hugetlb: use page.private for hugetlb specific page flags
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
113 {
114         spin_unlock(&spool->lock);
115
116         /* If no pages are used, and no other handles to the subpool
117          * remain, give up any reservations based on minimum size and
118          * free the subpool */
119         if (subpool_is_free(spool)) {
120                 if (spool->min_hpages != -1)
121                         hugetlb_acct_memory(spool->hstate,
122                                                 -spool->min_hpages);
123                 kfree(spool);
124         }
125 }
126
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128                                                 long min_hpages)
129 {
130         struct hugepage_subpool *spool;
131
132         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133         if (!spool)
134                 return NULL;
135
136         spin_lock_init(&spool->lock);
137         spool->count = 1;
138         spool->max_hpages = max_hpages;
139         spool->hstate = h;
140         spool->min_hpages = min_hpages;
141
142         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143                 kfree(spool);
144                 return NULL;
145         }
146         spool->rsv_hpages = min_hpages;
147
148         return spool;
149 }
150
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153         spin_lock(&spool->lock);
154         BUG_ON(!spool->count);
155         spool->count--;
156         unlock_or_release_subpool(spool);
157 }
158
159 /*
160  * Subpool accounting for allocating and reserving pages.
161  * Return -ENOMEM if there are not enough resources to satisfy the
162  * request.  Otherwise, return the number of pages by which the
163  * global pools must be adjusted (upward).  The returned value may
164  * only be different than the passed value (delta) in the case where
165  * a subpool minimum size must be maintained.
166  */
167 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
168                                       long delta)
169 {
170         long ret = delta;
171
172         if (!spool)
173                 return ret;
174
175         spin_lock(&spool->lock);
176
177         if (spool->max_hpages != -1) {          /* maximum size accounting */
178                 if ((spool->used_hpages + delta) <= spool->max_hpages)
179                         spool->used_hpages += delta;
180                 else {
181                         ret = -ENOMEM;
182                         goto unlock_ret;
183                 }
184         }
185
186         /* minimum size accounting */
187         if (spool->min_hpages != -1 && spool->rsv_hpages) {
188                 if (delta > spool->rsv_hpages) {
189                         /*
190                          * Asking for more reserves than those already taken on
191                          * behalf of subpool.  Return difference.
192                          */
193                         ret = delta - spool->rsv_hpages;
194                         spool->rsv_hpages = 0;
195                 } else {
196                         ret = 0;        /* reserves already accounted for */
197                         spool->rsv_hpages -= delta;
198                 }
199         }
200
201 unlock_ret:
202         spin_unlock(&spool->lock);
203         return ret;
204 }
205
206 /*
207  * Subpool accounting for freeing and unreserving pages.
208  * Return the number of global page reservations that must be dropped.
209  * The return value may only be different than the passed value (delta)
210  * in the case where a subpool minimum size must be maintained.
211  */
212 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
213                                        long delta)
214 {
215         long ret = delta;
216
217         if (!spool)
218                 return delta;
219
220         spin_lock(&spool->lock);
221
222         if (spool->max_hpages != -1)            /* maximum size accounting */
223                 spool->used_hpages -= delta;
224
225          /* minimum size accounting */
226         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
227                 if (spool->rsv_hpages + delta <= spool->min_hpages)
228                         ret = 0;
229                 else
230                         ret = spool->rsv_hpages + delta - spool->min_hpages;
231
232                 spool->rsv_hpages += delta;
233                 if (spool->rsv_hpages > spool->min_hpages)
234                         spool->rsv_hpages = spool->min_hpages;
235         }
236
237         /*
238          * If hugetlbfs_put_super couldn't free spool due to an outstanding
239          * quota reference, free it now.
240          */
241         unlock_or_release_subpool(spool);
242
243         return ret;
244 }
245
246 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
247 {
248         return HUGETLBFS_SB(inode->i_sb)->spool;
249 }
250
251 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
252 {
253         return subpool_inode(file_inode(vma->vm_file));
254 }
255
256 /* Helper that removes a struct file_region from the resv_map cache and returns
257  * it for use.
258  */
259 static struct file_region *
260 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
261 {
262         struct file_region *nrg = NULL;
263
264         VM_BUG_ON(resv->region_cache_count <= 0);
265
266         resv->region_cache_count--;
267         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
268         list_del(&nrg->link);
269
270         nrg->from = from;
271         nrg->to = to;
272
273         return nrg;
274 }
275
276 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
277                                               struct file_region *rg)
278 {
279 #ifdef CONFIG_CGROUP_HUGETLB
280         nrg->reservation_counter = rg->reservation_counter;
281         nrg->css = rg->css;
282         if (rg->css)
283                 css_get(rg->css);
284 #endif
285 }
286
287 /* Helper that records hugetlb_cgroup uncharge info. */
288 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
289                                                 struct hstate *h,
290                                                 struct resv_map *resv,
291                                                 struct file_region *nrg)
292 {
293 #ifdef CONFIG_CGROUP_HUGETLB
294         if (h_cg) {
295                 nrg->reservation_counter =
296                         &h_cg->rsvd_hugepage[hstate_index(h)];
297                 nrg->css = &h_cg->css;
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static bool has_same_uncharge_info(struct file_region *rg,
312                                    struct file_region *org)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         return rg && org &&
316                rg->reservation_counter == org->reservation_counter &&
317                rg->css == org->css;
318
319 #else
320         return true;
321 #endif
322 }
323
324 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
325 {
326         struct file_region *nrg = NULL, *prg = NULL;
327
328         prg = list_prev_entry(rg, link);
329         if (&prg->link != &resv->regions && prg->to == rg->from &&
330             has_same_uncharge_info(prg, rg)) {
331                 prg->to = rg->to;
332
333                 list_del(&rg->link);
334                 kfree(rg);
335
336                 rg = prg;
337         }
338
339         nrg = list_next_entry(rg, link);
340         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
341             has_same_uncharge_info(nrg, rg)) {
342                 nrg->from = rg->from;
343
344                 list_del(&rg->link);
345                 kfree(rg);
346         }
347 }
348
349 /*
350  * Must be called with resv->lock held.
351  *
352  * Calling this with regions_needed != NULL will count the number of pages
353  * to be added but will not modify the linked list. And regions_needed will
354  * indicate the number of file_regions needed in the cache to carry out to add
355  * the regions for this range.
356  */
357 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
358                                      struct hugetlb_cgroup *h_cg,
359                                      struct hstate *h, long *regions_needed)
360 {
361         long add = 0;
362         struct list_head *head = &resv->regions;
363         long last_accounted_offset = f;
364         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
365
366         if (regions_needed)
367                 *regions_needed = 0;
368
369         /* In this loop, we essentially handle an entry for the range
370          * [last_accounted_offset, rg->from), at every iteration, with some
371          * bounds checking.
372          */
373         list_for_each_entry_safe(rg, trg, head, link) {
374                 /* Skip irrelevant regions that start before our range. */
375                 if (rg->from < f) {
376                         /* If this region ends after the last accounted offset,
377                          * then we need to update last_accounted_offset.
378                          */
379                         if (rg->to > last_accounted_offset)
380                                 last_accounted_offset = rg->to;
381                         continue;
382                 }
383
384                 /* When we find a region that starts beyond our range, we've
385                  * finished.
386                  */
387                 if (rg->from > t)
388                         break;
389
390                 /* Add an entry for last_accounted_offset -> rg->from, and
391                  * update last_accounted_offset.
392                  */
393                 if (rg->from > last_accounted_offset) {
394                         add += rg->from - last_accounted_offset;
395                         if (!regions_needed) {
396                                 nrg = get_file_region_entry_from_cache(
397                                         resv, last_accounted_offset, rg->from);
398                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
399                                                                     resv, nrg);
400                                 list_add(&nrg->link, rg->link.prev);
401                                 coalesce_file_region(resv, nrg);
402                         } else
403                                 *regions_needed += 1;
404                 }
405
406                 last_accounted_offset = rg->to;
407         }
408
409         /* Handle the case where our range extends beyond
410          * last_accounted_offset.
411          */
412         if (last_accounted_offset < t) {
413                 add += t - last_accounted_offset;
414                 if (!regions_needed) {
415                         nrg = get_file_region_entry_from_cache(
416                                 resv, last_accounted_offset, t);
417                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
418                         list_add(&nrg->link, rg->link.prev);
419                         coalesce_file_region(resv, nrg);
420                 } else
421                         *regions_needed += 1;
422         }
423
424         VM_BUG_ON(add < 0);
425         return add;
426 }
427
428 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
429  */
430 static int allocate_file_region_entries(struct resv_map *resv,
431                                         int regions_needed)
432         __must_hold(&resv->lock)
433 {
434         struct list_head allocated_regions;
435         int to_allocate = 0, i = 0;
436         struct file_region *trg = NULL, *rg = NULL;
437
438         VM_BUG_ON(regions_needed < 0);
439
440         INIT_LIST_HEAD(&allocated_regions);
441
442         /*
443          * Check for sufficient descriptors in the cache to accommodate
444          * the number of in progress add operations plus regions_needed.
445          *
446          * This is a while loop because when we drop the lock, some other call
447          * to region_add or region_del may have consumed some region_entries,
448          * so we keep looping here until we finally have enough entries for
449          * (adds_in_progress + regions_needed).
450          */
451         while (resv->region_cache_count <
452                (resv->adds_in_progress + regions_needed)) {
453                 to_allocate = resv->adds_in_progress + regions_needed -
454                               resv->region_cache_count;
455
456                 /* At this point, we should have enough entries in the cache
457                  * for all the existings adds_in_progress. We should only be
458                  * needing to allocate for regions_needed.
459                  */
460                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
461
462                 spin_unlock(&resv->lock);
463                 for (i = 0; i < to_allocate; i++) {
464                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
465                         if (!trg)
466                                 goto out_of_memory;
467                         list_add(&trg->link, &allocated_regions);
468                 }
469
470                 spin_lock(&resv->lock);
471
472                 list_splice(&allocated_regions, &resv->region_cache);
473                 resv->region_cache_count += to_allocate;
474         }
475
476         return 0;
477
478 out_of_memory:
479         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
480                 list_del(&rg->link);
481                 kfree(rg);
482         }
483         return -ENOMEM;
484 }
485
486 /*
487  * Add the huge page range represented by [f, t) to the reserve
488  * map.  Regions will be taken from the cache to fill in this range.
489  * Sufficient regions should exist in the cache due to the previous
490  * call to region_chg with the same range, but in some cases the cache will not
491  * have sufficient entries due to races with other code doing region_add or
492  * region_del.  The extra needed entries will be allocated.
493  *
494  * regions_needed is the out value provided by a previous call to region_chg.
495  *
496  * Return the number of new huge pages added to the map.  This number is greater
497  * than or equal to zero.  If file_region entries needed to be allocated for
498  * this operation and we were not able to allocate, it returns -ENOMEM.
499  * region_add of regions of length 1 never allocate file_regions and cannot
500  * fail; region_chg will always allocate at least 1 entry and a region_add for
501  * 1 page will only require at most 1 entry.
