x86/topology: Create topology_max_die_per_package()
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115                                         1;
116 #else
117                                         2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122         randomize_va_space = 0;
123         return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137         zero_pfn = page_to_pfn(ZERO_PAGE(0));
138         return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147         int i;
148
149         for (i = 0; i < NR_MM_COUNTERS; i++) {
150                 if (current->rss_stat.count[i]) {
151                         add_mm_counter(mm, i, current->rss_stat.count[i]);
152                         current->rss_stat.count[i] = 0;
153                 }
154         }
155         current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160         struct task_struct *task = current;
161
162         if (likely(task->mm == mm))
163                 task->rss_stat.count[member] += val;
164         else
165                 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH  (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174         if (unlikely(task != current))
175                 return;
176         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177                 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 /*
191  * Note: this doesn't free the actual pages themselves. That
192  * has been handled earlier when unmapping all the memory regions.
193  */
194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195                            unsigned long addr)
196 {
197         pgtable_t token = pmd_pgtable(*pmd);
198         pmd_clear(pmd);
199         pte_free_tlb(tlb, token, addr);
200         mm_dec_nr_ptes(tlb->mm);
201 }
202
203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204                                 unsigned long addr, unsigned long end,
205                                 unsigned long floor, unsigned long ceiling)
206 {
207         pmd_t *pmd;
208         unsigned long next;
209         unsigned long start;
210
211         start = addr;
212         pmd = pmd_offset(pud, addr);
213         do {
214                 next = pmd_addr_end(addr, end);
215                 if (pmd_none_or_clear_bad(pmd))
216                         continue;
217                 free_pte_range(tlb, pmd, addr);
218         } while (pmd++, addr = next, addr != end);
219
220         start &= PUD_MASK;
221         if (start < floor)
222                 return;
223         if (ceiling) {
224                 ceiling &= PUD_MASK;
225                 if (!ceiling)
226                         return;
227         }
228         if (end - 1 > ceiling - 1)
229                 return;
230
231         pmd = pmd_offset(pud, start);
232         pud_clear(pud);
233         pmd_free_tlb(tlb, pmd, start);
234         mm_dec_nr_pmds(tlb->mm);
235 }
236
237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
238                                 unsigned long addr, unsigned long end,
239                                 unsigned long floor, unsigned long ceiling)
240 {
241         pud_t *pud;
242         unsigned long next;
243         unsigned long start;
244
245         start = addr;
246         pud = pud_offset(p4d, addr);
247         do {
248                 next = pud_addr_end(addr, end);
249                 if (pud_none_or_clear_bad(pud))
250                         continue;
251                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
252         } while (pud++, addr = next, addr != end);
253
254         start &= P4D_MASK;
255         if (start < floor)
256                 return;
257         if (ceiling) {
258                 ceiling &= P4D_MASK;
259                 if (!ceiling)
260                         return;
261         }
262         if (end - 1 > ceiling - 1)
263                 return;
264
265         pud = pud_offset(p4d, start);
266         p4d_clear(p4d);
267         pud_free_tlb(tlb, pud, start);
268         mm_dec_nr_puds(tlb->mm);
269 }
270
271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272                                 unsigned long addr, unsigned long end,
273                                 unsigned long floor, unsigned long ceiling)
274 {
275         p4d_t *p4d;
276         unsigned long next;
277         unsigned long start;
278
279         start = addr;
280         p4d = p4d_offset(pgd, addr);
281         do {
282                 next = p4d_addr_end(addr, end);
283                 if (p4d_none_or_clear_bad(p4d))
284                         continue;
285                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286         } while (p4d++, addr = next, addr != end);
287
288         start &= PGDIR_MASK;
289         if (start < floor)
290                 return;
291         if (ceiling) {
292                 ceiling &= PGDIR_MASK;
293                 if (!ceiling)
294                         return;
295         }
296         if (end - 1 > ceiling - 1)
297                 return;
298
299         p4d = p4d_offset(pgd, start);
300         pgd_clear(pgd);
301         p4d_free_tlb(tlb, p4d, start);
302 }
303
304 /*
305  * This function frees user-level page tables of a process.
306  */
307 void free_pgd_range(struct mmu_gather *tlb,
308                         unsigned long addr, unsigned long end,
309                         unsigned long floor, unsigned long ceiling)
310 {
311         pgd_t *pgd;
312         unsigned long next;
313
314         /*
315          * The next few lines have given us lots of grief...
316          *
317          * Why are we testing PMD* at this top level?  Because often
318          * there will be no work to do at all, and we'd prefer not to
319          * go all the way down to the bottom just to discover that.
320          *
321          * Why all these "- 1"s?  Because 0 represents both the bottom
322          * of the address space and the top of it (using -1 for the
323          * top wouldn't help much: the masks would do the wrong thing).
324          * The rule is that addr 0 and floor 0 refer to the bottom of
325          * the address space, but end 0 and ceiling 0 refer to the top
326          * Comparisons need to use "end - 1" and "ceiling - 1" (though
327          * that end 0 case should be mythical).
328          *
329          * Wherever addr is brought up or ceiling brought down, we must
330          * be careful to reject "the opposite 0" before it confuses the
331          * subsequent tests.  But what about where end is brought down
332          * by PMD_SIZE below? no, end can't go down to 0 there.
333          *
334          * Whereas we round start (addr) and ceiling down, by different
335          * masks at different levels, in order to test whether a table
336          * now has no other vmas using it, so can be freed, we don't
337          * bother to round floor or end up - the tests don't need that.
338          */
339
340         addr &= PMD_MASK;
341         if (addr < floor) {
342                 addr += PMD_SIZE;
343                 if (!addr)
344                         return;
345         }
346         if (ceiling) {
347                 ceiling &= PMD_MASK;
348                 if (!ceiling)
349                         return;
350         }
351         if (end - 1 > ceiling - 1)
352                 end -= PMD_SIZE;
353         if (addr > end - 1)
354                 return;
355         /*
356          * We add page table cache pages with PAGE_SIZE,
357          * (see pte_free_tlb()), flush the tlb if we need
358          */
359         tlb_change_page_size(tlb, PAGE_SIZE);
360         pgd = pgd_offset(tlb->mm, addr);
361         do {
362                 next = pgd_addr_end(addr, end);
363                 if (pgd_none_or_clear_bad(pgd))
364                         continue;
365                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
366         } while (pgd++, addr = next, addr != end);
367 }
368
369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
370                 unsigned long floor, unsigned long ceiling)
371 {
372         while (vma) {
373                 struct vm_area_struct *next = vma->vm_next;
374                 unsigned long addr = vma->vm_start;
375
376                 /*
377                  * Hide vma from rmap and truncate_pagecache before freeing
378                  * pgtables
379                  */
380                 unlink_anon_vmas(vma);
381                 unlink_file_vma(vma);
382
383                 if (is_vm_hugetlb_page(vma)) {
384                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
385                                 floor, next ? next->vm_start : ceiling);
386                 } else {
387                         /*
388                          * Optimization: gather nearby vmas into one call down
389                          */
390                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
391                                && !is_vm_hugetlb_page(next)) {
392                                 vma = next;
393                                 next = vma->vm_next;
394                                 unlink_anon_vmas(vma);
395                                 unlink_file_vma(vma);
396                         }
397                         free_pgd_range(tlb, addr, vma->vm_end,
398                                 floor, next ? next->vm_start : ceiling);
399                 }
400                 vma = next;
401         }
402 }
403
404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
405 {
406         spinlock_t *ptl;
407         pgtable_t new = pte_alloc_one(mm);
408         if (!new)
409                 return -ENOMEM;
410
411         /*
412          * Ensure all pte setup (eg. pte page lock and page clearing) are
413          * visible before the pte is made visible to other CPUs by being
414          * put into page tables.
415          *
416          * The other side of the story is the pointer chasing in the page
417          * table walking code (when walking the page table without locking;
418          * ie. most of the time). Fortunately, these data accesses consist
419          * of a chain of data-dependent loads, meaning most CPUs (alpha
420          * being the notable exception) will already guarantee loads are
421          * seen in-order. See the alpha page table accessors for the
422          * smp_read_barrier_depends() barriers in page table walking code.
423          */
424         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
426         ptl = pmd_lock(mm, pmd);
427         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
428                 mm_inc_nr_ptes(mm);
429                 pmd_populate(mm, pmd, new);
430                 new = NULL;
431         }
432         spin_unlock(ptl);
433         if (new)
434                 pte_free(mm, new);
435         return 0;
436 }
437
438 int __pte_alloc_kernel(pmd_t *pmd)
439 {
440         pte_t *new = pte_alloc_one_kernel(&init_mm);
441         if (!new)
442                 return -ENOMEM;
443
444         smp_wmb(); /* See comment in __pte_alloc */
445
446         spin_lock(&init_mm.page_table_lock);
447         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
448                 pmd_populate_kernel(&init_mm, pmd, new);
449                 new = NULL;
450         }
451         spin_unlock(&init_mm.page_table_lock);
452         if (new)
453                 pte_free_kernel(&init_mm, new);
454         return 0;
455 }
456
457 static inline void init_rss_vec(int *rss)
458 {
459         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460 }
461
462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 {
464         int i;
465
466         if (current->mm == mm)
467                 sync_mm_rss(mm);
468         for (i = 0; i < NR_MM_COUNTERS; i++)
469                 if (rss[i])
470                         add_mm_counter(mm, i, rss[i]);
471 }
472
473 /*
474  * This function is called to print an error when a bad pte
475  * is found. For example, we might have a PFN-mapped pte in
476  * a region that doesn't allow it.
477  *
478  * The calling function must still handle the error.
479  */
480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481                           pte_t pte, struct page *page)
482 {
483         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
484         p4d_t *p4d = p4d_offset(pgd, addr);
485         pud_t *pud = pud_offset(p4d, addr);
486         pmd_t *pmd = pmd_offset(pud, addr);
487         struct address_space *mapping;
488         pgoff_t index;
489         static unsigned long resume;
490         static unsigned long nr_shown;
491         static unsigned long nr_unshown;
492
493         /*
494          * Allow a burst of 60 reports, then keep quiet for that minute;
495          * or allow a steady drip of one report per second.
496          */
497         if (nr_shown == 60) {
498                 if (time_before(jiffies, resume)) {
499                         nr_unshown++;
500                         return;
501                 }
502                 if (nr_unshown) {
503                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504                                  nr_unshown);
505                         nr_unshown = 0;
506                 }
507                 nr_shown = 0;
508         }
509         if (nr_shown++ == 0)
510                 resume = jiffies + 60 * HZ;
511
512         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513         index = linear_page_index(vma, addr);
514
515         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516                  current->comm,
517                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
518         if (page)
519                 dump_page(page, "bad pte");
520         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
522         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
523                  vma->vm_file,
524                  vma->vm_ops ? vma->vm_ops->fault : NULL,
525                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526                  mapping ? mapping->a_ops->readpage : NULL);
527         dump_stack();
528         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530
531 /*
532  * vm_normal_page -- This function gets the "struct page" associated with a pte.
533  *
534  * "Special" mappings do not wish to be associated with a "struct page" (either
535  * it doesn't exist, or it exists but they don't want to touch it). In this
536  * case, NULL is returned here. "Normal" mappings do have a struct page.
537  *
538  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539  * pte bit, in which case this function is trivial. Secondly, an architecture
540  * may not have a spare pte bit, which requires a more complicated scheme,
541  * described below.
542  *
543  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544  * special mapping (even if there are underlying and valid "struct pages").
545  * COWed pages of a VM_PFNMAP are always normal.
546  *
547  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
549  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550  * mapping will always honor the rule
551  *
552  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553  *
554  * And for normal mappings this is false.
555  *
556  * This restricts such mappings to be a linear translation from virtual address
557  * to pfn. To get around this restriction, we allow arbitrary mappings so long
558  * as the vma is not a COW mapping; in that case, we know that all ptes are
559  * special (because none can have been COWed).
560  *
561  *
562  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563  *
564  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565  * page" backing, however the difference is that _all_ pages with a struct
566  * page (that is, those where pfn_valid is true) are refcounted and considered
567  * normal pages by the VM. The disadvantage is that pages are refcounted
568  * (which can be slower and simply not an option for some PFNMAP users). The
569  * advantage is that we don't have to follow the strict linearity rule of
570  * PFNMAP mappings in order to support COWable mappings.
571  *
572  */
573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574                              pte_t pte, bool with_public_device)
575 {
576         unsigned long pfn = pte_pfn(pte);
577
578         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
579                 if (likely(!pte_special(pte)))
580                         goto check_pfn;
581                 if (vma->vm_ops && vma->vm_ops->find_special_page)
582                         return vma->vm_ops->find_special_page(vma, addr);
583                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584                         return NULL;
585                 if (is_zero_pfn(pfn))
586                         return NULL;
587
588                 /*
589                  * Device public pages are special pages (they are ZONE_DEVICE
590                  * pages but different from persistent memory). They behave
591                  * allmost like normal pages. The difference is that they are
592                  * not on the lru and thus should never be involve with any-
593                  * thing that involve lru manipulation (mlock, numa balancing,
594                  * ...).
595                  *
596                  * This is why we still want to return NULL for such page from
597                  * vm_normal_page() so that we do not have to special case all
598                  * call site of vm_normal_page().
599                  */
600                 if (likely(pfn <= highest_memmap_pfn)) {
601                         struct page *page = pfn_to_page(pfn);
602
603                         if (is_device_public_page(page)) {
604                                 if (with_public_device)
605                                         return page;
606                                 return NULL;
607                         }
608                 }
609
610                 if (pte_devmap(pte))
611                         return NULL;
612
613                 print_bad_pte(vma, addr, pte, NULL);
614                 return NULL;
615         }
616
617         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618
619         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620                 if (vma->vm_flags & VM_MIXEDMAP) {
621                         if (!pfn_valid(pfn))
622                                 return NULL;
623                         goto out;
624                 } else {
625                         unsigned long off;
626                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
627                         if (pfn == vma->vm_pgoff + off)
628                                 return NULL;
629                         if (!is_cow_mapping(vma->vm_flags))
630                                 return NULL;
631                 }
632         }
633
634         if (is_zero_pfn(pfn))
635                 return NULL;
636
637 check_pfn:
638         if (unlikely(pfn > highest_memmap_pfn)) {
639                 print_bad_pte(vma, addr, pte, NULL);
640                 return NULL;
641         }
642
643         /*
644          * NOTE! We still have PageReserved() pages in the page tables.
645          * eg. VDSO mappings can cause them to exist.
646          */
647 out:
648         return pfn_to_page(pfn);
649 }
650
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653                                 pmd_t pmd)
654 {
655         unsigned long pfn = pmd_pfn(pmd);
656
657         /*
658          * There is no pmd_special() but there may be special pmds, e.g.
659          * in a direct-access (dax) mapping, so let's just replicate the
660          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661          */
662         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663                 if (vma->vm_flags & VM_MIXEDMAP) {
664                         if (!pfn_valid(pfn))
665                                 return NULL;
666                         goto out;
667                 } else {
668                         unsigned long off;
669                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
670                         if (pfn == vma->vm_pgoff + off)
671                                 return NULL;
672                         if (!is_cow_mapping(vma->vm_flags))
673                                 return NULL;
674                 }
675         }
676
677         if (pmd_devmap(pmd))
678                 return NULL;
679         if (is_zero_pfn(pfn))
680                 return NULL;
681         if (unlikely(pfn > highest_memmap_pfn))
682                 return NULL;
683
684         /*
685          * NOTE! We still have PageReserved() pages in the page tables.
686          * eg. VDSO mappings can cause them to exist.
687          */
688 out:
689         return pfn_to_page(pfn);
690 }
691 #endif
692
693 /*
694  * copy one vm_area from one task to the other. Assumes the page tables
695  * already present in the new task to be cleared in the whole range
696  * covered by this vma.
697  */
698
699 static inline unsigned long
700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
702                 unsigned long addr, int *rss)
703 {
704         unsigned long vm_flags = vma->vm_flags;
705         pte_t pte = *src_pte;
706         struct page *page;
707
708         /* pte contains position in swap or file, so copy. */
709         if (unlikely(!pte_present(pte))) {
710                 swp_entry_t entry = pte_to_swp_entry(pte);
711
712                 if (likely(!non_swap_entry(entry))) {
713                         if (swap_duplicate(entry) < 0)
714                                 return entry.val;
715
716                         /* make sure dst_mm is on swapoff's mmlist. */
717                         if (unlikely(list_empty(&dst_mm->mmlist))) {
718                                 spin_lock(&mmlist_lock);
719                                 if (list_empty(&dst_mm->mmlist))
720                                         list_add(&dst_mm->mmlist,
721                                                         &src_mm->mmlist);
722                                 spin_unlock(&mmlist_lock);
723                         }
724                         rss[MM_SWAPENTS]++;
725                 } else if (is_migration_entry(entry)) {
726                         page = migration_entry_to_page(entry);
727
728                         rss[mm_counter(page)]++;
729
730                         if (is_write_migration_entry(entry) &&
731                                         is_cow_mapping(vm_flags)) {
732                                 /*
733                                  * COW mappings require pages in both
734                                  * parent and child to be set to read.
