 if (pte_none(ptent))
1367                         continue;
1368
1369                 if (need_resched())
1370                         break;
1371
1372                 if (pte_present(ptent)) {
1373                         unsigned int delay_rmap;
1374
1375                         page = vm_normal_page(vma, addr, ptent);
1376                         if (unlikely(!should_zap_page(details, page)))
1377                                 continue;
1378                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1379                                                         tlb->fullmm);
1380                         tlb_remove_tlb_entry(tlb, pte, addr);
1381                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1382                                                       ptent);
1383                         if (unlikely(!page))
1384                                 continue;
1385
1386                         delay_rmap = 0;
1387                         if (!PageAnon(page)) {
1388                                 if (pte_dirty(ptent)) {
1389                                         set_page_dirty(page);
1390                                         if (tlb_delay_rmap(tlb)) {
1391                                                 delay_rmap = 1;
1392                                                 force_flush = 1;
1393                                         }
1394                                 }
1395                                 if (pte_young(ptent) &&
1396                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1397                                         mark_page_accessed(page);
1398                         }
1399                         rss[mm_counter(page)]--;
1400                         if (!delay_rmap) {
1401                                 page_remove_rmap(page, vma, false);
1402                                 if (unlikely(page_mapcount(page) < 0))
1403                                         print_bad_pte(vma, addr, ptent, page);
1404                         }
1405                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1406                                 force_flush = 1;
1407                                 addr += PAGE_SIZE;
1408                                 break;
1409                         }
1410                         continue;
1411                 }
1412
1413                 entry = pte_to_swp_entry(ptent);
1414                 if (is_device_private_entry(entry) ||
1415                     is_device_exclusive_entry(entry)) {
1416                         page = pfn_swap_entry_to_page(entry);
1417                         if (unlikely(!should_zap_page(details, page)))
1418                                 continue;
1419                         /*
1420                          * Both device private/exclusive mappings should only
1421                          * work with anonymous page so far, so we don't need to
1422                          * consider uffd-wp bit when zap. For more information,
1423                          * see zap_install_uffd_wp_if_needed().
1424                          */
1425                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1426                         rss[mm_counter(page)]--;
1427                         if (is_device_private_entry(entry))
1428                                 page_remove_rmap(page, vma, false);
1429                         put_page(page);
1430                 } else if (!non_swap_entry(entry)) {
1431                         /* Genuine swap entry, hence a private anon page */
1432                         if (!should_zap_cows(details))
1433                                 continue;
1434                         rss[MM_SWAPENTS]--;
1435                         if (unlikely(!free_swap_and_cache(entry)))
1436                                 print_bad_pte(vma, addr, ptent, NULL);
1437                 } else if (is_migration_entry(entry)) {
1438                         page = pfn_swap_entry_to_page(entry);
1439                         if (!should_zap_page(details, page))
1440                                 continue;
1441                         rss[mm_counter(page)]--;
1442                 } else if (pte_marker_entry_uffd_wp(entry)) {
1443                         /* Only drop the uffd-wp marker if explicitly requested */
1444                         if (!zap_drop_file_uffd_wp(details))
1445                                 continue;
1446                 } else if (is_hwpoison_entry(entry) ||
1447                            is_swapin_error_entry(entry)) {
1448                         if (!should_zap_cows(details))
1449                                 continue;
1450                 } else {
1451                         /* We should have covered all the swap entry types */
1452                         WARN_ON_ONCE(1);
1453                 }
1454                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1455                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1456         } while (pte++, addr += PAGE_SIZE, addr != end);
1457
1458         add_mm_rss_vec(mm, rss);
1459         arch_leave_lazy_mmu_mode();
1460
1461         /* Do the actual TLB flush before dropping ptl */
1462         if (force_flush) {
1463                 tlb_flush_mmu_tlbonly(tlb);
1464                 tlb_flush_rmaps(tlb, vma);
1465         }
1466         pte_unmap_unlock(start_pte, ptl);
1467
1468         /*
1469          * If we forced a TLB flush (either due to running out of
1470          * batch buffers or because we needed to flush dirty TLB
1471          * entries before releasing the ptl), free the batched
1472          * memory too. Restart if we didn't do everything.
1473          */
1474         if (force_flush) {
1475                 force_flush = 0;
1476                 tlb_flush_mmu(tlb);
1477         }
1478
1479         if (addr != end) {
1480                 cond_resched();
1481                 goto again;
1482         }
1483
1484         return addr;
1485 }
1486
1487 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1488                                 struct vm_area_struct *vma, pud_t *pud,
1489                                 unsigned long addr, unsigned long end,
1490                                 struct zap_details *details)
1491 {
1492         pmd_t *pmd;
1493         unsigned long next;
1494
1495         pmd = pmd_offset(pud, addr);
1496         do {
1497                 next = pmd_addr_end(addr, end);
1498                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1499                         if (next - addr != HPAGE_PMD_SIZE)
1500                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1501                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1502                                 goto next;
1503                         /* fall through */
1504                 } else if (details && details->single_folio &&
1505                            folio_test_pmd_mappable(details->single_folio) &&
1506                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1507                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1508                         /*
1509                          * Take and drop THP pmd lock so that we cannot return
1510                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1511                          * but not yet decremented compound_mapcount().
1512                          */
1513                         spin_unlock(ptl);
1514                 }
1515
1516                 /*
1517                  * Here there can be other concurrent MADV_DONTNEED or
1518                  * trans huge page faults running, and if the pmd is
1519                  * none or trans huge it can change under us. This is
1520                  * because MADV_DONTNEED holds the mmap_lock in read
1521                  * mode.
1522                  */
1523                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1524                         goto next;
1525                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1526 next:
1527                 cond_resched();
1528         } while (pmd++, addr = next, addr != end);
1529
1530         return addr;
1531 }
1532
1533 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1534                                 struct vm_area_struct *vma, p4d_t *p4d,
1535                                 unsigned long addr, unsigned long end,
1536                                 struct zap_details *details)
1537 {
1538         pud_t *pud;
1539         unsigned long next;
1540
1541         pud = pud_offset(p4d, addr);
1542         do {
1543                 next = pud_addr_end(addr, end);
1544                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1545                         if (next - addr != HPAGE_PUD_SIZE) {
1546                                 mmap_assert_locked(tlb->mm);
1547                                 split_huge_pud(vma, pud, addr);
1548                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1549                                 goto next;
1550                         /* fall through */
1551                 }
1552                 if (pud_none_or_clear_bad(pud))
1553                         continue;
1554                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1555 next:
1556                 cond_resched();
1557         } while (pud++, addr = next, addr != end);
1558
1559         return addr;
1560 }
1561
1562 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1563                                 struct vm_area_struct *vma, pgd_t *pgd,
1564                                 unsigned long addr, unsigned long end,
1565                                 struct zap_details *details)
1566 {
1567         p4d_t *p4d;
1568         unsigned long next;
1569
1570         p4d = p4d_offset(pgd, addr);
1571         do {
1572                 next = p4d_addr_end(addr, end);
1573                 if (p4d_none_or_clear_bad(p4d))
1574                         continue;
1575                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1576         } while (p4d++, addr = next, addr != end);
1577
1578         return addr;
1579 }
1580
1581 void unmap_page_range(struct mmu_gather *tlb,
1582                              struct vm_area_struct *vma,
1583                              unsigned long addr, unsigned long end,
1584                              struct zap_details *details)
1585 {
1586         pgd_t *pgd;
1587         unsigned long next;
1588
1589         BUG_ON(addr >= end);
1590         tlb_start_vma(tlb, vma);
1591         pgd = pgd_offset(vma->vm_mm, addr);
1592         do {
1593                 next = pgd_addr_end(addr, end);
1594                 if (pgd_none_or_clear_bad(pgd))
1595                         continue;
1596                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1597         } while (pgd++, addr = next, addr != end);
1598         tlb_end_vma(tlb, vma);
1599 }
1600
1601
1602 static void unmap_single_vma(struct mmu_gather *tlb,
1603                 struct vm_area_struct *vma, unsigned long start_addr,
1604                 unsigned long end_addr,
1605                 struct zap_details *details)
1606 {
1607         unsigned long start = max(vma->vm_start, start_addr);
1608         unsigned long end;
1609
1610         if (start >= vma->vm_end)
1611                 return;
1612         end = min(vma->vm_end, end_addr);
1613         if (end <= vma->vm_start)
1614                 return;
1615
1616         if (vma->vm_file)
1617                 uprobe_munmap(vma, start, end);
1618
1619         if (unlikely(vma->vm_flags & VM_PFNMAP))
1620                 untrack_pfn(vma, 0, 0);
1621
1622         if (start != end) {
1623                 if (unlikely(is_vm_hugetlb_page(vma))) {
1624                         /*
1625                          * It is undesirable to test vma->vm_file as it
1626                          * should be non-null for valid hugetlb area.
1627                          * However, vm_file will be NULL in the error
1628                          * cleanup path of mmap_region. When
1629                          * hugetlbfs ->mmap method fails,
1630                          * mmap_region() nullifies vma->vm_file
1631                          * before calling this function to clean up.
1632                          * Since no pte has actually been setup, it is
1633                          * safe to do nothing in this case.
1634                          */
1635                         if (vma->vm_file) {
1636                                 zap_flags_t zap_flags = details ?
1637                                     details->zap_flags : 0;
1638                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1639                                                              NULL, zap_flags);
1640                         }
1641                 } else
1642                         unmap_page_range(tlb, vma, start, end, details);
1643         }
1644 }
1645
1646 /**
1647  * unmap_vmas - unmap a range of memory covered by a list of vma's
1648  * @tlb: address of the caller's struct mmu_gather
1649  * @mt: the maple tree
1650  * @vma: the starting vma
1651  * @start_addr: virtual address at which to start unmapping
1652  * @end_addr: virtual address at which to end unmapping
1653  *
1654  * Unmap all pages in the vma list.
1655  *
1656  * Only addresses between `start' and `end' will be unmapped.
1657  *
1658  * The VMA list must be sorted in ascending virtual address order.
1659  *
1660  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1661  * range after unmap_vmas() returns.  So the only responsibility here is to
1662  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1663  * drops the lock and schedules.
1664  */
1665 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1666                 struct vm_area_struct *vma, unsigned long start_addr,
1667                 unsigned long end_addr)
1668 {
1669         struct mmu_notifier_range range;
1670         struct zap_details details = {
1671                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1672                 /* Careful - we need to zap private pages too! */
1673                 .even_cows = true,
1674         };
1675         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1676
1677         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1678                                 start_addr, end_addr);
1679         mmu_notifier_invalidate_range_start(&range);
1680         do {
1681                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1682         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1683         mmu_notifier_invalidate_range_end(&range);
1684 }
1685
1686 /**
1687  * zap_page_range - remove user pages in a given range
1688  * @vma: vm_area_struct holding the applicable pages
1689  * @start: starting address of pages to zap
1690  * @size: number of bytes to zap
1691  *
1692  * Caller must protect the VMA list
1693  */
1694 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1695                 unsigned long size)
1696 {
1697         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1698         unsigned long end = start + size;
1699         struct mmu_notifier_range range;
1700         struct mmu_gather tlb;
1701         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1702
1703         lru_add_drain();
1704         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1705                                 start, start + size);
1706         tlb_gather_mmu(&tlb, vma->vm_mm);
1707         update_hiwater_rss(vma->vm_mm);
1708         mmu_notifier_invalidate_range_start(&range);
1709         do {
1710                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1711         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1712         mmu_notifier_invalidate_range_end(&range);
1713         tlb_finish_mmu(&tlb);
1714 }
1715
1716 /**
1717  * zap_page_range_single - remove user pages in a given range
1718  * @vma: vm_area_struct holding the applicable pages
1719  * @address: starting address of pages to zap
1720  * @size: number of bytes to zap
1721  * @details: details of shared cache invalidation
1722  *
1723  * The range must fit into one VMA.
1724  */
1725 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1726                 unsigned long size, struct zap_details *details)
1727 {
1728         const unsigned long end = address + size;
1729         struct mmu_notifier_range range;
1730         struct mmu_gather tlb;
1731
1732         lru_add_drain();
1733         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1734                                 address, end);
1735         if (is_vm_hugetlb_page(vma))
1736                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1737                                                      &range.end);
1738         tlb_gather_mmu(&tlb, vma->vm_mm);
1739         update_hiwater_rss(vma->vm_mm);
1740         mmu_notifier_invalidate_range_start(&range);
1741         /*
1742          * unmap 'address-end' not 'range.start-range.end' as range
1743          * could have been expanded for hugetlb pmd sharing.
1744          */
1745         unmap_single_vma(&tlb, vma, address, end, details);
1746         mmu_notifier_invalidate_range_end(&range);
1747         tlb_finish_mmu(&tlb);
1748 }
1749
1750 /**
1751  * zap_vma_ptes - remove ptes mapping the vma
1752  * @vma: vm_area_struct holding ptes to be zapped
1753  * @address: starting address of pages to zap
1754  * @size: number of bytes to zap
1755  *
1756  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1757  *
1758  * The entire address range must be fully contained within the vma.
1759  *
1760  */
1761 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1762                 unsigned long size)
1763 {
1764         if (!range_in_vma(vma, address, address + size) ||
1765                         !(vma->vm_flags & VM_PFNMAP))
1766                 return;
1767
1768         zap_page_range_single(vma, address, size, NULL);
1769 }
1770 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1771
1772 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1773 {
1774         pgd_t *pgd;
1775         p4d_t *p4d;
1776         pud_t *pud;
1777         pmd_t *pmd;
1778
1779         pgd = pgd_offset(mm, addr);
1780         p4d = p4d_alloc(mm, pgd, addr);
1781         if (!p4d)
1782                 return NULL;
1783         pud = pud_alloc(mm, p4d, addr);
1784         if (!pud)
1785                 return NULL;
1786         pmd = pmd_alloc(mm, pud, addr);
1787         if (!pmd)
1788                 return NULL;
1789
1790         VM_BUG_ON(pmd_trans_huge(*pmd));
1791         return pmd;
1792 }
1793
1794 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795                         spinlock_t **ptl)
1796 {
1797         pmd_t *pmd = walk_to_pmd(mm, addr);
1798
1799         if (!pmd)
1800                 return NULL;
1801         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1802 }
1803
1804 static int validate_page_before_insert(struct page *page)
1805 {
1806         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1807                 return -EINVAL;
1808         flush_dcache_page(page);
1809         return 0;
1810 }
1811
1812 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1813                         unsigned long addr, struct page *page, pgprot_t prot)
1814 {
1815         if (!pte_none(*pte))
1816                 return -EBUSY;
1817         /* Ok, finally just insert the thing.. */
1818         get_page(page);
1819         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1820         page_add_file_rmap(page, vma, false);
1821         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1822         return 0;
1823 }
1824
1825 /*
1826  * This is the old fallback for page remapping.
1827  *
1828  * For historical reasons, it only allows reserved pages. Only
1829  * old drivers should use this, and they needed to mark their
1830  * pages reserved for the old functions anyway.
1831  */
1832 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1833                         struct page *page, pgprot_t prot)
1834 {
1835         int retval;
1836         pte_t *pte;
1837         spinlock_t *ptl;
1838
1839         retval = validate_page_before_insert(page);
1840         if (retval)
1841                 goto out;
1842         retval = -ENOMEM;
1843         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1844         if (!pte)
1845                 goto out;
1846         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1847         pte_unmap_unlock(pte, ptl);
1848 out:
1849         return retval;
1850 }
1851
1852 #ifdef pte_index
1853 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1854                         unsigned long addr, struct page *page, pgprot_t prot)
1855 {
1856         int err;
1857
1858         if (!page_count(page))
1859                 return -EINVAL;
1860         err = validate_page_before_insert(page);
1861         if (err)
1862                 return err;
1863         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1864 }
1865
1866 /* insert_pages() amortizes the cost of spinlock operations
1867  * when inserting pages in a loop. Arch *must* define pte_index.
1868  */
1869 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1870                         struct page **pages, unsigned long *num, pgprot_t prot)
1871 {
1872         pmd_t *pmd = NULL;
1873         pte_t *start_pte, *pte;
1874         spinlock_t *pte_lock;
1875         struct mm_struct *const mm = vma->vm_mm;
1876         unsigned long curr_page_idx = 0;
1877         unsigned long remaining_pages_total = *num;
1878         unsigned long pages_to_write_in_pmd;
1879         int ret;
1880 more:
1881         ret = -EFAULT;
1882         pmd = walk_to_pmd(mm, addr);
1883         if (!pmd)
1884                 goto out;
1885
1886         pages_to_write_in_pmd = min_t(unsigned long,
1887                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1888
1889         /* Allocate the PTE if necessary; takes PMD lock once only. */
1890         ret = -ENOMEM;
1891         if (pte_alloc(mm, pmd))
1892                 goto out;
1893
1894         while (pages_to_write_in_pmd) {
1895                 int pte_idx = 0;
1896                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1897
1898                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1899                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1900                         int err = insert_page_in_batch_locked(vma, pte,
1901                                 addr, pages[curr_page_idx], prot);
1902                         if (unlikely(err)) {
1903                                 pte_unmap_unlock(start_pte, pte_lock);
1904                                 ret = err;
1905                                 remaining_pages_total -= pte_idx;
1906                                 goto out;
1907                         }
1908                         addr += PAGE_SIZE;
1909                         ++curr_page_idx;
1910                 }
1911                 pte_unmap_unlock(start_pte, pte_lock);
1912                 pages_to_write_in_pmd -= batch_size;
1913                 remaining_pages_total -= batch_size;
1914         }
1915         if (remaining_pages_total)
1916                 goto more;
1917         ret = 0;
1918 out:
1919         *num = remaining_pages_total;
1920         return ret;
1921 }
1922 #endif  /* ifdef pte_index */
1923
1924 /**
1925  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1926  * @vma: user vma to map to
1927  * @addr: target start user address of these pages
1928  * @pages: source kernel pages
1929  * @num: in: number of pages to map. out: number of pages that were *not*
1930  * mapped. (0 means all pages were successfully mapped).