502  */
503 static long region_add(struct resv_map *resv, long f, long t,
504                        long in_regions_needed, struct hstate *h,
505                        struct hugetlb_cgroup *h_cg)
506 {
507         long add = 0, actual_regions_needed = 0;
508
509         spin_lock(&resv->lock);
510 retry:
511
512         /* Count how many regions are actually needed to execute this add. */
513         add_reservation_in_range(resv, f, t, NULL, NULL,
514                                  &actual_regions_needed);
515
516         /*
517          * Check for sufficient descriptors in the cache to accommodate
518          * this add operation. Note that actual_regions_needed may be greater
519          * than in_regions_needed, as the resv_map may have been modified since
520          * the region_chg call. In this case, we need to make sure that we
521          * allocate extra entries, such that we have enough for all the
522          * existing adds_in_progress, plus the excess needed for this
523          * operation.
524          */
525         if (actual_regions_needed > in_regions_needed &&
526             resv->region_cache_count <
527                     resv->adds_in_progress +
528                             (actual_regions_needed - in_regions_needed)) {
529                 /* region_add operation of range 1 should never need to
530                  * allocate file_region entries.
531                  */
532                 VM_BUG_ON(t - f <= 1);
533
534                 if (allocate_file_region_entries(
535                             resv, actual_regions_needed - in_regions_needed)) {
536                         return -ENOMEM;
537                 }
538
539                 goto retry;
540         }
541
542         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
543
544         resv->adds_in_progress -= in_regions_needed;
545
546         spin_unlock(&resv->lock);
547         VM_BUG_ON(add < 0);
548         return add;
549 }
550
551 /*
552  * Examine the existing reserve map and determine how many
553  * huge pages in the specified range [f, t) are NOT currently
554  * represented.  This routine is called before a subsequent
555  * call to region_add that will actually modify the reserve
556  * map to add the specified range [f, t).  region_chg does
557  * not change the number of huge pages represented by the
558  * map.  A number of new file_region structures is added to the cache as a
559  * placeholder, for the subsequent region_add call to use. At least 1
560  * file_region structure is added.
561  *
562  * out_regions_needed is the number of regions added to the
563  * resv->adds_in_progress.  This value needs to be provided to a follow up call
564  * to region_add or region_abort for proper accounting.
565  *
566  * Returns the number of huge pages that need to be added to the existing
567  * reservation map for the range [f, t).  This number is greater or equal to
568  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
569  * is needed and can not be allocated.
570  */
571 static long region_chg(struct resv_map *resv, long f, long t,
572                        long *out_regions_needed)
573 {
574         long chg = 0;
575
576         spin_lock(&resv->lock);
577
578         /* Count how many hugepages in this range are NOT represented. */
579         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
580                                        out_regions_needed);
581
582         if (*out_regions_needed == 0)
583                 *out_regions_needed = 1;
584
585         if (allocate_file_region_entries(resv, *out_regions_needed))
586                 return -ENOMEM;
587
588         resv->adds_in_progress += *out_regions_needed;
589
590         spin_unlock(&resv->lock);
591         return chg;
592 }
593
594 /*
595  * Abort the in progress add operation.  The adds_in_progress field
596  * of the resv_map keeps track of the operations in progress between
597  * calls to region_chg and region_add.  Operations are sometimes
598  * aborted after the call to region_chg.  In such cases, region_abort
599  * is called to decrement the adds_in_progress counter. regions_needed
600  * is the value returned by the region_chg call, it is used to decrement
601  * the adds_in_progress counter.
602  *
603  * NOTE: The range arguments [f, t) are not needed or used in this
604  * routine.  They are kept to make reading the calling code easier as
605  * arguments will match the associated region_chg call.
606  */
607 static void region_abort(struct resv_map *resv, long f, long t,
608                          long regions_needed)
609 {
610         spin_lock(&resv->lock);
611         VM_BUG_ON(!resv->region_cache_count);
612         resv->adds_in_progress -= regions_needed;
613         spin_unlock(&resv->lock);
614 }
615
616 /*
617  * Delete the specified range [f, t) from the reserve map.  If the
618  * t parameter is LONG_MAX, this indicates that ALL regions after f
619  * should be deleted.  Locate the regions which intersect [f, t)
620  * and either trim, delete or split the existing regions.
621  *
622  * Returns the number of huge pages deleted from the reserve map.
623  * In the normal case, the return value is zero or more.  In the
624  * case where a region must be split, a new region descriptor must
625  * be allocated.  If the allocation fails, -ENOMEM will be returned.
626  * NOTE: If the parameter t == LONG_MAX, then we will never split
627  * a region and possibly return -ENOMEM.  Callers specifying
628  * t == LONG_MAX do not need to check for -ENOMEM error.
629  */
630 static long region_del(struct resv_map *resv, long f, long t)
631 {
632         struct list_head *head = &resv->regions;
633         struct file_region *rg, *trg;
634         struct file_region *nrg = NULL;
635         long del = 0;
636
637 retry:
638         spin_lock(&resv->lock);
639         list_for_each_entry_safe(rg, trg, head, link) {
640                 /*
641                  * Skip regions before the range to be deleted.  file_region
642                  * ranges are normally of the form [from, to).  However, there
643                  * may be a "placeholder" entry in the map which is of the form
644                  * (from, to) with from == to.  Check for placeholder entries
645                  * at the beginning of the range to be deleted.
646                  */
647                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
648                         continue;
649
650                 if (rg->from >= t)
651                         break;
652
653                 if (f > rg->from && t < rg->to) { /* Must split region */
654                         /*
655                          * Check for an entry in the cache before dropping
656                          * lock and attempting allocation.
657                          */
658                         if (!nrg &&
659                             resv->region_cache_count > resv->adds_in_progress) {
660                                 nrg = list_first_entry(&resv->region_cache,
661                                                         struct file_region,
662                                                         link);
663                                 list_del(&nrg->link);
664                                 resv->region_cache_count--;
665                         }
666
667                         if (!nrg) {
668                                 spin_unlock(&resv->lock);
669                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
670                                 if (!nrg)
671                                         return -ENOMEM;
672                                 goto retry;
673                         }
674
675                         del += t - f;
676                         hugetlb_cgroup_uncharge_file_region(
677                                 resv, rg, t - f);
678
679                         /* New entry for end of split region */
680                         nrg->from = t;
681                         nrg->to = rg->to;
682
683                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
684
685                         INIT_LIST_HEAD(&nrg->link);
686
687                         /* Original entry is trimmed */
688                         rg->to = f;
689
690                         list_add(&nrg->link, &rg->link);
691                         nrg = NULL;
692                         break;
693                 }
694
695                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
696                         del += rg->to - rg->from;
697                         hugetlb_cgroup_uncharge_file_region(resv, rg,
698                                                             rg->to - rg->from);
699                         list_del(&rg->link);
700                         kfree(rg);
701                         continue;
702                 }
703
704                 if (f <= rg->from) {    /* Trim beginning of region */
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             t - rg->from);
707
708                         del += t - rg->from;
709                         rg->from = t;
710                 } else {                /* Trim end of region */
711                         hugetlb_cgroup_uncharge_file_region(resv, rg,
712                                                             rg->to - f);
713
714                         del += rg->to - f;
715                         rg->to = f;
716                 }
717         }
718
719         spin_unlock(&resv->lock);
720         kfree(nrg);
721         return del;
722 }
723
724 /*
725  * A rare out of memory error was encountered which prevented removal of
726  * the reserve map region for a page.  The huge page itself was free'ed
727  * and removed from the page cache.  This routine will adjust the subpool
728  * usage count, and the global reserve count if needed.  By incrementing
729  * these counts, the reserve map entry which could not be deleted will
730  * appear as a "reserved" entry instead of simply dangling with incorrect
731  * counts.
732  */
733 void hugetlb_fix_reserve_counts(struct inode *inode)
734 {
735         struct hugepage_subpool *spool = subpool_inode(inode);
736         long rsv_adjust;
737
738         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
739         if (rsv_adjust) {
740                 struct hstate *h = hstate_inode(inode);
741
742                 hugetlb_acct_memory(h, 1);
743         }
744 }
745
746 /*
747  * Count and return the number of huge pages in the reserve map
748  * that intersect with the range [f, t).
749  */
750 static long region_count(struct resv_map *resv, long f, long t)
751 {
752         struct list_head *head = &resv->regions;
753         struct file_region *rg;
754         long chg = 0;
755
756         spin_lock(&resv->lock);
757         /* Locate each segment we overlap with, and count that overlap. */
758         list_for_each_entry(rg, head, link) {
759                 long seg_from;
760                 long seg_to;
761
762                 if (rg->to <= f)
763                         continue;
764                 if (rg->from >= t)
765                         break;
766
767                 seg_from = max(rg->from, f);
768                 seg_to = min(rg->to, t);
769
770                 chg += seg_to - seg_from;
771         }
772         spin_unlock(&resv->lock);
773
774         return chg;
775 }
776
777 /*
778  * Convert the address within this vma to the page offset within
779  * the mapping, in pagecache page units; huge pages here.
780  */
781 static pgoff_t vma_hugecache_offset(struct hstate *h,
782                         struct vm_area_struct *vma, unsigned long address)
783 {
784         return ((address - vma->vm_start) >> huge_page_shift(h)) +
785                         (vma->vm_pgoff >> huge_page_order(h));
786 }
787
788 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
789                                      unsigned long address)
790 {
791         return vma_hugecache_offset(hstate_vma(vma), vma, address);
792 }
793 EXPORT_SYMBOL_GPL(linear_hugepage_index);
794
795 /*
796  * Return the size of the pages allocated when backing a VMA. In the majority
797  * cases this will be same size as used by the page table entries.
798  */
799 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
800 {
801         if (vma->vm_ops && vma->vm_ops->pagesize)
802                 return vma->vm_ops->pagesize(vma);
803         return PAGE_SIZE;
804 }
805 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
806
807 /*
808  * Return the page size being used by the MMU to back a VMA. In the majority
809  * of cases, the page size used by the kernel matches the MMU size. On
810  * architectures where it differs, an architecture-specific 'strong'
811  * version of this symbol is required.
812  */
813 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
814 {
815         return vma_kernel_pagesize(vma);
816 }
817
818 /*
819  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
820  * bits of the reservation map pointer, which are always clear due to
821  * alignment.
822  */
823 #define HPAGE_RESV_OWNER    (1UL << 0)
824 #define HPAGE_RESV_UNMAPPED (1UL << 1)
825 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
826
827 /*
828  * These helpers are used to track how many pages are reserved for
829  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
830  * is guaranteed to have their future faults succeed.
831  *
832  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
833  * the reserve counters are updated with the hugetlb_lock held. It is safe
834  * to reset the VMA at fork() time as it is not in use yet and there is no
835  * chance of the global counters getting corrupted as a result of the values.
836  *
837  * The private mapping reservation is represented in a subtly different
838  * manner to a shared mapping.  A shared mapping has a region map associated
839  * with the underlying file, this region map represents the backing file
840  * pages which have ever had a reservation assigned which this persists even
841  * after the page is instantiated.  A private mapping has a region map
842  * associated with the original mmap which is attached to all VMAs which
843  * reference it, this region map represents those offsets which have consumed
844  * reservation ie. where pages have been instantiated.