735                                  */
736                                 make_migration_entry_read(&entry);
737                                 pte = swp_entry_to_pte(entry);
738                                 if (pte_swp_soft_dirty(*src_pte))
739                                         pte = pte_swp_mksoft_dirty(pte);
740                                 set_pte_at(src_mm, addr, src_pte, pte);
741                         }
742                 } else if (is_device_private_entry(entry)) {
743                         page = device_private_entry_to_page(entry);
744
745                         /*
746                          * Update rss count even for unaddressable pages, as
747                          * they should treated just like normal pages in this
748                          * respect.
749                          *
750                          * We will likely want to have some new rss counters
751                          * for unaddressable pages, at some point. But for now
752                          * keep things as they are.
753                          */
754                         get_page(page);
755                         rss[mm_counter(page)]++;
756                         page_dup_rmap(page, false);
757
758                         /*
759                          * We do not preserve soft-dirty information, because so
760                          * far, checkpoint/restore is the only feature that
761                          * requires that. And checkpoint/restore does not work
762                          * when a device driver is involved (you cannot easily
763                          * save and restore device driver state).
764                          */
765                         if (is_write_device_private_entry(entry) &&
766                             is_cow_mapping(vm_flags)) {
767                                 make_device_private_entry_read(&entry);
768                                 pte = swp_entry_to_pte(entry);
769                                 set_pte_at(src_mm, addr, src_pte, pte);
770                         }
771                 }
772                 goto out_set_pte;
773         }
774
775         /*
776          * If it's a COW mapping, write protect it both
777          * in the parent and the child
778          */
779         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780                 ptep_set_wrprotect(src_mm, addr, src_pte);
781                 pte = pte_wrprotect(pte);
782         }
783
784         /*
785          * If it's a shared mapping, mark it clean in
786          * the child
787          */
788         if (vm_flags & VM_SHARED)
789                 pte = pte_mkclean(pte);
790         pte = pte_mkold(pte);
791
792         page = vm_normal_page(vma, addr, pte);
793         if (page) {
794                 get_page(page);
795                 page_dup_rmap(page, false);
796                 rss[mm_counter(page)]++;
797         } else if (pte_devmap(pte)) {
798                 page = pte_page(pte);
799
800                 /*
801                  * Cache coherent device memory behave like regular page and
802                  * not like persistent memory page. For more informations see
803                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804                  */
805                 if (is_device_public_page(page)) {
806                         get_page(page);
807                         page_dup_rmap(page, false);
808                         rss[mm_counter(page)]++;
809                 }
810         }
811
812 out_set_pte:
813         set_pte_at(dst_mm, addr, dst_pte, pte);
814         return 0;
815 }
816
817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
818                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819                    unsigned long addr, unsigned long end)
820 {
821         pte_t *orig_src_pte, *orig_dst_pte;
822         pte_t *src_pte, *dst_pte;
823         spinlock_t *src_ptl, *dst_ptl;
824         int progress = 0;
825         int rss[NR_MM_COUNTERS];
826         swp_entry_t entry = (swp_entry_t){0};
827
828 again:
829         init_rss_vec(rss);
830
831         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
832         if (!dst_pte)
833                 return -ENOMEM;
834         src_pte = pte_offset_map(src_pmd, addr);
835         src_ptl = pte_lockptr(src_mm, src_pmd);
836         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
837         orig_src_pte = src_pte;
838         orig_dst_pte = dst_pte;
839         arch_enter_lazy_mmu_mode();
840
841         do {
842                 /*
843                  * We are holding two locks at this point - either of them
844                  * could generate latencies in another task on another CPU.
845                  */
846                 if (progress >= 32) {
847                         progress = 0;
848                         if (need_resched() ||
849                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
850                                 break;
851                 }
852                 if (pte_none(*src_pte)) {
853                         progress++;
854                         continue;
855                 }
856                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857                                                         vma, addr, rss);
858                 if (entry.val)
859                         break;
860                 progress += 8;
861         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
862
863         arch_leave_lazy_mmu_mode();
864         spin_unlock(src_ptl);
865         pte_unmap(orig_src_pte);
866         add_mm_rss_vec(dst_mm, rss);
867         pte_unmap_unlock(orig_dst_pte, dst_ptl);
868         cond_resched();
869
870         if (entry.val) {
871                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872                         return -ENOMEM;
873                 progress = 0;
874         }
875         if (addr != end)
876                 goto again;
877         return 0;
878 }
879
880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882                 unsigned long addr, unsigned long end)
883 {
884         pmd_t *src_pmd, *dst_pmd;
885         unsigned long next;
886
887         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888         if (!dst_pmd)
889                 return -ENOMEM;
890         src_pmd = pmd_offset(src_pud, addr);
891         do {
892                 next = pmd_addr_end(addr, end);
893                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894                         || pmd_devmap(*src_pmd)) {
895                         int err;
896                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
897                         err = copy_huge_pmd(dst_mm, src_mm,
898                                             dst_pmd, src_pmd, addr, vma);
899                         if (err == -ENOMEM)
900                                 return -ENOMEM;
901                         if (!err)
902                                 continue;
903                         /* fall through */
904                 }
905                 if (pmd_none_or_clear_bad(src_pmd))
906                         continue;
907                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908                                                 vma, addr, next))
909                         return -ENOMEM;
910         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911         return 0;
912 }
913
914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
916                 unsigned long addr, unsigned long end)
917 {
918         pud_t *src_pud, *dst_pud;
919         unsigned long next;
920
921         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
922         if (!dst_pud)
923                 return -ENOMEM;
924         src_pud = pud_offset(src_p4d, addr);
925         do {
926                 next = pud_addr_end(addr, end);
927                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928                         int err;
929
930                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931                         err = copy_huge_pud(dst_mm, src_mm,
932                                             dst_pud, src_pud, addr, vma);
933                         if (err == -ENOMEM)
934                                 return -ENOMEM;
935                         if (!err)
936                                 continue;
937                         /* fall through */
938                 }
939                 if (pud_none_or_clear_bad(src_pud))
940                         continue;
941                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942                                                 vma, addr, next))
943                         return -ENOMEM;
944         } while (dst_pud++, src_pud++, addr = next, addr != end);
945         return 0;
946 }
947
948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950                 unsigned long addr, unsigned long end)
951 {
952         p4d_t *src_p4d, *dst_p4d;
953         unsigned long next;
954
955         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956         if (!dst_p4d)
957                 return -ENOMEM;
958         src_p4d = p4d_offset(src_pgd, addr);
959         do {
960                 next = p4d_addr_end(addr, end);
961                 if (p4d_none_or_clear_bad(src_p4d))
962                         continue;
963                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964                                                 vma, addr, next))
965                         return -ENOMEM;
966         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967         return 0;
968 }
969
970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971                 struct vm_area_struct *vma)
972 {
973         pgd_t *src_pgd, *dst_pgd;
974         unsigned long next;
975         unsigned long addr = vma->vm_start;
976         unsigned long end = vma->vm_end;
977         struct mmu_notifier_range range;
978         bool is_cow;
979         int ret;
980
981         /*
982          * Don't copy ptes where a page fault will fill them correctly.
983          * Fork becomes much lighter when there are big shared or private
984          * readonly mappings. The tradeoff is that copy_page_range is more
985          * efficient than faulting.
986          */
987         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988                         !vma->anon_vma)
989                 return 0;
990
991         if (is_vm_hugetlb_page(vma))
992                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
994         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995                 /*
996                  * We do not free on error cases below as remove_vma
997                  * gets called on error from higher level routine
998                  */
999                 ret = track_pfn_copy(vma);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /*
1005          * We need to invalidate the secondary MMU mappings only when
1006          * there could be a permission downgrade on the ptes of the
1007          * parent mm. And a permission downgrade will only happen if
1008          * is_cow_mapping() returns true.
1009          */
1010         is_cow = is_cow_mapping(vma->vm_flags);
1011
1012         if (is_cow) {
1013                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1014                                         0, vma, src_mm, addr, end);
1015                 mmu_notifier_invalidate_range_start(&range);
1016         }
1017
1018         ret = 0;
1019         dst_pgd = pgd_offset(dst_mm, addr);
1020         src_pgd = pgd_offset(src_mm, addr);
1021         do {
1022                 next = pgd_addr_end(addr, end);
1023                 if (pgd_none_or_clear_bad(src_pgd))
1024                         continue;
1025                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1026                                             vma, addr, next))) {
1027                         ret = -ENOMEM;
1028                         break;
1029                 }
1030         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1031
1032         if (is_cow)
1033                 mmu_notifier_invalidate_range_end(&range);
1034         return ret;
1035 }
1036
1037 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1038                                 struct vm_area_struct *vma, pmd_t *pmd,
1039                                 unsigned long addr, unsigned long end,
1040                                 struct zap_details *details)
1041 {
1042         struct mm_struct *mm = tlb->mm;
1043         int force_flush = 0;
1044         int rss[NR_MM_COUNTERS];
1045         spinlock_t *ptl;
1046         pte_t *start_pte;
1047         pte_t *pte;
1048         swp_entry_t entry;
1049
1050         tlb_change_page_size(tlb, PAGE_SIZE);
1051 again:
1052         init_rss_vec(rss);
1053         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1054         pte = start_pte;
1055         flush_tlb_batched_pending(mm);
1056         arch_enter_lazy_mmu_mode();
1057         do {
1058                 pte_t ptent = *pte;
1059                 if (pte_none(ptent))
1060                         continue;
1061
1062                 if (pte_present(ptent)) {
1063                         struct page *page;
1064
1065                         page = _vm_normal_page(vma, addr, ptent, true);
1066                         if (unlikely(details) && page) {
1067                                 /*
1068                                  * unmap_shared_mapping_pages() wants to
1069                                  * invalidate cache without truncating:
1070                                  * unmap shared but keep private pages.
1071                                  */
1072                                 if (details->check_mapping &&
1073                                     details->check_mapping != page_rmapping(page))
1074                                         continue;
1075                         }
1076                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1077                                                         tlb->fullmm);
1078                         tlb_remove_tlb_entry(tlb, pte, addr);
1079                         if (unlikely(!page))
1080                                 continue;
1081
1082                         if (!PageAnon(page)) {
1083                                 if (pte_dirty(ptent)) {
1084                                         force_flush = 1;
1085                                         set_page_dirty(page);
1086                                 }
1087                                 if (pte_young(ptent) &&
1088                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1089                                         mark_page_accessed(page);
1090                         }
1091                         rss[mm_counter(page)]--;
1092                         page_remove_rmap(page, false);
1093                         if (unlikely(page_mapcount(page) < 0))
1094                                 print_bad_pte(vma, addr, ptent, page);
1095                         if (unlikely(__tlb_remove_page(tlb, page))) {
1096                                 force_flush = 1;
1097                                 addr += PAGE_SIZE;
1098                                 break;
1099                         }
1100                         continue;
1101                 }
1102
1103                 entry = pte_to_swp_entry(ptent);
1104                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105                         struct page *page = device_private_entry_to_page(entry);
1106
1107                         if (unlikely(details && details->check_mapping)) {
1108                                 /*
1109                                  * unmap_shared_mapping_pages() wants to
1110                                  * invalidate cache without truncating:
1111                                  * unmap shared but keep private pages.
1112                                  */
1113                                 if (details->check_mapping !=
1114                                     page_rmapping(page))
1115                                         continue;
1116                         }
1117
1118                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119                         rss[mm_counter(page)]--;
1120                         page_remove_rmap(page, false);
1121                         put_page(page);
1122                         continue;
1123                 }
1124
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 entry = pte_to_swp_entry(ptent);
1130                 if (!non_swap_entry(entry))
1131                         rss[MM_SWAPENTS]--;
1132                 else if (is_migration_entry(entry)) {
1133                         struct page *page;
1134
1135                         page = migration_entry_to_page(entry);
1136                         rss[mm_counter(page)]--;
1137                 }
1138                 if (unlikely(!free_swap_and_cache(entry)))
1139                         print_bad_pte(vma, addr, ptent, NULL);
1140                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143         add_mm_rss_vec(mm, rss);
1144         arch_leave_lazy_mmu_mode();
1145
1146         /* Do the actual TLB flush before dropping ptl */
1147         if (force_flush)
1148                 tlb_flush_mmu_tlbonly(tlb);
1149         pte_unmap_unlock(start_pte, ptl);
1150
1151         /*
1152          * If we forced a TLB flush (either due to running out of
1153          * batch buffers or because we needed to flush dirty TLB
1154          * entries before releasing the ptl), free the batched
1155          * memory too. Restart if we didn't do everything.
1156          */
1157         if (force_flush) {
1158                 force_flush = 0;
1159                 tlb_flush_mmu(tlb);
1160                 if (addr != end)
1161                         goto again;
1162         }
1163
1164         return addr;
1165 }
1166
1167 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1168                                 struct vm_area_struct *vma, pud_t *pud,
1169                                 unsigned long addr, unsigned long end,
1170                                 struct zap_details *details)
1171 {
1172         pmd_t *pmd;
1173         unsigned long next;
1174
1175         pmd = pmd_offset(pud, addr);
1176         do {
1177                 next = pmd_addr_end(addr, end);
1178                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1179                         if (next - addr != HPAGE_PMD_SIZE)
1180                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1181                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1182                                 goto next;
1183                         /* fall through */
1184                 }
1185                 /*
1186                  * Here there can be other concurrent MADV_DONTNEED or
1187                  * trans huge page faults running, and if the pmd is
1188                  * none or trans huge it can change under us. This is
1189                  * because MADV_DONTNEED holds the mmap_sem in read
1190                  * mode.
1191                  */
1192                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193                         goto next;
1194                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1195 next:
1196                 cond_resched();
1197         } while (pmd++, addr = next, addr != end);
1198
1199         return addr;
1200 }
1201
1202 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1203                                 struct vm_area_struct *vma, p4d_t *p4d,
1204                                 unsigned long addr, unsigned long end,
1205                                 struct zap_details *details)
1206 {
1207         pud_t *pud;
1208         unsigned long next;
1209
1210         pud = pud_offset(p4d, addr);
1211         do {
1212                 next = pud_addr_end(addr, end);
1213                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214                         if (next - addr != HPAGE_PUD_SIZE) {
1215                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216                                 split_huge_pud(vma, pud, addr);
1217                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1218                                 goto next;
1219                         /* fall through */
1220                 }
1221                 if (pud_none_or_clear_bad(pud))
1222                         continue;
1223                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224 next:
1225                 cond_resched();
1226         } while (pud++, addr = next, addr != end);
1227
1228         return addr;
1229 }
1230
1231 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232                                 struct vm_area_struct *vma, pgd_t *pgd,
1233                                 unsigned long addr, unsigned long end,
1234                                 struct zap_details *details)
1235 {
1236         p4d_t *p4d;
1237         unsigned long next;
1238
1239         p4d = p4d_offset(pgd, addr);
1240         do {
1241                 next = p4d_addr_end(addr, end);
1242                 if (p4d_none_or_clear_bad(p4d))
1243                         continue;
1244                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245         } while (p4d++, addr = next, addr != end);
1246
1247         return addr;
1248 }
1249
1250 void unmap_page_range(struct mmu_gather *tlb,
1251                              struct vm_area_struct *vma,
1252                              unsigned long addr, unsigned long end,
1253                              struct zap_details *details)
1254 {
1255         pgd_t *pgd;
1256         unsigned long next;
1257
1258         BUG_ON(addr >= end);
1259         tlb_start_vma(tlb, vma);
1260         pgd = pgd_offset(vma->vm_mm, addr);
1261         do {
1262                 next = pgd_addr_end(addr, end);
1263                 if (pgd_none_or_clear_bad(pgd))
1264                         continue;
1265                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1266         } while (pgd++, addr = next, addr != end);
1267         tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272                 struct vm_area_struct *vma, unsigned long start_addr,
1273                 unsigned long end_addr,
1274                 struct zap_details *details)
1275 {
1276         unsigned long start = max(vma->vm_start, start_addr);
1277         unsigned long end;
1278
1279         if (start >= vma->vm_end)
1280                 return;
1281         end = min(vma->vm_end, end_addr);
1282         if (end <= vma->vm_start)
1283                 return;
1284
1285         if (vma->vm_file)
1286                 uprobe_munmap(vma, start, end);
1287
1288         if (unlikely(vma->vm_flags & VM_PFNMAP))
1289                 untrack_pfn(vma, 0, 0);
1290
1291         if (start != end) {
1292                 if (unlikely(is_vm_hugetlb_page(vma))) {
1293                         /*
1294                          * It is undesirable to test vma->vm_file as it
1295                          * should be non-null for valid hugetlb area.
1296                          * However, vm_file will be NULL in the error
1297                          * cleanup path of mmap_region. When
1298                          * hugetlbfs ->mmap method fails,
1299                          * mmap_region() nullifies vma->vm_file
1300                          * before calling this function to clean up.
1301                          * Since no pte has actually been setup, it is
1302                          * safe to do nothing in this case.