1931  *
1932  * Preferred over vm_insert_page() when inserting multiple pages.
1933  *
1934  * In case of error, we may have mapped a subset of the provided
1935  * pages. It is the caller's responsibility to account for this case.
1936  *
1937  * The same restrictions apply as in vm_insert_page().
1938  */
1939 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1940                         struct page **pages, unsigned long *num)
1941 {
1942 #ifdef pte_index
1943         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1944
1945         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1946                 return -EFAULT;
1947         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1948                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1949                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1950                 vma->vm_flags |= VM_MIXEDMAP;
1951         }
1952         /* Defer page refcount checking till we're about to map that page. */
1953         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1954 #else
1955         unsigned long idx = 0, pgcount = *num;
1956         int err = -EINVAL;
1957
1958         for (; idx < pgcount; ++idx) {
1959                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1960                 if (err)
1961                         break;
1962         }
1963         *num = pgcount - idx;
1964         return err;
1965 #endif  /* ifdef pte_index */
1966 }
1967 EXPORT_SYMBOL(vm_insert_pages);
1968
1969 /**
1970  * vm_insert_page - insert single page into user vma
1971  * @vma: user vma to map to
1972  * @addr: target user address of this page
1973  * @page: source kernel page
1974  *
1975  * This allows drivers to insert individual pages they've allocated
1976  * into a user vma.
1977  *
1978  * The page has to be a nice clean _individual_ kernel allocation.
1979  * If you allocate a compound page, you need to have marked it as
1980  * such (__GFP_COMP), or manually just split the page up yourself
1981  * (see split_page()).
1982  *
1983  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1984  * took an arbitrary page protection parameter. This doesn't allow
1985  * that. Your vma protection will have to be set up correctly, which
1986  * means that if you want a shared writable mapping, you'd better
1987  * ask for a shared writable mapping!
1988  *
1989  * The page does not need to be reserved.
1990  *
1991  * Usually this function is called from f_op->mmap() handler
1992  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1993  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1994  * function from other places, for example from page-fault handler.
1995  *
1996  * Return: %0 on success, negative error code otherwise.
1997  */
1998 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1999                         struct page *page)
2000 {
2001         if (addr < vma->vm_start || addr >= vma->vm_end)
2002                 return -EFAULT;
2003         if (!page_count(page))
2004                 return -EINVAL;
2005         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2006                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2007                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2008                 vma->vm_flags |= VM_MIXEDMAP;
2009         }
2010         return insert_page(vma, addr, page, vma->vm_page_prot);
2011 }
2012 EXPORT_SYMBOL(vm_insert_page);
2013
2014 /*
2015  * __vm_map_pages - maps range of kernel pages into user vma
2016  * @vma: user vma to map to
2017  * @pages: pointer to array of source kernel pages
2018  * @num: number of pages in page array
2019  * @offset: user's requested vm_pgoff
2020  *
2021  * This allows drivers to map range of kernel pages into a user vma.
2022  *
2023  * Return: 0 on success and error code otherwise.
2024  */
2025 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2026                                 unsigned long num, unsigned long offset)
2027 {
2028         unsigned long count = vma_pages(vma);
2029         unsigned long uaddr = vma->vm_start;
2030         int ret, i;
2031
2032         /* Fail if the user requested offset is beyond the end of the object */
2033         if (offset >= num)
2034                 return -ENXIO;
2035
2036         /* Fail if the user requested size exceeds available object size */
2037         if (count > num - offset)
2038                 return -ENXIO;
2039
2040         for (i = 0; i < count; i++) {
2041                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2042                 if (ret < 0)
2043                         return ret;
2044                 uaddr += PAGE_SIZE;
2045         }
2046
2047         return 0;
2048 }
2049
2050 /**
2051  * vm_map_pages - maps range of kernel pages starts with non zero offset
2052  * @vma: user vma to map to
2053  * @pages: pointer to array of source kernel pages
2054  * @num: number of pages in page array
2055  *
2056  * Maps an object consisting of @num pages, catering for the user's
2057  * requested vm_pgoff
2058  *
2059  * If we fail to insert any page into the vma, the function will return
2060  * immediately leaving any previously inserted pages present.  Callers
2061  * from the mmap handler may immediately return the error as their caller
2062  * will destroy the vma, removing any successfully inserted pages. Other
2063  * callers should make their own arrangements for calling unmap_region().
2064  *
2065  * Context: Process context. Called by mmap handlers.
2066  * Return: 0 on success and error code otherwise.
2067  */
2068 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069                                 unsigned long num)
2070 {
2071         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2072 }
2073 EXPORT_SYMBOL(vm_map_pages);
2074
2075 /**
2076  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2077  * @vma: user vma to map to
2078  * @pages: pointer to array of source kernel pages
2079  * @num: number of pages in page array
2080  *
2081  * Similar to vm_map_pages(), except that it explicitly sets the offset
2082  * to 0. This function is intended for the drivers that did not consider
2083  * vm_pgoff.
2084  *
2085  * Context: Process context. Called by mmap handlers.
2086  * Return: 0 on success and error code otherwise.
2087  */
2088 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2089                                 unsigned long num)
2090 {
2091         return __vm_map_pages(vma, pages, num, 0);
2092 }
2093 EXPORT_SYMBOL(vm_map_pages_zero);
2094
2095 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2096                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2097 {
2098         struct mm_struct *mm = vma->vm_mm;
2099         pte_t *pte, entry;
2100         spinlock_t *ptl;
2101
2102         pte = get_locked_pte(mm, addr, &ptl);
2103         if (!pte)
2104                 return VM_FAULT_OOM;
2105         if (!pte_none(*pte)) {
2106                 if (mkwrite) {
2107                         /*
2108                          * For read faults on private mappings the PFN passed
2109                          * in may not match the PFN we have mapped if the
2110                          * mapped PFN is a writeable COW page.  In the mkwrite
2111                          * case we are creating a writable PTE for a shared
2112                          * mapping and we expect the PFNs to match. If they
2113                          * don't match, we are likely racing with block
2114                          * allocation and mapping invalidation so just skip the
2115                          * update.
2116                          */
2117                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2118                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2119                                 goto out_unlock;
2120                         }
2121                         entry = pte_mkyoung(*pte);
2122                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2123                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2124                                 update_mmu_cache(vma, addr, pte);
2125                 }
2126                 goto out_unlock;
2127         }
2128
2129         /* Ok, finally just insert the thing.. */
2130         if (pfn_t_devmap(pfn))
2131                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2132         else
2133                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2134
2135         if (mkwrite) {
2136                 entry = pte_mkyoung(entry);
2137                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2138         }
2139
2140         set_pte_at(mm, addr, pte, entry);
2141         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142
2143 out_unlock:
2144         pte_unmap_unlock(pte, ptl);
2145         return VM_FAULT_NOPAGE;
2146 }
2147
2148 /**
2149  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2150  * @vma: user vma to map to
2151  * @addr: target user address of this page
2152  * @pfn: source kernel pfn
2153  * @pgprot: pgprot flags for the inserted page
2154  *
2155  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2156  * to override pgprot on a per-page basis.
2157  *
2158  * This only makes sense for IO mappings, and it makes no sense for
2159  * COW mappings.  In general, using multiple vmas is preferable;
2160  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2161  * impractical.
2162  *
2163  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2164  * a value of @pgprot different from that of @vma->vm_page_prot.
2165  *
2166  * Context: Process context.  May allocate using %GFP_KERNEL.
2167  * Return: vm_fault_t value.
2168  */
2169 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2170                         unsigned long pfn, pgprot_t pgprot)
2171 {
2172         /*
2173          * Technically, architectures with pte_special can avoid all these
2174          * restrictions (same for remap_pfn_range).  However we would like
2175          * consistency in testing and feature parity among all, so we should
2176          * try to keep these invariants in place for everybody.
2177          */
2178         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180                                                 (VM_PFNMAP|VM_MIXEDMAP));
2181         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183
2184         if (addr < vma->vm_start || addr >= vma->vm_end)
2185                 return VM_FAULT_SIGBUS;
2186
2187         if (!pfn_modify_allowed(pfn, pgprot))
2188                 return VM_FAULT_SIGBUS;
2189
2190         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2191
2192         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2193                         false);
2194 }
2195 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2196
2197 /**
2198  * vmf_insert_pfn - insert single pfn into user vma
2199  * @vma: user vma to map to
2200  * @addr: target user address of this page
2201  * @pfn: source kernel pfn
2202  *
2203  * Similar to vm_insert_page, this allows drivers to insert individual pages
2204  * they've allocated into a user vma. Same comments apply.
2205  *
2206  * This function should only be called from a vm_ops->fault handler, and
2207  * in that case the handler should return the result of this function.
2208  *
2209  * vma cannot be a COW mapping.
2210  *
2211  * As this is called only for pages that do not currently exist, we
2212  * do not need to flush old virtual caches or the TLB.
2213  *
2214  * Context: Process context.  May allocate using %GFP_KERNEL.
2215  * Return: vm_fault_t value.
2216  */
2217 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2218                         unsigned long pfn)
2219 {
2220         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2221 }
2222 EXPORT_SYMBOL(vmf_insert_pfn);
2223
2224 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2225 {
2226         /* these checks mirror the abort conditions in vm_normal_page */
2227         if (vma->vm_flags & VM_MIXEDMAP)
2228                 return true;
2229         if (pfn_t_devmap(pfn))
2230                 return true;
2231         if (pfn_t_special(pfn))
2232                 return true;
2233         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2234                 return true;
2235         return false;
2236 }
2237
2238 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2239                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2240                 bool mkwrite)
2241 {
2242         int err;
2243
2244         BUG_ON(!vm_mixed_ok(vma, pfn));
2245
2246         if (addr < vma->vm_start || addr >= vma->vm_end)
2247                 return VM_FAULT_SIGBUS;
2248
2249         track_pfn_insert(vma, &pgprot, pfn);
2250
2251         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2252                 return VM_FAULT_SIGBUS;
2253
2254         /*
2255          * If we don't have pte special, then we have to use the pfn_valid()
2256          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2257          * refcount the page if pfn_valid is true (hence insert_page rather
2258          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2259          * without pte special, it would there be refcounted as a normal page.
2260          */
2261         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2262             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2263                 struct page *page;
2264
2265                 /*
2266                  * At this point we are committed to insert_page()
2267                  * regardless of whether the caller specified flags that
2268                  * result in pfn_t_has_page() == false.
2269                  */
2270                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2271                 err = insert_page(vma, addr, page, pgprot);
2272         } else {
2273                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2274         }
2275
2276         if (err == -ENOMEM)
2277                 return VM_FAULT_OOM;
2278         if (err < 0 && err != -EBUSY)
2279                 return VM_FAULT_SIGBUS;
2280
2281         return VM_FAULT_NOPAGE;
2282 }
2283
2284 /**
2285  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2286  * @vma: user vma to map to
2287  * @addr: target user address of this page
2288  * @pfn: source kernel pfn
2289  * @pgprot: pgprot flags for the inserted page
2290  *
2291  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2292  * to override pgprot on a per-page basis.
2293  *
2294  * Typically this function should be used by drivers to set caching- and
2295  * encryption bits different than those of @vma->vm_page_prot, because
2296  * the caching- or encryption mode may not be known at mmap() time.
2297  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2298  * to set caching and encryption bits for those vmas (except for COW pages).
2299  * This is ensured by core vm only modifying these page table entries using
2300  * functions that don't touch caching- or encryption bits, using pte_modify()
2301  * if needed. (See for example mprotect()).
2302  * Also when new page-table entries are created, this is only done using the
2303  * fault() callback, and never using the value of vma->vm_page_prot,
2304  * except for page-table entries that point to anonymous pages as the result
2305  * of COW.
2306  *
2307  * Context: Process context.  May allocate using %GFP_KERNEL.
2308  * Return: vm_fault_t value.
2309  */
2310 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2311                                  pfn_t pfn, pgprot_t pgprot)
2312 {
2313         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2314 }
2315 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2316
2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318                 pfn_t pfn)
2319 {
2320         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2321 }
2322 EXPORT_SYMBOL(vmf_insert_mixed);
2323
2324 /*
2325  *  If the insertion of PTE failed because someone else already added a
2326  *  different entry in the mean time, we treat that as success as we assume
2327  *  the same entry was actually inserted.
2328  */
2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330                 unsigned long addr, pfn_t pfn)
2331 {
2332         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2333 }
2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335
2336 /*
2337  * maps a range of physical memory into the requested pages. the old
2338  * mappings are removed. any references to nonexistent pages results
2339  * in null mappings (currently treated as "copy-on-access")
2340  */
2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342                         unsigned long addr, unsigned long end,
2343                         unsigned long pfn, pgprot_t prot)
2344 {
2345         pte_t *pte, *mapped_pte;
2346         spinlock_t *ptl;
2347         int err = 0;
2348
2349         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350         if (!pte)
2351                 return -ENOMEM;
2352         arch_enter_lazy_mmu_mode();
2353         do {
2354                 BUG_ON(!pte_none(*pte));
2355                 if (!pfn_modify_allowed(pfn, prot)) {
2356                         err = -EACCES;
2357                         break;
2358                 }
2359                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360                 pfn++;
2361         } while (pte++, addr += PAGE_SIZE, addr != end);
2362         arch_leave_lazy_mmu_mode();
2363         pte_unmap_unlock(mapped_pte, ptl);
2364         return err;
2365 }
2366
2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368                         unsigned long addr, unsigned long end,
2369                         unsigned long pfn, pgprot_t prot)
2370 {
2371         pmd_t *pmd;
2372         unsigned long next;
2373         int err;
2374
2375         pfn -= addr >> PAGE_SHIFT;
2376         pmd = pmd_alloc(mm, pud, addr);
2377         if (!pmd)
2378                 return -ENOMEM;
2379         VM_BUG_ON(pmd_trans_huge(*pmd));
2380         do {
2381                 next = pmd_addr_end(addr, end);
2382                 err = remap_pte_range(mm, pmd, addr, next,
2383                                 pfn + (addr >> PAGE_SHIFT), prot);
2384                 if (err)
2385                         return err;
2386         } while (pmd++, addr = next, addr != end);
2387         return 0;
2388 }
2389
2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391                         unsigned long addr, unsigned long end,
2392                         unsigned long pfn, pgprot_t prot)
2393 {
2394         pud_t *pud;
2395         unsigned long next;
2396         int err;
2397
2398         pfn -= addr >> PAGE_SHIFT;
2399         pud = pud_alloc(mm, p4d, addr);
2400         if (!pud)
2401                 return -ENOMEM;
2402         do {
2403                 next = pud_addr_end(addr, end);
2404                 err = remap_pmd_range(mm, pud, addr, next,
2405                                 pfn + (addr >> PAGE_SHIFT), prot);
2406                 if (err)
2407                         return err;
2408         } while (pud++, addr = next, addr != end);
2409         return 0;
2410 }
2411
2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413                         unsigned long addr, unsigned long end,
2414                         unsigned long pfn, pgprot_t prot)
2415 {
2416         p4d_t *p4d;
2417         unsigned long next;
2418         int err;
2419
2420         pfn -= addr >> PAGE_SHIFT;
2421         p4d = p4d_alloc(mm, pgd, addr);
2422         if (!p4d)
2423                 return -ENOMEM;
2424         do {
2425                 next = p4d_addr_end(addr, end);
2426                 err = remap_pud_range(mm, p4d, addr, next,
2427                                 pfn + (addr >> PAGE_SHIFT), prot);
2428                 if (err)
2429                         return err;
2430         } while (p4d++, addr = next, addr != end);
2431         return 0;
2432 }
2433
2434 /*
2435  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2436  * must have pre-validated the caching bits of the pgprot_t.
2437  */
2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439                 unsigned long pfn, unsigned long size, pgprot_t prot)
2440 {
2441         pgd_t *pgd;
2442         unsigned long next;
2443         unsigned long end = addr + PAGE_ALIGN(size);
2444         struct mm_struct *mm = vma->vm_mm;
2445         int err;
2446
2447         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448                 return -EINVAL;
2449
2450         /*
2451          * Physically remapped pages are special. Tell the
2452          * rest of the world about it:
2453          *   VM_IO tells people not to look at these pages
2454          *      (accesses can have side effects).
2455          *   VM_PFNMAP tells the core MM that the base pages are just
2456          *      raw PFN mappings, and do not have a "struct page" associated
2457          *      with them.
2458          *   VM_DONTEXPAND
2459          *      Disable vma merging and expanding with mremap().
2460          *   VM_DONTDUMP
2461          *      Omit vma from core dump, even when VM_IO turned off.
2462          *
2463          * There's a horrible special case to handle copy-on-write
2464          * behaviour that some programs depend on. We mark the "original"
2465          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466          * See vm_normal_page() for details.