845  */
846 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
847 {
848         return (unsigned long)vma->vm_private_data;
849 }
850
851 static void set_vma_private_data(struct vm_area_struct *vma,
852                                                         unsigned long value)
853 {
854         vma->vm_private_data = (void *)value;
855 }
856
857 static void
858 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
859                                           struct hugetlb_cgroup *h_cg,
860                                           struct hstate *h)
861 {
862 #ifdef CONFIG_CGROUP_HUGETLB
863         if (!h_cg || !h) {
864                 resv_map->reservation_counter = NULL;
865                 resv_map->pages_per_hpage = 0;
866                 resv_map->css = NULL;
867         } else {
868                 resv_map->reservation_counter =
869                         &h_cg->rsvd_hugepage[hstate_index(h)];
870                 resv_map->pages_per_hpage = pages_per_huge_page(h);
871                 resv_map->css = &h_cg->css;
872         }
873 #endif
874 }
875
876 struct resv_map *resv_map_alloc(void)
877 {
878         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
879         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
880
881         if (!resv_map || !rg) {
882                 kfree(resv_map);
883                 kfree(rg);
884                 return NULL;
885         }
886
887         kref_init(&resv_map->refs);
888         spin_lock_init(&resv_map->lock);
889         INIT_LIST_HEAD(&resv_map->regions);
890
891         resv_map->adds_in_progress = 0;
892         /*
893          * Initialize these to 0. On shared mappings, 0's here indicate these
894          * fields don't do cgroup accounting. On private mappings, these will be
895          * re-initialized to the proper values, to indicate that hugetlb cgroup
896          * reservations are to be un-charged from here.
897          */
898         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
899
900         INIT_LIST_HEAD(&resv_map->region_cache);
901         list_add(&rg->link, &resv_map->region_cache);
902         resv_map->region_cache_count = 1;
903
904         return resv_map;
905 }
906
907 void resv_map_release(struct kref *ref)
908 {
909         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
910         struct list_head *head = &resv_map->region_cache;
911         struct file_region *rg, *trg;
912
913         /* Clear out any active regions before we release the map. */
914         region_del(resv_map, 0, LONG_MAX);
915
916         /* ... and any entries left in the cache */
917         list_for_each_entry_safe(rg, trg, head, link) {
918                 list_del(&rg->link);
919                 kfree(rg);
920         }
921
922         VM_BUG_ON(resv_map->adds_in_progress);
923
924         kfree(resv_map);
925 }
926
927 static inline struct resv_map *inode_resv_map(struct inode *inode)
928 {
929         /*
930          * At inode evict time, i_mapping may not point to the original
931          * address space within the inode.  This original address space
932          * contains the pointer to the resv_map.  So, always use the
933          * address space embedded within the inode.
934          * The VERY common case is inode->mapping == &inode->i_data but,
935          * this may not be true for device special inodes.
936          */
937         return (struct resv_map *)(&inode->i_data)->private_data;
938 }
939
940 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
941 {
942         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943         if (vma->vm_flags & VM_MAYSHARE) {
944                 struct address_space *mapping = vma->vm_file->f_mapping;
945                 struct inode *inode = mapping->host;
946
947                 return inode_resv_map(inode);
948
949         } else {
950                 return (struct resv_map *)(get_vma_private_data(vma) &
951                                                         ~HPAGE_RESV_MASK);
952         }
953 }
954
955 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
959
960         set_vma_private_data(vma, (get_vma_private_data(vma) &
961                                 HPAGE_RESV_MASK) | (unsigned long)map);
962 }
963
964 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
965 {
966         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
968
969         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
970 }
971
972 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
973 {
974         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975
976         return (get_vma_private_data(vma) & flag) != 0;
977 }
978
979 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
980 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
981 {
982         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
983         if (!(vma->vm_flags & VM_MAYSHARE))
984                 vma->vm_private_data = (void *)0;
985 }
986
987 /* Returns true if the VMA has associated reserve pages */
988 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
989 {
990         if (vma->vm_flags & VM_NORESERVE) {
991                 /*
992                  * This address is already reserved by other process(chg == 0),
993                  * so, we should decrement reserved count. Without decrementing,
994                  * reserve count remains after releasing inode, because this
995                  * allocated page will go into page cache and is regarded as
996                  * coming from reserved pool in releasing step.  Currently, we
997                  * don't have any other solution to deal with this situation
998                  * properly, so add work-around here.
999                  */
1000                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1001                         return true;
1002                 else
1003                         return false;
1004         }
1005
1006         /* Shared mappings always use reserves */
1007         if (vma->vm_flags & VM_MAYSHARE) {
1008                 /*
1009                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1010                  * be a region map for all pages.  The only situation where
1011                  * there is no region map is if a hole was punched via
1012                  * fallocate.  In this case, there really are no reserves to
1013                  * use.  This situation is indicated if chg != 0.
1014                  */
1015                 if (chg)
1016                         return false;
1017                 else
1018                         return true;
1019         }
1020
1021         /*
1022          * Only the process that called mmap() has reserves for
1023          * private mappings.
1024          */
1025         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1026                 /*
1027                  * Like the shared case above, a hole punch or truncate
1028                  * could have been performed on the private mapping.
1029                  * Examine the value of chg to determine if reserves
1030                  * actually exist or were previously consumed.
1031                  * Very Subtle - The value of chg comes from a previous
1032                  * call to vma_needs_reserves().  The reserve map for
1033                  * private mappings has different (opposite) semantics
1034                  * than that of shared mappings.  vma_needs_reserves()
1035                  * has already taken this difference in semantics into
1036                  * account.  Therefore, the meaning of chg is the same
1037                  * as in the shared case above.  Code could easily be
1038                  * combined, but keeping it separate draws attention to
1039                  * subtle differences.
1040                  */
1041                 if (chg)
1042                         return false;
1043                 else
1044                         return true;
1045         }
1046
1047         return false;
1048 }
1049
1050 static void enqueue_huge_page(struct hstate *h, struct page *page)
1051 {
1052         int nid = page_to_nid(page);
1053         list_move(&page->lru, &h->hugepage_freelists[nid]);
1054         h->free_huge_pages++;
1055         h->free_huge_pages_node[nid]++;
1056         SetPageHugeFreed(page);
1057 }
1058
1059 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1060 {
1061         struct page *page;
1062         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1063
1064         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1065                 if (nocma && is_migrate_cma_page(page))
1066                         continue;
1067
1068                 if (PageHWPoison(page))
1069                         continue;
1070
1071                 list_move(&page->lru, &h->hugepage_activelist);
1072                 set_page_refcounted(page);
1073                 ClearPageHugeFreed(page);
1074                 h->free_huge_pages--;
1075                 h->free_huge_pages_node[nid]--;
1076                 return page;
1077         }
1078
1079         return NULL;
1080 }
1081
1082 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1083                 nodemask_t *nmask)
1084 {
1085         unsigned int cpuset_mems_cookie;
1086         struct zonelist *zonelist;
1087         struct zone *zone;
1088         struct zoneref *z;
1089         int node = NUMA_NO_NODE;
1090
1091         zonelist = node_zonelist(nid, gfp_mask);
1092
1093 retry_cpuset:
1094         cpuset_mems_cookie = read_mems_allowed_begin();
1095         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1096                 struct page *page;
1097
1098                 if (!cpuset_zone_allowed(zone, gfp_mask))
1099                         continue;
1100                 /*
1101                  * no need to ask again on the same node. Pool is node rather than
1102                  * zone aware
1103                  */
1104                 if (zone_to_nid(zone) == node)
1105                         continue;
1106                 node = zone_to_nid(zone);
1107
1108                 page = dequeue_huge_page_node_exact(h, node);
1109                 if (page)
1110                         return page;
1111         }
1112         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1113                 goto retry_cpuset;
1114
1115         return NULL;
1116 }
1117
1118 static struct page *dequeue_huge_page_vma(struct hstate *h,
1119                                 struct vm_area_struct *vma,
1120                                 unsigned long address, int avoid_reserve,
1121                                 long chg)
1122 {
1123         struct page *page;
1124         struct mempolicy *mpol;
1125         gfp_t gfp_mask;
1126         nodemask_t *nodemask;
1127         int nid;
1128
1129         /*
1130          * A child process with MAP_PRIVATE mappings created by their parent
1131          * have no page reserves. This check ensures that reservations are
1132          * not "stolen". The child may still get SIGKILLed
1133          */
1134         if (!vma_has_reserves(vma, chg) &&
1135                         h->free_huge_pages - h->resv_huge_pages == 0)
1136                 goto err;
1137
1138         /* If reserves cannot be used, ensure enough pages are in the pool */
1139         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1140                 goto err;
1141
1142         gfp_mask = htlb_alloc_mask(h);
1143         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1144         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1145         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1146                 SetHPageRestoreReserve(page);
1147                 h->resv_huge_pages--;
1148         }
1149
1150         mpol_cond_put(mpol);
1151         return page;
1152
1153 err:
1154         return NULL;
1155 }
1156
1157 /*
1158  * common helper functions for hstate_next_node_to_{alloc|free}.
1159  * We may have allocated or freed a huge page based on a different
1160  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1161  * be outside of *nodes_allowed.  Ensure that we use an allowed
1162  * node for alloc or free.
1163  */
1164 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1165 {
1166         nid = next_node_in(nid, *nodes_allowed);
1167         VM_BUG_ON(nid >= MAX_NUMNODES);
1168
1169         return nid;
1170 }
1171
1172 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1173 {
1174         if (!node_isset(nid, *nodes_allowed))
1175                 nid = next_node_allowed(nid, nodes_allowed);
1176         return nid;
1177 }
1178
1179 /*
1180  * returns the previously saved node ["this node"] from which to
1181  * allocate a persistent huge page for the pool and advance the
1182  * next node from which to allocate, handling wrap at end of node
1183  * mask.
1184  */
1185 static int hstate_next_node_to_alloc(struct hstate *h,
1186                                         nodemask_t *nodes_allowed)
1187 {
1188         int nid;
1189
1190         VM_BUG_ON(!nodes_allowed);
1191
1192         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1193         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1194
1195         return nid;
1196 }
1197
1198 /*
1199  * helper for free_pool_huge_page() - return the previously saved
1200  * node ["this node"] from which to free a huge page.  Advance the
1201  * next node id whether or not we find a free huge page to free so
1202  * that the next attempt to free addresses the next node.
1203  */
1204 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1205 {
1206         int nid;
1207
1208         VM_BUG_ON(!nodes_allowed);
1209
1210         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1211         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1212
1213         return nid;
1214 }
1215
1216 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1217         for (nr_nodes = nodes_weight(*mask);                            \
1218                 nr_nodes > 0 &&                                         \
1219                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1220                 nr_nodes--)
1221
1222 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1223         for (nr_nodes = nodes_weight(*mask);                            \
1224                 nr_nodes > 0 &&                                         \
1225                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1226                 nr_nodes--)
1227
1228 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1229 static void destroy_compound_gigantic_page(struct page *page,
1230                                         unsigned int order)
1231 {
1232         int i;
1233         int nr_pages = 1 << order;
1234         struct page *p = page + 1;
1235
1236         atomic_set(compound_mapcount_ptr(page), 0);
1237         atomic_set(compound_pincount_ptr(page), 0);
1238
1239         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1240                 clear_compound_head(p);
1241                 set_page_refcounted(p);
1242         }
1243
1244         set_compound_order(page, 0);
1245         page[1].compound_nr = 0;
1246         __ClearPageHead(page);
1247 }
1248
1249 static void free_gigantic_page(struct page *page, unsigned int order)
1250 {
1251         /*
1252          * If the page isn't allocated using the cma allocator,
1253          * cma_release() returns false.