1303                          */
1304                         if (vma->vm_file) {
1305                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1306                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308                         }
1309                 } else
1310                         unmap_page_range(tlb, vma, start, end, details);
1311         }
1312 }
1313
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333                 struct vm_area_struct *vma, unsigned long start_addr,
1334                 unsigned long end_addr)
1335 {
1336         struct mmu_notifier_range range;
1337
1338         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339                                 start_addr, end_addr);
1340         mmu_notifier_invalidate_range_start(&range);
1341         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343         mmu_notifier_invalidate_range_end(&range);
1344 }
1345
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  *
1352  * Caller must protect the VMA list
1353  */
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355                 unsigned long size)
1356 {
1357         struct mmu_notifier_range range;
1358         struct mmu_gather tlb;
1359
1360         lru_add_drain();
1361         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1362                                 start, start + size);
1363         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364         update_hiwater_rss(vma->vm_mm);
1365         mmu_notifier_invalidate_range_start(&range);
1366         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368         mmu_notifier_invalidate_range_end(&range);
1369         tlb_finish_mmu(&tlb, start, range.end);
1370 }
1371
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size, struct zap_details *details)
1383 {
1384         struct mmu_notifier_range range;
1385         struct mmu_gather tlb;
1386
1387         lru_add_drain();
1388         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389                                 address, address + size);
1390         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391         update_hiwater_rss(vma->vm_mm);
1392         mmu_notifier_invalidate_range_start(&range);
1393         unmap_single_vma(&tlb, vma, address, range.end, details);
1394         mmu_notifier_invalidate_range_end(&range);
1395         tlb_finish_mmu(&tlb, address, range.end);
1396 }
1397
1398 /**
1399  * zap_vma_ptes - remove ptes mapping the vma
1400  * @vma: vm_area_struct holding ptes to be zapped
1401  * @address: starting address of pages to zap
1402  * @size: number of bytes to zap
1403  *
1404  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405  *
1406  * The entire address range must be fully contained within the vma.
1407  *
1408  */
1409 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size)
1411 {
1412         if (address < vma->vm_start || address + size > vma->vm_end ||
1413                         !(vma->vm_flags & VM_PFNMAP))
1414                 return;
1415
1416         zap_page_range_single(vma, address, size, NULL);
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421                         spinlock_t **ptl)
1422 {
1423         pgd_t *pgd;
1424         p4d_t *p4d;
1425         pud_t *pud;
1426         pmd_t *pmd;
1427
1428         pgd = pgd_offset(mm, addr);
1429         p4d = p4d_alloc(mm, pgd, addr);
1430         if (!p4d)
1431                 return NULL;
1432         pud = pud_alloc(mm, p4d, addr);
1433         if (!pud)
1434                 return NULL;
1435         pmd = pmd_alloc(mm, pud, addr);
1436         if (!pmd)
1437                 return NULL;
1438
1439         VM_BUG_ON(pmd_trans_huge(*pmd));
1440         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1441 }
1442
1443 /*
1444  * This is the old fallback for page remapping.
1445  *
1446  * For historical reasons, it only allows reserved pages. Only
1447  * old drivers should use this, and they needed to mark their
1448  * pages reserved for the old functions anyway.
1449  */
1450 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1451                         struct page *page, pgprot_t prot)
1452 {
1453         struct mm_struct *mm = vma->vm_mm;
1454         int retval;
1455         pte_t *pte;
1456         spinlock_t *ptl;
1457
1458         retval = -EINVAL;
1459         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1460                 goto out;
1461         retval = -ENOMEM;
1462         flush_dcache_page(page);
1463         pte = get_locked_pte(mm, addr, &ptl);
1464         if (!pte)
1465                 goto out;
1466         retval = -EBUSY;
1467         if (!pte_none(*pte))
1468                 goto out_unlock;
1469
1470         /* Ok, finally just insert the thing.. */
1471         get_page(page);
1472         inc_mm_counter_fast(mm, mm_counter_file(page));
1473         page_add_file_rmap(page, false);
1474         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475
1476         retval = 0;
1477         pte_unmap_unlock(pte, ptl);
1478         return retval;
1479 out_unlock:
1480         pte_unmap_unlock(pte, ptl);
1481 out:
1482         return retval;
1483 }
1484
1485 /**
1486  * vm_insert_page - insert single page into user vma
1487  * @vma: user vma to map to
1488  * @addr: target user address of this page
1489  * @page: source kernel page
1490  *
1491  * This allows drivers to insert individual pages they've allocated
1492  * into a user vma.
1493  *
1494  * The page has to be a nice clean _individual_ kernel allocation.
1495  * If you allocate a compound page, you need to have marked it as
1496  * such (__GFP_COMP), or manually just split the page up yourself
1497  * (see split_page()).
1498  *
1499  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500  * took an arbitrary page protection parameter. This doesn't allow
1501  * that. Your vma protection will have to be set up correctly, which
1502  * means that if you want a shared writable mapping, you'd better
1503  * ask for a shared writable mapping!
1504  *
1505  * The page does not need to be reserved.
1506  *
1507  * Usually this function is called from f_op->mmap() handler
1508  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510  * function from other places, for example from page-fault handler.
1511  *
1512  * Return: %0 on success, negative error code otherwise.
1513  */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515                         struct page *page)
1516 {
1517         if (addr < vma->vm_start || addr >= vma->vm_end)
1518                 return -EFAULT;
1519         if (!page_count(page))
1520                 return -EINVAL;
1521         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524                 vma->vm_flags |= VM_MIXEDMAP;
1525         }
1526         return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529
1530 /*
1531  * __vm_map_pages - maps range of kernel pages into user vma
1532  * @vma: user vma to map to
1533  * @pages: pointer to array of source kernel pages
1534  * @num: number of pages in page array
1535  * @offset: user's requested vm_pgoff
1536  *
1537  * This allows drivers to map range of kernel pages into a user vma.
1538  *
1539  * Return: 0 on success and error code otherwise.
1540  */
1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542                                 unsigned long num, unsigned long offset)
1543 {
1544         unsigned long count = vma_pages(vma);
1545         unsigned long uaddr = vma->vm_start;
1546         int ret, i;
1547
1548         /* Fail if the user requested offset is beyond the end of the object */
1549         if (offset > num)
1550                 return -ENXIO;
1551
1552         /* Fail if the user requested size exceeds available object size */
1553         if (count > num - offset)
1554                 return -ENXIO;
1555
1556         for (i = 0; i < count; i++) {
1557                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558                 if (ret < 0)
1559                         return ret;
1560                 uaddr += PAGE_SIZE;
1561         }
1562
1563         return 0;
1564 }
1565
1566 /**
1567  * vm_map_pages - maps range of kernel pages starts with non zero offset
1568  * @vma: user vma to map to
1569  * @pages: pointer to array of source kernel pages
1570  * @num: number of pages in page array
1571  *
1572  * Maps an object consisting of @num pages, catering for the user's
1573  * requested vm_pgoff
1574  *
1575  * If we fail to insert any page into the vma, the function will return
1576  * immediately leaving any previously inserted pages present.  Callers
1577  * from the mmap handler may immediately return the error as their caller
1578  * will destroy the vma, removing any successfully inserted pages. Other
1579  * callers should make their own arrangements for calling unmap_region().
1580  *
1581  * Context: Process context. Called by mmap handlers.
1582  * Return: 0 on success and error code otherwise.
1583  */
1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585                                 unsigned long num)
1586 {
1587         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588 }
1589 EXPORT_SYMBOL(vm_map_pages);
1590
1591 /**
1592  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593  * @vma: user vma to map to
1594  * @pages: pointer to array of source kernel pages
1595  * @num: number of pages in page array
1596  *
1597  * Similar to vm_map_pages(), except that it explicitly sets the offset
1598  * to 0. This function is intended for the drivers that did not consider
1599  * vm_pgoff.
1600  *
1601  * Context: Process context. Called by mmap handlers.
1602  * Return: 0 on success and error code otherwise.
1603  */
1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605                                 unsigned long num)
1606 {
1607         return __vm_map_pages(vma, pages, num, 0);
1608 }
1609 EXPORT_SYMBOL(vm_map_pages_zero);
1610
1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1613 {
1614         struct mm_struct *mm = vma->vm_mm;
1615         pte_t *pte, entry;
1616         spinlock_t *ptl;
1617
1618         pte = get_locked_pte(mm, addr, &ptl);
1619         if (!pte)
1620                 return VM_FAULT_OOM;
1621         if (!pte_none(*pte)) {
1622                 if (mkwrite) {
1623                         /*
1624                          * For read faults on private mappings the PFN passed
1625                          * in may not match the PFN we have mapped if the
1626                          * mapped PFN is a writeable COW page.  In the mkwrite
1627                          * case we are creating a writable PTE for a shared
1628                          * mapping and we expect the PFNs to match. If they
1629                          * don't match, we are likely racing with block
1630                          * allocation and mapping invalidation so just skip the
1631                          * update.
1632                          */
1633                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1635                                 goto out_unlock;
1636                         }
1637                         entry = pte_mkyoung(*pte);
1638                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640                                 update_mmu_cache(vma, addr, pte);
1641                 }
1642                 goto out_unlock;
1643         }
1644
1645         /* Ok, finally just insert the thing.. */
1646         if (pfn_t_devmap(pfn))
1647                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648         else
1649                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1650
1651         if (mkwrite) {
1652                 entry = pte_mkyoung(entry);
1653                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654         }
1655
1656         set_pte_at(mm, addr, pte, entry);
1657         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1658
1659 out_unlock:
1660         pte_unmap_unlock(pte, ptl);
1661         return VM_FAULT_NOPAGE;
1662 }
1663
1664 /**
1665  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666  * @vma: user vma to map to
1667  * @addr: target user address of this page
1668  * @pfn: source kernel pfn
1669  * @pgprot: pgprot flags for the inserted page
1670  *
1671  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672  * to override pgprot on a per-page basis.
1673  *
1674  * This only makes sense for IO mappings, and it makes no sense for
1675  * COW mappings.  In general, using multiple vmas is preferable;
1676  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1677  * impractical.
1678  *
1679  * Context: Process context.  May allocate using %GFP_KERNEL.
1680  * Return: vm_fault_t value.
1681  */
1682 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1683                         unsigned long pfn, pgprot_t pgprot)
1684 {
1685         /*
1686          * Technically, architectures with pte_special can avoid all these
1687          * restrictions (same for remap_pfn_range).  However we would like
1688          * consistency in testing and feature parity among all, so we should
1689          * try to keep these invariants in place for everybody.
1690          */
1691         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1692         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1693                                                 (VM_PFNMAP|VM_MIXEDMAP));
1694         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1695         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1696
1697         if (addr < vma->vm_start || addr >= vma->vm_end)
1698                 return VM_FAULT_SIGBUS;
1699
1700         if (!pfn_modify_allowed(pfn, pgprot))
1701                 return VM_FAULT_SIGBUS;
1702
1703         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1704
1705         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1706                         false);
1707 }
1708 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1709
1710 /**
1711  * vmf_insert_pfn - insert single pfn into user vma
1712  * @vma: user vma to map to
1713  * @addr: target user address of this page
1714  * @pfn: source kernel pfn
1715  *
1716  * Similar to vm_insert_page, this allows drivers to insert individual pages
1717  * they've allocated into a user vma. Same comments apply.
1718  *
1719  * This function should only be called from a vm_ops->fault handler, and
1720  * in that case the handler should return the result of this function.
1721  *
1722  * vma cannot be a COW mapping.
1723  *
1724  * As this is called only for pages that do not currently exist, we
1725  * do not need to flush old virtual caches or the TLB.
1726  *
1727  * Context: Process context.  May allocate using %GFP_KERNEL.
1728  * Return: vm_fault_t value.
1729  */
1730 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1731                         unsigned long pfn)
1732 {
1733         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1734 }
1735 EXPORT_SYMBOL(vmf_insert_pfn);
1736
1737 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1738 {
1739         /* these checks mirror the abort conditions in vm_normal_page */
1740         if (vma->vm_flags & VM_MIXEDMAP)
1741                 return true;
1742         if (pfn_t_devmap(pfn))
1743                 return true;
1744         if (pfn_t_special(pfn))
1745                 return true;
1746         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1747                 return true;
1748         return false;
1749 }
1750
1751 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1752                 unsigned long addr, pfn_t pfn, bool mkwrite)
1753 {
1754         pgprot_t pgprot = vma->vm_page_prot;
1755         int err;
1756
1757         BUG_ON(!vm_mixed_ok(vma, pfn));
1758
1759         if (addr < vma->vm_start || addr >= vma->vm_end)
1760                 return VM_FAULT_SIGBUS;
1761
1762         track_pfn_insert(vma, &pgprot, pfn);
1763
1764         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1765                 return VM_FAULT_SIGBUS;
1766
1767         /*
1768          * If we don't have pte special, then we have to use the pfn_valid()
1769          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1770          * refcount the page if pfn_valid is true (hence insert_page rather
1771          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1772          * without pte special, it would there be refcounted as a normal page.
1773          */
1774         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1775             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1776                 struct page *page;
1777
1778                 /*
1779                  * At this point we are committed to insert_page()
1780                  * regardless of whether the caller specified flags that
1781                  * result in pfn_t_has_page() == false.
1782                  */
1783                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1784                 err = insert_page(vma, addr, page, pgprot);
1785         } else {
1786                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1787         }
1788
1789         if (err == -ENOMEM)
1790                 return VM_FAULT_OOM;
1791         if (err < 0 && err != -EBUSY)
1792                 return VM_FAULT_SIGBUS;
1793
1794         return VM_FAULT_NOPAGE;
1795 }
1796
1797 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1798                 pfn_t pfn)
1799 {
1800         return __vm_insert_mixed(vma, addr, pfn, false);
1801 }
1802 EXPORT_SYMBOL(vmf_insert_mixed);
1803
1804 /*
1805  *  If the insertion of PTE failed because someone else already added a
1806  *  different entry in the mean time, we treat that as success as we assume
1807  *  the same entry was actually inserted.
1808  */
1809 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1810                 unsigned long addr, pfn_t pfn)
1811 {
1812         return __vm_insert_mixed(vma, addr, pfn, true);
1813 }
1814 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1815
1816 /*
1817  * maps a range of physical memory into the requested pages. the old
1818  * mappings are removed. any references to nonexistent pages results
1819  * in null mappings (currently treated as "copy-on-access")
1820  */
1821 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1822                         unsigned long addr, unsigned long end,
1823                         unsigned long pfn, pgprot_t prot)
1824 {
1825         pte_t *pte;
1826         spinlock_t *ptl;
1827         int err = 0;
1828
1829         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1830         if (!pte)
1831                 return -ENOMEM;
1832         arch_enter_lazy_mmu_mode();
1833         do {
1834                 BUG_ON(!pte_none(*pte));
1835                 if (!pfn_modify_allowed(pfn, prot)) {
1836                         err = -EACCES;
1837                         break;
1838                 }
1839                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1840                 pfn++;
1841         } while (pte++, addr += PAGE_SIZE, addr != end);
1842         arch_leave_lazy_mmu_mode();
1843         pte_unmap_unlock(pte - 1, ptl);
1844         return err;
1845 }
1846
1847 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1848                         unsigned long addr, unsigned long end,
1849                         unsigned long pfn, pgprot_t prot)
1850 {
1851         pmd_t *pmd;
1852         unsigned long next;
1853         int err;
1854
1855         pfn -= addr >> PAGE_SHIFT;
1856         pmd = pmd_alloc(mm, pud, addr);
1857         if (!pmd)
1858                 return -ENOMEM;
1859         VM_BUG_ON(pmd_trans_huge(*pmd));
1860         do {
1861                 next = pmd_addr_end(addr, end);
1862                 err = remap_pte_range(mm, pmd, addr, next,
1863                                 pfn + (addr >> PAGE_SHIFT), prot);
1864                 if (err)
1865                         return err;
1866         } while (pmd++, addr = next, addr != end);
1867         return 0;
1868 }
1869
1870 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1871                         unsigned long addr, unsigned long end,
1872                         unsigned long pfn, pgprot_t prot)
1873 {
1874         pud_t *pud;
1875         unsigned long next;
1876         int err;
1877
1878         pfn -= addr >> PAGE_SHIFT;
1879         pud = pud_alloc(mm, p4d, addr);
1880         if (!pud)
1881                 return -ENOMEM;
1882         do {
1883                 next = pud_addr_end(addr, end);
1884                 err = remap_pmd_range(mm, pud, addr, next,
1885                                 pfn + (addr >> PAGE_SHIFT), prot);
1886                 if (err)
1887                         return err;
1888         } while (pud++, addr = next, addr != end);
1889         return 0;
1890 }
1891
1892 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1893                         unsigned long addr, unsigned long end,
1894                         unsigned long pfn, pgprot_t prot)
1895 {
1896         p4d_t *p4d;
1897         unsigned long next;
1898         int err;
1899
1900         pfn -= addr >> PAGE_SHIFT;
1901         p4d = p4d_alloc(mm, pgd, addr);
1902         if (!p4d)
1903                 return -ENOMEM;
1904         do {
1905                 next = p4d_addr_end(addr, end);
1906                 err = remap_pud_range(mm, p4d, addr, next,
1907                                 pfn + (addr >> PAGE_SHIFT), prot);
1908                 if (err)
1909                         return err;
1910         } while (p4d++, addr = next, addr != end);
1911         return 0;
1912 }
1913
1914 /**
1915  * remap_pfn_range - remap kernel memory to userspace
1916  * @vma: user vma to map to
1917  * @addr: target user address to start at
1918  * @pfn: physical address of kernel memory
1919  * @size: size of map area
1920  * @prot: page protection flags for this mapping
1921  *
1922  * Note: this is only safe if the mm semaphore is held when called.