2467          */
2468         if (is_cow_mapping(vma->vm_flags)) {
2469                 if (addr != vma->vm_start || end != vma->vm_end)
2470                         return -EINVAL;
2471                 vma->vm_pgoff = pfn;
2472         }
2473
2474         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2475
2476         BUG_ON(addr >= end);
2477         pfn -= addr >> PAGE_SHIFT;
2478         pgd = pgd_offset(mm, addr);
2479         flush_cache_range(vma, addr, end);
2480         do {
2481                 next = pgd_addr_end(addr, end);
2482                 err = remap_p4d_range(mm, pgd, addr, next,
2483                                 pfn + (addr >> PAGE_SHIFT), prot);
2484                 if (err)
2485                         return err;
2486         } while (pgd++, addr = next, addr != end);
2487
2488         return 0;
2489 }
2490
2491 /**
2492  * remap_pfn_range - remap kernel memory to userspace
2493  * @vma: user vma to map to
2494  * @addr: target page aligned user address to start at
2495  * @pfn: page frame number of kernel physical memory address
2496  * @size: size of mapping area
2497  * @prot: page protection flags for this mapping
2498  *
2499  * Note: this is only safe if the mm semaphore is held when called.
2500  *
2501  * Return: %0 on success, negative error code otherwise.
2502  */
2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504                     unsigned long pfn, unsigned long size, pgprot_t prot)
2505 {
2506         int err;
2507
2508         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509         if (err)
2510                 return -EINVAL;
2511
2512         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513         if (err)
2514                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2515         return err;
2516 }
2517 EXPORT_SYMBOL(remap_pfn_range);
2518
2519 /**
2520  * vm_iomap_memory - remap memory to userspace
2521  * @vma: user vma to map to
2522  * @start: start of the physical memory to be mapped
2523  * @len: size of area
2524  *
2525  * This is a simplified io_remap_pfn_range() for common driver use. The
2526  * driver just needs to give us the physical memory range to be mapped,
2527  * we'll figure out the rest from the vma information.
2528  *
2529  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530  * whatever write-combining details or similar.
2531  *
2532  * Return: %0 on success, negative error code otherwise.
2533  */
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535 {
2536         unsigned long vm_len, pfn, pages;
2537
2538         /* Check that the physical memory area passed in looks valid */
2539         if (start + len < start)
2540                 return -EINVAL;
2541         /*
2542          * You *really* shouldn't map things that aren't page-aligned,
2543          * but we've historically allowed it because IO memory might
2544          * just have smaller alignment.
2545          */
2546         len += start & ~PAGE_MASK;
2547         pfn = start >> PAGE_SHIFT;
2548         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549         if (pfn + pages < pfn)
2550                 return -EINVAL;
2551
2552         /* We start the mapping 'vm_pgoff' pages into the area */
2553         if (vma->vm_pgoff > pages)
2554                 return -EINVAL;
2555         pfn += vma->vm_pgoff;
2556         pages -= vma->vm_pgoff;
2557
2558         /* Can we fit all of the mapping? */
2559         vm_len = vma->vm_end - vma->vm_start;
2560         if (vm_len >> PAGE_SHIFT > pages)
2561                 return -EINVAL;
2562
2563         /* Ok, let it rip */
2564         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565 }
2566 EXPORT_SYMBOL(vm_iomap_memory);
2567
2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569                                      unsigned long addr, unsigned long end,
2570                                      pte_fn_t fn, void *data, bool create,
2571                                      pgtbl_mod_mask *mask)
2572 {
2573         pte_t *pte, *mapped_pte;
2574         int err = 0;
2575         spinlock_t *ptl;
2576
2577         if (create) {
2578                 mapped_pte = pte = (mm == &init_mm) ?
2579                         pte_alloc_kernel_track(pmd, addr, mask) :
2580                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581                 if (!pte)
2582                         return -ENOMEM;
2583         } else {
2584                 mapped_pte = pte = (mm == &init_mm) ?
2585                         pte_offset_kernel(pmd, addr) :
2586                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2587         }
2588
2589         BUG_ON(pmd_huge(*pmd));
2590
2591         arch_enter_lazy_mmu_mode();
2592
2593         if (fn) {
2594                 do {
2595                         if (create || !pte_none(*pte)) {
2596                                 err = fn(pte++, addr, data);
2597                                 if (err)
2598                                         break;
2599                         }
2600                 } while (addr += PAGE_SIZE, addr != end);
2601         }
2602         *mask |= PGTBL_PTE_MODIFIED;
2603
2604         arch_leave_lazy_mmu_mode();
2605
2606         if (mm != &init_mm)
2607                 pte_unmap_unlock(mapped_pte, ptl);
2608         return err;
2609 }
2610
2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612                                      unsigned long addr, unsigned long end,
2613                                      pte_fn_t fn, void *data, bool create,
2614                                      pgtbl_mod_mask *mask)
2615 {
2616         pmd_t *pmd;
2617         unsigned long next;
2618         int err = 0;
2619
2620         BUG_ON(pud_huge(*pud));
2621
2622         if (create) {
2623                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2624                 if (!pmd)
2625                         return -ENOMEM;
2626         } else {
2627                 pmd = pmd_offset(pud, addr);
2628         }
2629         do {
2630                 next = pmd_addr_end(addr, end);
2631                 if (pmd_none(*pmd) && !create)
2632                         continue;
2633                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634                         return -EINVAL;
2635                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636                         if (!create)
2637                                 continue;
2638                         pmd_clear_bad(pmd);
2639                 }
2640                 err = apply_to_pte_range(mm, pmd, addr, next,
2641                                          fn, data, create, mask);
2642                 if (err)
2643                         break;
2644         } while (pmd++, addr = next, addr != end);
2645
2646         return err;
2647 }
2648
2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650                                      unsigned long addr, unsigned long end,
2651                                      pte_fn_t fn, void *data, bool create,
2652                                      pgtbl_mod_mask *mask)
2653 {
2654         pud_t *pud;
2655         unsigned long next;
2656         int err = 0;
2657
2658         if (create) {
2659                 pud = pud_alloc_track(mm, p4d, addr, mask);
2660                 if (!pud)
2661                         return -ENOMEM;
2662         } else {
2663                 pud = pud_offset(p4d, addr);
2664         }
2665         do {
2666                 next = pud_addr_end(addr, end);
2667                 if (pud_none(*pud) && !create)
2668                         continue;
2669                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2670                         return -EINVAL;
2671                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672                         if (!create)
2673                                 continue;
2674                         pud_clear_bad(pud);
2675                 }
2676                 err = apply_to_pmd_range(mm, pud, addr, next,
2677                                          fn, data, create, mask);
2678                 if (err)
2679                         break;
2680         } while (pud++, addr = next, addr != end);
2681
2682         return err;
2683 }
2684
2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686                                      unsigned long addr, unsigned long end,
2687                                      pte_fn_t fn, void *data, bool create,
2688                                      pgtbl_mod_mask *mask)
2689 {
2690         p4d_t *p4d;
2691         unsigned long next;
2692         int err = 0;
2693
2694         if (create) {
2695                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696                 if (!p4d)
2697                         return -ENOMEM;
2698         } else {
2699                 p4d = p4d_offset(pgd, addr);
2700         }
2701         do {
2702                 next = p4d_addr_end(addr, end);
2703                 if (p4d_none(*p4d) && !create)
2704                         continue;
2705                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706                         return -EINVAL;
2707                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708                         if (!create)
2709                                 continue;
2710                         p4d_clear_bad(p4d);
2711                 }
2712                 err = apply_to_pud_range(mm, p4d, addr, next,
2713                                          fn, data, create, mask);
2714                 if (err)
2715                         break;
2716         } while (p4d++, addr = next, addr != end);
2717
2718         return err;
2719 }
2720
2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722                                  unsigned long size, pte_fn_t fn,
2723                                  void *data, bool create)
2724 {
2725         pgd_t *pgd;
2726         unsigned long start = addr, next;
2727         unsigned long end = addr + size;
2728         pgtbl_mod_mask mask = 0;
2729         int err = 0;
2730
2731         if (WARN_ON(addr >= end))
2732                 return -EINVAL;
2733
2734         pgd = pgd_offset(mm, addr);
2735         do {
2736                 next = pgd_addr_end(addr, end);
2737                 if (pgd_none(*pgd) && !create)
2738                         continue;
2739                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740                         return -EINVAL;
2741                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742                         if (!create)
2743                                 continue;
2744                         pgd_clear_bad(pgd);
2745                 }
2746                 err = apply_to_p4d_range(mm, pgd, addr, next,
2747                                          fn, data, create, &mask);
2748                 if (err)
2749                         break;
2750         } while (pgd++, addr = next, addr != end);
2751
2752         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753                 arch_sync_kernel_mappings(start, start + size);
2754
2755         return err;
2756 }
2757
2758 /*
2759  * Scan a region of virtual memory, filling in page tables as necessary
2760  * and calling a provided function on each leaf page table.
2761  */
2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763                         unsigned long size, pte_fn_t fn, void *data)
2764 {
2765         return __apply_to_page_range(mm, addr, size, fn, data, true);
2766 }
2767 EXPORT_SYMBOL_GPL(apply_to_page_range);
2768
2769 /*
2770  * Scan a region of virtual memory, calling a provided function on
2771  * each leaf page table where it exists.
2772  *
2773  * Unlike apply_to_page_range, this does _not_ fill in page tables
2774  * where they are absent.
2775  */
2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777                                  unsigned long size, pte_fn_t fn, void *data)
2778 {
2779         return __apply_to_page_range(mm, addr, size, fn, data, false);
2780 }
2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782
2783 /*
2784  * handle_pte_fault chooses page fault handler according to an entry which was
2785  * read non-atomically.  Before making any commitment, on those architectures
2786  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787  * parts, do_swap_page must check under lock before unmapping the pte and
2788  * proceeding (but do_wp_page is only called after already making such a check;
2789  * and do_anonymous_page can safely check later on).
2790  */
2791 static inline int pte_unmap_same(struct vm_fault *vmf)
2792 {
2793         int same = 1;
2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795         if (sizeof(pte_t) > sizeof(unsigned long)) {
2796                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2797                 spin_lock(ptl);
2798                 same = pte_same(*vmf->pte, vmf->orig_pte);
2799                 spin_unlock(ptl);
2800         }
2801 #endif
2802         pte_unmap(vmf->pte);
2803         vmf->pte = NULL;
2804         return same;
2805 }
2806
2807 /*
2808  * Return:
2809  *      0:              copied succeeded
2810  *      -EHWPOISON:     copy failed due to hwpoison in source page
2811  *      -EAGAIN:        copied failed (some other reason)
2812  */
2813 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2814                                       struct vm_fault *vmf)
2815 {
2816         int ret;
2817         void *kaddr;
2818         void __user *uaddr;
2819         bool locked = false;
2820         struct vm_area_struct *vma = vmf->vma;
2821         struct mm_struct *mm = vma->vm_mm;
2822         unsigned long addr = vmf->address;
2823
2824         if (likely(src)) {
2825                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826                         memory_failure_queue(page_to_pfn(src), 0);
2827                         return -EHWPOISON;
2828                 }
2829                 return 0;
2830         }
2831
2832         /*
2833          * If the source page was a PFN mapping, we don't have
2834          * a "struct page" for it. We do a best-effort copy by
2835          * just copying from the original user address. If that
2836          * fails, we just zero-fill it. Live with it.
2837          */
2838         kaddr = kmap_atomic(dst);
2839         uaddr = (void __user *)(addr & PAGE_MASK);
2840
2841         /*
2842          * On architectures with software "accessed" bits, we would
2843          * take a double page fault, so mark it accessed here.
2844          */
2845         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2846                 pte_t entry;
2847
2848                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2849                 locked = true;
2850                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2851                         /*
2852                          * Other thread has already handled the fault
2853                          * and update local tlb only
2854                          */
2855                         update_mmu_tlb(vma, addr, vmf->pte);
2856                         ret = -EAGAIN;
2857                         goto pte_unlock;
2858                 }
2859
2860                 entry = pte_mkyoung(vmf->orig_pte);
2861                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2862                         update_mmu_cache(vma, addr, vmf->pte);
2863         }
2864
2865         /*
2866          * This really shouldn't fail, because the page is there
2867          * in the page tables. But it might just be unreadable,
2868          * in which case we just give up and fill the result with
2869          * zeroes.
2870          */
2871         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2872                 if (locked)
2873                         goto warn;
2874
2875                 /* Re-validate under PTL if the page is still mapped */
2876                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2877                 locked = true;
2878                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879                         /* The PTE changed under us, update local tlb */
2880                         update_mmu_tlb(vma, addr, vmf->pte);
2881                         ret = -EAGAIN;
2882                         goto pte_unlock;
2883                 }
2884
2885                 /*
2886                  * The same page can be mapped back since last copy attempt.
2887                  * Try to copy again under PTL.
2888                  */
2889                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2890                         /*
2891                          * Give a warn in case there can be some obscure
2892                          * use-case
2893                          */
2894 warn:
2895                         WARN_ON_ONCE(1);
2896                         clear_page(kaddr);
2897                 }
2898         }
2899
2900         ret = 0;
2901
2902 pte_unlock:
2903         if (locked)
2904                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905         kunmap_atomic(kaddr);
2906         flush_dcache_page(dst);
2907
2908         return ret;
2909 }
2910
2911 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2912 {
2913         struct file *vm_file = vma->vm_file;
2914
2915         if (vm_file)
2916                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2917
2918         /*
2919          * Special mappings (e.g. VDSO) do not have any file so fake
2920          * a default GFP_KERNEL for them.
2921          */
2922         return GFP_KERNEL;
2923 }
2924
2925 /*
2926  * Notify the address space that the page is about to become writable so that
2927  * it can prohibit this or wait for the page to get into an appropriate state.
2928  *
2929  * We do this without the lock held, so that it can sleep if it needs to.
2930  */
2931 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2932 {
2933         vm_fault_t ret;
2934         struct page *page = vmf->page;
2935         unsigned int old_flags = vmf->flags;
2936
2937         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2938
2939         if (vmf->vma->vm_file &&
2940             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941                 return VM_FAULT_SIGBUS;
2942
2943         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944         /* Restore original flags so that caller is not surprised */
2945         vmf->flags = old_flags;
2946         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947                 return ret;
2948         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949                 lock_page(page);
2950                 if (!page->mapping) {
2951                         unlock_page(page);
2952                         return 0; /* retry */
2953                 }
2954                 ret |= VM_FAULT_LOCKED;
2955         } else
2956                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2957         return ret;
2958 }
2959
2960 /*
2961  * Handle dirtying of a page in shared file mapping on a write fault.
2962  *
2963  * The function expects the page to be locked and unlocks it.
2964  */
2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966 {
2967         struct vm_area_struct *vma = vmf->vma;
2968         struct address_space *mapping;
2969         struct page *page = vmf->page;
2970         bool dirtied;
2971         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972
2973         dirtied = set_page_dirty(page);
2974         VM_BUG_ON_PAGE(PageAnon(page), page);
2975         /*
2976          * Take a local copy of the address_space - page.mapping may be zeroed
2977          * by truncate after unlock_page().   The address_space itself remains
2978          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2979          * release semantics to prevent the compiler from undoing this copying.
2980          */
2981         mapping = page_rmapping(page);
2982         unlock_page(page);
2983
2984         if (!page_mkwrite)
2985                 file_update_time(vma->vm_file);
2986
2987         /*
2988          * Throttle page dirtying rate down to writeback speed.
2989          *
2990          * mapping may be NULL here because some device drivers do not
2991          * set page.mapping but still dirty their pages
2992          *
2993          * Drop the mmap_lock before waiting on IO, if we can. The file
2994          * is pinning the mapping, as per above.
2995          */
2996         if ((dirtied || page_mkwrite) && mapping) {
2997                 struct file *fpin;
2998
2999                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000                 balance_dirty_pages_ratelimited(mapping);
3001                 if (fpin) {
3002                         fput(fpin);
3003                         return VM_FAULT_COMPLETED;
3004                 }
3005         }
3006
3007         return 0;
3008 }
3009
3010 /*
3011  * Handle write page faults for pages that can be reused in the current vma
3012  *
3013  * This can happen either due to the mapping being with the VM_SHARED flag,
3014  * or due to us being the last reference standing to the page. In either
3015  * case, all we need to do here is to mark the page as writable and update
3016  * any related book-keeping.
3017  */
3018 static inline void wp_page_reuse(struct vm_fault *vmf)
3019         __releases(vmf->ptl)
3020 {
3021         struct vm_area_struct *vma = vmf->vma;
3022         struct page *page = vmf->page;
3023         pte_t entry;
3024
3025         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3027
3028         /*
3029          * Clear the pages cpupid information as the existing
3030          * information potentially belongs to a now completely
3031          * unrelated process.
3032          */
3033         if (page)
3034                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3035
3036         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3037         entry = pte_mkyoung(vmf->orig_pte);
3038         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3040                 update_mmu_cache(vma, vmf->address, vmf->pte);
3041         pte_unmap_unlock(vmf->pte, vmf->ptl);
3042         count_vm_event(PGREUSE);
3043 }
3044
3045 /*
3046  * Handle the case of a page which we actually need to copy to a new page,
3047  * either due to COW or unsharing.
3048  *
3049  * Called with mmap_lock locked and the old page referenced, but
3050  * without the ptl held.