1254          */
1255 #ifdef CONFIG_CMA
1256         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1257                 return;
1258 #endif
1259
1260         free_contig_range(page_to_pfn(page), 1 << order);
1261 }
1262
1263 #ifdef CONFIG_CONTIG_ALLOC
1264 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1265                 int nid, nodemask_t *nodemask)
1266 {
1267         unsigned long nr_pages = 1UL << huge_page_order(h);
1268         if (nid == NUMA_NO_NODE)
1269                 nid = numa_mem_id();
1270
1271 #ifdef CONFIG_CMA
1272         {
1273                 struct page *page;
1274                 int node;
1275
1276                 if (hugetlb_cma[nid]) {
1277                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1278                                         huge_page_order(h), true);
1279                         if (page)
1280                                 return page;
1281                 }
1282
1283                 if (!(gfp_mask & __GFP_THISNODE)) {
1284                         for_each_node_mask(node, *nodemask) {
1285                                 if (node == nid || !hugetlb_cma[node])
1286                                         continue;
1287
1288                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1289                                                 huge_page_order(h), true);
1290                                 if (page)
1291                                         return page;
1292                         }
1293                 }
1294         }
1295 #endif
1296
1297         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1298 }
1299
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1302 #else /* !CONFIG_CONTIG_ALLOC */
1303 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1304                                         int nid, nodemask_t *nodemask)
1305 {
1306         return NULL;
1307 }
1308 #endif /* CONFIG_CONTIG_ALLOC */
1309
1310 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1311 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1312                                         int nid, nodemask_t *nodemask)
1313 {
1314         return NULL;
1315 }
1316 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1317 static inline void destroy_compound_gigantic_page(struct page *page,
1318                                                 unsigned int order) { }
1319 #endif
1320
1321 static void update_and_free_page(struct hstate *h, struct page *page)
1322 {
1323         int i;
1324         struct page *subpage = page;
1325
1326         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1327                 return;
1328
1329         h->nr_huge_pages--;
1330         h->nr_huge_pages_node[page_to_nid(page)]--;
1331         for (i = 0; i < pages_per_huge_page(h);
1332              i++, subpage = mem_map_next(subpage, page, i)) {
1333                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1334                                 1 << PG_referenced | 1 << PG_dirty |
1335                                 1 << PG_active | 1 << PG_private |
1336                                 1 << PG_writeback);
1337         }
1338         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1339         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1340         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1341         set_page_refcounted(page);
1342         if (hstate_is_gigantic(h)) {
1343                 /*
1344                  * Temporarily drop the hugetlb_lock, because
1345                  * we might block in free_gigantic_page().
1346                  */
1347                 spin_unlock(&hugetlb_lock);
1348                 destroy_compound_gigantic_page(page, huge_page_order(h));
1349                 free_gigantic_page(page, huge_page_order(h));
1350                 spin_lock(&hugetlb_lock);
1351         } else {
1352                 __free_pages(page, huge_page_order(h));
1353         }
1354 }
1355
1356 struct hstate *size_to_hstate(unsigned long size)
1357 {
1358         struct hstate *h;
1359
1360         for_each_hstate(h) {
1361                 if (huge_page_size(h) == size)
1362                         return h;
1363         }
1364         return NULL;
1365 }
1366
1367 /*
1368  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1369  * to hstate->hugepage_activelist.)
1370  *
1371  * This function can be called for tail pages, but never returns true for them.
1372  */
1373 bool page_huge_active(struct page *page)
1374 {
1375         return PageHeadHuge(page) && PagePrivate(&page[1]);
1376 }
1377
1378 /* never called for tail page */
1379 void set_page_huge_active(struct page *page)
1380 {
1381         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1382         SetPagePrivate(&page[1]);
1383 }
1384
1385 static void clear_page_huge_active(struct page *page)
1386 {
1387         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1388         ClearPagePrivate(&page[1]);
1389 }
1390
1391 /*
1392  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1393  * code
1394  */
1395 static inline bool PageHugeTemporary(struct page *page)
1396 {
1397         if (!PageHuge(page))
1398                 return false;
1399
1400         return (unsigned long)page[2].mapping == -1U;
1401 }
1402
1403 static inline void SetPageHugeTemporary(struct page *page)
1404 {
1405         page[2].mapping = (void *)-1U;
1406 }
1407
1408 static inline void ClearPageHugeTemporary(struct page *page)
1409 {
1410         page[2].mapping = NULL;
1411 }
1412
1413 static void __free_huge_page(struct page *page)
1414 {
1415         /*
1416          * Can't pass hstate in here because it is called from the
1417          * compound page destructor.
1418          */
1419         struct hstate *h = page_hstate(page);
1420         int nid = page_to_nid(page);
1421         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1422         bool restore_reserve;
1423
1424         VM_BUG_ON_PAGE(page_count(page), page);
1425         VM_BUG_ON_PAGE(page_mapcount(page), page);
1426
1427         hugetlb_set_page_subpool(page, NULL);
1428         page->mapping = NULL;
1429         restore_reserve = HPageRestoreReserve(page);
1430         ClearHPageRestoreReserve(page);
1431
1432         /*
1433          * If HPageRestoreReserve was set on page, page allocation consumed a
1434          * reservation.  If the page was associated with a subpool, there
1435          * would have been a page reserved in the subpool before allocation
1436          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1437          * reservation, do not call hugepage_subpool_put_pages() as this will
1438          * remove the reserved page from the subpool.
1439          */
1440         if (!restore_reserve) {
1441                 /*
1442                  * A return code of zero implies that the subpool will be
1443                  * under its minimum size if the reservation is not restored
1444                  * after page is free.  Therefore, force restore_reserve
1445                  * operation.
1446                  */
1447                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1448                         restore_reserve = true;
1449         }
1450
1451         spin_lock(&hugetlb_lock);
1452         clear_page_huge_active(page);
1453         hugetlb_cgroup_uncharge_page(hstate_index(h),
1454                                      pages_per_huge_page(h), page);
1455         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1456                                           pages_per_huge_page(h), page);
1457         if (restore_reserve)
1458                 h->resv_huge_pages++;
1459
1460         if (PageHugeTemporary(page)) {
1461                 list_del(&page->lru);
1462                 ClearPageHugeTemporary(page);
1463                 update_and_free_page(h, page);
1464         } else if (h->surplus_huge_pages_node[nid]) {
1465                 /* remove the page from active list */
1466                 list_del(&page->lru);
1467                 update_and_free_page(h, page);
1468                 h->surplus_huge_pages--;
1469                 h->surplus_huge_pages_node[nid]--;
1470         } else {
1471                 arch_clear_hugepage_flags(page);
1472                 enqueue_huge_page(h, page);
1473         }
1474         spin_unlock(&hugetlb_lock);
1475 }
1476
1477 /*
1478  * As free_huge_page() can be called from a non-task context, we have
1479  * to defer the actual freeing in a workqueue to prevent potential
1480  * hugetlb_lock deadlock.
1481  *
1482  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1483  * be freed and frees them one-by-one. As the page->mapping pointer is
1484  * going to be cleared in __free_huge_page() anyway, it is reused as the
1485  * llist_node structure of a lockless linked list of huge pages to be freed.
1486  */
1487 static LLIST_HEAD(hpage_freelist);
1488
1489 static void free_hpage_workfn(struct work_struct *work)
1490 {
1491         struct llist_node *node;
1492         struct page *page;
1493
1494         node = llist_del_all(&hpage_freelist);
1495
1496         while (node) {
1497                 page = container_of((struct address_space **)node,
1498                                      struct page, mapping);
1499                 node = node->next;
1500                 __free_huge_page(page);
1501         }
1502 }
1503 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1504
1505 void free_huge_page(struct page *page)
1506 {
1507         /*
1508          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1509          */
1510         if (!in_task()) {
1511                 /*
1512                  * Only call schedule_work() if hpage_freelist is previously
1513                  * empty. Otherwise, schedule_work() had been called but the
1514                  * workfn hasn't retrieved the list yet.
1515                  */
1516                 if (llist_add((struct llist_node *)&page->mapping,
1517                               &hpage_freelist))
1518                         schedule_work(&free_hpage_work);
1519                 return;
1520         }
1521
1522         __free_huge_page(page);
1523 }
1524
1525 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1526 {
1527         INIT_LIST_HEAD(&page->lru);
1528         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1529         set_hugetlb_cgroup(page, NULL);
1530         set_hugetlb_cgroup_rsvd(page, NULL);
1531         spin_lock(&hugetlb_lock);
1532         h->nr_huge_pages++;
1533         h->nr_huge_pages_node[nid]++;
1534         ClearPageHugeFreed(page);
1535         spin_unlock(&hugetlb_lock);
1536 }
1537
1538 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1539 {
1540         int i;
1541         int nr_pages = 1 << order;
1542         struct page *p = page + 1;
1543
1544         /* we rely on prep_new_huge_page to set the destructor */
1545         set_compound_order(page, order);
1546         __ClearPageReserved(page);
1547         __SetPageHead(page);
1548         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1549                 /*
1550                  * For gigantic hugepages allocated through bootmem at
1551                  * boot, it's safer to be consistent with the not-gigantic
1552                  * hugepages and clear the PG_reserved bit from all tail pages
1553                  * too.  Otherwise drivers using get_user_pages() to access tail
1554                  * pages may get the reference counting wrong if they see
1555                  * PG_reserved set on a tail page (despite the head page not
1556                  * having PG_reserved set).  Enforcing this consistency between
1557                  * head and tail pages allows drivers to optimize away a check
1558                  * on the head page when they need know if put_page() is needed
1559                  * after get_user_pages().
1560                  */
1561                 __ClearPageReserved(p);
1562                 set_page_count(p, 0);
1563                 set_compound_head(p, page);
1564         }
1565         atomic_set(compound_mapcount_ptr(page), -1);
1566         atomic_set(compound_pincount_ptr(page), 0);
1567 }
1568
1569 /*
1570  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1571  * transparent huge pages.  See the PageTransHuge() documentation for more
1572  * details.
1573  */
1574 int PageHuge(struct page *page)
1575 {
1576         if (!PageCompound(page))
1577                 return 0;
1578
1579         page = compound_head(page);
1580         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1581 }
1582 EXPORT_SYMBOL_GPL(PageHuge);
1583
1584 /*
1585  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1586  * normal or transparent huge pages.
1587  */
1588 int PageHeadHuge(struct page *page_head)
1589 {
1590         if (!PageHead(page_head))
1591                 return 0;
1592
1593         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1594 }
1595
1596 /*
1597  * Find and lock address space (mapping) in write mode.
1598  *
1599  * Upon entry, the page is locked which means that page_mapping() is
1600  * stable.  Due to locking order, we can only trylock_write.  If we can
1601  * not get the lock, simply return NULL to caller.
1602  */
1603 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1604 {
1605         struct address_space *mapping = page_mapping(hpage);
1606
1607         if (!mapping)
1608                 return mapping;
1609
1610         if (i_mmap_trylock_write(mapping))
1611                 return mapping;
1612
1613         return NULL;
1614 }
1615
1616 pgoff_t __basepage_index(struct page *page)
1617 {
1618         struct page *page_head = compound_head(page);
1619         pgoff_t index = page_index(page_head);
1620         unsigned long compound_idx;
1621
1622         if (!PageHuge(page_head))
1623                 return page_index(page);
1624
1625         if (compound_order(page_head) >= MAX_ORDER)
1626                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1627         else
1628                 compound_idx = page - page_head;
1629
1630         return (index << compound_order(page_head)) + compound_idx;
1631 }
1632
1633 static struct page *alloc_buddy_huge_page(struct hstate *h,
1634                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1635                 nodemask_t *node_alloc_noretry)
1636 {
1637         int order = huge_page_order(h);
1638         struct page *page;
1639         bool alloc_try_hard = true;
1640
1641         /*
1642          * By default we always try hard to allocate the page with
1643          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1644          * a loop (to adjust global huge page counts) and previous allocation
1645          * failed, do not continue to try hard on the same node.  Use the
1646          * node_alloc_noretry bitmap to manage this state information.