1923  *
1924  * Return: %0 on success, negative error code otherwise.
1925  */
1926 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1927                     unsigned long pfn, unsigned long size, pgprot_t prot)
1928 {
1929         pgd_t *pgd;
1930         unsigned long next;
1931         unsigned long end = addr + PAGE_ALIGN(size);
1932         struct mm_struct *mm = vma->vm_mm;
1933         unsigned long remap_pfn = pfn;
1934         int err;
1935
1936         /*
1937          * Physically remapped pages are special. Tell the
1938          * rest of the world about it:
1939          *   VM_IO tells people not to look at these pages
1940          *      (accesses can have side effects).
1941          *   VM_PFNMAP tells the core MM that the base pages are just
1942          *      raw PFN mappings, and do not have a "struct page" associated
1943          *      with them.
1944          *   VM_DONTEXPAND
1945          *      Disable vma merging and expanding with mremap().
1946          *   VM_DONTDUMP
1947          *      Omit vma from core dump, even when VM_IO turned off.
1948          *
1949          * There's a horrible special case to handle copy-on-write
1950          * behaviour that some programs depend on. We mark the "original"
1951          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1952          * See vm_normal_page() for details.
1953          */
1954         if (is_cow_mapping(vma->vm_flags)) {
1955                 if (addr != vma->vm_start || end != vma->vm_end)
1956                         return -EINVAL;
1957                 vma->vm_pgoff = pfn;
1958         }
1959
1960         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1961         if (err)
1962                 return -EINVAL;
1963
1964         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1965
1966         BUG_ON(addr >= end);
1967         pfn -= addr >> PAGE_SHIFT;
1968         pgd = pgd_offset(mm, addr);
1969         flush_cache_range(vma, addr, end);
1970         do {
1971                 next = pgd_addr_end(addr, end);
1972                 err = remap_p4d_range(mm, pgd, addr, next,
1973                                 pfn + (addr >> PAGE_SHIFT), prot);
1974                 if (err)
1975                         break;
1976         } while (pgd++, addr = next, addr != end);
1977
1978         if (err)
1979                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1980
1981         return err;
1982 }
1983 EXPORT_SYMBOL(remap_pfn_range);
1984
1985 /**
1986  * vm_iomap_memory - remap memory to userspace
1987  * @vma: user vma to map to
1988  * @start: start of area
1989  * @len: size of area
1990  *
1991  * This is a simplified io_remap_pfn_range() for common driver use. The
1992  * driver just needs to give us the physical memory range to be mapped,
1993  * we'll figure out the rest from the vma information.
1994  *
1995  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1996  * whatever write-combining details or similar.
1997  *
1998  * Return: %0 on success, negative error code otherwise.
1999  */
2000 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2001 {
2002         unsigned long vm_len, pfn, pages;
2003
2004         /* Check that the physical memory area passed in looks valid */
2005         if (start + len < start)
2006                 return -EINVAL;
2007         /*
2008          * You *really* shouldn't map things that aren't page-aligned,
2009          * but we've historically allowed it because IO memory might
2010          * just have smaller alignment.
2011          */
2012         len += start & ~PAGE_MASK;
2013         pfn = start >> PAGE_SHIFT;
2014         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2015         if (pfn + pages < pfn)
2016                 return -EINVAL;
2017
2018         /* We start the mapping 'vm_pgoff' pages into the area */
2019         if (vma->vm_pgoff > pages)
2020                 return -EINVAL;
2021         pfn += vma->vm_pgoff;
2022         pages -= vma->vm_pgoff;
2023
2024         /* Can we fit all of the mapping? */
2025         vm_len = vma->vm_end - vma->vm_start;
2026         if (vm_len >> PAGE_SHIFT > pages)
2027                 return -EINVAL;
2028
2029         /* Ok, let it rip */
2030         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2031 }
2032 EXPORT_SYMBOL(vm_iomap_memory);
2033
2034 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2035                                      unsigned long addr, unsigned long end,
2036                                      pte_fn_t fn, void *data)
2037 {
2038         pte_t *pte;
2039         int err;
2040         pgtable_t token;
2041         spinlock_t *uninitialized_var(ptl);
2042
2043         pte = (mm == &init_mm) ?
2044                 pte_alloc_kernel(pmd, addr) :
2045                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2046         if (!pte)
2047                 return -ENOMEM;
2048
2049         BUG_ON(pmd_huge(*pmd));
2050
2051         arch_enter_lazy_mmu_mode();
2052
2053         token = pmd_pgtable(*pmd);
2054
2055         do {
2056                 err = fn(pte++, token, addr, data);
2057                 if (err)
2058                         break;
2059         } while (addr += PAGE_SIZE, addr != end);
2060
2061         arch_leave_lazy_mmu_mode();
2062
2063         if (mm != &init_mm)
2064                 pte_unmap_unlock(pte-1, ptl);
2065         return err;
2066 }
2067
2068 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2069                                      unsigned long addr, unsigned long end,
2070                                      pte_fn_t fn, void *data)
2071 {
2072         pmd_t *pmd;
2073         unsigned long next;
2074         int err;
2075
2076         BUG_ON(pud_huge(*pud));
2077
2078         pmd = pmd_alloc(mm, pud, addr);
2079         if (!pmd)
2080                 return -ENOMEM;
2081         do {
2082                 next = pmd_addr_end(addr, end);
2083                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2084                 if (err)
2085                         break;
2086         } while (pmd++, addr = next, addr != end);
2087         return err;
2088 }
2089
2090 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2091                                      unsigned long addr, unsigned long end,
2092                                      pte_fn_t fn, void *data)
2093 {
2094         pud_t *pud;
2095         unsigned long next;
2096         int err;
2097
2098         pud = pud_alloc(mm, p4d, addr);
2099         if (!pud)
2100                 return -ENOMEM;
2101         do {
2102                 next = pud_addr_end(addr, end);
2103                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2104                 if (err)
2105                         break;
2106         } while (pud++, addr = next, addr != end);
2107         return err;
2108 }
2109
2110 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2111                                      unsigned long addr, unsigned long end,
2112                                      pte_fn_t fn, void *data)
2113 {
2114         p4d_t *p4d;
2115         unsigned long next;
2116         int err;
2117
2118         p4d = p4d_alloc(mm, pgd, addr);
2119         if (!p4d)
2120                 return -ENOMEM;
2121         do {
2122                 next = p4d_addr_end(addr, end);
2123                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2124                 if (err)
2125                         break;
2126         } while (p4d++, addr = next, addr != end);
2127         return err;
2128 }
2129
2130 /*
2131  * Scan a region of virtual memory, filling in page tables as necessary
2132  * and calling a provided function on each leaf page table.
2133  */
2134 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2135                         unsigned long size, pte_fn_t fn, void *data)
2136 {
2137         pgd_t *pgd;
2138         unsigned long next;
2139         unsigned long end = addr + size;
2140         int err;
2141
2142         if (WARN_ON(addr >= end))
2143                 return -EINVAL;
2144
2145         pgd = pgd_offset(mm, addr);
2146         do {
2147                 next = pgd_addr_end(addr, end);
2148                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2149                 if (err)
2150                         break;
2151         } while (pgd++, addr = next, addr != end);
2152
2153         return err;
2154 }
2155 EXPORT_SYMBOL_GPL(apply_to_page_range);
2156
2157 /*
2158  * handle_pte_fault chooses page fault handler according to an entry which was
2159  * read non-atomically.  Before making any commitment, on those architectures
2160  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2161  * parts, do_swap_page must check under lock before unmapping the pte and
2162  * proceeding (but do_wp_page is only called after already making such a check;
2163  * and do_anonymous_page can safely check later on).
2164  */
2165 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2166                                 pte_t *page_table, pte_t orig_pte)
2167 {
2168         int same = 1;
2169 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2170         if (sizeof(pte_t) > sizeof(unsigned long)) {
2171                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2172                 spin_lock(ptl);
2173                 same = pte_same(*page_table, orig_pte);
2174                 spin_unlock(ptl);
2175         }
2176 #endif
2177         pte_unmap(page_table);
2178         return same;
2179 }
2180
2181 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2182 {
2183         debug_dma_assert_idle(src);
2184
2185         /*
2186          * If the source page was a PFN mapping, we don't have
2187          * a "struct page" for it. We do a best-effort copy by
2188          * just copying from the original user address. If that
2189          * fails, we just zero-fill it. Live with it.
2190          */
2191         if (unlikely(!src)) {
2192                 void *kaddr = kmap_atomic(dst);
2193                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2194
2195                 /*
2196                  * This really shouldn't fail, because the page is there
2197                  * in the page tables. But it might just be unreadable,
2198                  * in which case we just give up and fill the result with
2199                  * zeroes.
2200                  */
2201                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2202                         clear_page(kaddr);
2203                 kunmap_atomic(kaddr);
2204                 flush_dcache_page(dst);
2205         } else
2206                 copy_user_highpage(dst, src, va, vma);
2207 }
2208
2209 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2210 {
2211         struct file *vm_file = vma->vm_file;
2212
2213         if (vm_file)
2214                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2215
2216         /*
2217          * Special mappings (e.g. VDSO) do not have any file so fake
2218          * a default GFP_KERNEL for them.
2219          */
2220         return GFP_KERNEL;
2221 }
2222
2223 /*
2224  * Notify the address space that the page is about to become writable so that
2225  * it can prohibit this or wait for the page to get into an appropriate state.
2226  *
2227  * We do this without the lock held, so that it can sleep if it needs to.
2228  */
2229 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2230 {
2231         vm_fault_t ret;
2232         struct page *page = vmf->page;
2233         unsigned int old_flags = vmf->flags;
2234
2235         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2236
2237         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2238         /* Restore original flags so that caller is not surprised */
2239         vmf->flags = old_flags;
2240         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2241                 return ret;
2242         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2243                 lock_page(page);
2244                 if (!page->mapping) {
2245                         unlock_page(page);
2246                         return 0; /* retry */
2247                 }
2248                 ret |= VM_FAULT_LOCKED;
2249         } else
2250                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2251         return ret;
2252 }
2253
2254 /*
2255  * Handle dirtying of a page in shared file mapping on a write fault.
2256  *
2257  * The function expects the page to be locked and unlocks it.
2258  */
2259 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2260                                     struct page *page)
2261 {
2262         struct address_space *mapping;
2263         bool dirtied;
2264         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2265
2266         dirtied = set_page_dirty(page);
2267         VM_BUG_ON_PAGE(PageAnon(page), page);
2268         /*
2269          * Take a local copy of the address_space - page.mapping may be zeroed
2270          * by truncate after unlock_page().   The address_space itself remains
2271          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2272          * release semantics to prevent the compiler from undoing this copying.
2273          */
2274         mapping = page_rmapping(page);
2275         unlock_page(page);
2276
2277         if ((dirtied || page_mkwrite) && mapping) {
2278                 /*
2279                  * Some device drivers do not set page.mapping
2280                  * but still dirty their pages
2281                  */
2282                 balance_dirty_pages_ratelimited(mapping);
2283         }
2284
2285         if (!page_mkwrite)
2286                 file_update_time(vma->vm_file);
2287 }
2288
2289 /*
2290  * Handle write page faults for pages that can be reused in the current vma
2291  *
2292  * This can happen either due to the mapping being with the VM_SHARED flag,
2293  * or due to us being the last reference standing to the page. In either
2294  * case, all we need to do here is to mark the page as writable and update
2295  * any related book-keeping.
2296  */
2297 static inline void wp_page_reuse(struct vm_fault *vmf)
2298         __releases(vmf->ptl)
2299 {
2300         struct vm_area_struct *vma = vmf->vma;
2301         struct page *page = vmf->page;
2302         pte_t entry;
2303         /*
2304          * Clear the pages cpupid information as the existing
2305          * information potentially belongs to a now completely
2306          * unrelated process.
2307          */
2308         if (page)
2309                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2310
2311         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2312         entry = pte_mkyoung(vmf->orig_pte);
2313         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2314         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2315                 update_mmu_cache(vma, vmf->address, vmf->pte);
2316         pte_unmap_unlock(vmf->pte, vmf->ptl);
2317 }
2318
2319 /*
2320  * Handle the case of a page which we actually need to copy to a new page.
2321  *
2322  * Called with mmap_sem locked and the old page referenced, but
2323  * without the ptl held.
2324  *
2325  * High level logic flow:
2326  *
2327  * - Allocate a page, copy the content of the old page to the new one.
2328  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2329  * - Take the PTL. If the pte changed, bail out and release the allocated page
2330  * - If the pte is still the way we remember it, update the page table and all
2331  *   relevant references. This includes dropping the reference the page-table
2332  *   held to the old page, as well as updating the rmap.
2333  * - In any case, unlock the PTL and drop the reference we took to the old page.
2334  */
2335 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2336 {
2337         struct vm_area_struct *vma = vmf->vma;
2338         struct mm_struct *mm = vma->vm_mm;
2339         struct page *old_page = vmf->page;
2340         struct page *new_page = NULL;
2341         pte_t entry;
2342         int page_copied = 0;
2343         struct mem_cgroup *memcg;
2344         struct mmu_notifier_range range;
2345
2346         if (unlikely(anon_vma_prepare(vma)))
2347                 goto oom;
2348
2349         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2350                 new_page = alloc_zeroed_user_highpage_movable(vma,
2351                                                               vmf->address);
2352                 if (!new_page)
2353                         goto oom;
2354         } else {
2355                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2356                                 vmf->address);
2357                 if (!new_page)
2358                         goto oom;
2359                 cow_user_page(new_page, old_page, vmf->address, vma);
2360         }
2361
2362         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2363                 goto oom_free_new;
2364
2365         __SetPageUptodate(new_page);
2366
2367         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2368                                 vmf->address & PAGE_MASK,
2369                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2370         mmu_notifier_invalidate_range_start(&range);
2371
2372         /*
2373          * Re-check the pte - we dropped the lock
2374          */
2375         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2376         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2377                 if (old_page) {
2378                         if (!PageAnon(old_page)) {
2379                                 dec_mm_counter_fast(mm,
2380                                                 mm_counter_file(old_page));
2381                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2382                         }
2383                 } else {
2384                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2385                 }
2386                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2387                 entry = mk_pte(new_page, vma->vm_page_prot);
2388                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2389                 /*
2390                  * Clear the pte entry and flush it first, before updating the
2391                  * pte with the new entry. This will avoid a race condition
2392                  * seen in the presence of one thread doing SMC and another
2393                  * thread doing COW.
2394                  */
2395                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2396                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2397                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2398                 lru_cache_add_active_or_unevictable(new_page, vma);
2399                 /*
2400                  * We call the notify macro here because, when using secondary
2401                  * mmu page tables (such as kvm shadow page tables), we want the
2402                  * new page to be mapped directly into the secondary page table.
2403                  */
2404                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2405                 update_mmu_cache(vma, vmf->address, vmf->pte);
2406                 if (old_page) {
2407                         /*
2408                          * Only after switching the pte to the new page may
2409                          * we remove the mapcount here. Otherwise another
2410                          * process may come and find the rmap count decremented
2411                          * before the pte is switched to the new page, and
2412                          * "reuse" the old page writing into it while our pte
2413                          * here still points into it and can be read by other
2414                          * threads.
2415                          *
2416                          * The critical issue is to order this
2417                          * page_remove_rmap with the ptp_clear_flush above.
2418                          * Those stores are ordered by (if nothing else,)
2419                          * the barrier present in the atomic_add_negative
2420                          * in page_remove_rmap.
2421                          *
2422                          * Then the TLB flush in ptep_clear_flush ensures that
2423                          * no process can access the old page before the
2424                          * decremented mapcount is visible. And the old page
2425                          * cannot be reused until after the decremented
2426                          * mapcount is visible. So transitively, TLBs to
2427                          * old page will be flushed before it can be reused.
2428                          */
2429                         page_remove_rmap(old_page, false);
2430                 }
2431
2432                 /* Free the old page.. */
2433                 new_page = old_page;
2434                 page_copied = 1;
2435         } else {
2436                 mem_cgroup_cancel_charge(new_page, memcg, false);
2437         }
2438
2439         if (new_page)
2440                 put_page(new_page);
2441
2442         pte_unmap_unlock(vmf->pte, vmf->ptl);
2443         /*
2444          * No need to double call mmu_notifier->invalidate_range() callback as
2445          * the above ptep_clear_flush_notify() did already call it.
2446          */
2447         mmu_notifier_invalidate_range_only_end(&range);
2448         if (old_page) {
2449                 /*
2450                  * Don't let another task, with possibly unlocked vma,
2451                  * keep the mlocked page.