3051  *
3052  * High level logic flow:
3053  *
3054  * - Allocate a page, copy the content of the old page to the new one.
3055  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3056  * - Take the PTL. If the pte changed, bail out and release the allocated page
3057  * - If the pte is still the way we remember it, update the page table and all
3058  *   relevant references. This includes dropping the reference the page-table
3059  *   held to the old page, as well as updating the rmap.
3060  * - In any case, unlock the PTL and drop the reference we took to the old page.
3061  */
3062 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3063 {
3064         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3065         struct vm_area_struct *vma = vmf->vma;
3066         struct mm_struct *mm = vma->vm_mm;
3067         struct page *old_page = vmf->page;
3068         struct page *new_page = NULL;
3069         pte_t entry;
3070         int page_copied = 0;
3071         struct mmu_notifier_range range;
3072         int ret;
3073
3074         delayacct_wpcopy_start();
3075
3076         if (unlikely(anon_vma_prepare(vma)))
3077                 goto oom;
3078
3079         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3080                 new_page = alloc_zeroed_user_highpage_movable(vma,
3081                                                               vmf->address);
3082                 if (!new_page)
3083                         goto oom;
3084         } else {
3085                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3086                                 vmf->address);
3087                 if (!new_page)
3088                         goto oom;
3089
3090                 ret = __wp_page_copy_user(new_page, old_page, vmf);
3091                 if (ret) {
3092                         /*
3093                          * COW failed, if the fault was solved by other,
3094                          * it's fine. If not, userspace would re-fault on
3095                          * the same address and we will handle the fault
3096                          * from the second attempt.
3097                          * The -EHWPOISON case will not be retried.
3098                          */
3099                         put_page(new_page);
3100                         if (old_page)
3101                                 put_page(old_page);
3102
3103                         delayacct_wpcopy_end();
3104                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105                 }
3106                 kmsan_copy_page_meta(new_page, old_page);
3107         }
3108
3109         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3110                 goto oom_free_new;
3111         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3112
3113         __SetPageUptodate(new_page);
3114
3115         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3116                                 vmf->address & PAGE_MASK,
3117                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118         mmu_notifier_invalidate_range_start(&range);
3119
3120         /*
3121          * Re-check the pte - we dropped the lock
3122          */
3123         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3125                 if (old_page) {
3126                         if (!PageAnon(old_page)) {
3127                                 dec_mm_counter(mm, mm_counter_file(old_page));
3128                                 inc_mm_counter(mm, MM_ANONPAGES);
3129                         }
3130                 } else {
3131                         inc_mm_counter(mm, MM_ANONPAGES);
3132                 }
3133                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134                 entry = mk_pte(new_page, vma->vm_page_prot);
3135                 entry = pte_sw_mkyoung(entry);
3136                 if (unlikely(unshare)) {
3137                         if (pte_soft_dirty(vmf->orig_pte))
3138                                 entry = pte_mksoft_dirty(entry);
3139                         if (pte_uffd_wp(vmf->orig_pte))
3140                                 entry = pte_mkuffd_wp(entry);
3141                 } else {
3142                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143                 }
3144
3145                 /*
3146                  * Clear the pte entry and flush it first, before updating the
3147                  * pte with the new entry, to keep TLBs on different CPUs in
3148                  * sync. This code used to set the new PTE then flush TLBs, but
3149                  * that left a window where the new PTE could be loaded into
3150                  * some TLBs while the old PTE remains in others.
3151                  */
3152                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3154                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3155                 /*
3156                  * We call the notify macro here because, when using secondary
3157                  * mmu page tables (such as kvm shadow page tables), we want the
3158                  * new page to be mapped directly into the secondary page table.
3159                  */
3160                 BUG_ON(unshare && pte_write(entry));
3161                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162                 update_mmu_cache(vma, vmf->address, vmf->pte);
3163                 if (old_page) {
3164                         /*
3165                          * Only after switching the pte to the new page may
3166                          * we remove the mapcount here. Otherwise another
3167                          * process may come and find the rmap count decremented
3168                          * before the pte is switched to the new page, and
3169                          * "reuse" the old page writing into it while our pte
3170                          * here still points into it and can be read by other
3171                          * threads.
3172                          *
3173                          * The critical issue is to order this
3174                          * page_remove_rmap with the ptp_clear_flush above.
3175                          * Those stores are ordered by (if nothing else,)
3176                          * the barrier present in the atomic_add_negative
3177                          * in page_remove_rmap.
3178                          *
3179                          * Then the TLB flush in ptep_clear_flush ensures that
3180                          * no process can access the old page before the
3181                          * decremented mapcount is visible. And the old page
3182                          * cannot be reused until after the decremented
3183                          * mapcount is visible. So transitively, TLBs to
3184                          * old page will be flushed before it can be reused.
3185                          */
3186                         page_remove_rmap(old_page, vma, false);
3187                 }
3188
3189                 /* Free the old page.. */
3190                 new_page = old_page;
3191                 page_copied = 1;
3192         } else {
3193                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3194         }
3195
3196         if (new_page)
3197                 put_page(new_page);
3198
3199         pte_unmap_unlock(vmf->pte, vmf->ptl);
3200         /*
3201          * No need to double call mmu_notifier->invalidate_range() callback as
3202          * the above ptep_clear_flush_notify() did already call it.
3203          */
3204         mmu_notifier_invalidate_range_only_end(&range);
3205         if (old_page) {
3206                 if (page_copied)
3207                         free_swap_cache(old_page);
3208                 put_page(old_page);
3209         }
3210
3211         delayacct_wpcopy_end();
3212         return 0;
3213 oom_free_new:
3214         put_page(new_page);
3215 oom:
3216         if (old_page)
3217                 put_page(old_page);
3218
3219         delayacct_wpcopy_end();
3220         return VM_FAULT_OOM;
3221 }
3222
3223 /**
3224  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3225  *                        writeable once the page is prepared
3226  *
3227  * @vmf: structure describing the fault
3228  *
3229  * This function handles all that is needed to finish a write page fault in a
3230  * shared mapping due to PTE being read-only once the mapped page is prepared.
3231  * It handles locking of PTE and modifying it.
3232  *
3233  * The function expects the page to be locked or other protection against
3234  * concurrent faults / writeback (such as DAX radix tree locks).
3235  *
3236  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3237  * we acquired PTE lock.
3238  */
3239 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3240 {
3241         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3242         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3243                                        &vmf->ptl);
3244         /*
3245          * We might have raced with another page fault while we released the
3246          * pte_offset_map_lock.
3247          */
3248         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3249                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3250                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3251                 return VM_FAULT_NOPAGE;
3252         }
3253         wp_page_reuse(vmf);
3254         return 0;
3255 }
3256
3257 /*
3258  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3259  * mapping
3260  */
3261 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3262 {
3263         struct vm_area_struct *vma = vmf->vma;
3264
3265         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3266                 vm_fault_t ret;
3267
3268                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3269                 vmf->flags |= FAULT_FLAG_MKWRITE;
3270                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3271                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3272                         return ret;
3273                 return finish_mkwrite_fault(vmf);
3274         }
3275         wp_page_reuse(vmf);
3276         return 0;
3277 }
3278
3279 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3280         __releases(vmf->ptl)
3281 {
3282         struct vm_area_struct *vma = vmf->vma;
3283         vm_fault_t ret = 0;
3284
3285         get_page(vmf->page);
3286
3287         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3288                 vm_fault_t tmp;
3289
3290                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291                 tmp = do_page_mkwrite(vmf);
3292                 if (unlikely(!tmp || (tmp &
3293                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3294                         put_page(vmf->page);
3295                         return tmp;
3296                 }
3297                 tmp = finish_mkwrite_fault(vmf);
3298                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299                         unlock_page(vmf->page);
3300                         put_page(vmf->page);
3301                         return tmp;
3302                 }
3303         } else {
3304                 wp_page_reuse(vmf);
3305                 lock_page(vmf->page);
3306         }
3307         ret |= fault_dirty_shared_page(vmf);
3308         put_page(vmf->page);
3309
3310         return ret;
3311 }
3312
3313 /*
3314  * This routine handles present pages, when
3315  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317  *   (FAULT_FLAG_UNSHARE)
3318  *
3319  * It is done by copying the page to a new address and decrementing the
3320  * shared-page counter for the old page.
3321  *
3322  * Note that this routine assumes that the protection checks have been
3323  * done by the caller (the low-level page fault routine in most cases).
3324  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325  * done any necessary COW.
3326  *
3327  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328  * though the page will change only once the write actually happens. This
3329  * avoids a few races, and potentially makes it more efficient.
3330  *
3331  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3332  * but allow concurrent faults), with pte both mapped and locked.
3333  * We return with mmap_lock still held, but pte unmapped and unlocked.
3334  */
3335 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3336         __releases(vmf->ptl)
3337 {
3338         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3339         struct vm_area_struct *vma = vmf->vma;
3340         struct folio *folio = NULL;
3341
3342         if (likely(!unshare)) {
3343                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3344                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3345                         return handle_userfault(vmf, VM_UFFD_WP);
3346                 }
3347
3348                 /*
3349                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350                  * is flushed in this case before copying.
3351                  */
3352                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3353                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354                         flush_tlb_page(vmf->vma, vmf->address);
3355         }
3356
3357         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3358
3359         /*
3360          * Shared mapping: we are guaranteed to have VM_WRITE and
3361          * FAULT_FLAG_WRITE set at this point.
3362          */
3363         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3364                 /*
3365                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3366                  * VM_PFNMAP VMA.
3367                  *
3368                  * We should not cow pages in a shared writeable mapping.
3369                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3370                  */
3371                 if (!vmf->page)
3372                         return wp_pfn_shared(vmf);
3373                 return wp_page_shared(vmf);
3374         }
3375
3376         if (vmf->page)
3377                 folio = page_folio(vmf->page);
3378
3379         /*
3380          * Private mapping: create an exclusive anonymous page copy if reuse
3381          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3382          */
3383         if (folio && folio_test_anon(folio)) {
3384                 /*
3385                  * If the page is exclusive to this process we must reuse the
3386                  * page without further checks.
3387                  */
3388                 if (PageAnonExclusive(vmf->page))
3389                         goto reuse;
3390
3391                 /*
3392                  * We have to verify under folio lock: these early checks are
3393                  * just an optimization to avoid locking the folio and freeing
3394                  * the swapcache if there is little hope that we can reuse.
3395                  *
3396                  * KSM doesn't necessarily raise the folio refcount.
3397                  */
3398                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3399                         goto copy;
3400                 if (!folio_test_lru(folio))
3401                         /*
3402                          * Note: We cannot easily detect+handle references from
3403                          * remote LRU pagevecs or references to LRU folios.
3404                          */
3405                         lru_add_drain();
3406                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3407                         goto copy;
3408                 if (!folio_trylock(folio))
3409                         goto copy;
3410                 if (folio_test_swapcache(folio))
3411                         folio_free_swap(folio);
3412                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413                         folio_unlock(folio);
3414                         goto copy;
3415                 }
3416                 /*
3417                  * Ok, we've got the only folio reference from our mapping
3418                  * and the folio is locked, it's dark out, and we're wearing
3419                  * sunglasses. Hit it.
3420                  */
3421                 page_move_anon_rmap(vmf->page, vma);
3422                 folio_unlock(folio);
3423 reuse:
3424                 if (unlikely(unshare)) {
3425                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3426                         return 0;
3427                 }
3428                 wp_page_reuse(vmf);
3429                 return 0;
3430         }
3431 copy:
3432         /*
3433          * Ok, we need to copy. Oh, well..
3434          */
3435         if (folio)
3436                 folio_get(folio);
3437
3438         pte_unmap_unlock(vmf->pte, vmf->ptl);
3439 #ifdef CONFIG_KSM
3440         if (folio && folio_test_ksm(folio))
3441                 count_vm_event(COW_KSM);
3442 #endif
3443         return wp_page_copy(vmf);
3444 }
3445
3446 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3447                 unsigned long start_addr, unsigned long end_addr,
3448                 struct zap_details *details)
3449 {
3450         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3451 }
3452
3453 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3454                                             pgoff_t first_index,
3455                                             pgoff_t last_index,
3456                                             struct zap_details *details)
3457 {
3458         struct vm_area_struct *vma;
3459         pgoff_t vba, vea, zba, zea;
3460
3461         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3462                 vba = vma->vm_pgoff;
3463                 vea = vba + vma_pages(vma) - 1;
3464                 zba = max(first_index, vba);
3465                 zea = min(last_index, vea);
3466
3467                 unmap_mapping_range_vma(vma,
3468                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3469                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3470                                 details);
3471         }
3472 }
3473
3474 /**
3475  * unmap_mapping_folio() - Unmap single folio from processes.
3476  * @folio: The locked folio to be unmapped.
3477  *
3478  * Unmap this folio from any userspace process which still has it mmaped.
3479  * Typically, for efficiency, the range of nearby pages has already been
3480  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3481  * truncation or invalidation holds the lock on a folio, it may find that
3482  * the page has been remapped again: and then uses unmap_mapping_folio()
3483  * to unmap it finally.
3484  */
3485 void unmap_mapping_folio(struct folio *folio)
3486 {
3487         struct address_space *mapping = folio->mapping;
3488         struct zap_details details = { };
3489         pgoff_t first_index;
3490         pgoff_t last_index;
3491
3492         VM_BUG_ON(!folio_test_locked(folio));
3493
3494         first_index = folio->index;
3495         last_index = folio->index + folio_nr_pages(folio) - 1;
3496
3497         details.even_cows = false;
3498         details.single_folio = folio;
3499         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3500
3501         i_mmap_lock_read(mapping);
3502         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3503                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3504                                          last_index, &details);
3505         i_mmap_unlock_read(mapping);
3506 }
3507
3508 /**
3509  * unmap_mapping_pages() - Unmap pages from processes.
3510  * @mapping: The address space containing pages to be unmapped.
3511  * @start: Index of first page to be unmapped.
3512  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3513  * @even_cows: Whether to unmap even private COWed pages.
3514  *
3515  * Unmap the pages in this address space from any userspace process which
3516  * has them mmaped.  Generally, you want to remove COWed pages as well when
3517  * a file is being truncated, but not when invalidating pages from the page
3518  * cache.
3519  */
3520 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3521                 pgoff_t nr, bool even_cows)
3522 {
3523         struct zap_details details = { };
3524         pgoff_t first_index = start;
3525         pgoff_t last_index = start + nr - 1;
3526
3527         details.even_cows = even_cows;
3528         if (last_index < first_index)
3529                 last_index = ULONG_MAX;
3530
3531         i_mmap_lock_read(mapping);
3532         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3533                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3534                                          last_index, &details);
3535         i_mmap_unlock_read(mapping);
3536 }
3537 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3538
3539 /**
3540  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3541  * address_space corresponding to the specified byte range in the underlying
3542  * file.
3543  *
3544  * @mapping: the address space containing mmaps to be unmapped.
3545  * @holebegin: byte in first page to unmap, relative to the start of
3546  * the underlying file.  This will be rounded down to a PAGE_SIZE
3547  * boundary.  Note that this is different from truncate_pagecache(), which
3548  * must keep the partial page.  In contrast, we must get rid of
3549  * partial pages.
3550  * @holelen: size of prospective hole in bytes.  This will be rounded
3551  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3552  * end of the file.
3553  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3554  * but 0 when invalidating pagecache, don't throw away private data.
3555  */
3556 void unmap_mapping_range(struct address_space *mapping,
3557                 loff_t const holebegin, loff_t const holelen, int even_cows)
3558 {
3559         pgoff_t hba = holebegin >> PAGE_SHIFT;
3560         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3561
3562         /* Check for overflow. */
3563         if (sizeof(holelen) > sizeof(hlen)) {
3564                 long long holeend =
3565                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566                 if (holeend & ~(long long)ULONG_MAX)
3567                         hlen = ULONG_MAX - hba + 1;
3568         }
3569
3570         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3571 }
3572 EXPORT_SYMBOL(unmap_mapping_range);
3573
3574 /*
3575  * Restore a potential device exclusive pte to a working pte entry
3576  */
3577 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3578 {
3579         struct folio *folio = page_folio(vmf->page);
3580         struct vm_area_struct *vma = vmf->vma;
3581         struct mmu_notifier_range range;
3582
3583         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3584                 return VM_FAULT_RETRY;
3585         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3586                                 vma->vm_mm, vmf->address & PAGE_MASK,
3587                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3588         mmu_notifier_invalidate_range_start(&range);
3589
3590         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3591                                 &vmf->ptl);
3592         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3593                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3594
3595         pte_unmap_unlock(vmf->pte, vmf->ptl);
3596         folio_unlock(folio);
3597
3598         mmu_notifier_invalidate_range_end(&range);
3599         return 0;
3600 }
3601
3602 static inline bool should_try_to_free_swap(struct folio *folio,
3603                                            struct vm_area_struct *vma,
3604                                            unsigned int fault_flags)
3605 {
3606         if (!folio_test_swapcache(folio))
3607                 return false;
3608         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3609             folio_test_mlocked(folio))
3610                 return true;
3611         /*
3612          * If we want to map a page that's in the swapcache writable, we
3613          * have to detect via the refcount if we're really the exclusive
3614          * user. Try freeing the swapcache to get rid of the swapcache
3615          * reference only in case it's likely that we'll be the exlusive user.