1647          */
1648         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1649                 alloc_try_hard = false;
1650         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1651         if (alloc_try_hard)
1652                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1653         if (nid == NUMA_NO_NODE)
1654                 nid = numa_mem_id();
1655         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1656         if (page)
1657                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1658         else
1659                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1660
1661         /*
1662          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1663          * indicates an overall state change.  Clear bit so that we resume
1664          * normal 'try hard' allocations.
1665          */
1666         if (node_alloc_noretry && page && !alloc_try_hard)
1667                 node_clear(nid, *node_alloc_noretry);
1668
1669         /*
1670          * If we tried hard to get a page but failed, set bit so that
1671          * subsequent attempts will not try as hard until there is an
1672          * overall state change.
1673          */
1674         if (node_alloc_noretry && !page && alloc_try_hard)
1675                 node_set(nid, *node_alloc_noretry);
1676
1677         return page;
1678 }
1679
1680 /*
1681  * Common helper to allocate a fresh hugetlb page. All specific allocators
1682  * should use this function to get new hugetlb pages
1683  */
1684 static struct page *alloc_fresh_huge_page(struct hstate *h,
1685                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1686                 nodemask_t *node_alloc_noretry)
1687 {
1688         struct page *page;
1689
1690         if (hstate_is_gigantic(h))
1691                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1692         else
1693                 page = alloc_buddy_huge_page(h, gfp_mask,
1694                                 nid, nmask, node_alloc_noretry);
1695         if (!page)
1696                 return NULL;
1697
1698         if (hstate_is_gigantic(h))
1699                 prep_compound_gigantic_page(page, huge_page_order(h));
1700         prep_new_huge_page(h, page, page_to_nid(page));
1701
1702         return page;
1703 }
1704
1705 /*
1706  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1707  * manner.
1708  */
1709 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1710                                 nodemask_t *node_alloc_noretry)
1711 {
1712         struct page *page;
1713         int nr_nodes, node;
1714         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1715
1716         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1717                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1718                                                 node_alloc_noretry);
1719                 if (page)
1720                         break;
1721         }
1722
1723         if (!page)
1724                 return 0;
1725
1726         put_page(page); /* free it into the hugepage allocator */
1727
1728         return 1;
1729 }
1730
1731 /*
1732  * Free huge page from pool from next node to free.
1733  * Attempt to keep persistent huge pages more or less
1734  * balanced over allowed nodes.
1735  * Called with hugetlb_lock locked.
1736  */
1737 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1738                                                          bool acct_surplus)
1739 {
1740         int nr_nodes, node;
1741         int ret = 0;
1742
1743         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1744                 /*
1745                  * If we're returning unused surplus pages, only examine
1746                  * nodes with surplus pages.
1747                  */
1748                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1749                     !list_empty(&h->hugepage_freelists[node])) {
1750                         struct page *page =
1751                                 list_entry(h->hugepage_freelists[node].next,
1752                                           struct page, lru);
1753                         list_del(&page->lru);
1754                         h->free_huge_pages--;
1755                         h->free_huge_pages_node[node]--;
1756                         if (acct_surplus) {
1757                                 h->surplus_huge_pages--;
1758                                 h->surplus_huge_pages_node[node]--;
1759                         }
1760                         update_and_free_page(h, page);
1761                         ret = 1;
1762                         break;
1763                 }
1764         }
1765
1766         return ret;
1767 }
1768
1769 /*
1770  * Dissolve a given free hugepage into free buddy pages. This function does
1771  * nothing for in-use hugepages and non-hugepages.
1772  * This function returns values like below:
1773  *
1774  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1775  *          (allocated or reserved.)
1776  *       0: successfully dissolved free hugepages or the page is not a
1777  *          hugepage (considered as already dissolved)
1778  */
1779 int dissolve_free_huge_page(struct page *page)
1780 {
1781         int rc = -EBUSY;
1782
1783 retry:
1784         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1785         if (!PageHuge(page))
1786                 return 0;
1787
1788         spin_lock(&hugetlb_lock);
1789         if (!PageHuge(page)) {
1790                 rc = 0;
1791                 goto out;
1792         }
1793
1794         if (!page_count(page)) {
1795                 struct page *head = compound_head(page);
1796                 struct hstate *h = page_hstate(head);
1797                 int nid = page_to_nid(head);
1798                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1799                         goto out;
1800
1801                 /*
1802                  * We should make sure that the page is already on the free list
1803                  * when it is dissolved.
1804                  */
1805                 if (unlikely(!PageHugeFreed(head))) {
1806                         spin_unlock(&hugetlb_lock);
1807                         cond_resched();
1808
1809                         /*
1810                          * Theoretically, we should return -EBUSY when we
1811                          * encounter this race. In fact, we have a chance
1812                          * to successfully dissolve the page if we do a
1813                          * retry. Because the race window is quite small.
1814                          * If we seize this opportunity, it is an optimization
1815                          * for increasing the success rate of dissolving page.
1816                          */
1817                         goto retry;
1818                 }
1819
1820                 /*
1821                  * Move PageHWPoison flag from head page to the raw error page,
1822                  * which makes any subpages rather than the error page reusable.
1823                  */
1824                 if (PageHWPoison(head) && page != head) {
1825                         SetPageHWPoison(page);
1826                         ClearPageHWPoison(head);
1827                 }
1828                 list_del(&head->lru);
1829                 h->free_huge_pages--;
1830                 h->free_huge_pages_node[nid]--;
1831                 h->max_huge_pages--;
1832                 update_and_free_page(h, head);
1833                 rc = 0;
1834         }
1835 out:
1836         spin_unlock(&hugetlb_lock);
1837         return rc;
1838 }
1839
1840 /*
1841  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1842  * make specified memory blocks removable from the system.
1843  * Note that this will dissolve a free gigantic hugepage completely, if any
1844  * part of it lies within the given range.
1845  * Also note that if dissolve_free_huge_page() returns with an error, all
1846  * free hugepages that were dissolved before that error are lost.
1847  */
1848 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1849 {
1850         unsigned long pfn;
1851         struct page *page;
1852         int rc = 0;
1853
1854         if (!hugepages_supported())
1855                 return rc;
1856
1857         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1858                 page = pfn_to_page(pfn);
1859                 rc = dissolve_free_huge_page(page);
1860                 if (rc)
1861                         break;
1862         }
1863
1864         return rc;
1865 }
1866
1867 /*
1868  * Allocates a fresh surplus page from the page allocator.
1869  */
1870 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1871                 int nid, nodemask_t *nmask)
1872 {
1873         struct page *page = NULL;
1874
1875         if (hstate_is_gigantic(h))
1876                 return NULL;
1877
1878         spin_lock(&hugetlb_lock);
1879         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1880                 goto out_unlock;
1881         spin_unlock(&hugetlb_lock);
1882
1883         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884         if (!page)
1885                 return NULL;
1886
1887         spin_lock(&hugetlb_lock);
1888         /*
1889          * We could have raced with the pool size change.
1890          * Double check that and simply deallocate the new page
1891          * if we would end up overcommiting the surpluses. Abuse
1892          * temporary page to workaround the nasty free_huge_page
1893          * codeflow
1894          */
1895         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1896                 SetPageHugeTemporary(page);
1897                 spin_unlock(&hugetlb_lock);
1898                 put_page(page);
1899                 return NULL;
1900         } else {
1901                 h->surplus_huge_pages++;
1902                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1903         }
1904
1905 out_unlock:
1906         spin_unlock(&hugetlb_lock);
1907
1908         return page;
1909 }
1910
1911 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1912                                      int nid, nodemask_t *nmask)
1913 {
1914         struct page *page;
1915
1916         if (hstate_is_gigantic(h))
1917                 return NULL;
1918
1919         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1920         if (!page)
1921                 return NULL;
1922
1923         /*
1924          * We do not account these pages as surplus because they are only
1925          * temporary and will be released properly on the last reference
1926          */
1927         SetPageHugeTemporary(page);
1928
1929         return page;
1930 }
1931
1932 /*
1933  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1934  */
1935 static
1936 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1937                 struct vm_area_struct *vma, unsigned long addr)
1938 {
1939         struct page *page;
1940         struct mempolicy *mpol;
1941         gfp_t gfp_mask = htlb_alloc_mask(h);
1942         int nid;
1943         nodemask_t *nodemask;
1944
1945         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1946         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1947         mpol_cond_put(mpol);
1948
1949         return page;
1950 }
1951
1952 /* page migration callback function */
1953 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1954                 nodemask_t *nmask, gfp_t gfp_mask)
1955 {
1956         spin_lock(&hugetlb_lock);
1957         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1958                 struct page *page;
1959
1960                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1961                 if (page) {
1962                         spin_unlock(&hugetlb_lock);
1963                         return page;
1964                 }
1965         }
1966         spin_unlock(&hugetlb_lock);
1967
1968         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1969 }
1970
1971 /* mempolicy aware migration callback */
1972 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1973                 unsigned long address)
1974 {
1975         struct mempolicy *mpol;
1976         nodemask_t *nodemask;
1977         struct page *page;
1978         gfp_t gfp_mask;
1979         int node;
1980
1981         gfp_mask = htlb_alloc_mask(h);
1982         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1983         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1984         mpol_cond_put(mpol);
1985
1986         return page;
1987 }
1988
1989 /*
1990  * Increase the hugetlb pool such that it can accommodate a reservation
1991  * of size 'delta'.
1992  */
1993 static int gather_surplus_pages(struct hstate *h, long delta)
1994         __must_hold(&hugetlb_lock)
1995 {
1996         struct list_head surplus_list;
1997         struct page *page, *tmp;
1998         int ret;
1999         long i;
2000         long needed, allocated;
2001         bool alloc_ok = true;
2002
2003         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2004         if (needed <= 0) {
2005                 h->resv_huge_pages += delta;
2006                 return 0;
2007         }
2008
2009         allocated = 0;
2010         INIT_LIST_HEAD(&surplus_list);
2011
2012         ret = -ENOMEM;
2013 retry:
2014         spin_unlock(&hugetlb_lock);
2015         for (i = 0; i < needed; i++) {
2016                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2017                                 NUMA_NO_NODE, NULL);
2018                 if (!page) {
2019                         alloc_ok = false;
2020                         break;
2021                 }
2022                 list_add(&page->lru, &surplus_list);
2023                 cond_resched();
2024         }
2025         allocated += i;
2026
2027         /*
2028          * After retaking hugetlb_lock, we need to recalculate 'needed'
2029          * because either resv_huge_pages or free_huge_pages may have changed.
2030          */
2031         spin_lock(&hugetlb_lock);
2032         needed = (h->resv_huge_pages + delta) -
2033                         (h->free_huge_pages + allocated);
2034         if (needed > 0) {
2035                 if (alloc_ok)
2036                         goto retry;
2037                 /*
2038                  * We were not able to allocate enough pages to
2039                  * satisfy the entire reservation so we free what
2040                  * we've allocated so far.