2452                  */
2453                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2454                         lock_page(old_page);    /* LRU manipulation */
2455                         if (PageMlocked(old_page))
2456                                 munlock_vma_page(old_page);
2457                         unlock_page(old_page);
2458                 }
2459                 put_page(old_page);
2460         }
2461         return page_copied ? VM_FAULT_WRITE : 0;
2462 oom_free_new:
2463         put_page(new_page);
2464 oom:
2465         if (old_page)
2466                 put_page(old_page);
2467         return VM_FAULT_OOM;
2468 }
2469
2470 /**
2471  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2472  *                        writeable once the page is prepared
2473  *
2474  * @vmf: structure describing the fault
2475  *
2476  * This function handles all that is needed to finish a write page fault in a
2477  * shared mapping due to PTE being read-only once the mapped page is prepared.
2478  * It handles locking of PTE and modifying it.
2479  *
2480  * The function expects the page to be locked or other protection against
2481  * concurrent faults / writeback (such as DAX radix tree locks).
2482  *
2483  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2484  * we acquired PTE lock.
2485  */
2486 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2487 {
2488         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2489         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2490                                        &vmf->ptl);
2491         /*
2492          * We might have raced with another page fault while we released the
2493          * pte_offset_map_lock.
2494          */
2495         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2496                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2497                 return VM_FAULT_NOPAGE;
2498         }
2499         wp_page_reuse(vmf);
2500         return 0;
2501 }
2502
2503 /*
2504  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2505  * mapping
2506  */
2507 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2508 {
2509         struct vm_area_struct *vma = vmf->vma;
2510
2511         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2512                 vm_fault_t ret;
2513
2514                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2515                 vmf->flags |= FAULT_FLAG_MKWRITE;
2516                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2517                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2518                         return ret;
2519                 return finish_mkwrite_fault(vmf);
2520         }
2521         wp_page_reuse(vmf);
2522         return VM_FAULT_WRITE;
2523 }
2524
2525 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2526         __releases(vmf->ptl)
2527 {
2528         struct vm_area_struct *vma = vmf->vma;
2529
2530         get_page(vmf->page);
2531
2532         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2533                 vm_fault_t tmp;
2534
2535                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2536                 tmp = do_page_mkwrite(vmf);
2537                 if (unlikely(!tmp || (tmp &
2538                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2539                         put_page(vmf->page);
2540                         return tmp;
2541                 }
2542                 tmp = finish_mkwrite_fault(vmf);
2543                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2544                         unlock_page(vmf->page);
2545                         put_page(vmf->page);
2546                         return tmp;
2547                 }
2548         } else {
2549                 wp_page_reuse(vmf);
2550                 lock_page(vmf->page);
2551         }
2552         fault_dirty_shared_page(vma, vmf->page);
2553         put_page(vmf->page);
2554
2555         return VM_FAULT_WRITE;
2556 }
2557
2558 /*
2559  * This routine handles present pages, when users try to write
2560  * to a shared page. It is done by copying the page to a new address
2561  * and decrementing the shared-page counter for the old page.
2562  *
2563  * Note that this routine assumes that the protection checks have been
2564  * done by the caller (the low-level page fault routine in most cases).
2565  * Thus we can safely just mark it writable once we've done any necessary
2566  * COW.
2567  *
2568  * We also mark the page dirty at this point even though the page will
2569  * change only once the write actually happens. This avoids a few races,
2570  * and potentially makes it more efficient.
2571  *
2572  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2573  * but allow concurrent faults), with pte both mapped and locked.
2574  * We return with mmap_sem still held, but pte unmapped and unlocked.
2575  */
2576 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2577         __releases(vmf->ptl)
2578 {
2579         struct vm_area_struct *vma = vmf->vma;
2580
2581         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2582         if (!vmf->page) {
2583                 /*
2584                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2585                  * VM_PFNMAP VMA.
2586                  *
2587                  * We should not cow pages in a shared writeable mapping.
2588                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2589                  */
2590                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591                                      (VM_WRITE|VM_SHARED))
2592                         return wp_pfn_shared(vmf);
2593
2594                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2595                 return wp_page_copy(vmf);
2596         }
2597
2598         /*
2599          * Take out anonymous pages first, anonymous shared vmas are
2600          * not dirty accountable.
2601          */
2602         if (PageAnon(vmf->page)) {
2603                 int total_map_swapcount;
2604                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2605                                            page_count(vmf->page) != 1))
2606                         goto copy;
2607                 if (!trylock_page(vmf->page)) {
2608                         get_page(vmf->page);
2609                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2610                         lock_page(vmf->page);
2611                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2612                                         vmf->address, &vmf->ptl);
2613                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2614                                 unlock_page(vmf->page);
2615                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2616                                 put_page(vmf->page);
2617                                 return 0;
2618                         }
2619                         put_page(vmf->page);
2620                 }
2621                 if (PageKsm(vmf->page)) {
2622                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2623                                                      vmf->address);
2624                         unlock_page(vmf->page);
2625                         if (!reused)
2626                                 goto copy;
2627                         wp_page_reuse(vmf);
2628                         return VM_FAULT_WRITE;
2629                 }
2630                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2631                         if (total_map_swapcount == 1) {
2632                                 /*
2633                                  * The page is all ours. Move it to
2634                                  * our anon_vma so the rmap code will
2635                                  * not search our parent or siblings.
2636                                  * Protected against the rmap code by
2637                                  * the page lock.
2638                                  */
2639                                 page_move_anon_rmap(vmf->page, vma);
2640                         }
2641                         unlock_page(vmf->page);
2642                         wp_page_reuse(vmf);
2643                         return VM_FAULT_WRITE;
2644                 }
2645                 unlock_page(vmf->page);
2646         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2647                                         (VM_WRITE|VM_SHARED))) {
2648                 return wp_page_shared(vmf);
2649         }
2650 copy:
2651         /*
2652          * Ok, we need to copy. Oh, well..
2653          */
2654         get_page(vmf->page);
2655
2656         pte_unmap_unlock(vmf->pte, vmf->ptl);
2657         return wp_page_copy(vmf);
2658 }
2659
2660 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2661                 unsigned long start_addr, unsigned long end_addr,
2662                 struct zap_details *details)
2663 {
2664         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2665 }
2666
2667 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2668                                             struct zap_details *details)
2669 {
2670         struct vm_area_struct *vma;
2671         pgoff_t vba, vea, zba, zea;
2672
2673         vma_interval_tree_foreach(vma, root,
2674                         details->first_index, details->last_index) {
2675
2676                 vba = vma->vm_pgoff;
2677                 vea = vba + vma_pages(vma) - 1;
2678                 zba = details->first_index;
2679                 if (zba < vba)
2680                         zba = vba;
2681                 zea = details->last_index;
2682                 if (zea > vea)
2683                         zea = vea;
2684
2685                 unmap_mapping_range_vma(vma,
2686                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2687                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2688                                 details);
2689         }
2690 }
2691
2692 /**
2693  * unmap_mapping_pages() - Unmap pages from processes.
2694  * @mapping: The address space containing pages to be unmapped.
2695  * @start: Index of first page to be unmapped.
2696  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2697  * @even_cows: Whether to unmap even private COWed pages.
2698  *
2699  * Unmap the pages in this address space from any userspace process which
2700  * has them mmaped.  Generally, you want to remove COWed pages as well when
2701  * a file is being truncated, but not when invalidating pages from the page
2702  * cache.
2703  */
2704 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2705                 pgoff_t nr, bool even_cows)
2706 {
2707         struct zap_details details = { };
2708
2709         details.check_mapping = even_cows ? NULL : mapping;
2710         details.first_index = start;
2711         details.last_index = start + nr - 1;
2712         if (details.last_index < details.first_index)
2713                 details.last_index = ULONG_MAX;
2714
2715         i_mmap_lock_write(mapping);
2716         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2717                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2718         i_mmap_unlock_write(mapping);
2719 }
2720
2721 /**
2722  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2723  * address_space corresponding to the specified byte range in the underlying
2724  * file.
2725  *
2726  * @mapping: the address space containing mmaps to be unmapped.
2727  * @holebegin: byte in first page to unmap, relative to the start of
2728  * the underlying file.  This will be rounded down to a PAGE_SIZE
2729  * boundary.  Note that this is different from truncate_pagecache(), which
2730  * must keep the partial page.  In contrast, we must get rid of
2731  * partial pages.
2732  * @holelen: size of prospective hole in bytes.  This will be rounded
2733  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2734  * end of the file.
2735  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2736  * but 0 when invalidating pagecache, don't throw away private data.
2737  */
2738 void unmap_mapping_range(struct address_space *mapping,
2739                 loff_t const holebegin, loff_t const holelen, int even_cows)
2740 {
2741         pgoff_t hba = holebegin >> PAGE_SHIFT;
2742         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2743
2744         /* Check for overflow. */
2745         if (sizeof(holelen) > sizeof(hlen)) {
2746                 long long holeend =
2747                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2748                 if (holeend & ~(long long)ULONG_MAX)
2749                         hlen = ULONG_MAX - hba + 1;
2750         }
2751
2752         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2753 }
2754 EXPORT_SYMBOL(unmap_mapping_range);
2755
2756 /*
2757  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2758  * but allow concurrent faults), and pte mapped but not yet locked.
2759  * We return with pte unmapped and unlocked.
2760  *
2761  * We return with the mmap_sem locked or unlocked in the same cases
2762  * as does filemap_fault().
2763  */
2764 vm_fault_t do_swap_page(struct vm_fault *vmf)
2765 {
2766         struct vm_area_struct *vma = vmf->vma;
2767         struct page *page = NULL, *swapcache;
2768         struct mem_cgroup *memcg;
2769         swp_entry_t entry;
2770         pte_t pte;
2771         int locked;
2772         int exclusive = 0;
2773         vm_fault_t ret = 0;
2774
2775         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2776                 goto out;
2777
2778         entry = pte_to_swp_entry(vmf->orig_pte);
2779         if (unlikely(non_swap_entry(entry))) {
2780                 if (is_migration_entry(entry)) {
2781                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2782                                              vmf->address);
2783                 } else if (is_device_private_entry(entry)) {
2784                         /*
2785                          * For un-addressable device memory we call the pgmap
2786                          * fault handler callback. The callback must migrate
2787                          * the page back to some CPU accessible page.
2788                          */
2789                         ret = device_private_entry_fault(vma, vmf->address, entry,
2790                                                  vmf->flags, vmf->pmd);
2791                 } else if (is_hwpoison_entry(entry)) {
2792                         ret = VM_FAULT_HWPOISON;
2793                 } else {
2794                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2795                         ret = VM_FAULT_SIGBUS;
2796                 }
2797                 goto out;
2798         }
2799
2800
2801         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2802         page = lookup_swap_cache(entry, vma, vmf->address);
2803         swapcache = page;
2804
2805         if (!page) {
2806                 struct swap_info_struct *si = swp_swap_info(entry);
2807
2808                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2809                                 __swap_count(si, entry) == 1) {
2810                         /* skip swapcache */
2811                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2812                                                         vmf->address);
2813                         if (page) {
2814                                 __SetPageLocked(page);
2815                                 __SetPageSwapBacked(page);
2816                                 set_page_private(page, entry.val);
2817                                 lru_cache_add_anon(page);
2818                                 swap_readpage(page, true);
2819                         }
2820                 } else {
2821                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2822                                                 vmf);
2823                         swapcache = page;
2824                 }
2825
2826                 if (!page) {
2827                         /*
2828                          * Back out if somebody else faulted in this pte
2829                          * while we released the pte lock.
2830                          */
2831                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2832                                         vmf->address, &vmf->ptl);
2833                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2834                                 ret = VM_FAULT_OOM;
2835                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2836                         goto unlock;
2837                 }
2838
2839                 /* Had to read the page from swap area: Major fault */
2840                 ret = VM_FAULT_MAJOR;
2841                 count_vm_event(PGMAJFAULT);
2842                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2843         } else if (PageHWPoison(page)) {
2844                 /*
2845                  * hwpoisoned dirty swapcache pages are kept for killing
2846                  * owner processes (which may be unknown at hwpoison time)
2847                  */
2848                 ret = VM_FAULT_HWPOISON;
2849                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2850                 goto out_release;
2851         }
2852
2853         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2854
2855         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2856         if (!locked) {
2857                 ret |= VM_FAULT_RETRY;
2858                 goto out_release;
2859         }
2860
2861         /*
2862          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2863          * release the swapcache from under us.  The page pin, and pte_same
2864          * test below, are not enough to exclude that.  Even if it is still
2865          * swapcache, we need to check that the page's swap has not changed.
2866          */
2867         if (unlikely((!PageSwapCache(page) ||
2868                         page_private(page) != entry.val)) && swapcache)
2869                 goto out_page;
2870
2871         page = ksm_might_need_to_copy(page, vma, vmf->address);
2872         if (unlikely(!page)) {
2873                 ret = VM_FAULT_OOM;
2874                 page = swapcache;
2875                 goto out_page;
2876         }
2877
2878         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2879                                         &memcg, false)) {
2880                 ret = VM_FAULT_OOM;
2881                 goto out_page;
2882         }
2883
2884         /*
2885          * Back out if somebody else already faulted in this pte.
2886          */
2887         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2888                         &vmf->ptl);
2889         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2890                 goto out_nomap;
2891
2892         if (unlikely(!PageUptodate(page))) {
2893                 ret = VM_FAULT_SIGBUS;
2894                 goto out_nomap;
2895         }
2896
2897         /*
2898          * The page isn't present yet, go ahead with the fault.
2899          *
2900          * Be careful about the sequence of operations here.
2901          * To get its accounting right, reuse_swap_page() must be called
2902          * while the page is counted on swap but not yet in mapcount i.e.
2903          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2904          * must be called after the swap_free(), or it will never succeed.
2905          */
2906
2907         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2908         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2909         pte = mk_pte(page, vma->vm_page_prot);
2910         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2911                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2912                 vmf->flags &= ~FAULT_FLAG_WRITE;
2913                 ret |= VM_FAULT_WRITE;
2914                 exclusive = RMAP_EXCLUSIVE;
2915         }
2916         flush_icache_page(vma, page);
2917         if (pte_swp_soft_dirty(vmf->orig_pte))
2918                 pte = pte_mksoft_dirty(pte);
2919         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2920         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2921         vmf->orig_pte = pte;
2922
2923         /* ksm created a completely new copy */
2924         if (unlikely(page != swapcache && swapcache)) {
2925                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2926                 mem_cgroup_commit_charge(page, memcg, false, false);
2927                 lru_cache_add_active_or_unevictable(page, vma);
2928         } else {
2929                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2930                 mem_cgroup_commit_charge(page, memcg, true, false);
2931                 activate_page(page);
2932         }
2933
2934         swap_free(entry);
2935         if (mem_cgroup_swap_full(page) ||
2936             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2937                 try_to_free_swap(page);
2938         unlock_page(page);
2939         if (page != swapcache && swapcache) {
2940                 /*
2941                  * Hold the lock to avoid the swap entry to be reused
2942                  * until we take the PT lock for the pte_same() check
2943                  * (to avoid false positives from pte_same). For
2944                  * further safety release the lock after the swap_free
2945                  * so that the swap count won't change under a
2946                  * parallel locked swapcache.
2947                  */
2948                 unlock_page(swapcache);
2949                 put_page(swapcache);
2950         }
2951
2952         if (vmf->flags & FAULT_FLAG_WRITE) {
2953                 ret |= do_wp_page(vmf);
2954                 if (ret & VM_FAULT_ERROR)
2955                         ret &= VM_FAULT_ERROR;
2956                 goto out;
2957         }
2958
2959         /* No need to invalidate - it was non-present before */
2960         update_mmu_cache(vma, vmf->address, vmf->pte);
2961 unlock:
2962         pte_unmap_unlock(vmf->pte, vmf->ptl);
2963 out:
2964         return ret;
2965 out_nomap:
2966         mem_cgroup_cancel_charge(page, memcg, false);
2967         pte_unmap_unlock(vmf->pte, vmf->ptl);
2968 out_page:
2969         unlock_page(page);
2970 out_release:
2971         put_page(page);
2972         if (page != swapcache && swapcache) {
2973                 unlock_page(swapcache);
2974                 put_page(swapcache);
2975         }
2976         return ret;
2977 }
2978
2979 /*
2980  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2981  * but allow concurrent faults), and pte mapped but not yet locked.
2982  * We return with mmap_sem still held, but pte unmapped and unlocked.
2983  */
2984 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2985 {
2986         struct vm_area_struct *vma = vmf->vma;
2987         struct mem_cgroup *memcg;
2988         struct page *page;
2989         vm_fault_t ret = 0;
2990         pte_t entry;
2991
2992         /* File mapping without ->vm_ops ? */
2993         if (vma->vm_flags & VM_SHARED)
2994                 return VM_FAULT_SIGBUS;
2995
2996         /*
2997          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2998          * pte_offset_map() on pmds where a huge pmd might be created
2999          * from a different thread.
3000          *
3001          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3002          * parallel threads are excluded by other means.