3616          */
3617         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3618                 folio_ref_count(folio) == 2;
3619 }
3620
3621 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3622 {
3623         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3624                                        vmf->address, &vmf->ptl);
3625         /*
3626          * Be careful so that we will only recover a special uffd-wp pte into a
3627          * none pte.  Otherwise it means the pte could have changed, so retry.
3628          *
3629          * This should also cover the case where e.g. the pte changed
3630          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3631          * So is_pte_marker() check is not enough to safely drop the pte.
3632          */
3633         if (pte_same(vmf->orig_pte, *vmf->pte))
3634                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3635         pte_unmap_unlock(vmf->pte, vmf->ptl);
3636         return 0;
3637 }
3638
3639 /*
3640  * This is actually a page-missing access, but with uffd-wp special pte
3641  * installed.  It means this pte was wr-protected before being unmapped.
3642  */
3643 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3644 {
3645         /*
3646          * Just in case there're leftover special ptes even after the region
3647          * got unregistered - we can simply clear them.  We can also do that
3648          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3649          * ranges, but it should be more efficient to be done lazily here.
3650          */
3651         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3652                 return pte_marker_clear(vmf);
3653
3654         /* do_fault() can handle pte markers too like none pte */
3655         return do_fault(vmf);
3656 }
3657
3658 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3659 {
3660         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3661         unsigned long marker = pte_marker_get(entry);
3662
3663         /*
3664          * PTE markers should never be empty.  If anything weird happened,
3665          * the best thing to do is to kill the process along with its mm.
3666          */
3667         if (WARN_ON_ONCE(!marker))
3668                 return VM_FAULT_SIGBUS;
3669
3670         /* Higher priority than uffd-wp when data corrupted */
3671         if (marker & PTE_MARKER_SWAPIN_ERROR)
3672                 return VM_FAULT_SIGBUS;
3673
3674         if (pte_marker_entry_uffd_wp(entry))
3675                 return pte_marker_handle_uffd_wp(vmf);
3676
3677         /* This is an unknown pte marker */
3678         return VM_FAULT_SIGBUS;
3679 }
3680
3681 /*
3682  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3683  * but allow concurrent faults), and pte mapped but not yet locked.
3684  * We return with pte unmapped and unlocked.
3685  *
3686  * We return with the mmap_lock locked or unlocked in the same cases
3687  * as does filemap_fault().
3688  */
3689 vm_fault_t do_swap_page(struct vm_fault *vmf)
3690 {
3691         struct vm_area_struct *vma = vmf->vma;
3692         struct folio *swapcache, *folio = NULL;
3693         struct page *page;
3694         struct swap_info_struct *si = NULL;
3695         rmap_t rmap_flags = RMAP_NONE;
3696         bool exclusive = false;
3697         swp_entry_t entry;
3698         pte_t pte;
3699         int locked;
3700         vm_fault_t ret = 0;
3701         void *shadow = NULL;
3702
3703         if (!pte_unmap_same(vmf))
3704                 goto out;
3705
3706         entry = pte_to_swp_entry(vmf->orig_pte);
3707         if (unlikely(non_swap_entry(entry))) {
3708                 if (is_migration_entry(entry)) {
3709                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3710                                              vmf->address);
3711                 } else if (is_device_exclusive_entry(entry)) {
3712                         vmf->page = pfn_swap_entry_to_page(entry);
3713                         ret = remove_device_exclusive_entry(vmf);
3714                 } else if (is_device_private_entry(entry)) {
3715                         vmf->page = pfn_swap_entry_to_page(entry);
3716                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3717                                         vmf->address, &vmf->ptl);
3718                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3719                                 spin_unlock(vmf->ptl);
3720                                 goto out;
3721                         }
3722
3723                         /*
3724                          * Get a page reference while we know the page can't be
3725                          * freed.
3726                          */
3727                         get_page(vmf->page);
3728                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3729                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3730                         put_page(vmf->page);
3731                 } else if (is_hwpoison_entry(entry)) {
3732                         ret = VM_FAULT_HWPOISON;
3733                 } else if (is_pte_marker_entry(entry)) {
3734                         ret = handle_pte_marker(vmf);
3735                 } else {
3736                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3737                         ret = VM_FAULT_SIGBUS;
3738                 }
3739                 goto out;
3740         }
3741
3742         /* Prevent swapoff from happening to us. */
3743         si = get_swap_device(entry);
3744         if (unlikely(!si))
3745                 goto out;
3746
3747         folio = swap_cache_get_folio(entry, vma, vmf->address);
3748         if (folio)
3749                 page = folio_file_page(folio, swp_offset(entry));
3750         swapcache = folio;
3751
3752         if (!folio) {
3753                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3754                     __swap_count(entry) == 1) {
3755                         /* skip swapcache */
3756                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3757                                                 vma, vmf->address, false);
3758                         page = &folio->page;
3759                         if (folio) {
3760                                 __folio_set_locked(folio);
3761                                 __folio_set_swapbacked(folio);
3762
3763                                 if (mem_cgroup_swapin_charge_folio(folio,
3764                                                         vma->vm_mm, GFP_KERNEL,
3765                                                         entry)) {
3766                                         ret = VM_FAULT_OOM;
3767                                         goto out_page;
3768                                 }
3769                                 mem_cgroup_swapin_uncharge_swap(entry);
3770
3771                                 shadow = get_shadow_from_swap_cache(entry);
3772                                 if (shadow)
3773                                         workingset_refault(folio, shadow);
3774
3775                                 folio_add_lru(folio);
3776
3777                                 /* To provide entry to swap_readpage() */
3778                                 folio_set_swap_entry(folio, entry);
3779                                 swap_readpage(page, true, NULL);
3780                                 folio->private = NULL;
3781                         }
3782                 } else {
3783                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3784                                                 vmf);
3785                         if (page)
3786                                 folio = page_folio(page);
3787                         swapcache = folio;
3788                 }
3789
3790                 if (!folio) {
3791                         /*
3792                          * Back out if somebody else faulted in this pte
3793                          * while we released the pte lock.
3794                          */
3795                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796                                         vmf->address, &vmf->ptl);
3797                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3798                                 ret = VM_FAULT_OOM;
3799                         goto unlock;
3800                 }
3801
3802                 /* Had to read the page from swap area: Major fault */
3803                 ret = VM_FAULT_MAJOR;
3804                 count_vm_event(PGMAJFAULT);
3805                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806         } else if (PageHWPoison(page)) {
3807                 /*
3808                  * hwpoisoned dirty swapcache pages are kept for killing
3809                  * owner processes (which may be unknown at hwpoison time)
3810                  */
3811                 ret = VM_FAULT_HWPOISON;
3812                 goto out_release;
3813         }
3814
3815         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3816
3817         if (!locked) {
3818                 ret |= VM_FAULT_RETRY;
3819                 goto out_release;
3820         }
3821
3822         if (swapcache) {
3823                 /*
3824                  * Make sure folio_free_swap() or swapoff did not release the
3825                  * swapcache from under us.  The page pin, and pte_same test
3826                  * below, are not enough to exclude that.  Even if it is still
3827                  * swapcache, we need to check that the page's swap has not
3828                  * changed.
3829                  */
3830                 if (unlikely(!folio_test_swapcache(folio) ||
3831                              page_private(page) != entry.val))
3832                         goto out_page;
3833
3834                 /*
3835                  * KSM sometimes has to copy on read faults, for example, if
3836                  * page->index of !PageKSM() pages would be nonlinear inside the
3837                  * anon VMA -- PageKSM() is lost on actual swapout.
3838                  */
3839                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3840                 if (unlikely(!page)) {
3841                         ret = VM_FAULT_OOM;
3842                         goto out_page;
3843                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3844                         ret = VM_FAULT_HWPOISON;
3845                         goto out_page;
3846                 }
3847                 folio = page_folio(page);
3848
3849                 /*
3850                  * If we want to map a page that's in the swapcache writable, we
3851                  * have to detect via the refcount if we're really the exclusive
3852                  * owner. Try removing the extra reference from the local LRU
3853                  * pagevecs if required.
3854                  */
3855                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3856                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3857                         lru_add_drain();
3858         }
3859
3860         cgroup_throttle_swaprate(page, GFP_KERNEL);
3861
3862         /*
3863          * Back out if somebody else already faulted in this pte.
3864          */
3865         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3866                         &vmf->ptl);
3867         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3868                 goto out_nomap;
3869
3870         if (unlikely(!folio_test_uptodate(folio))) {
3871                 ret = VM_FAULT_SIGBUS;
3872                 goto out_nomap;
3873         }
3874
3875         /*
3876          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877          * must never point at an anonymous page in the swapcache that is
3878          * PG_anon_exclusive. Sanity check that this holds and especially, that
3879          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880          * check after taking the PT lock and making sure that nobody
3881          * concurrently faulted in this page and set PG_anon_exclusive.
3882          */
3883         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3884         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3885
3886         /*
3887          * Check under PT lock (to protect against concurrent fork() sharing
3888          * the swap entry concurrently) for certainly exclusive pages.
3889          */
3890         if (!folio_test_ksm(folio)) {
3891                 /*
3892                  * Note that pte_swp_exclusive() == false for architectures
3893                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3894                  */
3895                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3896                 if (folio != swapcache) {
3897                         /*
3898                          * We have a fresh page that is not exposed to the
3899                          * swapcache -> certainly exclusive.
3900                          */
3901                         exclusive = true;
3902                 } else if (exclusive && folio_test_writeback(folio) &&
3903                           data_race(si->flags & SWP_STABLE_WRITES)) {
3904                         /*
3905                          * This is tricky: not all swap backends support
3906                          * concurrent page modifications while under writeback.
3907                          *
3908                          * So if we stumble over such a page in the swapcache
3909                          * we must not set the page exclusive, otherwise we can
3910                          * map it writable without further checks and modify it
3911                          * while still under writeback.
3912                          *
3913                          * For these problematic swap backends, simply drop the
3914                          * exclusive marker: this is perfectly fine as we start
3915                          * writeback only if we fully unmapped the page and
3916                          * there are no unexpected references on the page after
3917                          * unmapping succeeded. After fully unmapped, no
3918                          * further GUP references (FOLL_GET and FOLL_PIN) can
3919                          * appear, so dropping the exclusive marker and mapping
3920                          * it only R/O is fine.
3921                          */
3922                         exclusive = false;
3923                 }
3924         }
3925
3926         /*
3927          * Remove the swap entry and conditionally try to free up the swapcache.
3928          * We're already holding a reference on the page but haven't mapped it
3929          * yet.
3930          */
3931         swap_free(entry);
3932         if (should_try_to_free_swap(folio, vma, vmf->flags))
3933                 folio_free_swap(folio);
3934
3935         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3936         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3937         pte = mk_pte(page, vma->vm_page_prot);
3938
3939         /*
3940          * Same logic as in do_wp_page(); however, optimize for pages that are
3941          * certainly not shared either because we just allocated them without
3942          * exposing them to the swapcache or because the swap entry indicates
3943          * exclusivity.
3944          */
3945         if (!folio_test_ksm(folio) &&
3946             (exclusive || folio_ref_count(folio) == 1)) {
3947                 if (vmf->flags & FAULT_FLAG_WRITE) {
3948                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3949                         vmf->flags &= ~FAULT_FLAG_WRITE;
3950                 }
3951                 rmap_flags |= RMAP_EXCLUSIVE;
3952         }
3953         flush_icache_page(vma, page);
3954         if (pte_swp_soft_dirty(vmf->orig_pte))
3955                 pte = pte_mksoft_dirty(pte);
3956         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957                 pte = pte_mkuffd_wp(pte);
3958                 pte = pte_wrprotect(pte);
3959         }
3960         vmf->orig_pte = pte;
3961
3962         /* ksm created a completely new copy */
3963         if (unlikely(folio != swapcache && swapcache)) {
3964                 page_add_new_anon_rmap(page, vma, vmf->address);
3965                 folio_add_lru_vma(folio, vma);
3966         } else {
3967                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3968         }
3969
3970         VM_BUG_ON(!folio_test_anon(folio) ||
3971                         (pte_write(pte) && !PageAnonExclusive(page)));
3972         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3973         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3974
3975         folio_unlock(folio);
3976         if (folio != swapcache && swapcache) {
3977                 /*
3978                  * Hold the lock to avoid the swap entry to be reused
3979                  * until we take the PT lock for the pte_same() check
3980                  * (to avoid false positives from pte_same). For
3981                  * further safety release the lock after the swap_free
3982                  * so that the swap count won't change under a
3983                  * parallel locked swapcache.
3984                  */
3985                 folio_unlock(swapcache);
3986                 folio_put(swapcache);
3987         }
3988
3989         if (vmf->flags & FAULT_FLAG_WRITE) {
3990                 ret |= do_wp_page(vmf);
3991                 if (ret & VM_FAULT_ERROR)
3992                         ret &= VM_FAULT_ERROR;
3993                 goto out;
3994         }
3995
3996         /* No need to invalidate - it was non-present before */
3997         update_mmu_cache(vma, vmf->address, vmf->pte);
3998 unlock:
3999         pte_unmap_unlock(vmf->pte, vmf->ptl);
4000 out:
4001         if (si)
4002                 put_swap_device(si);
4003         return ret;
4004 out_nomap:
4005         pte_unmap_unlock(vmf->pte, vmf->ptl);
4006 out_page:
4007         folio_unlock(folio);
4008 out_release:
4009         folio_put(folio);
4010         if (folio != swapcache && swapcache) {
4011                 folio_unlock(swapcache);
4012                 folio_put(swapcache);
4013         }
4014         if (si)
4015                 put_swap_device(si);
4016         return ret;
4017 }
4018
4019 /*
4020  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4021  * but allow concurrent faults), and pte mapped but not yet locked.
4022  * We return with mmap_lock still held, but pte unmapped and unlocked.
4023  */
4024 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4025 {
4026         struct vm_area_struct *vma = vmf->vma;
4027         struct page *page;
4028         vm_fault_t ret = 0;
4029         pte_t entry;
4030
4031         /* File mapping without ->vm_ops ? */
4032         if (vma->vm_flags & VM_SHARED)
4033                 return VM_FAULT_SIGBUS;
4034
4035         /*
4036          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4037          * pte_offset_map() on pmds where a huge pmd might be created
4038          * from a different thread.
4039          *
4040          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4041          * parallel threads are excluded by other means.
4042          *
4043          * Here we only have mmap_read_lock(mm).
4044          */
4045         if (pte_alloc(vma->vm_mm, vmf->pmd))
4046                 return VM_FAULT_OOM;
4047
4048         /* See comment in handle_pte_fault() */
4049         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4050                 return 0;
4051
4052         /* Use the zero-page for reads */
4053         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4054                         !mm_forbids_zeropage(vma->vm_mm)) {
4055                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4056                                                 vma->vm_page_prot));
4057                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4058                                 vmf->address, &vmf->ptl);
4059                 if (!pte_none(*vmf->pte)) {
4060                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4061                         goto unlock;
4062                 }
4063                 ret = check_stable_address_space(vma->vm_mm);
4064                 if (ret)
4065                         goto unlock;
4066                 /* Deliver the page fault to userland, check inside PT lock */
4067                 if (userfaultfd_missing(vma)) {
4068                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4069                         return handle_userfault(vmf, VM_UFFD_MISSING);
4070                 }
4071                 goto setpte;
4072         }
4073
4074         /* Allocate our own private page. */
4075         if (unlikely(anon_vma_prepare(vma)))
4076                 goto oom;
4077         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4078         if (!page)
4079                 goto oom;
4080
4081         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4082                 goto oom_free_page;
4083         cgroup_throttle_swaprate(page, GFP_KERNEL);
4084
4085         /*
4086          * The memory barrier inside __SetPageUptodate makes sure that
4087          * preceding stores to the page contents become visible before
4088          * the set_pte_at() write.
4089          */
4090         __SetPageUptodate(page);
4091
4092         entry = mk_pte(page, vma->vm_page_prot);
4093         entry = pte_sw_mkyoung(entry);
4094         if (vma->vm_flags & VM_WRITE)
4095                 entry = pte_mkwrite(pte_mkdirty(entry));
4096
4097         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4098                         &vmf->ptl);
4099         if (!pte_none(*vmf->pte)) {
4100                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4101                 goto release;
4102         }
4103
4104         ret = check_stable_address_space(vma->vm_mm);
4105         if (ret)
4106                 goto release;
4107
4108         /* Deliver the page fault to userland, check inside PT lock */
4109         if (userfaultfd_missing(vma)) {
4110                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4111                 put_page(page);
4112                 return handle_userfault(vmf, VM_UFFD_MISSING);
4113         }
4114
4115         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4116         page_add_new_anon_rmap(page, vma, vmf->address);
4117         lru_cache_add_inactive_or_unevictable(page, vma);
4118 setpte:
4119         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4120
4121         /* No need to invalidate - it was non-present before */
4122         update_mmu_cache(vma, vmf->address, vmf->pte);
4123 unlock:
4124         pte_unmap_unlock(vmf->pte, vmf->ptl);
4125         return ret;
4126 release:
4127         put_page(page);
4128         goto unlock;
4129 oom_free_page:
4130         put_page(page);
4131 oom:
4132         return VM_FAULT_OOM;
4133 }
4134
4135 /*
4136  * The mmap_lock must have been held on entry, and may have been
4137  * released depending on flags and vma->vm_ops->fault() return value.
4138  * See filemap_fault() and __lock_page_retry().