2041                  */
2042                 goto free;
2043         }
2044         /*
2045          * The surplus_list now contains _at_least_ the number of extra pages
2046          * needed to accommodate the reservation.  Add the appropriate number
2047          * of pages to the hugetlb pool and free the extras back to the buddy
2048          * allocator.  Commit the entire reservation here to prevent another
2049          * process from stealing the pages as they are added to the pool but
2050          * before they are reserved.
2051          */
2052         needed += allocated;
2053         h->resv_huge_pages += delta;
2054         ret = 0;
2055
2056         /* Free the needed pages to the hugetlb pool */
2057         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2058                 int zeroed;
2059
2060                 if ((--needed) < 0)
2061                         break;
2062                 /*
2063                  * This page is now managed by the hugetlb allocator and has
2064                  * no users -- drop the buddy allocator's reference.
2065                  */
2066                 zeroed = put_page_testzero(page);
2067                 VM_BUG_ON_PAGE(!zeroed, page);
2068                 enqueue_huge_page(h, page);
2069         }
2070 free:
2071         spin_unlock(&hugetlb_lock);
2072
2073         /* Free unnecessary surplus pages to the buddy allocator */
2074         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2075                 put_page(page);
2076         spin_lock(&hugetlb_lock);
2077
2078         return ret;
2079 }
2080
2081 /*
2082  * This routine has two main purposes:
2083  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2084  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2085  *    to the associated reservation map.
2086  * 2) Free any unused surplus pages that may have been allocated to satisfy
2087  *    the reservation.  As many as unused_resv_pages may be freed.
2088  *
2089  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2090  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2091  * we must make sure nobody else can claim pages we are in the process of
2092  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2093  * number of huge pages we plan to free when dropping the lock.
2094  */
2095 static void return_unused_surplus_pages(struct hstate *h,
2096                                         unsigned long unused_resv_pages)
2097 {
2098         unsigned long nr_pages;
2099
2100         /* Cannot return gigantic pages currently */
2101         if (hstate_is_gigantic(h))
2102                 goto out;
2103
2104         /*
2105          * Part (or even all) of the reservation could have been backed
2106          * by pre-allocated pages. Only free surplus pages.
2107          */
2108         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2109
2110         /*
2111          * We want to release as many surplus pages as possible, spread
2112          * evenly across all nodes with memory. Iterate across these nodes
2113          * until we can no longer free unreserved surplus pages. This occurs
2114          * when the nodes with surplus pages have no free pages.
2115          * free_pool_huge_page() will balance the freed pages across the
2116          * on-line nodes with memory and will handle the hstate accounting.
2117          *
2118          * Note that we decrement resv_huge_pages as we free the pages.  If
2119          * we drop the lock, resv_huge_pages will still be sufficiently large
2120          * to cover subsequent pages we may free.
2121          */
2122         while (nr_pages--) {
2123                 h->resv_huge_pages--;
2124                 unused_resv_pages--;
2125                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2126                         goto out;
2127                 cond_resched_lock(&hugetlb_lock);
2128         }
2129
2130 out:
2131         /* Fully uncommit the reservation */
2132         h->resv_huge_pages -= unused_resv_pages;
2133 }
2134
2135
2136 /*
2137  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2138  * are used by the huge page allocation routines to manage reservations.
2139  *
2140  * vma_needs_reservation is called to determine if the huge page at addr
2141  * within the vma has an associated reservation.  If a reservation is
2142  * needed, the value 1 is returned.  The caller is then responsible for
2143  * managing the global reservation and subpool usage counts.  After
2144  * the huge page has been allocated, vma_commit_reservation is called
2145  * to add the page to the reservation map.  If the page allocation fails,
2146  * the reservation must be ended instead of committed.  vma_end_reservation
2147  * is called in such cases.
2148  *
2149  * In the normal case, vma_commit_reservation returns the same value
2150  * as the preceding vma_needs_reservation call.  The only time this
2151  * is not the case is if a reserve map was changed between calls.  It
2152  * is the responsibility of the caller to notice the difference and
2153  * take appropriate action.
2154  *
2155  * vma_add_reservation is used in error paths where a reservation must
2156  * be restored when a newly allocated huge page must be freed.  It is
2157  * to be called after calling vma_needs_reservation to determine if a
2158  * reservation exists.
2159  */
2160 enum vma_resv_mode {
2161         VMA_NEEDS_RESV,
2162         VMA_COMMIT_RESV,
2163         VMA_END_RESV,
2164         VMA_ADD_RESV,
2165 };
2166 static long __vma_reservation_common(struct hstate *h,
2167                                 struct vm_area_struct *vma, unsigned long addr,
2168                                 enum vma_resv_mode mode)
2169 {
2170         struct resv_map *resv;
2171         pgoff_t idx;
2172         long ret;
2173         long dummy_out_regions_needed;
2174
2175         resv = vma_resv_map(vma);
2176         if (!resv)
2177                 return 1;
2178
2179         idx = vma_hugecache_offset(h, vma, addr);
2180         switch (mode) {
2181         case VMA_NEEDS_RESV:
2182                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2183                 /* We assume that vma_reservation_* routines always operate on
2184                  * 1 page, and that adding to resv map a 1 page entry can only
2185                  * ever require 1 region.
2186                  */
2187                 VM_BUG_ON(dummy_out_regions_needed != 1);
2188                 break;
2189         case VMA_COMMIT_RESV:
2190                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2191                 /* region_add calls of range 1 should never fail. */
2192                 VM_BUG_ON(ret < 0);
2193                 break;
2194         case VMA_END_RESV:
2195                 region_abort(resv, idx, idx + 1, 1);
2196                 ret = 0;
2197                 break;
2198         case VMA_ADD_RESV:
2199                 if (vma->vm_flags & VM_MAYSHARE) {
2200                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2201                         /* region_add calls of range 1 should never fail. */
2202                         VM_BUG_ON(ret < 0);
2203                 } else {
2204                         region_abort(resv, idx, idx + 1, 1);
2205                         ret = region_del(resv, idx, idx + 1);
2206                 }
2207                 break;
2208         default:
2209                 BUG();
2210         }
2211
2212         if (vma->vm_flags & VM_MAYSHARE)
2213                 return ret;
2214         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2215                 /*
2216                  * In most cases, reserves always exist for private mappings.
2217                  * However, a file associated with mapping could have been
2218                  * hole punched or truncated after reserves were consumed.
2219                  * As subsequent fault on such a range will not use reserves.
2220                  * Subtle - The reserve map for private mappings has the
2221                  * opposite meaning than that of shared mappings.  If NO
2222                  * entry is in the reserve map, it means a reservation exists.
2223                  * If an entry exists in the reserve map, it means the
2224                  * reservation has already been consumed.  As a result, the
2225                  * return value of this routine is the opposite of the
2226                  * value returned from reserve map manipulation routines above.
2227                  */
2228                 if (ret)
2229                         return 0;
2230                 else
2231                         return 1;
2232         }
2233         else
2234                 return ret < 0 ? ret : 0;
2235 }
2236
2237 static long vma_needs_reservation(struct hstate *h,
2238                         struct vm_area_struct *vma, unsigned long addr)
2239 {
2240         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2241 }
2242
2243 static long vma_commit_reservation(struct hstate *h,
2244                         struct vm_area_struct *vma, unsigned long addr)
2245 {
2246         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2247 }
2248
2249 static void vma_end_reservation(struct hstate *h,
2250                         struct vm_area_struct *vma, unsigned long addr)
2251 {
2252         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2253 }
2254
2255 static long vma_add_reservation(struct hstate *h,
2256                         struct vm_area_struct *vma, unsigned long addr)
2257 {
2258         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2259 }
2260
2261 /*
2262  * This routine is called to restore a reservation on error paths.  In the
2263  * specific error paths, a huge page was allocated (via alloc_huge_page)
2264  * and is about to be freed.  If a reservation for the page existed,
2265  * alloc_huge_page would have consumed the reservation and set
2266  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2267  * via free_huge_page, the global reservation count will be incremented if
2268  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2269  * reserve map.  Adjust the reserve map here to be consistent with global
2270  * reserve count adjustments to be made by free_huge_page.
2271  */
2272 static void restore_reserve_on_error(struct hstate *h,
2273                         struct vm_area_struct *vma, unsigned long address,
2274                         struct page *page)
2275 {
2276         if (unlikely(HPageRestoreReserve(page))) {
2277                 long rc = vma_needs_reservation(h, vma, address);
2278
2279                 if (unlikely(rc < 0)) {
2280                         /*
2281                          * Rare out of memory condition in reserve map
2282                          * manipulation.  Clear HPageRestoreReserve so that
2283                          * global reserve count will not be incremented
2284                          * by free_huge_page.  This will make it appear
2285                          * as though the reservation for this page was
2286                          * consumed.  This may prevent the task from
2287                          * faulting in the page at a later time.  This
2288                          * is better than inconsistent global huge page
2289                          * accounting of reserve counts.
2290                          */
2291                         ClearHPageRestoreReserve(page);
2292                 } else if (rc) {
2293                         rc = vma_add_reservation(h, vma, address);
2294                         if (unlikely(rc < 0))
2295                                 /*
2296                                  * See above comment about rare out of
2297                                  * memory condition.
2298                                  */
2299                                 ClearHPageRestoreReserve(page);
2300                 } else
2301                         vma_end_reservation(h, vma, address);
2302         }
2303 }
2304
2305 struct page *alloc_huge_page(struct vm_area_struct *vma,
2306                                     unsigned long addr, int avoid_reserve)
2307 {
2308         struct hugepage_subpool *spool = subpool_vma(vma);
2309         struct hstate *h = hstate_vma(vma);
2310         struct page *page;
2311         long map_chg, map_commit;
2312         long gbl_chg;
2313         int ret, idx;
2314         struct hugetlb_cgroup *h_cg;
2315         bool deferred_reserve;
2316
2317         idx = hstate_index(h);
2318         /*
2319          * Examine the region/reserve map to determine if the process
2320          * has a reservation for the page to be allocated.  A return
2321          * code of zero indicates a reservation exists (no change).
2322          */
2323         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2324         if (map_chg < 0)
2325                 return ERR_PTR(-ENOMEM);
2326
2327         /*
2328          * Processes that did not create the mapping will have no
2329          * reserves as indicated by the region/reserve map. Check
2330          * that the allocation will not exceed the subpool limit.
2331          * Allocations for MAP_NORESERVE mappings also need to be
2332          * checked against any subpool limit.
2333          */
2334         if (map_chg || avoid_reserve) {
2335                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2336                 if (gbl_chg < 0) {
2337                         vma_end_reservation(h, vma, addr);
2338                         return ERR_PTR(-ENOSPC);
2339                 }
2340
2341                 /*
2342                  * Even though there was no reservation in the region/reserve
2343                  * map, there could be reservations associated with the
2344                  * subpool that can be used.  This would be indicated if the
2345                  * return value of hugepage_subpool_get_pages() is zero.
2346                  * However, if avoid_reserve is specified we still avoid even
2347                  * the subpool reservations.
2348                  */
2349                 if (avoid_reserve)
2350                         gbl_chg = 1;
2351         }
2352
2353         /* If this allocation is not consuming a reservation, charge it now.