3003          *
3004          * Here we only have down_read(mmap_sem).
3005          */
3006         if (pte_alloc(vma->vm_mm, vmf->pmd))
3007                 return VM_FAULT_OOM;
3008
3009         /* See the comment in pte_alloc_one_map() */
3010         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3011                 return 0;
3012
3013         /* Use the zero-page for reads */
3014         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3015                         !mm_forbids_zeropage(vma->vm_mm)) {
3016                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3017                                                 vma->vm_page_prot));
3018                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3019                                 vmf->address, &vmf->ptl);
3020                 if (!pte_none(*vmf->pte))
3021                         goto unlock;
3022                 ret = check_stable_address_space(vma->vm_mm);
3023                 if (ret)
3024                         goto unlock;
3025                 /* Deliver the page fault to userland, check inside PT lock */
3026                 if (userfaultfd_missing(vma)) {
3027                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3028                         return handle_userfault(vmf, VM_UFFD_MISSING);
3029                 }
3030                 goto setpte;
3031         }
3032
3033         /* Allocate our own private page. */
3034         if (unlikely(anon_vma_prepare(vma)))
3035                 goto oom;
3036         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3037         if (!page)
3038                 goto oom;
3039
3040         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3041                                         false))
3042                 goto oom_free_page;
3043
3044         /*
3045          * The memory barrier inside __SetPageUptodate makes sure that
3046          * preceeding stores to the page contents become visible before
3047          * the set_pte_at() write.
3048          */
3049         __SetPageUptodate(page);
3050
3051         entry = mk_pte(page, vma->vm_page_prot);
3052         if (vma->vm_flags & VM_WRITE)
3053                 entry = pte_mkwrite(pte_mkdirty(entry));
3054
3055         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3056                         &vmf->ptl);
3057         if (!pte_none(*vmf->pte))
3058                 goto release;
3059
3060         ret = check_stable_address_space(vma->vm_mm);
3061         if (ret)
3062                 goto release;
3063
3064         /* Deliver the page fault to userland, check inside PT lock */
3065         if (userfaultfd_missing(vma)) {
3066                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3067                 mem_cgroup_cancel_charge(page, memcg, false);
3068                 put_page(page);
3069                 return handle_userfault(vmf, VM_UFFD_MISSING);
3070         }
3071
3072         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3073         page_add_new_anon_rmap(page, vma, vmf->address, false);
3074         mem_cgroup_commit_charge(page, memcg, false, false);
3075         lru_cache_add_active_or_unevictable(page, vma);
3076 setpte:
3077         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3078
3079         /* No need to invalidate - it was non-present before */
3080         update_mmu_cache(vma, vmf->address, vmf->pte);
3081 unlock:
3082         pte_unmap_unlock(vmf->pte, vmf->ptl);
3083         return ret;
3084 release:
3085         mem_cgroup_cancel_charge(page, memcg, false);
3086         put_page(page);
3087         goto unlock;
3088 oom_free_page:
3089         put_page(page);
3090 oom:
3091         return VM_FAULT_OOM;
3092 }
3093
3094 /*
3095  * The mmap_sem must have been held on entry, and may have been
3096  * released depending on flags and vma->vm_ops->fault() return value.
3097  * See filemap_fault() and __lock_page_retry().
3098  */
3099 static vm_fault_t __do_fault(struct vm_fault *vmf)
3100 {
3101         struct vm_area_struct *vma = vmf->vma;
3102         vm_fault_t ret;
3103
3104         /*
3105          * Preallocate pte before we take page_lock because this might lead to
3106          * deadlocks for memcg reclaim which waits for pages under writeback:
3107          *                              lock_page(A)
3108          *                              SetPageWriteback(A)
3109          *                              unlock_page(A)
3110          * lock_page(B)
3111          *                              lock_page(B)
3112          * pte_alloc_pne
3113          *   shrink_page_list
3114          *     wait_on_page_writeback(A)
3115          *                              SetPageWriteback(B)
3116          *                              unlock_page(B)
3117          *                              # flush A, B to clear the writeback
3118          */
3119         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3120                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3121                 if (!vmf->prealloc_pte)
3122                         return VM_FAULT_OOM;
3123                 smp_wmb(); /* See comment in __pte_alloc() */
3124         }
3125
3126         ret = vma->vm_ops->fault(vmf);
3127         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3128                             VM_FAULT_DONE_COW)))
3129                 return ret;
3130
3131         if (unlikely(PageHWPoison(vmf->page))) {
3132                 if (ret & VM_FAULT_LOCKED)
3133                         unlock_page(vmf->page);
3134                 put_page(vmf->page);
3135                 vmf->page = NULL;
3136                 return VM_FAULT_HWPOISON;
3137         }
3138
3139         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3140                 lock_page(vmf->page);
3141         else
3142                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3143
3144         return ret;
3145 }
3146
3147 /*
3148  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3149  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3150  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3151  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3152  */
3153 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3154 {
3155         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3156 }
3157
3158 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3159 {
3160         struct vm_area_struct *vma = vmf->vma;
3161
3162         if (!pmd_none(*vmf->pmd))
3163                 goto map_pte;
3164         if (vmf->prealloc_pte) {
3165                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3166                 if (unlikely(!pmd_none(*vmf->pmd))) {
3167                         spin_unlock(vmf->ptl);
3168                         goto map_pte;
3169                 }
3170
3171                 mm_inc_nr_ptes(vma->vm_mm);
3172                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3173                 spin_unlock(vmf->ptl);
3174                 vmf->prealloc_pte = NULL;
3175         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3176                 return VM_FAULT_OOM;
3177         }
3178 map_pte:
3179         /*
3180          * If a huge pmd materialized under us just retry later.  Use
3181          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3182          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3183          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3184          * running immediately after a huge pmd fault in a different thread of
3185          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3186          * All we have to ensure is that it is a regular pmd that we can walk
3187          * with pte_offset_map() and we can do that through an atomic read in
3188          * C, which is what pmd_trans_unstable() provides.
3189          */
3190         if (pmd_devmap_trans_unstable(vmf->pmd))
3191                 return VM_FAULT_NOPAGE;
3192
3193         /*
3194          * At this point we know that our vmf->pmd points to a page of ptes
3195          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3196          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3197          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3198          * be valid and we will re-check to make sure the vmf->pte isn't
3199          * pte_none() under vmf->ptl protection when we return to
3200          * alloc_set_pte().
3201          */
3202         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3203                         &vmf->ptl);
3204         return 0;
3205 }
3206
3207 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3208
3209 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3210 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3211                 unsigned long haddr)
3212 {
3213         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3214                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3215                 return false;
3216         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3217                 return false;
3218         return true;
3219 }
3220
3221 static void deposit_prealloc_pte(struct vm_fault *vmf)
3222 {
3223         struct vm_area_struct *vma = vmf->vma;
3224
3225         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3226         /*
3227          * We are going to consume the prealloc table,
3228          * count that as nr_ptes.
3229          */
3230         mm_inc_nr_ptes(vma->vm_mm);
3231         vmf->prealloc_pte = NULL;
3232 }
3233
3234 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3235 {
3236         struct vm_area_struct *vma = vmf->vma;
3237         bool write = vmf->flags & FAULT_FLAG_WRITE;
3238         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3239         pmd_t entry;
3240         int i;
3241         vm_fault_t ret;
3242
3243         if (!transhuge_vma_suitable(vma, haddr))
3244                 return VM_FAULT_FALLBACK;
3245
3246         ret = VM_FAULT_FALLBACK;
3247         page = compound_head(page);
3248
3249         /*
3250          * Archs like ppc64 need additonal space to store information
3251          * related to pte entry. Use the preallocated table for that.
3252          */
3253         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3254                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3255                 if (!vmf->prealloc_pte)
3256                         return VM_FAULT_OOM;
3257                 smp_wmb(); /* See comment in __pte_alloc() */
3258         }
3259
3260         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3261         if (unlikely(!pmd_none(*vmf->pmd)))
3262                 goto out;
3263
3264         for (i = 0; i < HPAGE_PMD_NR; i++)
3265                 flush_icache_page(vma, page + i);
3266
3267         entry = mk_huge_pmd(page, vma->vm_page_prot);
3268         if (write)
3269                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3270
3271         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3272         page_add_file_rmap(page, true);
3273         /*
3274          * deposit and withdraw with pmd lock held
3275          */
3276         if (arch_needs_pgtable_deposit())
3277                 deposit_prealloc_pte(vmf);
3278
3279         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3280
3281         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3282
3283         /* fault is handled */
3284         ret = 0;
3285         count_vm_event(THP_FILE_MAPPED);
3286 out:
3287         spin_unlock(vmf->ptl);
3288         return ret;
3289 }
3290 #else
3291 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3292 {
3293         BUILD_BUG();
3294         return 0;
3295 }
3296 #endif
3297
3298 /**
3299  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3300  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3301  *
3302  * @vmf: fault environment
3303  * @memcg: memcg to charge page (only for private mappings)
3304  * @page: page to map
3305  *
3306  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3307  * return.
3308  *
3309  * Target users are page handler itself and implementations of
3310  * vm_ops->map_pages.
3311  *
3312  * Return: %0 on success, %VM_FAULT_ code in case of error.
3313  */
3314 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3315                 struct page *page)
3316 {
3317         struct vm_area_struct *vma = vmf->vma;
3318         bool write = vmf->flags & FAULT_FLAG_WRITE;
3319         pte_t entry;
3320         vm_fault_t ret;
3321
3322         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3323                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3324                 /* THP on COW? */
3325                 VM_BUG_ON_PAGE(memcg, page);
3326
3327                 ret = do_set_pmd(vmf, page);
3328                 if (ret != VM_FAULT_FALLBACK)
3329                         return ret;
3330         }
3331
3332         if (!vmf->pte) {
3333                 ret = pte_alloc_one_map(vmf);
3334                 if (ret)
3335                         return ret;
3336         }
3337
3338         /* Re-check under ptl */
3339         if (unlikely(!pte_none(*vmf->pte)))
3340                 return VM_FAULT_NOPAGE;
3341
3342         flush_icache_page(vma, page);
3343         entry = mk_pte(page, vma->vm_page_prot);
3344         if (write)
3345                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3346         /* copy-on-write page */
3347         if (write && !(vma->vm_flags & VM_SHARED)) {
3348                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3349                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3350                 mem_cgroup_commit_charge(page, memcg, false, false);
3351                 lru_cache_add_active_or_unevictable(page, vma);
3352         } else {
3353                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3354                 page_add_file_rmap(page, false);
3355         }
3356         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3357
3358         /* no need to invalidate: a not-present page won't be cached */
3359         update_mmu_cache(vma, vmf->address, vmf->pte);
3360
3361         return 0;
3362 }
3363
3364
3365 /**
3366  * finish_fault - finish page fault once we have prepared the page to fault
3367  *
3368  * @vmf: structure describing the fault
3369  *
3370  * This function handles all that is needed to finish a page fault once the
3371  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3372  * given page, adds reverse page mapping, handles memcg charges and LRU
3373  * addition.
3374  *
3375  * The function expects the page to be locked and on success it consumes a
3376  * reference of a page being mapped (for the PTE which maps it).
3377  *
3378  * Return: %0 on success, %VM_FAULT_ code in case of error.
3379  */
3380 vm_fault_t finish_fault(struct vm_fault *vmf)
3381 {
3382         struct page *page;
3383         vm_fault_t ret = 0;
3384
3385         /* Did we COW the page? */
3386         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3387             !(vmf->vma->vm_flags & VM_SHARED))
3388                 page = vmf->cow_page;
3389         else
3390                 page = vmf->page;
3391
3392         /*
3393          * check even for read faults because we might have lost our CoWed
3394          * page
3395          */
3396         if (!(vmf->vma->vm_flags & VM_SHARED))
3397                 ret = check_stable_address_space(vmf->vma->vm_mm);
3398         if (!ret)
3399                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3400         if (vmf->pte)
3401                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3402         return ret;
3403 }
3404
3405 static unsigned long fault_around_bytes __read_mostly =
3406         rounddown_pow_of_two(65536);
3407
3408 #ifdef CONFIG_DEBUG_FS
3409 static int fault_around_bytes_get(void *data, u64 *val)
3410 {
3411         *val = fault_around_bytes;
3412         return 0;
3413 }
3414
3415 /*
3416  * fault_around_bytes must be rounded down to the nearest page order as it's
3417  * what do_fault_around() expects to see.
3418  */
3419 static int fault_around_bytes_set(void *data, u64 val)
3420 {
3421         if (val / PAGE_SIZE > PTRS_PER_PTE)
3422                 return -EINVAL;
3423         if (val > PAGE_SIZE)
3424                 fault_around_bytes = rounddown_pow_of_two(val);
3425         else
3426                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3427         return 0;
3428 }
3429 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3430                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3431
3432 static int __init fault_around_debugfs(void)
3433 {
3434         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3435                                    &fault_around_bytes_fops);
3436         return 0;
3437 }
3438 late_initcall(fault_around_debugfs);
3439 #endif
3440
3441 /*
3442  * do_fault_around() tries to map few pages around the fault address. The hope
3443  * is that the pages will be needed soon and this will lower the number of
3444  * faults to handle.
3445  *
3446  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3447  * not ready to be mapped: not up-to-date, locked, etc.
3448  *
3449  * This function is called with the page table lock taken. In the split ptlock
3450  * case the page table lock only protects only those entries which belong to
3451  * the page table corresponding to the fault address.
3452  *
3453  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3454  * only once.
3455  *
3456  * fault_around_bytes defines how many bytes we'll try to map.
3457  * do_fault_around() expects it to be set to a power of two less than or equal
3458  * to PTRS_PER_PTE.
3459  *
3460  * The virtual address of the area that we map is naturally aligned to
3461  * fault_around_bytes rounded down to the machine page size
3462  * (and therefore to page order).  This way it's easier to guarantee
3463  * that we don't cross page table boundaries.
3464  */
3465 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3466 {
3467         unsigned long address = vmf->address, nr_pages, mask;
3468         pgoff_t start_pgoff = vmf->pgoff;
3469         pgoff_t end_pgoff;
3470         int off;
3471         vm_fault_t ret = 0;
3472
3473         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3474         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3475
3476         vmf->address = max(address & mask, vmf->vma->vm_start);
3477         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3478         start_pgoff -= off;
3479
3480         /*
3481          *  end_pgoff is either the end of the page table, the end of
3482          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3483          */
3484         end_pgoff = start_pgoff -
3485                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3486                 PTRS_PER_PTE - 1;
3487         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3488                         start_pgoff + nr_pages - 1);
3489
3490         if (pmd_none(*vmf->pmd)) {
3491                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3492                 if (!vmf->prealloc_pte)
3493                         goto out;
3494                 smp_wmb(); /* See comment in __pte_alloc() */
3495         }
3496
3497         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3498
3499         /* Huge page is mapped? Page fault is solved */
3500         if (pmd_trans_huge(*vmf->pmd)) {
3501                 ret = VM_FAULT_NOPAGE;
3502                 goto out;
3503         }
3504
3505         /* ->map_pages() haven't done anything useful. Cold page cache? */
3506         if (!vmf->pte)
3507                 goto out;
3508
3509         /* check if the page fault is solved */
3510         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3511         if (!pte_none(*vmf->pte))
3512                 ret = VM_FAULT_NOPAGE;
3513         pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 out:
3515         vmf->address = address;
3516         vmf->pte = NULL;
3517         return ret;
3518 }
3519
3520 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3521 {
3522         struct vm_area_struct *vma = vmf->vma;
3523         vm_fault_t ret = 0;
3524
3525         /*
3526          * Let's call ->map_pages() first and use ->fault() as fallback
3527          * if page by the offset is not ready to be mapped (cold cache or
3528          * something).
3529          */
3530         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3531                 ret = do_fault_around(vmf);
3532                 if (ret)
3533                         return ret;
3534         }
3535
3536         ret = __do_fault(vmf);
3537         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3538                 return ret;
3539
3540         ret |= finish_fault(vmf);
3541         unlock_page(vmf->page);
3542         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3543                 put_page(vmf->page);
3544         return ret;
3545 }
3546
3547 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3548 {
3549         struct vm_area_struct *vma = vmf->vma;
3550         vm_fault_t ret;
3551
3552         if (unlikely(anon_vma_prepare(vma)))
3553                 return VM_FAULT_OOM;
3554
3555         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3556         if (!vmf->cow_page)
3557                 return VM_FAULT_OOM;
3558
3559         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3560                                 &vmf->memcg, false)) {
3561                 put_page(vmf->cow_page);
3562                 return VM_FAULT_OOM;
3563         }
3564
3565         ret = __do_fault(vmf);
3566         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567                 goto uncharge_out;
3568         if (ret & VM_FAULT_DONE_COW)
3569                 return ret;
3570
3571         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3572         __SetPageUptodate(vmf->cow_page);
3573
3574         ret |= finish_fault(vmf);
3575         unlock_page(vmf->page);
3576         put_page(vmf->page);
3577         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3578                 goto uncharge_out;
3579         return ret;
3580 uncharge_out:
3581         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3582         put_page(vmf->cow_page);
3583         return ret;
3584 }
3585
3586 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3587 {
3588         struct vm_area_struct *vma = vmf->vma;
3589         vm_fault_t ret, tmp;
3590
3591         ret = __do_fault(vmf);
3592         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3593                 return ret;
3594
3595         /*
3596          * Check if the backing address space wants to know that the page is
3597          * about to become writable
3598          */
3599         if (vma->vm_ops->page_mkwrite) {
3600                 unlock_page(vmf->page);
3601                 tmp = do_page_mkwrite(vmf);
3602                 if (unlikely(!tmp ||
3603                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3604                         put_page(vmf->page);
3605                         return tmp;
3606                 }
3607         }
3608
3609         ret |= finish_fault(vmf);
3610         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3611                                         VM_FAULT_RETRY))) {
3612                 unlock_page(vmf->page);
3613                 put_page(vmf->page);
3614                 return ret;
3615         }
3616
3617         fault_dirty_shared_page(vma, vmf->page);
3618         return ret;
3619 }
3620
3621 /*
3622  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3623  * but allow concurrent faults).