4139  */
4140 static vm_fault_t __do_fault(struct vm_fault *vmf)
4141 {
4142         struct vm_area_struct *vma = vmf->vma;
4143         vm_fault_t ret;
4144
4145         /*
4146          * Preallocate pte before we take page_lock because this might lead to
4147          * deadlocks for memcg reclaim which waits for pages under writeback:
4148          *                              lock_page(A)
4149          *                              SetPageWriteback(A)
4150          *                              unlock_page(A)
4151          * lock_page(B)
4152          *                              lock_page(B)
4153          * pte_alloc_one
4154          *   shrink_page_list
4155          *     wait_on_page_writeback(A)
4156          *                              SetPageWriteback(B)
4157          *                              unlock_page(B)
4158          *                              # flush A, B to clear the writeback
4159          */
4160         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4161                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4162                 if (!vmf->prealloc_pte)
4163                         return VM_FAULT_OOM;
4164         }
4165
4166         ret = vma->vm_ops->fault(vmf);
4167         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4168                             VM_FAULT_DONE_COW)))
4169                 return ret;
4170
4171         if (unlikely(PageHWPoison(vmf->page))) {
4172                 struct page *page = vmf->page;
4173                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4174                 if (ret & VM_FAULT_LOCKED) {
4175                         if (page_mapped(page))
4176                                 unmap_mapping_pages(page_mapping(page),
4177                                                     page->index, 1, false);
4178                         /* Retry if a clean page was removed from the cache. */
4179                         if (invalidate_inode_page(page))
4180                                 poisonret = VM_FAULT_NOPAGE;
4181                         unlock_page(page);
4182                 }
4183                 put_page(page);
4184                 vmf->page = NULL;
4185                 return poisonret;
4186         }
4187
4188         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4189                 lock_page(vmf->page);
4190         else
4191                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4192
4193         return ret;
4194 }
4195
4196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4197 static void deposit_prealloc_pte(struct vm_fault *vmf)
4198 {
4199         struct vm_area_struct *vma = vmf->vma;
4200
4201         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4202         /*
4203          * We are going to consume the prealloc table,
4204          * count that as nr_ptes.
4205          */
4206         mm_inc_nr_ptes(vma->vm_mm);
4207         vmf->prealloc_pte = NULL;
4208 }
4209
4210 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4211 {
4212         struct vm_area_struct *vma = vmf->vma;
4213         bool write = vmf->flags & FAULT_FLAG_WRITE;
4214         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4215         pmd_t entry;
4216         int i;
4217         vm_fault_t ret = VM_FAULT_FALLBACK;
4218
4219         if (!transhuge_vma_suitable(vma, haddr))
4220                 return ret;
4221
4222         page = compound_head(page);
4223         if (compound_order(page) != HPAGE_PMD_ORDER)
4224                 return ret;
4225
4226         /*
4227          * Just backoff if any subpage of a THP is corrupted otherwise
4228          * the corrupted page may mapped by PMD silently to escape the
4229          * check.  This kind of THP just can be PTE mapped.  Access to
4230          * the corrupted subpage should trigger SIGBUS as expected.
4231          */
4232         if (unlikely(PageHasHWPoisoned(page)))
4233                 return ret;
4234
4235         /*
4236          * Archs like ppc64 need additional space to store information
4237          * related to pte entry. Use the preallocated table for that.
4238          */
4239         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4240                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4241                 if (!vmf->prealloc_pte)
4242                         return VM_FAULT_OOM;
4243         }
4244
4245         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4246         if (unlikely(!pmd_none(*vmf->pmd)))
4247                 goto out;
4248
4249         for (i = 0; i < HPAGE_PMD_NR; i++)
4250                 flush_icache_page(vma, page + i);
4251
4252         entry = mk_huge_pmd(page, vma->vm_page_prot);
4253         if (write)
4254                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4255
4256         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4257         page_add_file_rmap(page, vma, true);
4258
4259         /*
4260          * deposit and withdraw with pmd lock held
4261          */
4262         if (arch_needs_pgtable_deposit())
4263                 deposit_prealloc_pte(vmf);
4264
4265         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4266
4267         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4268
4269         /* fault is handled */
4270         ret = 0;
4271         count_vm_event(THP_FILE_MAPPED);
4272 out:
4273         spin_unlock(vmf->ptl);
4274         return ret;
4275 }
4276 #else
4277 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4278 {
4279         return VM_FAULT_FALLBACK;
4280 }
4281 #endif
4282
4283 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4284 {
4285         struct vm_area_struct *vma = vmf->vma;
4286         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4287         bool write = vmf->flags & FAULT_FLAG_WRITE;
4288         bool prefault = vmf->address != addr;
4289         pte_t entry;
4290
4291         flush_icache_page(vma, page);
4292         entry = mk_pte(page, vma->vm_page_prot);
4293
4294         if (prefault && arch_wants_old_prefaulted_pte())
4295                 entry = pte_mkold(entry);
4296         else
4297                 entry = pte_sw_mkyoung(entry);
4298
4299         if (write)
4300                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4301         if (unlikely(uffd_wp))
4302                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4303         /* copy-on-write page */
4304         if (write && !(vma->vm_flags & VM_SHARED)) {
4305                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4306                 page_add_new_anon_rmap(page, vma, addr);
4307                 lru_cache_add_inactive_or_unevictable(page, vma);
4308         } else {
4309                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4310                 page_add_file_rmap(page, vma, false);
4311         }
4312         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4313 }
4314
4315 static bool vmf_pte_changed(struct vm_fault *vmf)
4316 {
4317         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4318                 return !pte_same(*vmf->pte, vmf->orig_pte);
4319
4320         return !pte_none(*vmf->pte);
4321 }
4322
4323 /**
4324  * finish_fault - finish page fault once we have prepared the page to fault
4325  *
4326  * @vmf: structure describing the fault
4327  *
4328  * This function handles all that is needed to finish a page fault once the
4329  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4330  * given page, adds reverse page mapping, handles memcg charges and LRU
4331  * addition.
4332  *
4333  * The function expects the page to be locked and on success it consumes a
4334  * reference of a page being mapped (for the PTE which maps it).
4335  *
4336  * Return: %0 on success, %VM_FAULT_ code in case of error.
4337  */
4338 vm_fault_t finish_fault(struct vm_fault *vmf)
4339 {
4340         struct vm_area_struct *vma = vmf->vma;
4341         struct page *page;
4342         vm_fault_t ret;
4343
4344         /* Did we COW the page? */
4345         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4346                 page = vmf->cow_page;
4347         else
4348                 page = vmf->page;
4349
4350         /*
4351          * check even for read faults because we might have lost our CoWed
4352          * page
4353          */
4354         if (!(vma->vm_flags & VM_SHARED)) {
4355                 ret = check_stable_address_space(vma->vm_mm);
4356                 if (ret)
4357                         return ret;
4358         }
4359
4360         if (pmd_none(*vmf->pmd)) {
4361                 if (PageTransCompound(page)) {
4362                         ret = do_set_pmd(vmf, page);
4363                         if (ret != VM_FAULT_FALLBACK)
4364                                 return ret;
4365                 }
4366
4367                 if (vmf->prealloc_pte)
4368                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4369                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4370                         return VM_FAULT_OOM;
4371         }
4372
4373         /*
4374          * See comment in handle_pte_fault() for how this scenario happens, we
4375          * need to return NOPAGE so that we drop this page.
4376          */
4377         if (pmd_devmap_trans_unstable(vmf->pmd))
4378                 return VM_FAULT_NOPAGE;
4379
4380         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4381                                       vmf->address, &vmf->ptl);
4382
4383         /* Re-check under ptl */
4384         if (likely(!vmf_pte_changed(vmf))) {
4385                 do_set_pte(vmf, page, vmf->address);
4386
4387                 /* no need to invalidate: a not-present page won't be cached */
4388                 update_mmu_cache(vma, vmf->address, vmf->pte);
4389
4390                 ret = 0;
4391         } else {
4392                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4393                 ret = VM_FAULT_NOPAGE;
4394         }
4395
4396         pte_unmap_unlock(vmf->pte, vmf->ptl);
4397         return ret;
4398 }
4399
4400 static unsigned long fault_around_bytes __read_mostly =
4401         rounddown_pow_of_two(65536);
4402
4403 #ifdef CONFIG_DEBUG_FS
4404 static int fault_around_bytes_get(void *data, u64 *val)
4405 {
4406         *val = fault_around_bytes;
4407         return 0;
4408 }
4409
4410 /*
4411  * fault_around_bytes must be rounded down to the nearest page order as it's
4412  * what do_fault_around() expects to see.
4413  */
4414 static int fault_around_bytes_set(void *data, u64 val)
4415 {
4416         if (val / PAGE_SIZE > PTRS_PER_PTE)
4417                 return -EINVAL;
4418         if (val > PAGE_SIZE)
4419                 fault_around_bytes = rounddown_pow_of_two(val);
4420         else
4421                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4422         return 0;
4423 }
4424 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4425                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4426
4427 static int __init fault_around_debugfs(void)
4428 {
4429         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4430                                    &fault_around_bytes_fops);
4431         return 0;
4432 }
4433 late_initcall(fault_around_debugfs);
4434 #endif
4435
4436 /*
4437  * do_fault_around() tries to map few pages around the fault address. The hope
4438  * is that the pages will be needed soon and this will lower the number of
4439  * faults to handle.
4440  *
4441  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4442  * not ready to be mapped: not up-to-date, locked, etc.
4443  *
4444  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4445  * only once.
4446  *
4447  * fault_around_bytes defines how many bytes we'll try to map.
4448  * do_fault_around() expects it to be set to a power of two less than or equal
4449  * to PTRS_PER_PTE.
4450  *
4451  * The virtual address of the area that we map is naturally aligned to
4452  * fault_around_bytes rounded down to the machine page size
4453  * (and therefore to page order).  This way it's easier to guarantee
4454  * that we don't cross page table boundaries.
4455  */
4456 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4457 {
4458         unsigned long address = vmf->address, nr_pages, mask;
4459         pgoff_t start_pgoff = vmf->pgoff;
4460         pgoff_t end_pgoff;
4461         int off;
4462
4463         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4464         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4465
4466         address = max(address & mask, vmf->vma->vm_start);
4467         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4468         start_pgoff -= off;
4469
4470         /*
4471          *  end_pgoff is either the end of the page table, the end of
4472          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4473          */
4474         end_pgoff = start_pgoff -
4475                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4476                 PTRS_PER_PTE - 1;
4477         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4478                         start_pgoff + nr_pages - 1);
4479
4480         if (pmd_none(*vmf->pmd)) {
4481                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4482                 if (!vmf->prealloc_pte)
4483                         return VM_FAULT_OOM;
4484         }
4485
4486         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4487 }
4488
4489 /* Return true if we should do read fault-around, false otherwise */
4490 static inline bool should_fault_around(struct vm_fault *vmf)
4491 {
4492         /* No ->map_pages?  No way to fault around... */
4493         if (!vmf->vma->vm_ops->map_pages)
4494                 return false;
4495
4496         if (uffd_disable_fault_around(vmf->vma))
4497                 return false;
4498
4499         return fault_around_bytes >> PAGE_SHIFT > 1;
4500 }
4501
4502 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4503 {
4504         vm_fault_t ret = 0;
4505
4506         /*
4507          * Let's call ->map_pages() first and use ->fault() as fallback
4508          * if page by the offset is not ready to be mapped (cold cache or
4509          * something).
4510          */
4511         if (should_fault_around(vmf)) {
4512                 ret = do_fault_around(vmf);
4513                 if (ret)
4514                         return ret;
4515         }
4516
4517         ret = __do_fault(vmf);
4518         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4519                 return ret;
4520
4521         ret |= finish_fault(vmf);
4522         unlock_page(vmf->page);
4523         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4524                 put_page(vmf->page);
4525         return ret;
4526 }
4527
4528 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4529 {
4530         struct vm_area_struct *vma = vmf->vma;
4531         vm_fault_t ret;
4532
4533         if (unlikely(anon_vma_prepare(vma)))
4534                 return VM_FAULT_OOM;
4535
4536         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4537         if (!vmf->cow_page)
4538                 return VM_FAULT_OOM;
4539
4540         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4541                                 GFP_KERNEL)) {
4542                 put_page(vmf->cow_page);
4543                 return VM_FAULT_OOM;
4544         }
4545         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4546
4547         ret = __do_fault(vmf);
4548         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549                 goto uncharge_out;
4550         if (ret & VM_FAULT_DONE_COW)
4551                 return ret;
4552
4553         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4554         __SetPageUptodate(vmf->cow_page);
4555
4556         ret |= finish_fault(vmf);
4557         unlock_page(vmf->page);
4558         put_page(vmf->page);
4559         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4560                 goto uncharge_out;
4561         return ret;
4562 uncharge_out:
4563         put_page(vmf->cow_page);
4564         return ret;
4565 }
4566
4567 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4568 {
4569         struct vm_area_struct *vma = vmf->vma;
4570         vm_fault_t ret, tmp;
4571
4572         ret = __do_fault(vmf);
4573         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4574                 return ret;
4575
4576         /*
4577          * Check if the backing address space wants to know that the page is
4578          * about to become writable
4579          */
4580         if (vma->vm_ops->page_mkwrite) {
4581                 unlock_page(vmf->page);
4582                 tmp = do_page_mkwrite(vmf);
4583                 if (unlikely(!tmp ||
4584                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4585                         put_page(vmf->page);
4586                         return tmp;
4587                 }
4588         }
4589
4590         ret |= finish_fault(vmf);
4591         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4592                                         VM_FAULT_RETRY))) {
4593                 unlock_page(vmf->page);
4594                 put_page(vmf->page);
4595                 return ret;
4596         }
4597
4598         ret |= fault_dirty_shared_page(vmf);
4599         return ret;
4600 }
4601
4602 /*
4603  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4604  * but allow concurrent faults).
4605  * The mmap_lock may have been released depending on flags and our
4606  * return value.  See filemap_fault() and __folio_lock_or_retry().
4607  * If mmap_lock is released, vma may become invalid (for example
4608  * by other thread calling munmap()).
4609  */
4610 static vm_fault_t do_fault(struct vm_fault *vmf)
4611 {
4612         struct vm_area_struct *vma = vmf->vma;
4613         struct mm_struct *vm_mm = vma->vm_mm;
4614         vm_fault_t ret;
4615
4616         /*
4617          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4618          */
4619         if (!vma->vm_ops->fault) {
4620                 /*
4621                  * If we find a migration pmd entry or a none pmd entry, which
4622                  * should never happen, return SIGBUS
4623                  */
4624                 if (unlikely(!pmd_present(*vmf->pmd)))
4625                         ret = VM_FAULT_SIGBUS;
4626                 else {
4627                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4628                                                        vmf->pmd,
4629                                                        vmf->address,
4630                                                        &vmf->ptl);
4631                         /*
4632                          * Make sure this is not a temporary clearing of pte
4633                          * by holding ptl and checking again. A R/M/W update
4634                          * of pte involves: take ptl, clearing the pte so that
4635                          * we don't have concurrent modification by hardware
4636                          * followed by an update.
4637                          */
4638                         if (unlikely(pte_none(*vmf->pte)))
4639                                 ret = VM_FAULT_SIGBUS;
4640                         else
4641                                 ret = VM_FAULT_NOPAGE;
4642
4643                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4644                 }
4645         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4646                 ret = do_read_fault(vmf);
4647         else if (!(vma->vm_flags & VM_SHARED))
4648                 ret = do_cow_fault(vmf);
4649         else
4650                 ret = do_shared_fault(vmf);
4651
4652         /* preallocated pagetable is unused: free it */
4653         if (vmf->prealloc_pte) {
4654                 pte_free(vm_mm, vmf->prealloc_pte);
4655                 vmf->prealloc_pte = NULL;
4656         }
4657         return ret;
4658 }
4659
4660 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4661                       unsigned long addr, int page_nid, int *flags)
4662 {
4663         get_page(page);
4664
4665         count_vm_numa_event(NUMA_HINT_FAULTS);
4666         if (page_nid == numa_node_id()) {
4667                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4668                 *flags |= TNF_FAULT_LOCAL;
4669         }
4670
4671         return mpol_misplaced(page, vma, addr);
4672 }
4673
4674 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4675 {
4676         struct vm_area_struct *vma = vmf->vma;
4677         struct page *page = NULL;
4678         int page_nid = NUMA_NO_NODE;
4679         bool writable = false;
4680         int last_cpupid;
4681         int target_nid;
4682         pte_t pte, old_pte;
4683         int flags = 0;
4684
4685         /*
4686          * The "pte" at this point cannot be used safely without
4687          * validation through pte_unmap_same(). It's of NUMA type but
4688          * the pfn may be screwed if the read is non atomic.
4689          */
4690         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4691         spin_lock(vmf->ptl);
4692         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4693                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4694                 goto out;
4695         }
4696
4697         /* Get the normal PTE  */
4698         old_pte = ptep_get(vmf->pte);
4699         pte = pte_modify(old_pte, vma->vm_page_prot);
4700
4701         /*
4702          * Detect now whether the PTE could be writable; this information
4703          * is only valid while holding the PT lock.