2354          */
2355         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2356         if (deferred_reserve) {
2357                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2358                         idx, pages_per_huge_page(h), &h_cg);
2359                 if (ret)
2360                         goto out_subpool_put;
2361         }
2362
2363         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2364         if (ret)
2365                 goto out_uncharge_cgroup_reservation;
2366
2367         spin_lock(&hugetlb_lock);
2368         /*
2369          * glb_chg is passed to indicate whether or not a page must be taken
2370          * from the global free pool (global change).  gbl_chg == 0 indicates
2371          * a reservation exists for the allocation.
2372          */
2373         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2374         if (!page) {
2375                 spin_unlock(&hugetlb_lock);
2376                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2377                 if (!page)
2378                         goto out_uncharge_cgroup;
2379                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2380                         SetHPageRestoreReserve(page);
2381                         h->resv_huge_pages--;
2382                 }
2383                 spin_lock(&hugetlb_lock);
2384                 list_add(&page->lru, &h->hugepage_activelist);
2385                 /* Fall through */
2386         }
2387         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2388         /* If allocation is not consuming a reservation, also store the
2389          * hugetlb_cgroup pointer on the page.
2390          */
2391         if (deferred_reserve) {
2392                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2393                                                   h_cg, page);
2394         }
2395
2396         spin_unlock(&hugetlb_lock);
2397
2398         hugetlb_set_page_subpool(page, spool);
2399
2400         map_commit = vma_commit_reservation(h, vma, addr);
2401         if (unlikely(map_chg > map_commit)) {
2402                 /*
2403                  * The page was added to the reservation map between
2404                  * vma_needs_reservation and vma_commit_reservation.
2405                  * This indicates a race with hugetlb_reserve_pages.
2406                  * Adjust for the subpool count incremented above AND
2407                  * in hugetlb_reserve_pages for the same page.  Also,
2408                  * the reservation count added in hugetlb_reserve_pages
2409                  * no longer applies.
2410                  */
2411                 long rsv_adjust;
2412
2413                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2414                 hugetlb_acct_memory(h, -rsv_adjust);
2415                 if (deferred_reserve)
2416                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2417                                         pages_per_huge_page(h), page);
2418         }
2419         return page;
2420
2421 out_uncharge_cgroup:
2422         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2423 out_uncharge_cgroup_reservation:
2424         if (deferred_reserve)
2425                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2426                                                     h_cg);
2427 out_subpool_put:
2428         if (map_chg || avoid_reserve)
2429                 hugepage_subpool_put_pages(spool, 1);
2430         vma_end_reservation(h, vma, addr);
2431         return ERR_PTR(-ENOSPC);
2432 }
2433
2434 int alloc_bootmem_huge_page(struct hstate *h)
2435         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2436 int __alloc_bootmem_huge_page(struct hstate *h)
2437 {
2438         struct huge_bootmem_page *m;
2439         int nr_nodes, node;
2440
2441         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2442                 void *addr;
2443
2444                 addr = memblock_alloc_try_nid_raw(
2445                                 huge_page_size(h), huge_page_size(h),
2446                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2447                 if (addr) {
2448                         /*
2449                          * Use the beginning of the huge page to store the
2450                          * huge_bootmem_page struct (until gather_bootmem
2451                          * puts them into the mem_map).
2452                          */
2453                         m = addr;
2454                         goto found;
2455                 }
2456         }
2457         return 0;
2458
2459 found:
2460         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2461         /* Put them into a private list first because mem_map is not up yet */
2462         INIT_LIST_HEAD(&m->list);
2463         list_add(&m->list, &huge_boot_pages);
2464         m->hstate = h;
2465         return 1;
2466 }
2467
2468 static void __init prep_compound_huge_page(struct page *page,
2469                 unsigned int order)
2470 {
2471         if (unlikely(order > (MAX_ORDER - 1)))
2472                 prep_compound_gigantic_page(page, order);
2473         else
2474                 prep_compound_page(page, order);
2475 }
2476
2477 /* Put bootmem huge pages into the standard lists after mem_map is up */
2478 static void __init gather_bootmem_prealloc(void)
2479 {
2480         struct huge_bootmem_page *m;
2481
2482         list_for_each_entry(m, &huge_boot_pages, list) {
2483                 struct page *page = virt_to_page(m);
2484                 struct hstate *h = m->hstate;
2485
2486                 WARN_ON(page_count(page) != 1);
2487                 prep_compound_huge_page(page, huge_page_order(h));
2488                 WARN_ON(PageReserved(page));
2489                 prep_new_huge_page(h, page, page_to_nid(page));
2490                 put_page(page); /* free it into the hugepage allocator */
2491
2492                 /*
2493                  * If we had gigantic hugepages allocated at boot time, we need
2494                  * to restore the 'stolen' pages to totalram_pages in order to
2495                  * fix confusing memory reports from free(1) and another
2496                  * side-effects, like CommitLimit going negative.
2497                  */
2498                 if (hstate_is_gigantic(h))
2499                         adjust_managed_page_count(page, pages_per_huge_page(h));
2500                 cond_resched();
2501         }
2502 }
2503
2504 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2505 {
2506         unsigned long i;
2507         nodemask_t *node_alloc_noretry;
2508
2509         if (!hstate_is_gigantic(h)) {
2510                 /*
2511                  * Bit mask controlling how hard we retry per-node allocations.
2512                  * Ignore errors as lower level routines can deal with
2513                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2514                  * time, we are likely in bigger trouble.
2515                  */
2516                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2517                                                 GFP_KERNEL);
2518         } else {
2519                 /* allocations done at boot time */
2520                 node_alloc_noretry = NULL;
2521         }
2522
2523         /* bit mask controlling how hard we retry per-node allocations */
2524         if (node_alloc_noretry)
2525                 nodes_clear(*node_alloc_noretry);
2526
2527         for (i = 0; i < h->max_huge_pages; ++i) {
2528                 if (hstate_is_gigantic(h)) {
2529                         if (hugetlb_cma_size) {
2530                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2531                                 goto free;
2532                         }
2533                         if (!alloc_bootmem_huge_page(h))
2534                                 break;
2535                 } else if (!alloc_pool_huge_page(h,
2536                                          &node_states[N_MEMORY],
2537                                          node_alloc_noretry))
2538                         break;
2539                 cond_resched();
2540         }
2541         if (i < h->max_huge_pages) {
2542                 char buf[32];
2543
2544                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2545                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2546                         h->max_huge_pages, buf, i);
2547                 h->max_huge_pages = i;
2548         }
2549 free:
2550         kfree(node_alloc_noretry);
2551 }
2552
2553 static void __init hugetlb_init_hstates(void)
2554 {
2555         struct hstate *h;
2556
2557         for_each_hstate(h) {
2558                 if (minimum_order > huge_page_order(h))
2559                         minimum_order = huge_page_order(h);
2560
2561                 /* oversize hugepages were init'ed in early boot */
2562                 if (!hstate_is_gigantic(h))
2563                         hugetlb_hstate_alloc_pages(h);
2564         }
2565         VM_BUG_ON(minimum_order == UINT_MAX);
2566 }
2567
2568 static void __init report_hugepages(void)
2569 {
2570         struct hstate *h;
2571
2572         for_each_hstate(h) {
2573                 char buf[32];
2574
2575                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2576                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2577                         buf, h->free_huge_pages);
2578         }
2579 }
2580
2581 #ifdef CONFIG_HIGHMEM
2582 static void try_to_free_low(struct hstate *h, unsigned long count,
2583                                                 nodemask_t *nodes_allowed)
2584 {
2585         int i;
2586
2587         if (hstate_is_gigantic(h))
2588                 return;
2589
2590         for_each_node_mask(i, *nodes_allowed) {
2591                 struct page *page, *next;
2592                 struct list_head *freel = &h->hugepage_freelists[i];
2593                 list_for_each_entry_safe(page, next, freel, lru) {
2594                         if (count >= h->nr_huge_pages)
2595                                 return;
2596                         if (PageHighMem(page))
2597                                 continue;
2598                         list_del(&page->lru);
2599                         update_and_free_page(h, page);
2600                         h->free_huge_pages--;
2601                         h->free_huge_pages_node[page_to_nid(page)]--;
2602                 }
2603         }
2604 }
2605 #else
2606 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2607                                                 nodemask_t *nodes_allowed)
2608 {
2609 }
2610 #endif
2611
2612 /*
2613  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2614  * balanced by operating on them in a round-robin fashion.
2615  * Returns 1 if an adjustment was made.
2616  */
2617 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2618                                 int delta)
2619 {
2620         int nr_nodes, node;
2621
2622         VM_BUG_ON(delta != -1 && delta != 1);
2623
2624         if (delta < 0) {
2625                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2626                         if (h->surplus_huge_pages_node[node])
2627                                 goto found;
2628                 }
2629         } else {
2630                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2631                         if (h->surplus_huge_pages_node[node] <
2632                                         h->nr_huge_pages_node[node])
2633                                 goto found;
2634                 }
2635         }
2636         return 0;
2637
2638 found:
2639         h->surplus_huge_pages += delta;
2640         h->surplus_huge_pages_node[node] += delta;
2641         return 1;
2642 }
2643
2644 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2645 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2646                               nodemask_t *nodes_allowed)
2647 {
2648         unsigned long min_count, ret;
2649         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2650
2651         /*
2652          * Bit mask controlling how hard we retry per-node allocations.
2653          * If we can not allocate the bit mask, do not attempt to allocate
2654          * the requested huge pages.
2655          */
2656         if (node_alloc_noretry)
2657                 nodes_clear(*node_alloc_noretry);
2658         else
2659                 return -ENOMEM;
2660
2661         spin_lock(&hugetlb_lock);
2662
2663         /*
2664          * Check for a node specific request.
2665          * Changing node specific huge page count may require a corresponding
2666          * change to the global count.  In any case, the passed node mask
2667          * (nodes_allowed) will restrict alloc/free to the specified node.
2668          */
2669         if (nid != NUMA_NO_NODE) {
2670                 unsigned long old_count = count;
2671
2672                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2673                 /*
2674                  * User may have specified a large count value which caused the
2675                  * above calculation to overflow.  In this case, they wanted
2676                  * to allocate as many huge pages as possible.  Set count to
2677                  * largest possible value to align with their intention.
2678                  */
2679                 if (count < old_count)
2680                         count = ULONG_MAX;
2681         }
2682
2683         /*
2684          * Gigantic pages runtime allocation depend on the capability for large
2685          * page range allocation.
2686          * If the system does not provide this feature, return an error when
2687          * the user tries to allocate gigantic pages but let the user free the
2688          * boottime allocated gigantic pages.
2689          */
2690         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2691                 if (count > persistent_huge_pages(h)) {
2692                         spin_unlock(&hugetlb_lock);
2693                         NODEMASK_FREE(node_alloc_noretry);
2694                         return -EINVAL;
2695                 }
2696                 /* Fall through to decrease pool */
2697         }
2698
2699         /*
2700          * Increase the pool size
2701          * First take pages out of surplus state.  Then make up the
2702          * remaining difference by allocating fresh huge pages.
2703          *
2704          * We might race with alloc_surplus_huge_page() here and be unable
2705          * to convert a surplus huge page to a normal huge page. That is
2706          * not critical, though, it just means the overall size of the
2707          * pool might be one hugepage larger than it needs to be, but
2708          * within all the constraints specified by the sysctls.