3624  * The mmap_sem may have been released depending on flags and our
3625  * return value.  See filemap_fault() and __lock_page_or_retry().
3626  * If mmap_sem is released, vma may become invalid (for example
3627  * by other thread calling munmap()).
3628  */
3629 static vm_fault_t do_fault(struct vm_fault *vmf)
3630 {
3631         struct vm_area_struct *vma = vmf->vma;
3632         struct mm_struct *vm_mm = vma->vm_mm;
3633         vm_fault_t ret;
3634
3635         /*
3636          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3637          */
3638         if (!vma->vm_ops->fault) {
3639                 /*
3640                  * If we find a migration pmd entry or a none pmd entry, which
3641                  * should never happen, return SIGBUS
3642                  */
3643                 if (unlikely(!pmd_present(*vmf->pmd)))
3644                         ret = VM_FAULT_SIGBUS;
3645                 else {
3646                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3647                                                        vmf->pmd,
3648                                                        vmf->address,
3649                                                        &vmf->ptl);
3650                         /*
3651                          * Make sure this is not a temporary clearing of pte
3652                          * by holding ptl and checking again. A R/M/W update
3653                          * of pte involves: take ptl, clearing the pte so that
3654                          * we don't have concurrent modification by hardware
3655                          * followed by an update.
3656                          */
3657                         if (unlikely(pte_none(*vmf->pte)))
3658                                 ret = VM_FAULT_SIGBUS;
3659                         else
3660                                 ret = VM_FAULT_NOPAGE;
3661
3662                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3663                 }
3664         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3665                 ret = do_read_fault(vmf);
3666         else if (!(vma->vm_flags & VM_SHARED))
3667                 ret = do_cow_fault(vmf);
3668         else
3669                 ret = do_shared_fault(vmf);
3670
3671         /* preallocated pagetable is unused: free it */
3672         if (vmf->prealloc_pte) {
3673                 pte_free(vm_mm, vmf->prealloc_pte);
3674                 vmf->prealloc_pte = NULL;
3675         }
3676         return ret;
3677 }
3678
3679 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3680                                 unsigned long addr, int page_nid,
3681                                 int *flags)
3682 {
3683         get_page(page);
3684
3685         count_vm_numa_event(NUMA_HINT_FAULTS);
3686         if (page_nid == numa_node_id()) {
3687                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3688                 *flags |= TNF_FAULT_LOCAL;
3689         }
3690
3691         return mpol_misplaced(page, vma, addr);
3692 }
3693
3694 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3695 {
3696         struct vm_area_struct *vma = vmf->vma;
3697         struct page *page = NULL;
3698         int page_nid = NUMA_NO_NODE;
3699         int last_cpupid;
3700         int target_nid;
3701         bool migrated = false;
3702         pte_t pte, old_pte;
3703         bool was_writable = pte_savedwrite(vmf->orig_pte);
3704         int flags = 0;
3705
3706         /*
3707          * The "pte" at this point cannot be used safely without
3708          * validation through pte_unmap_same(). It's of NUMA type but
3709          * the pfn may be screwed if the read is non atomic.
3710          */
3711         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3712         spin_lock(vmf->ptl);
3713         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3714                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3715                 goto out;
3716         }
3717
3718         /*
3719          * Make it present again, Depending on how arch implementes non
3720          * accessible ptes, some can allow access by kernel mode.
3721          */
3722         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3723         pte = pte_modify(old_pte, vma->vm_page_prot);
3724         pte = pte_mkyoung(pte);
3725         if (was_writable)
3726                 pte = pte_mkwrite(pte);
3727         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3728         update_mmu_cache(vma, vmf->address, vmf->pte);
3729
3730         page = vm_normal_page(vma, vmf->address, pte);
3731         if (!page) {
3732                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3733                 return 0;
3734         }
3735
3736         /* TODO: handle PTE-mapped THP */
3737         if (PageCompound(page)) {
3738                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3739                 return 0;
3740         }
3741
3742         /*
3743          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3744          * much anyway since they can be in shared cache state. This misses
3745          * the case where a mapping is writable but the process never writes
3746          * to it but pte_write gets cleared during protection updates and
3747          * pte_dirty has unpredictable behaviour between PTE scan updates,
3748          * background writeback, dirty balancing and application behaviour.
3749          */
3750         if (!pte_write(pte))
3751                 flags |= TNF_NO_GROUP;
3752
3753         /*
3754          * Flag if the page is shared between multiple address spaces. This
3755          * is later used when determining whether to group tasks together
3756          */
3757         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3758                 flags |= TNF_SHARED;
3759
3760         last_cpupid = page_cpupid_last(page);
3761         page_nid = page_to_nid(page);
3762         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3763                         &flags);
3764         pte_unmap_unlock(vmf->pte, vmf->ptl);
3765         if (target_nid == NUMA_NO_NODE) {
3766                 put_page(page);
3767                 goto out;
3768         }
3769
3770         /* Migrate to the requested node */
3771         migrated = migrate_misplaced_page(page, vma, target_nid);
3772         if (migrated) {
3773                 page_nid = target_nid;
3774                 flags |= TNF_MIGRATED;
3775         } else
3776                 flags |= TNF_MIGRATE_FAIL;
3777
3778 out:
3779         if (page_nid != NUMA_NO_NODE)
3780                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3781         return 0;
3782 }
3783
3784 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3785 {
3786         if (vma_is_anonymous(vmf->vma))
3787                 return do_huge_pmd_anonymous_page(vmf);
3788         if (vmf->vma->vm_ops->huge_fault)
3789                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3790         return VM_FAULT_FALLBACK;
3791 }
3792
3793 /* `inline' is required to avoid gcc 4.1.2 build error */
3794 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3795 {
3796         if (vma_is_anonymous(vmf->vma))
3797                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3798         if (vmf->vma->vm_ops->huge_fault)
3799                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3800
3801         /* COW handled on pte level: split pmd */
3802         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3803         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3804
3805         return VM_FAULT_FALLBACK;
3806 }
3807
3808 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3809 {
3810         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3811 }
3812
3813 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3814 {
3815 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816         /* No support for anonymous transparent PUD pages yet */
3817         if (vma_is_anonymous(vmf->vma))
3818                 return VM_FAULT_FALLBACK;
3819         if (vmf->vma->vm_ops->huge_fault)
3820                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822         return VM_FAULT_FALLBACK;
3823 }
3824
3825 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3826 {
3827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3828         /* No support for anonymous transparent PUD pages yet */
3829         if (vma_is_anonymous(vmf->vma))
3830                 return VM_FAULT_FALLBACK;
3831         if (vmf->vma->vm_ops->huge_fault)
3832                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3833 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3834         return VM_FAULT_FALLBACK;
3835 }
3836
3837 /*
3838  * These routines also need to handle stuff like marking pages dirty
3839  * and/or accessed for architectures that don't do it in hardware (most
3840  * RISC architectures).  The early dirtying is also good on the i386.
3841  *
3842  * There is also a hook called "update_mmu_cache()" that architectures
3843  * with external mmu caches can use to update those (ie the Sparc or
3844  * PowerPC hashed page tables that act as extended TLBs).
3845  *
3846  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3847  * concurrent faults).
3848  *
3849  * The mmap_sem may have been released depending on flags and our return value.
3850  * See filemap_fault() and __lock_page_or_retry().
3851  */
3852 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3853 {
3854         pte_t entry;
3855
3856         if (unlikely(pmd_none(*vmf->pmd))) {
3857                 /*
3858                  * Leave __pte_alloc() until later: because vm_ops->fault may
3859                  * want to allocate huge page, and if we expose page table
3860                  * for an instant, it will be difficult to retract from
3861                  * concurrent faults and from rmap lookups.
3862                  */
3863                 vmf->pte = NULL;
3864         } else {
3865                 /* See comment in pte_alloc_one_map() */
3866                 if (pmd_devmap_trans_unstable(vmf->pmd))
3867                         return 0;
3868                 /*
3869                  * A regular pmd is established and it can't morph into a huge
3870                  * pmd from under us anymore at this point because we hold the
3871                  * mmap_sem read mode and khugepaged takes it in write mode.
3872                  * So now it's safe to run pte_offset_map().
3873                  */
3874                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3875                 vmf->orig_pte = *vmf->pte;
3876
3877                 /*
3878                  * some architectures can have larger ptes than wordsize,
3879                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3880                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3881                  * accesses.  The code below just needs a consistent view
3882                  * for the ifs and we later double check anyway with the
3883                  * ptl lock held. So here a barrier will do.
3884                  */
3885                 barrier();
3886                 if (pte_none(vmf->orig_pte)) {
3887                         pte_unmap(vmf->pte);
3888                         vmf->pte = NULL;
3889                 }
3890         }
3891
3892         if (!vmf->pte) {
3893                 if (vma_is_anonymous(vmf->vma))
3894                         return do_anonymous_page(vmf);
3895                 else
3896                         return do_fault(vmf);
3897         }
3898
3899         if (!pte_present(vmf->orig_pte))
3900                 return do_swap_page(vmf);
3901
3902         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3903                 return do_numa_page(vmf);
3904
3905         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3906         spin_lock(vmf->ptl);
3907         entry = vmf->orig_pte;
3908         if (unlikely(!pte_same(*vmf->pte, entry)))
3909                 goto unlock;
3910         if (vmf->flags & FAULT_FLAG_WRITE) {
3911                 if (!pte_write(entry))
3912                         return do_wp_page(vmf);
3913                 entry = pte_mkdirty(entry);
3914         }
3915         entry = pte_mkyoung(entry);
3916         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3917                                 vmf->flags & FAULT_FLAG_WRITE)) {
3918                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3919         } else {
3920                 /*
3921                  * This is needed only for protection faults but the arch code
3922                  * is not yet telling us if this is a protection fault or not.
3923                  * This still avoids useless tlb flushes for .text page faults
3924                  * with threads.
3925                  */
3926                 if (vmf->flags & FAULT_FLAG_WRITE)
3927                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3928         }
3929 unlock:
3930         pte_unmap_unlock(vmf->pte, vmf->ptl);
3931         return 0;
3932 }
3933
3934 /*
3935  * By the time we get here, we already hold the mm semaphore
3936  *
3937  * The mmap_sem may have been released depending on flags and our
3938  * return value.  See filemap_fault() and __lock_page_or_retry().
3939  */
3940 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3941                 unsigned long address, unsigned int flags)
3942 {
3943         struct vm_fault vmf = {
3944                 .vma = vma,
3945                 .address = address & PAGE_MASK,
3946                 .flags = flags,
3947                 .pgoff = linear_page_index(vma, address),
3948                 .gfp_mask = __get_fault_gfp_mask(vma),
3949         };
3950         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3951         struct mm_struct *mm = vma->vm_mm;
3952         pgd_t *pgd;
3953         p4d_t *p4d;
3954         vm_fault_t ret;
3955
3956         pgd = pgd_offset(mm, address);
3957         p4d = p4d_alloc(mm, pgd, address);
3958         if (!p4d)
3959                 return VM_FAULT_OOM;
3960
3961         vmf.pud = pud_alloc(mm, p4d, address);
3962         if (!vmf.pud)
3963                 return VM_FAULT_OOM;
3964         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3965                 ret = create_huge_pud(&vmf);
3966                 if (!(ret & VM_FAULT_FALLBACK))
3967                         return ret;
3968         } else {
3969                 pud_t orig_pud = *vmf.pud;
3970
3971                 barrier();
3972                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3973
3974                         /* NUMA case for anonymous PUDs would go here */
3975
3976                         if (dirty && !pud_write(orig_pud)) {
3977                                 ret = wp_huge_pud(&vmf, orig_pud);
3978                                 if (!(ret & VM_FAULT_FALLBACK))
3979                                         return ret;
3980                         } else {
3981                                 huge_pud_set_accessed(&vmf, orig_pud);
3982                                 return 0;
3983                         }
3984                 }
3985         }
3986
3987         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3988         if (!vmf.pmd)
3989                 return VM_FAULT_OOM;
3990         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3991                 ret = create_huge_pmd(&vmf);
3992                 if (!(ret & VM_FAULT_FALLBACK))
3993                         return ret;
3994         } else {
3995                 pmd_t orig_pmd = *vmf.pmd;
3996
3997                 barrier();
3998                 if (unlikely(is_swap_pmd(orig_pmd))) {
3999                         VM_BUG_ON(thp_migration_supported() &&
4000                                           !is_pmd_migration_entry(orig_pmd));
4001                         if (is_pmd_migration_entry(orig_pmd))
4002                                 pmd_migration_entry_wait(mm, vmf.pmd);
4003                         return 0;
4004                 }
4005                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4006                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4007                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4008
4009                         if (dirty && !pmd_write(orig_pmd)) {
4010                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4011                                 if (!(ret & VM_FAULT_FALLBACK))
4012                                         return ret;
4013                         } else {
4014                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4015                                 return 0;
4016                         }
4017                 }
4018         }
4019
4020         return handle_pte_fault(&vmf);
4021 }
4022
4023 /*
4024  * By the time we get here, we already hold the mm semaphore
4025  *
4026  * The mmap_sem may have been released depending on flags and our
4027  * return value.  See filemap_fault() and __lock_page_or_retry().
4028  */
4029 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4030                 unsigned int flags)
4031 {
4032         vm_fault_t ret;
4033
4034         __set_current_state(TASK_RUNNING);
4035
4036         count_vm_event(PGFAULT);
4037         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4038
4039         /* do counter updates before entering really critical section. */
4040         check_sync_rss_stat(current);
4041
4042         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4043                                             flags & FAULT_FLAG_INSTRUCTION,
4044                                             flags & FAULT_FLAG_REMOTE))
4045                 return VM_FAULT_SIGSEGV;
4046
4047         /*
4048          * Enable the memcg OOM handling for faults triggered in user
4049          * space.  Kernel faults are handled more gracefully.
4050          */
4051         if (flags & FAULT_FLAG_USER)
4052                 mem_cgroup_enter_user_fault();
4053
4054         if (unlikely(is_vm_hugetlb_page(vma)))
4055                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4056         else
4057                 ret = __handle_mm_fault(vma, address, flags);
4058
4059         if (flags & FAULT_FLAG_USER) {
4060                 mem_cgroup_exit_user_fault();
4061                 /*
4062                  * The task may have entered a memcg OOM situation but
4063                  * if the allocation error was handled gracefully (no
4064                  * VM_FAULT_OOM), there is no need to kill anything.
4065                  * Just clean up the OOM state peacefully.
4066                  */
4067                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4068                         mem_cgroup_oom_synchronize(false);
4069         }
4070
4071         return ret;
4072 }
4073 EXPORT_SYMBOL_GPL(handle_mm_fault);
4074
4075 #ifndef __PAGETABLE_P4D_FOLDED
4076 /*
4077  * Allocate p4d page table.
4078  * We've already handled the fast-path in-line.
4079  */
4080 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4081 {
4082         p4d_t *new = p4d_alloc_one(mm, address);
4083         if (!new)
4084                 return -ENOMEM;
4085
4086         smp_wmb(); /* See comment in __pte_alloc */
4087
4088         spin_lock(&mm->page_table_lock);
4089         if (pgd_present(*pgd))          /* Another has populated it */
4090                 p4d_free(mm, new);
4091         else
4092                 pgd_populate(mm, pgd, new);
4093         spin_unlock(&mm->page_table_lock);
4094         return 0;
4095 }
4096 #endif /* __PAGETABLE_P4D_FOLDED */
4097
4098 #ifndef __PAGETABLE_PUD_FOLDED
4099 /*
4100  * Allocate page upper directory.
4101  * We've already handled the fast-path in-line.