4704          */
4705         writable = pte_write(pte);
4706         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4707             can_change_pte_writable(vma, vmf->address, pte))
4708                 writable = true;
4709
4710         page = vm_normal_page(vma, vmf->address, pte);
4711         if (!page || is_zone_device_page(page))
4712                 goto out_map;
4713
4714         /* TODO: handle PTE-mapped THP */
4715         if (PageCompound(page))
4716                 goto out_map;
4717
4718         /*
4719          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4720          * much anyway since they can be in shared cache state. This misses
4721          * the case where a mapping is writable but the process never writes
4722          * to it but pte_write gets cleared during protection updates and
4723          * pte_dirty has unpredictable behaviour between PTE scan updates,
4724          * background writeback, dirty balancing and application behaviour.
4725          */
4726         if (!writable)
4727                 flags |= TNF_NO_GROUP;
4728
4729         /*
4730          * Flag if the page is shared between multiple address spaces. This
4731          * is later used when determining whether to group tasks together
4732          */
4733         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4734                 flags |= TNF_SHARED;
4735
4736         page_nid = page_to_nid(page);
4737         /*
4738          * For memory tiering mode, cpupid of slow memory page is used
4739          * to record page access time.  So use default value.
4740          */
4741         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4742             !node_is_toptier(page_nid))
4743                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4744         else
4745                 last_cpupid = page_cpupid_last(page);
4746         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4747                         &flags);
4748         if (target_nid == NUMA_NO_NODE) {
4749                 put_page(page);
4750                 goto out_map;
4751         }
4752         pte_unmap_unlock(vmf->pte, vmf->ptl);
4753         writable = false;
4754
4755         /* Migrate to the requested node */
4756         if (migrate_misplaced_page(page, vma, target_nid)) {
4757                 page_nid = target_nid;
4758                 flags |= TNF_MIGRATED;
4759         } else {
4760                 flags |= TNF_MIGRATE_FAIL;
4761                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4762                 spin_lock(vmf->ptl);
4763                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4764                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4765                         goto out;
4766                 }
4767                 goto out_map;
4768         }
4769
4770 out:
4771         if (page_nid != NUMA_NO_NODE)
4772                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4773         return 0;
4774 out_map:
4775         /*
4776          * Make it present again, depending on how arch implements
4777          * non-accessible ptes, some can allow access by kernel mode.
4778          */
4779         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4780         pte = pte_modify(old_pte, vma->vm_page_prot);
4781         pte = pte_mkyoung(pte);
4782         if (writable)
4783                 pte = pte_mkwrite(pte);
4784         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4785         update_mmu_cache(vma, vmf->address, vmf->pte);
4786         pte_unmap_unlock(vmf->pte, vmf->ptl);
4787         goto out;
4788 }
4789
4790 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4791 {
4792         if (vma_is_anonymous(vmf->vma))
4793                 return do_huge_pmd_anonymous_page(vmf);
4794         if (vmf->vma->vm_ops->huge_fault)
4795                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4796         return VM_FAULT_FALLBACK;
4797 }
4798
4799 /* `inline' is required to avoid gcc 4.1.2 build error */
4800 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4801 {
4802         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4803         vm_fault_t ret;
4804
4805         if (vma_is_anonymous(vmf->vma)) {
4806                 if (likely(!unshare) &&
4807                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4808                         return handle_userfault(vmf, VM_UFFD_WP);
4809                 return do_huge_pmd_wp_page(vmf);
4810         }
4811
4812         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4813                 if (vmf->vma->vm_ops->huge_fault) {
4814                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4815                         if (!(ret & VM_FAULT_FALLBACK))
4816                                 return ret;
4817                 }
4818         }
4819
4820         /* COW or write-notify handled on pte level: split pmd. */
4821         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4822
4823         return VM_FAULT_FALLBACK;
4824 }
4825
4826 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4827 {
4828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4829         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4830         /* No support for anonymous transparent PUD pages yet */
4831         if (vma_is_anonymous(vmf->vma))
4832                 return VM_FAULT_FALLBACK;
4833         if (vmf->vma->vm_ops->huge_fault)
4834                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4836         return VM_FAULT_FALLBACK;
4837 }
4838
4839 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4840 {
4841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4842         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4843         vm_fault_t ret;
4844
4845         /* No support for anonymous transparent PUD pages yet */
4846         if (vma_is_anonymous(vmf->vma))
4847                 goto split;
4848         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4849                 if (vmf->vma->vm_ops->huge_fault) {
4850                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851                         if (!(ret & VM_FAULT_FALLBACK))
4852                                 return ret;
4853                 }
4854         }
4855 split:
4856         /* COW or write-notify not handled on PUD level: split pud.*/
4857         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4859         return VM_FAULT_FALLBACK;
4860 }
4861
4862 /*
4863  * These routines also need to handle stuff like marking pages dirty
4864  * and/or accessed for architectures that don't do it in hardware (most
4865  * RISC architectures).  The early dirtying is also good on the i386.
4866  *
4867  * There is also a hook called "update_mmu_cache()" that architectures
4868  * with external mmu caches can use to update those (ie the Sparc or
4869  * PowerPC hashed page tables that act as extended TLBs).
4870  *
4871  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4872  * concurrent faults).
4873  *
4874  * The mmap_lock may have been released depending on flags and our return value.
4875  * See filemap_fault() and __folio_lock_or_retry().
4876  */
4877 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4878 {
4879         pte_t entry;
4880
4881         if (unlikely(pmd_none(*vmf->pmd))) {
4882                 /*
4883                  * Leave __pte_alloc() until later: because vm_ops->fault may
4884                  * want to allocate huge page, and if we expose page table
4885                  * for an instant, it will be difficult to retract from
4886                  * concurrent faults and from rmap lookups.
4887                  */
4888                 vmf->pte = NULL;
4889                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4890         } else {
4891                 /*
4892                  * If a huge pmd materialized under us just retry later.  Use
4893                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4894                  * of pmd_trans_huge() to ensure the pmd didn't become
4895                  * pmd_trans_huge under us and then back to pmd_none, as a
4896                  * result of MADV_DONTNEED running immediately after a huge pmd
4897                  * fault in a different thread of this mm, in turn leading to a
4898                  * misleading pmd_trans_huge() retval. All we have to ensure is
4899                  * that it is a regular pmd that we can walk with
4900                  * pte_offset_map() and we can do that through an atomic read
4901                  * in C, which is what pmd_trans_unstable() provides.
4902                  */
4903                 if (pmd_devmap_trans_unstable(vmf->pmd))
4904                         return 0;
4905                 /*
4906                  * A regular pmd is established and it can't morph into a huge
4907                  * pmd from under us anymore at this point because we hold the
4908                  * mmap_lock read mode and khugepaged takes it in write mode.
4909                  * So now it's safe to run pte_offset_map().
4910                  */
4911                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4912                 vmf->orig_pte = *vmf->pte;
4913                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4914
4915                 /*
4916                  * some architectures can have larger ptes than wordsize,
4917                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4918                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4919                  * accesses.  The code below just needs a consistent view
4920                  * for the ifs and we later double check anyway with the
4921                  * ptl lock held. So here a barrier will do.
4922                  */
4923                 barrier();
4924                 if (pte_none(vmf->orig_pte)) {
4925                         pte_unmap(vmf->pte);
4926                         vmf->pte = NULL;
4927                 }
4928         }
4929
4930         if (!vmf->pte) {
4931                 if (vma_is_anonymous(vmf->vma))
4932                         return do_anonymous_page(vmf);
4933                 else
4934                         return do_fault(vmf);
4935         }
4936
4937         if (!pte_present(vmf->orig_pte))
4938                 return do_swap_page(vmf);
4939
4940         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4941                 return do_numa_page(vmf);
4942
4943         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4944         spin_lock(vmf->ptl);
4945         entry = vmf->orig_pte;
4946         if (unlikely(!pte_same(*vmf->pte, entry))) {
4947                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4948                 goto unlock;
4949         }
4950         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4951                 if (!pte_write(entry))
4952                         return do_wp_page(vmf);
4953                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4954                         entry = pte_mkdirty(entry);
4955         }
4956         entry = pte_mkyoung(entry);
4957         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4958                                 vmf->flags & FAULT_FLAG_WRITE)) {
4959                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4960         } else {
4961                 /* Skip spurious TLB flush for retried page fault */
4962                 if (vmf->flags & FAULT_FLAG_TRIED)
4963                         goto unlock;
4964                 /*
4965                  * This is needed only for protection faults but the arch code
4966                  * is not yet telling us if this is a protection fault or not.
4967                  * This still avoids useless tlb flushes for .text page faults
4968                  * with threads.
4969                  */
4970                 if (vmf->flags & FAULT_FLAG_WRITE)
4971                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4972         }
4973 unlock:
4974         pte_unmap_unlock(vmf->pte, vmf->ptl);
4975         return 0;
4976 }
4977
4978 /*
4979  * By the time we get here, we already hold the mm semaphore
4980  *
4981  * The mmap_lock may have been released depending on flags and our
4982  * return value.  See filemap_fault() and __folio_lock_or_retry().
4983  */
4984 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4985                 unsigned long address, unsigned int flags)
4986 {
4987         struct vm_fault vmf = {
4988                 .vma = vma,
4989                 .address = address & PAGE_MASK,
4990                 .real_address = address,
4991                 .flags = flags,
4992                 .pgoff = linear_page_index(vma, address),
4993                 .gfp_mask = __get_fault_gfp_mask(vma),
4994         };
4995         struct mm_struct *mm = vma->vm_mm;
4996         unsigned long vm_flags = vma->vm_flags;
4997         pgd_t *pgd;
4998         p4d_t *p4d;
4999         vm_fault_t ret;
5000
5001         pgd = pgd_offset(mm, address);
5002         p4d = p4d_alloc(mm, pgd, address);
5003         if (!p4d)
5004                 return VM_FAULT_OOM;
5005
5006         vmf.pud = pud_alloc(mm, p4d, address);
5007         if (!vmf.pud)
5008                 return VM_FAULT_OOM;
5009 retry_pud:
5010         if (pud_none(*vmf.pud) &&
5011             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5012                 ret = create_huge_pud(&vmf);
5013                 if (!(ret & VM_FAULT_FALLBACK))
5014                         return ret;
5015         } else {
5016                 pud_t orig_pud = *vmf.pud;
5017
5018                 barrier();
5019                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5020
5021                         /*
5022                          * TODO once we support anonymous PUDs: NUMA case and
5023                          * FAULT_FLAG_UNSHARE handling.
5024                          */
5025                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5026                                 ret = wp_huge_pud(&vmf, orig_pud);
5027                                 if (!(ret & VM_FAULT_FALLBACK))
5028                                         return ret;
5029                         } else {
5030                                 huge_pud_set_accessed(&vmf, orig_pud);
5031                                 return 0;
5032                         }
5033                 }
5034         }
5035
5036         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5037         if (!vmf.pmd)
5038                 return VM_FAULT_OOM;
5039
5040         /* Huge pud page fault raced with pmd_alloc? */
5041         if (pud_trans_unstable(vmf.pud))
5042                 goto retry_pud;
5043
5044         if (pmd_none(*vmf.pmd) &&
5045             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5046                 ret = create_huge_pmd(&vmf);
5047                 if (!(ret & VM_FAULT_FALLBACK))
5048                         return ret;
5049         } else {
5050                 vmf.orig_pmd = *vmf.pmd;
5051
5052                 barrier();
5053                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5054                         VM_BUG_ON(thp_migration_supported() &&
5055                                           !is_pmd_migration_entry(vmf.orig_pmd));
5056                         if (is_pmd_migration_entry(vmf.orig_pmd))
5057                                 pmd_migration_entry_wait(mm, vmf.pmd);
5058                         return 0;
5059                 }
5060                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5061                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5062                                 return do_huge_pmd_numa_page(&vmf);
5063
5064                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5065                             !pmd_write(vmf.orig_pmd)) {
5066                                 ret = wp_huge_pmd(&vmf);
5067                                 if (!(ret & VM_FAULT_FALLBACK))
5068                                         return ret;
5069                         } else {
5070                                 huge_pmd_set_accessed(&vmf);
5071                                 return 0;
5072                         }
5073                 }
5074         }
5075
5076         return handle_pte_fault(&vmf);
5077 }
5078
5079 /**
5080  * mm_account_fault - Do page fault accounting
5081  *
5082  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5083  *        of perf event counters, but we'll still do the per-task accounting to
5084  *        the task who triggered this page fault.
5085  * @address: the faulted address.
5086  * @flags: the fault flags.
5087  * @ret: the fault retcode.
5088  *
5089  * This will take care of most of the page fault accounting.  Meanwhile, it
5090  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5091  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5092  * still be in per-arch page fault handlers at the entry of page fault.
5093  */
5094 static inline void mm_account_fault(struct pt_regs *regs,
5095                                     unsigned long address, unsigned int flags,
5096                                     vm_fault_t ret)
5097 {
5098         bool major;
5099
5100         /*
5101          * We don't do accounting for some specific faults:
5102          *
5103          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5104          *   includes arch_vma_access_permitted() failing before reaching here.
5105          *   So this is not a "this many hardware page faults" counter.  We
5106          *   should use the hw profiling for that.
5107          *
5108          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5109          *   once they're completed.
5110          */
5111         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5112                 return;
5113
5114         /*
5115          * We define the fault as a major fault when the final successful fault
5116          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5117          * handle it immediately previously).
5118          */
5119         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5120
5121         if (major)
5122                 current->maj_flt++;
5123         else
5124                 current->min_flt++;
5125
5126         /*
5127          * If the fault is done for GUP, regs will be NULL.  We only do the
5128          * accounting for the per thread fault counters who triggered the
5129          * fault, and we skip the perf event updates.
5130          */
5131         if (!regs)
5132                 return;
5133
5134         if (major)
5135                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5136         else
5137                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5138 }
5139
5140 #ifdef CONFIG_LRU_GEN
5141 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5142 {
5143         /* the LRU algorithm doesn't apply to sequential or random reads */
5144         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5145 }
5146
5147 static void lru_gen_exit_fault(void)
5148 {
5149         current->in_lru_fault = false;
5150 }
5151 #else
5152 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5153 {
5154 }
5155
5156 static void lru_gen_exit_fault(void)
5157 {
5158 }
5159 #endif /* CONFIG_LRU_GEN */
5160
5161 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5162                                        unsigned int *flags)
5163 {
5164         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5165                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5166                         return VM_FAULT_SIGSEGV;
5167                 /*
5168                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5169                  * just treat it like an ordinary read-fault otherwise.
5170                  */
5171                 if (!is_cow_mapping(vma->vm_flags))
5172                         *flags &= ~FAULT_FLAG_UNSHARE;
5173         } else if (*flags & FAULT_FLAG_WRITE) {
5174                 /* Write faults on read-only mappings are impossible ... */
5175                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5176                         return VM_FAULT_SIGSEGV;
5177                 /* ... and FOLL_FORCE only applies to COW mappings. */
5178                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5179                                  !is_cow_mapping(vma->vm_flags)))
5180                         return VM_FAULT_SIGSEGV;
5181         }
5182         return 0;
5183 }
5184
5185 /*
5186  * By the time we get here, we already hold the mm semaphore
5187  *
5188  * The mmap_lock may have been released depending on flags and our
5189  * return value.  See filemap_fault() and __folio_lock_or_retry().
5190  */
5191 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5192                            unsigned int flags, struct pt_regs *regs)
5193 {
5194         vm_fault_t ret;
5195
5196         __set_current_state(TASK_RUNNING);
5197
5198         count_vm_event(PGFAULT);
5199         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5200
5201         ret = sanitize_fault_flags(vma, &flags);
5202         if (ret)
5203                 return ret;
5204
5205         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5206                                             flags & FAULT_FLAG_INSTRUCTION,
5207                                             flags & FAULT_FLAG_REMOTE))
5208                 return VM_FAULT_SIGSEGV;
5209
5210         /*
5211          * Enable the memcg OOM handling for faults triggered in user
5212          * space.  Kernel faults are handled more gracefully.
5213          */
5214         if (flags & FAULT_FLAG_USER)
5215                 mem_cgroup_enter_user_fault();
5216
5217         lru_gen_enter_fault(vma);
5218
5219         if (unlikely(is_vm_hugetlb_page(vma)))
5220                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5221         else
5222                 ret = __handle_mm_fault(vma, address, flags);
5223
5224         lru_gen_exit_fault();
5225
5226         if (flags & FAULT_FLAG_USER) {
5227                 mem_cgroup_exit_user_fault();
5228                 /*
5229                  * The task may have entered a memcg OOM situation but
5230                  * if the allocation error was handled gracefully (no
5231                  * VM_FAULT_OOM), there is no need to kill anything.
5232                  * Just clean up the OOM state peacefully.
5233                  */
5234                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5235                         mem_cgroup_oom_synchronize(false);
5236         }
5237
5238         mm_account_fault(regs, address, flags, ret);
5239
5240         return ret;
5241 }
5242 EXPORT_SYMBOL_GPL(handle_mm_fault);
5243
5244 #ifndef __PAGETABLE_P4D_FOLDED
5245 /*
5246  * Allocate p4d page table.
5247  * We've already handled the fast-path in-line.
5248  */
5249 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5250 {
5251         p4d_t *new = p4d_alloc_one(mm, address);
5252         if (!new)
5253                 return -ENOMEM;
5254
5255         spin_lock(&mm->page_table_lock);
5256         if (pgd_present(*pgd)) {        /* Another has populated it */
5257                 p4d_free(mm, new);
5258         } else {
5259                 smp_wmb(); /* See comment in pmd_install() */
5260                 pgd_populate(mm, pgd, new);
5261         }
5262         spin_unlock(&mm->page_table_lock);
5263         return 0;
5264 }
5265 #endif /* __PAGETABLE_P4D_FOLDED */
5266
5267 #ifndef __PAGETABLE_PUD_FOLDED
5268 /*
5269  * Allocate page upper directory.
5270  * We've already handled the fast-path in-line.
5271  */
5272 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5273 {
5274         pud_t *new = pud_alloc_one(mm, address);
5275         if (!new)
5276                 return -ENOMEM;
5277
5278         spin_lock(&mm->page_table_lock);
5279         if (!p4d_present(*p4d)) {
5280                 mm_inc_nr_puds(mm);
5281                 smp_wmb(); /* See comment in pmd_install() */
5282                 p4d_populate(mm, p4d, new);
5283         } else  /* Another has populated it */
5284                 pud_free(mm, new);
5285         spin_unlock(&mm->page_table_lock);
5286         return 0;
5287 }
5288 #endif /* __PAGETABLE_PUD_FOLDED */
5289
5290 #ifndef __PAGETABLE_PMD_FOLDED
5291 /*
5292  * Allocate page middle directory.
5293  * We've already handled the fast-path in-line.
5294  */
5295 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5296 {
5297         spinlock_t *ptl;
5298         pmd_t *new = pmd_alloc_one(mm, address);
5299         if (!new)
5300                 return -ENOMEM;
5301
5302         ptl = pud_lock(mm, pud);
5303         if (!pud_present(*pud)) {
5304                 mm_inc_nr_pmds(mm);
5305                 smp_wmb(); /* See comment in pmd_install() */
5306                 pud_populate(mm, pud, new);
5307         } else {        /* Another has populated it */
5308                 pmd_free(mm, new);
5309         }
5310         spin_unlock(ptl);
5311         return 0;
5312 }
5313 #endif /* __PAGETABLE_PMD_FOLDED */
5314
5315 /**
5316  * follow_pte - look up PTE at a user virtual address
5317  * @mm: the mm_struct of the target address space
5318  * @address: user virtual address
5319  * @ptepp: location to store found PTE
5320  * @ptlp: location to store the lock for the PTE
5321  *
5322  * On a successful return, the pointer to the PTE is stored in @ptepp;
5323  * the corresponding lock is taken and its location is stored in @ptlp.
5324  * The contents of the PTE are only stable until @ptlp is released;
5325  * any further use, if any, must be protected against invalidation
5326  * with MMU notifiers.
5327  *
5328  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5329  * should be taken for read.
5330  *
5331  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5332  * it is not a good general-purpose API.
5333  *
5334  * Return: zero on success, -ve otherwise.
5335  */
5336 int follow_pte(struct mm_struct *mm, unsigned long address,
5337                pte_t **ptepp, spinlock_t **ptlp)
5338 {
5339         pgd_t *pgd;
5340         p4d_t *p4d;
5341         pud_t *pud;
5342         pmd_t *pmd;
5343         pte_t *ptep;
5344
5345         pgd = pgd_offset(mm, address);
5346         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5347                 goto out;
5348
5349         p4d = p4d_offset(pgd, address);
5350         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5351                 goto out;
5352
5353         pud = pud_offset(p4d, address);
5354         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5355                 goto out;
5356
5357         pmd = pmd_offset(pud, address);
5358         VM_BUG_ON(pmd_trans_huge(*pmd));
5359
5360         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5361                 goto out;
5362
5363         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5364         if (!pte_present(*ptep))
5365                 goto unlock;
5366         *ptepp = ptep;
5367         return 0;
5368 unlock:
5369         pte_unmap_unlock(ptep, *ptlp);
5370 out:
5371         return -EINVAL;
5372 }
5373 EXPORT_SYMBOL_GPL(follow_pte);
5374
5375 /**
5376  * follow_pfn - look up PFN at a user virtual address
5377  * @vma: memory mapping
5378  * @address: user virtual address
5379  * @pfn: location to store found PFN
5380  *
5381  * Only IO mappings and raw PFN mappings are allowed.
5382  *
5383  * This function does not allow the caller to read the permissions
5384  * of the PTE.  Do not use it.
5385  *
5386  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5387  */
5388 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5389         unsigned long *pfn)
5390 {
5391         int ret = -EINVAL;
5392         spinlock_t *ptl;
5393         pte_t *ptep;
5394
5395         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5396                 return ret;
5397
5398         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5399         if (ret)
5400                 return ret;
5401         *pfn = pte_pfn(*ptep);
5402         pte_unmap_unlock(ptep, ptl);
5403         return 0;
5404 }
5405 EXPORT_SYMBOL(follow_pfn);
5406
5407 #ifdef CONFIG_HAVE_IOREMAP_PROT
5408 int follow_phys(struct vm_area_struct *vma,
5409                 unsigned long address, unsigned int flags,
5410                 unsigned long *prot, resource_size_t *phys)
5411 {
5412         int ret = -EINVAL;
5413         pte_t *ptep, pte;
5414         spinlock_t *ptl;
5415
5416         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5417                 goto out;
5418
5419         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5420                 goto out;
5421         pte = *ptep;
5422
5423         if ((flags & FOLL_WRITE) && !pte_write(pte))
5424                 goto unlock;
5425
5426         *prot = pgprot_val(pte_pgprot(pte));
5427         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5428
5429         ret = 0;
5430 unlock:
5431         pte_unmap_unlock(ptep, ptl);
5432 out:
5433         return ret;
5434 }
5435
5436 /**
5437  * generic_access_phys - generic implementation for iomem mmap access
5438  * @vma: the vma to access
5439  * @addr: userspace address, not relative offset within @vma
5440  * @buf: buffer to read/write
5441  * @len: length of transfer
5442  * @write: set to FOLL_WRITE when writing, otherwise reading
5443  *
5444  * This is a generic implementation for &vm_operations_struct.access for an
5445  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5446  * not page based.
5447  */
5448 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5449                         void *buf, int len, int write)
5450 {
5451         resource_size_t phys_addr;
5452         unsigned long prot = 0;
5453         void __iomem *maddr;
5454         pte_t *ptep, pte;
5455         spinlock_t *ptl;
5456         int offset = offset_in_page(addr);
5457         int ret = -EINVAL;
5458
5459         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5460                 return -EINVAL;
5461
5462 retry:
5463         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5464                 return -EINVAL;
5465         pte = *ptep;
5466         pte_unmap_unlock(ptep, ptl);
5467
5468         prot = pgprot_val(pte_pgprot(pte));
5469         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5470
5471         if ((write & FOLL_WRITE) && !pte_write(pte))
5472                 return -EINVAL;
5473
5474         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5475         if (!maddr)
5476                 return -ENOMEM;
5477
5478         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5479                 goto out_unmap;
5480
5481         if (!pte_same(pte, *ptep)) {
5482                 pte_unmap_unlock(ptep, ptl);
5483                 iounmap(maddr);
5484
5485                 goto retry;
5486         }
5487
5488         if (write)
5489                 memcpy_toio(maddr + offset, buf, len);
5490         else
5491                 memcpy_fromio(buf, maddr + offset, len);
5492         ret = len;
5493         pte_unmap_unlock(ptep, ptl);
5494 out_unmap:
5495         iounmap(maddr);
5496
5497         return ret;
5498 }
5499 EXPORT_SYMBOL_GPL(generic_access_phys);
5500 #endif
5501
5502 /*
5503  * Access another process' address space as given in mm.
5504  */
5505 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5506                        int len, unsigned int gup_flags)
5507 {
5508         struct vm_area_struct *vma;
5509         void *old_buf = buf;
5510         int write = gup_flags & FOLL_WRITE;
5511
5512         if (mmap_read_lock_killable(mm))
5513                 return 0;
5514
5515         /* ignore errors, just check how much was successfully transferred */
5516         while (len) {
5517                 int bytes, ret, offset;
5518                 void *maddr;
5519                 struct page *page = NULL;
5520
5521                 ret = get_user_pages_remote(mm, addr, 1,
5522                                 gup_flags, &page, &vma, NULL);
5523                 if (ret <= 0) {
5524 #ifndef CONFIG_HAVE_IOREMAP_PROT
5525                         break;
5526 #else
5527                         /*
5528                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5529                          * we can access using slightly different code.
5530                          */
5531                         vma = vma_lookup(mm, addr);
5532                         if (!vma)
5533                                 break;
5534                         if (vma->vm_ops && vma->vm_ops->access)
5535                                 ret = vma->vm_ops->access(vma, addr, buf,
5536                                                           len, write);
5537                         if (ret <= 0)
5538                                 break;
5539                         bytes = ret;
5540 #endif
5541                 } else {
5542                         bytes = len;
5543                         offset = addr & (PAGE_SIZE-1);
5544                         if (bytes > PAGE_SIZE-offset)
5545                                 bytes = PAGE_SIZE-offset;
5546
5547                         maddr = kmap(page);
5548                         if (write) {
5549                                 copy_to_user_page(vma, page, addr,
5550                                                   maddr + offset, buf, bytes);
5551                                 set_page_dirty_lock(page);
5552                         } else {
5553                                 copy_from_user_page(vma, page, addr,
5554                                                     buf, maddr + offset, bytes);
5555                         }
5556                         kunmap(page);
5557                         put_page(page);
5558                 }
5559                 len -= bytes;
5560                 buf += bytes;
5561                 addr += bytes;
5562         }
5563         mmap_read_unlock(mm);
5564
5565         return buf - old_buf;
5566 }
5567
5568 /**
5569  * access_remote_vm - access another process' address space
5570  * @mm:         the mm_struct of the target address space
5571  * @addr:       start address to access
5572  * @buf:        source or destination buffer
5573  * @len:        number of bytes to transfer
5574  * @gup_flags:  flags modifying lookup behaviour
5575  *
5576  * The caller must hold a reference on @mm.
5577  *
5578  * Return: number of bytes copied from source to destination.
5579  */
5580 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5581                 void *buf, int len, unsigned int gup_flags)
5582 {
5583         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5584 }
5585
5586 /*
5587  * Access another process' address space.
5588  * Source/target buffer must be kernel space,
5589  * Do not walk the page table directly, use get_user_pages
5590  */
5591 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5592                 void *buf, int len, unsigned int gup_flags)
5593 {
5594         struct mm_struct *mm;
5595         int ret;
5596
5597         mm = get_task_mm(tsk);
5598         if (!mm)
5599                 return 0;
5600
5601         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5602
5603         mmput(mm);
5604
5605         return ret;
5606 }
5607 EXPORT_SYMBOL_GPL(access_process_vm);
5608
5609 /*
5610  * Print the name of a VMA.
5611  */
5612 void print_vma_addr(char *prefix, unsigned long ip)
5613 {
5614         struct mm_struct *mm = current->mm;
5615         struct vm_area_struct *vma;
5616
5617         /*
5618          * we might be running from an atomic context so we cannot sleep
5619          */
5620         if (!mmap_read_trylock(mm))
5621                 return;
5622
5623         vma = find_vma(mm, ip);
5624         if (vma && vma->vm_file) {
5625                 struct file *f = vma->vm_file;
5626                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5627                 if (buf) {
5628                         char *p;
5629
5630                         p = file_path(f, buf, PAGE_SIZE);
5631                         if (IS_ERR(p))
5632                                 p = "?";
5633                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5634                                         vma->vm_start,
5635                                         vma->vm_end - vma->vm_start);
5636                         free_page((unsigned long)buf);
5637                 }
5638         }
5639         mmap_read_unlock(mm);
5640 }
5641
5642 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5643 void __might_fault(const char *file, int line)
5644 {
5645         if (pagefault_disabled())
5646                 return;
5647         __might_sleep(file, line);
5648 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5649         if (current->mm)
5650                 might_lock_read(&current->mm->mmap_lock);
5651 #endif
5652 }
5653 EXPORT_SYMBOL(__might_fault);
5654 #endif
5655
5656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5657 /*
5658  * Process all subpages of the specified huge page with the specified
5659  * operation.  The target subpage will be processed last to keep its
5660  * cache lines hot.
5661  */
5662 static inline void process_huge_page(
5663         unsigned long addr_hint, unsigned int pages_per_huge_page,
5664         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5665         void *arg)
5666 {
5667         int i, n, base, l;
5668         unsigned long addr = addr_hint &
5669                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5670
5671         /* Process target subpage last to keep its cache lines hot */
5672         might_sleep();
5673         n = (addr_hint - addr) / PAGE_SIZE;
5674         if (2 * n <= pages_per_huge_page) {
5675                 /* If target subpage in first half of huge page */
5676                 base = 0;
5677                 l = n;
5678                 /* Process subpages at the end of huge page */
5679                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5680                         cond_resched();
5681                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5682                 }
5683         } else {
5684                 /* If target subpage in second half of huge page */
5685                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5686                 l = pages_per_huge_page - n;
5687                 /* Process subpages at the begin of huge page */
5688                 for (i = 0; i < base; i++) {
5689                         cond_resched();
5690                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5691                 }
5692         }
5693         /*
5694          * Process remaining subpages in left-right-left-right pattern
5695          * towards the target subpage
5696          */
5697         for (i = 0; i < l; i++) {
5698                 int left_idx = base + i;
5699                 int right_idx = base + 2 * l - 1 - i;
5700
5701                 cond_resched();
5702                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5703                 cond_resched();
5704                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5705         }
5706 }
5707
5708 static void clear_gigantic_page(struct page *page,
5709                                 unsigned long addr,
5710                                 unsigned int pages_per_huge_page)
5711 {
5712         int i;
5713         struct page *p;
5714
5715         might_sleep();
5716         for (i = 0; i < pages_per_huge_page; i++) {
5717                 p = nth_page(page, i);
5718                 cond_resched();
5719                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5720         }
5721 }
5722
5723 static void clear_subpage(unsigned long addr, int idx, void *arg)
5724 {
5725         struct page *page = arg;
5726
5727         clear_user_highpage(page + idx, addr);
5728 }
5729
5730 void clear_huge_page(struct page *page,
5731                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5732 {
5733         unsigned long addr = addr_hint &
5734                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5735
5736         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5737                 clear_gigantic_page(page, addr, pages_per_huge_page);
5738                 return;
5739         }
5740
5741         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5742 }
5743
5744 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5745                                     unsigned long addr,
5746                                     struct vm_area_struct *vma,
5747                                     unsigned int pages_per_huge_page)
5748 {
5749         int i;
5750         struct page *dst_base = dst;
5751         struct page *src_base = src;
5752
5753         for (i = 0; i < pages_per_huge_page; i++) {
5754                 dst = nth_page(dst_base, i);
5755                 src = nth_page(src_base, i);
5756
5757                 cond_resched();
5758                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5759         }
5760 }
5761
5762 struct copy_subpage_arg {
5763         struct page *dst;
5764         struct page *src;
5765         struct vm_area_struct *vma;
5766 };
5767
5768 static void copy_subpage(unsigned long addr, int idx, void *arg)
5769 {
5770         struct copy_subpage_arg *copy_arg = arg;
5771
5772         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5773                            addr, copy_arg->vma);
5774 }
5775
5776 void copy_user_huge_page(struct page *dst, struct page *src,
5777                          unsigned long addr_hint, struct vm_area_struct *vma,
5778                          unsigned int pages_per_huge_page)
5779 {
5780         unsigned long addr = addr_hint &
5781                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5782         struct copy_subpage_arg arg = {
5783                 .dst = dst,
5784                 .src = src,
5785                 .vma = vma,
5786         };
5787
5788         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5789                 copy_user_gigantic_page(dst, src, addr, vma,
5790                                         pages_per_huge_page);
5791                 return;
5792         }
5793
5794         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5795 }
5796
5797 long copy_huge_page_from_user(struct page *dst_page,
5798                                 const void __user *usr_src,
5799                                 unsigned int pages_per_huge_page,
5800                                 bool allow_pagefault)
5801 {
5802         void *page_kaddr;
5803         unsigned long i, rc = 0;
5804         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5805         struct page *subpage;
5806
5807         for (i = 0; i < pages_per_huge_page; i++) {
5808                 subpage = nth_page(dst_page, i);
5809                 if (allow_pagefault)
5810                         page_kaddr = kmap(subpage);
5811                 else
5812                         page_kaddr = kmap_atomic(subpage);
5813                 rc = copy_from_user(page_kaddr,
5814                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5815                 if (allow_pagefault)
5816                         kunmap(subpage);
5817                 else
5818                         kunmap_atomic(page_kaddr);
5819
5820                 ret_val -= (PAGE_SIZE - rc);
5821                 if (rc)
5822                         break;
5823
5824                 flush_dcache_page(subpage);
5825
5826                 cond_resched();
5827         }
5828         return ret_val;
5829 }
5830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5831
5832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5833
5834 static struct kmem_cache *page_ptl_cachep;
5835
5836 void __init ptlock_cache_init(void)
5837 {
5838         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5839                         SLAB_PANIC, NULL);
5840 }
5841
5842 bool ptlock_alloc(struct page *page)
5843 {
5844         spinlock_t *ptl;
5845
5846         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5847         if (!ptl)
5848                 return false;
5849         page->ptl = ptl;
5850         return true;
5851 }
5852
5853 void ptlock_free(struct page *page)
5854 {
5855         kmem_cache_free(page_ptl_cachep, page->ptl);
5856 }
5857 #endif