4102  */
4103 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4104 {
4105         pud_t *new = pud_alloc_one(mm, address);
4106         if (!new)
4107                 return -ENOMEM;
4108
4109         smp_wmb(); /* See comment in __pte_alloc */
4110
4111         spin_lock(&mm->page_table_lock);
4112 #ifndef __ARCH_HAS_5LEVEL_HACK
4113         if (!p4d_present(*p4d)) {
4114                 mm_inc_nr_puds(mm);
4115                 p4d_populate(mm, p4d, new);
4116         } else  /* Another has populated it */
4117                 pud_free(mm, new);
4118 #else
4119         if (!pgd_present(*p4d)) {
4120                 mm_inc_nr_puds(mm);
4121                 pgd_populate(mm, p4d, new);
4122         } else  /* Another has populated it */
4123                 pud_free(mm, new);
4124 #endif /* __ARCH_HAS_5LEVEL_HACK */
4125         spin_unlock(&mm->page_table_lock);
4126         return 0;
4127 }
4128 #endif /* __PAGETABLE_PUD_FOLDED */
4129
4130 #ifndef __PAGETABLE_PMD_FOLDED
4131 /*
4132  * Allocate page middle directory.
4133  * We've already handled the fast-path in-line.
4134  */
4135 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4136 {
4137         spinlock_t *ptl;
4138         pmd_t *new = pmd_alloc_one(mm, address);
4139         if (!new)
4140                 return -ENOMEM;
4141
4142         smp_wmb(); /* See comment in __pte_alloc */
4143
4144         ptl = pud_lock(mm, pud);
4145 #ifndef __ARCH_HAS_4LEVEL_HACK
4146         if (!pud_present(*pud)) {
4147                 mm_inc_nr_pmds(mm);
4148                 pud_populate(mm, pud, new);
4149         } else  /* Another has populated it */
4150                 pmd_free(mm, new);
4151 #else
4152         if (!pgd_present(*pud)) {
4153                 mm_inc_nr_pmds(mm);
4154                 pgd_populate(mm, pud, new);
4155         } else /* Another has populated it */
4156                 pmd_free(mm, new);
4157 #endif /* __ARCH_HAS_4LEVEL_HACK */
4158         spin_unlock(ptl);
4159         return 0;
4160 }
4161 #endif /* __PAGETABLE_PMD_FOLDED */
4162
4163 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4164                             struct mmu_notifier_range *range,
4165                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4166 {
4167         pgd_t *pgd;
4168         p4d_t *p4d;
4169         pud_t *pud;
4170         pmd_t *pmd;
4171         pte_t *ptep;
4172
4173         pgd = pgd_offset(mm, address);
4174         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4175                 goto out;
4176
4177         p4d = p4d_offset(pgd, address);
4178         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4179                 goto out;
4180
4181         pud = pud_offset(p4d, address);
4182         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4183                 goto out;
4184
4185         pmd = pmd_offset(pud, address);
4186         VM_BUG_ON(pmd_trans_huge(*pmd));
4187
4188         if (pmd_huge(*pmd)) {
4189                 if (!pmdpp)
4190                         goto out;
4191
4192                 if (range) {
4193                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4194                                                 NULL, mm, address & PMD_MASK,
4195                                                 (address & PMD_MASK) + PMD_SIZE);
4196                         mmu_notifier_invalidate_range_start(range);
4197                 }
4198                 *ptlp = pmd_lock(mm, pmd);
4199                 if (pmd_huge(*pmd)) {
4200                         *pmdpp = pmd;
4201                         return 0;
4202                 }
4203                 spin_unlock(*ptlp);
4204                 if (range)
4205                         mmu_notifier_invalidate_range_end(range);
4206         }
4207
4208         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4209                 goto out;
4210
4211         if (range) {
4212                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4213                                         address & PAGE_MASK,
4214                                         (address & PAGE_MASK) + PAGE_SIZE);
4215                 mmu_notifier_invalidate_range_start(range);
4216         }
4217         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4218         if (!pte_present(*ptep))
4219                 goto unlock;
4220         *ptepp = ptep;
4221         return 0;
4222 unlock:
4223         pte_unmap_unlock(ptep, *ptlp);
4224         if (range)
4225                 mmu_notifier_invalidate_range_end(range);
4226 out:
4227         return -EINVAL;
4228 }
4229
4230 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4231                              pte_t **ptepp, spinlock_t **ptlp)
4232 {
4233         int res;
4234
4235         /* (void) is needed to make gcc happy */
4236         (void) __cond_lock(*ptlp,
4237                            !(res = __follow_pte_pmd(mm, address, NULL,
4238                                                     ptepp, NULL, ptlp)));
4239         return res;
4240 }
4241
4242 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4243                    struct mmu_notifier_range *range,
4244                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4245 {
4246         int res;
4247
4248         /* (void) is needed to make gcc happy */
4249         (void) __cond_lock(*ptlp,
4250                            !(res = __follow_pte_pmd(mm, address, range,
4251                                                     ptepp, pmdpp, ptlp)));
4252         return res;
4253 }
4254 EXPORT_SYMBOL(follow_pte_pmd);
4255
4256 /**
4257  * follow_pfn - look up PFN at a user virtual address
4258  * @vma: memory mapping
4259  * @address: user virtual address
4260  * @pfn: location to store found PFN
4261  *
4262  * Only IO mappings and raw PFN mappings are allowed.
4263  *
4264  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4265  */
4266 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4267         unsigned long *pfn)
4268 {
4269         int ret = -EINVAL;
4270         spinlock_t *ptl;
4271         pte_t *ptep;
4272
4273         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4274                 return ret;
4275
4276         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4277         if (ret)
4278                 return ret;
4279         *pfn = pte_pfn(*ptep);
4280         pte_unmap_unlock(ptep, ptl);
4281         return 0;
4282 }
4283 EXPORT_SYMBOL(follow_pfn);
4284
4285 #ifdef CONFIG_HAVE_IOREMAP_PROT
4286 int follow_phys(struct vm_area_struct *vma,
4287                 unsigned long address, unsigned int flags,
4288                 unsigned long *prot, resource_size_t *phys)
4289 {
4290         int ret = -EINVAL;
4291         pte_t *ptep, pte;
4292         spinlock_t *ptl;
4293
4294         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4295                 goto out;
4296
4297         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4298                 goto out;
4299         pte = *ptep;
4300
4301         if ((flags & FOLL_WRITE) && !pte_write(pte))
4302                 goto unlock;
4303
4304         *prot = pgprot_val(pte_pgprot(pte));
4305         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4306
4307         ret = 0;
4308 unlock:
4309         pte_unmap_unlock(ptep, ptl);
4310 out:
4311         return ret;
4312 }
4313
4314 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4315                         void *buf, int len, int write)
4316 {
4317         resource_size_t phys_addr;
4318         unsigned long prot = 0;
4319         void __iomem *maddr;
4320         int offset = addr & (PAGE_SIZE-1);
4321
4322         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4323                 return -EINVAL;
4324
4325         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4326         if (!maddr)
4327                 return -ENOMEM;
4328
4329         if (write)
4330                 memcpy_toio(maddr + offset, buf, len);
4331         else
4332                 memcpy_fromio(buf, maddr + offset, len);
4333         iounmap(maddr);
4334
4335         return len;
4336 }
4337 EXPORT_SYMBOL_GPL(generic_access_phys);
4338 #endif
4339
4340 /*
4341  * Access another process' address space as given in mm.  If non-NULL, use the
4342  * given task for page fault accounting.
4343  */
4344 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4345                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4346 {
4347         struct vm_area_struct *vma;
4348         void *old_buf = buf;
4349         int write = gup_flags & FOLL_WRITE;
4350
4351         down_read(&mm->mmap_sem);
4352         /* ignore errors, just check how much was successfully transferred */
4353         while (len) {
4354                 int bytes, ret, offset;
4355                 void *maddr;
4356                 struct page *page = NULL;
4357
4358                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4359                                 gup_flags, &page, &vma, NULL);
4360                 if (ret <= 0) {
4361 #ifndef CONFIG_HAVE_IOREMAP_PROT
4362                         break;
4363 #else
4364                         /*
4365                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4366                          * we can access using slightly different code.
4367                          */
4368                         vma = find_vma(mm, addr);
4369                         if (!vma || vma->vm_start > addr)
4370                                 break;
4371                         if (vma->vm_ops && vma->vm_ops->access)
4372                                 ret = vma->vm_ops->access(vma, addr, buf,
4373                                                           len, write);
4374                         if (ret <= 0)
4375                                 break;
4376                         bytes = ret;
4377 #endif
4378                 } else {
4379                         bytes = len;
4380                         offset = addr & (PAGE_SIZE-1);
4381                         if (bytes > PAGE_SIZE-offset)
4382                                 bytes = PAGE_SIZE-offset;
4383
4384                         maddr = kmap(page);
4385                         if (write) {
4386                                 copy_to_user_page(vma, page, addr,
4387                                                   maddr + offset, buf, bytes);
4388                                 set_page_dirty_lock(page);
4389                         } else {
4390                                 copy_from_user_page(vma, page, addr,
4391                                                     buf, maddr + offset, bytes);
4392                         }
4393                         kunmap(page);
4394                         put_page(page);
4395                 }
4396                 len -= bytes;
4397                 buf += bytes;
4398                 addr += bytes;
4399         }
4400         up_read(&mm->mmap_sem);
4401
4402         return buf - old_buf;
4403 }
4404
4405 /**
4406  * access_remote_vm - access another process' address space
4407  * @mm:         the mm_struct of the target address space
4408  * @addr:       start address to access
4409  * @buf:        source or destination buffer
4410  * @len:        number of bytes to transfer
4411  * @gup_flags:  flags modifying lookup behaviour
4412  *
4413  * The caller must hold a reference on @mm.
4414  *
4415  * Return: number of bytes copied from source to destination.
4416  */
4417 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4418                 void *buf, int len, unsigned int gup_flags)
4419 {
4420         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4421 }
4422
4423 /*
4424  * Access another process' address space.
4425  * Source/target buffer must be kernel space,
4426  * Do not walk the page table directly, use get_user_pages
4427  */
4428 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4429                 void *buf, int len, unsigned int gup_flags)
4430 {
4431         struct mm_struct *mm;
4432         int ret;
4433
4434         mm = get_task_mm(tsk);
4435         if (!mm)
4436                 return 0;
4437
4438         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4439
4440         mmput(mm);
4441
4442         return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(access_process_vm);
4445
4446 /*
4447  * Print the name of a VMA.
4448  */
4449 void print_vma_addr(char *prefix, unsigned long ip)
4450 {
4451         struct mm_struct *mm = current->mm;
4452         struct vm_area_struct *vma;
4453
4454         /*
4455          * we might be running from an atomic context so we cannot sleep
4456          */
4457         if (!down_read_trylock(&mm->mmap_sem))
4458                 return;
4459
4460         vma = find_vma(mm, ip);
4461         if (vma && vma->vm_file) {
4462                 struct file *f = vma->vm_file;
4463                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4464                 if (buf) {
4465                         char *p;
4466
4467                         p = file_path(f, buf, PAGE_SIZE);
4468                         if (IS_ERR(p))
4469                                 p = "?";
4470                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4471                                         vma->vm_start,
4472                                         vma->vm_end - vma->vm_start);
4473                         free_page((unsigned long)buf);
4474                 }
4475         }
4476         up_read(&mm->mmap_sem);
4477 }
4478
4479 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4480 void __might_fault(const char *file, int line)
4481 {
4482         /*
4483          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4484          * holding the mmap_sem, this is safe because kernel memory doesn't
4485          * get paged out, therefore we'll never actually fault, and the
4486          * below annotations will generate false positives.
4487          */
4488         if (uaccess_kernel())
4489                 return;
4490         if (pagefault_disabled())
4491                 return;
4492         __might_sleep(file, line, 0);
4493 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4494         if (current->mm)
4495                 might_lock_read(&current->mm->mmap_sem);
4496 #endif
4497 }
4498 EXPORT_SYMBOL(__might_fault);
4499 #endif
4500
4501 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4502 /*
4503  * Process all subpages of the specified huge page with the specified
4504  * operation.  The target subpage will be processed last to keep its
4505  * cache lines hot.
4506  */
4507 static inline void process_huge_page(
4508         unsigned long addr_hint, unsigned int pages_per_huge_page,
4509         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4510         void *arg)
4511 {
4512         int i, n, base, l;
4513         unsigned long addr = addr_hint &
4514                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4515
4516         /* Process target subpage last to keep its cache lines hot */
4517         might_sleep();
4518         n = (addr_hint - addr) / PAGE_SIZE;
4519         if (2 * n <= pages_per_huge_page) {
4520                 /* If target subpage in first half of huge page */
4521                 base = 0;
4522                 l = n;
4523                 /* Process subpages at the end of huge page */
4524                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4525                         cond_resched();
4526                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4527                 }
4528         } else {
4529                 /* If target subpage in second half of huge page */
4530                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4531                 l = pages_per_huge_page - n;
4532                 /* Process subpages at the begin of huge page */
4533                 for (i = 0; i < base; i++) {
4534                         cond_resched();
4535                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4536                 }
4537         }
4538         /*
4539          * Process remaining subpages in left-right-left-right pattern
4540          * towards the target subpage
4541          */
4542         for (i = 0; i < l; i++) {
4543                 int left_idx = base + i;
4544                 int right_idx = base + 2 * l - 1 - i;
4545
4546                 cond_resched();
4547                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4548                 cond_resched();
4549                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4550         }
4551 }
4552
4553 static void clear_gigantic_page(struct page *page,
4554                                 unsigned long addr,
4555                                 unsigned int pages_per_huge_page)
4556 {
4557         int i;
4558         struct page *p = page;
4559
4560         might_sleep();
4561         for (i = 0; i < pages_per_huge_page;
4562              i++, p = mem_map_next(p, page, i)) {
4563                 cond_resched();
4564                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4565         }
4566 }
4567
4568 static void clear_subpage(unsigned long addr, int idx, void *arg)
4569 {
4570         struct page *page = arg;
4571
4572         clear_user_highpage(page + idx, addr);
4573 }
4574
4575 void clear_huge_page(struct page *page,
4576                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4577 {
4578         unsigned long addr = addr_hint &
4579                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4580
4581         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4582                 clear_gigantic_page(page, addr, pages_per_huge_page);
4583                 return;
4584         }
4585
4586         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4587 }
4588
4589 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4590                                     unsigned long addr,
4591                                     struct vm_area_struct *vma,
4592                                     unsigned int pages_per_huge_page)
4593 {
4594         int i;
4595         struct page *dst_base = dst;
4596         struct page *src_base = src;
4597
4598         for (i = 0; i < pages_per_huge_page; ) {
4599                 cond_resched();
4600                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4601
4602                 i++;
4603                 dst = mem_map_next(dst, dst_base, i);
4604                 src = mem_map_next(src, src_base, i);
4605         }
4606 }
4607
4608 struct copy_subpage_arg {
4609         struct page *dst;
4610         struct page *src;
4611         struct vm_area_struct *vma;
4612 };
4613
4614 static void copy_subpage(unsigned long addr, int idx, void *arg)
4615 {
4616         struct copy_subpage_arg *copy_arg = arg;
4617
4618         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4619                            addr, copy_arg->vma);
4620 }
4621
4622 void copy_user_huge_page(struct page *dst, struct page *src,
4623                          unsigned long addr_hint, struct vm_area_struct *vma,
4624                          unsigned int pages_per_huge_page)
4625 {
4626         unsigned long addr = addr_hint &
4627                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4628         struct copy_subpage_arg arg = {
4629                 .dst = dst,
4630                 .src = src,
4631                 .vma = vma,
4632         };
4633
4634         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4635                 copy_user_gigantic_page(dst, src, addr, vma,
4636                                         pages_per_huge_page);
4637                 return;
4638         }
4639
4640         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4641 }
4642
4643 long copy_huge_page_from_user(struct page *dst_page,
4644                                 const void __user *usr_src,
4645                                 unsigned int pages_per_huge_page,
4646                                 bool allow_pagefault)
4647 {
4648         void *src = (void *)usr_src;
4649         void *page_kaddr;
4650         unsigned long i, rc = 0;
4651         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4652
4653         for (i = 0; i < pages_per_huge_page; i++) {
4654                 if (allow_pagefault)
4655                         page_kaddr = kmap(dst_page + i);
4656                 else
4657                         page_kaddr = kmap_atomic(dst_page + i);
4658                 rc = copy_from_user(page_kaddr,
4659                                 (const void __user *)(src + i * PAGE_SIZE),
4660                                 PAGE_SIZE);
4661                 if (allow_pagefault)
4662                         kunmap(dst_page + i);
4663                 else
4664                         kunmap_atomic(page_kaddr);
4665
4666                 ret_val -= (PAGE_SIZE - rc);
4667                 if (rc)
4668                         break;
4669
4670                 cond_resched();
4671         }
4672         return ret_val;
4673 }
4674 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4675
4676 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4677
4678 static struct kmem_cache *page_ptl_cachep;
4679
4680 void __init ptlock_cache_init(void)
4681 {
4682         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4683                         SLAB_PANIC, NULL);
4684 }
4685
4686 bool ptlock_alloc(struct page *page)
4687 {
4688         spinlock_t *ptl;
4689
4690         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4691         if (!ptl)
4692                 return false;
4693         page->ptl = ptl;
4694         return true;
4695 }
4696
4697 void ptlock_free(struct page *page)
4698 {
4699         kmem_cache_free(page_ptl_cachep, page->ptl);
4700 }
4701 #endif