2709          */
2710         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2711                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2712                         break;
2713         }
2714
2715         while (count > persistent_huge_pages(h)) {
2716                 /*
2717                  * If this allocation races such that we no longer need the
2718                  * page, free_huge_page will handle it by freeing the page
2719                  * and reducing the surplus.
2720                  */
2721                 spin_unlock(&hugetlb_lock);
2722
2723                 /* yield cpu to avoid soft lockup */
2724                 cond_resched();
2725
2726                 ret = alloc_pool_huge_page(h, nodes_allowed,
2727                                                 node_alloc_noretry);
2728                 spin_lock(&hugetlb_lock);
2729                 if (!ret)
2730                         goto out;
2731
2732                 /* Bail for signals. Probably ctrl-c from user */
2733                 if (signal_pending(current))
2734                         goto out;
2735         }
2736
2737         /*
2738          * Decrease the pool size
2739          * First return free pages to the buddy allocator (being careful
2740          * to keep enough around to satisfy reservations).  Then place
2741          * pages into surplus state as needed so the pool will shrink
2742          * to the desired size as pages become free.
2743          *
2744          * By placing pages into the surplus state independent of the
2745          * overcommit value, we are allowing the surplus pool size to
2746          * exceed overcommit. There are few sane options here. Since
2747          * alloc_surplus_huge_page() is checking the global counter,
2748          * though, we'll note that we're not allowed to exceed surplus
2749          * and won't grow the pool anywhere else. Not until one of the
2750          * sysctls are changed, or the surplus pages go out of use.
2751          */
2752         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2753         min_count = max(count, min_count);
2754         try_to_free_low(h, min_count, nodes_allowed);
2755         while (min_count < persistent_huge_pages(h)) {
2756                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2757                         break;
2758                 cond_resched_lock(&hugetlb_lock);
2759         }
2760         while (count < persistent_huge_pages(h)) {
2761                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2762                         break;
2763         }
2764 out:
2765         h->max_huge_pages = persistent_huge_pages(h);
2766         spin_unlock(&hugetlb_lock);
2767
2768         NODEMASK_FREE(node_alloc_noretry);
2769
2770         return 0;
2771 }
2772
2773 #define HSTATE_ATTR_RO(_name) \
2774         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2775
2776 #define HSTATE_ATTR(_name) \
2777         static struct kobj_attribute _name##_attr = \
2778                 __ATTR(_name, 0644, _name##_show, _name##_store)
2779
2780 static struct kobject *hugepages_kobj;
2781 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2782
2783 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2784
2785 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2786 {
2787         int i;
2788
2789         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2790                 if (hstate_kobjs[i] == kobj) {
2791                         if (nidp)
2792                                 *nidp = NUMA_NO_NODE;
2793                         return &hstates[i];
2794                 }
2795
2796         return kobj_to_node_hstate(kobj, nidp);
2797 }
2798
2799 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2800                                         struct kobj_attribute *attr, char *buf)
2801 {
2802         struct hstate *h;
2803         unsigned long nr_huge_pages;
2804         int nid;
2805
2806         h = kobj_to_hstate(kobj, &nid);
2807         if (nid == NUMA_NO_NODE)
2808                 nr_huge_pages = h->nr_huge_pages;
2809         else
2810                 nr_huge_pages = h->nr_huge_pages_node[nid];
2811
2812         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2813 }
2814
2815 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2816                                            struct hstate *h, int nid,
2817                                            unsigned long count, size_t len)
2818 {
2819         int err;
2820         nodemask_t nodes_allowed, *n_mask;
2821
2822         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2823                 return -EINVAL;
2824
2825         if (nid == NUMA_NO_NODE) {
2826                 /*
2827                  * global hstate attribute
2828                  */
2829                 if (!(obey_mempolicy &&
2830                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2831                         n_mask = &node_states[N_MEMORY];
2832                 else
2833                         n_mask = &nodes_allowed;
2834         } else {
2835                 /*
2836                  * Node specific request.  count adjustment happens in
2837                  * set_max_huge_pages() after acquiring hugetlb_lock.
2838                  */
2839                 init_nodemask_of_node(&nodes_allowed, nid);
2840                 n_mask = &nodes_allowed;
2841         }
2842
2843         err = set_max_huge_pages(h, count, nid, n_mask);
2844
2845         return err ? err : len;
2846 }
2847
2848 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2849                                          struct kobject *kobj, const char *buf,
2850                                          size_t len)
2851 {
2852         struct hstate *h;
2853         unsigned long count;
2854         int nid;
2855         int err;
2856
2857         err = kstrtoul(buf, 10, &count);
2858         if (err)
2859                 return err;
2860
2861         h = kobj_to_hstate(kobj, &nid);
2862         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2863 }
2864
2865 static ssize_t nr_hugepages_show(struct kobject *kobj,
2866                                        struct kobj_attribute *attr, char *buf)
2867 {
2868         return nr_hugepages_show_common(kobj, attr, buf);
2869 }
2870
2871 static ssize_t nr_hugepages_store(struct kobject *kobj,
2872                struct kobj_attribute *attr, const char *buf, size_t len)
2873 {
2874         return nr_hugepages_store_common(false, kobj, buf, len);
2875 }
2876 HSTATE_ATTR(nr_hugepages);
2877
2878 #ifdef CONFIG_NUMA
2879
2880 /*
2881  * hstate attribute for optionally mempolicy-based constraint on persistent
2882  * huge page alloc/free.
2883  */
2884 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2885                                            struct kobj_attribute *attr,
2886                                            char *buf)
2887 {
2888         return nr_hugepages_show_common(kobj, attr, buf);
2889 }
2890
2891 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2892                struct kobj_attribute *attr, const char *buf, size_t len)
2893 {
2894         return nr_hugepages_store_common(true, kobj, buf, len);
2895 }
2896 HSTATE_ATTR(nr_hugepages_mempolicy);
2897 #endif
2898
2899
2900 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2901                                         struct kobj_attribute *attr, char *buf)
2902 {
2903         struct hstate *h = kobj_to_hstate(kobj, NULL);
2904         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2905 }
2906
2907 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2908                 struct kobj_attribute *attr, const char *buf, size_t count)
2909 {
2910         int err;
2911         unsigned long input;
2912         struct hstate *h = kobj_to_hstate(kobj, NULL);
2913
2914         if (hstate_is_gigantic(h))
2915                 return -EINVAL;
2916
2917         err = kstrtoul(buf, 10, &input);
2918         if (err)
2919                 return err;
2920
2921         spin_lock(&hugetlb_lock);
2922         h->nr_overcommit_huge_pages = input;
2923         spin_unlock(&hugetlb_lock);
2924
2925         return count;
2926 }
2927 HSTATE_ATTR(nr_overcommit_hugepages);
2928
2929 static ssize_t free_hugepages_show(struct kobject *kobj,
2930                                         struct kobj_attribute *attr, char *buf)
2931 {
2932         struct hstate *h;
2933         unsigned long free_huge_pages;
2934         int nid;
2935
2936         h = kobj_to_hstate(kobj, &nid);
2937         if (nid == NUMA_NO_NODE)
2938                 free_huge_pages = h->free_huge_pages;
2939         else
2940                 free_huge_pages = h->free_huge_pages_node[nid];
2941
2942         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2943 }
2944 HSTATE_ATTR_RO(free_hugepages);
2945
2946 static ssize_t resv_hugepages_show(struct kobject *kobj,
2947                                         struct kobj_attribute *attr, char *buf)
2948 {
2949         struct hstate *h = kobj_to_hstate(kobj, NULL);
2950         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2951 }
2952 HSTATE_ATTR_RO(resv_hugepages);
2953
2954 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2955                                         struct kobj_attribute *attr, char *buf)
2956 {
2957         struct hstate *h;
2958         unsigned long surplus_huge_pages;
2959         int nid;
2960
2961         h = kobj_to_hstate(kobj, &nid);
2962         if (nid == NUMA_NO_NODE)
2963                 surplus_huge_pages = h->surplus_huge_pages;
2964         else
2965                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2966
2967         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2968 }
2969 HSTATE_ATTR_RO(surplus_hugepages);
2970
2971 static struct attribute *hstate_attrs[] = {
2972         &nr_hugepages_attr.attr,
2973         &nr_overcommit_hugepages_attr.attr,
2974         &free_hugepages_attr.attr,
2975         &resv_hugepages_attr.attr,
2976         &surplus_hugepages_attr.attr,
2977 #ifdef CONFIG_NUMA
2978         &nr_hugepages_mempolicy_attr.attr,
2979 #endif
2980         NULL,
2981 };
2982
2983 static const struct attribute_group hstate_attr_group = {
2984         .attrs = hstate_attrs,
2985 };
2986
2987 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2988                                     struct kobject **hstate_kobjs,
2989                                     const struct attribute_group *hstate_attr_group)
2990 {
2991         int retval;
2992         int hi = hstate_index(h);
2993
2994         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2995         if (!hstate_kobjs[hi])
2996                 return -ENOMEM;
2997
2998         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2999         if (retval) {
3000                 kobject_put(hstate_kobjs[hi]);
3001                 hstate_kobjs[hi] = NULL;
3002         }
3003
3004         return retval;
3005 }
3006
3007 static void __init hugetlb_sysfs_init(void)
3008 {
3009         struct hstate *h;
3010         int err;
3011
3012         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3013         if (!hugepages_kobj)
3014                 return;
3015
3016         for_each_hstate(h) {
3017                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3018                                          hstate_kobjs, &hstate_attr_group);
3019                 if (err)
3020                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3021         }
3022 }
3023
3024 #ifdef CONFIG_NUMA
3025
3026 /*
3027  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3028  * with node devices in node_devices[] using a parallel array.  The array
3029  * index of a node device or _hstate == node id.
3030  * This is here to avoid any static dependency of the node device driver, in
3031  * the base kernel, on the hugetlb module.
3032  */
3033 struct node_hstate {
3034         struct kobject          *hugepages_kobj;
3035         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3036 };
3037 static struct node_hstate node_hstates[MAX_NUMNODES];
3038
3039 /*
3040  * A subset of global hstate attributes for node devices
3041  */
3042 static struct attribute *per_node_hstate_attrs[] = {
3043         &nr_hugepages_attr.attr,
3044         &free_hugepages_attr.attr,
3045         &surplus_hugepages_attr.attr,
3046         NULL,
3047 };
3048
3049 static const struct attribute_group per_node_hstate_attr_group = {
3050         .attrs = per_node_hstate_attrs,
3051 };
3052
3053 /*
3054  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3055  * Returns node id via non-NULL nidp.
3056  */
3057 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3058 {
3059         int nid;
3060
3061         for (nid = 0; nid < nr_node_ids; nid++) {
3062                 struct node_hstate *nhs = &node_hstates[nid];
3063                 int i;
3064                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3065                         if (nhs->hstate_kobjs[i] == kobj) {
3066                                 if (nidp)
3067                                         *nidp = nid;
3068                                 return &hstates[i];
3069                         }
3070         }
3071
3072         BUG();
3073         return NULL;
3074 }
3075
3076 /*
3077  * Unregister hstate attributes from a single node device.
3078  * No-op if no hstate attributes attached.
3079  */
3080 static void hugetlb_unregister_node(struct node *node)
3081 {
3082         struct hstate *h;
3083         struct node_hstate *nhs = &node_hstates[node->dev.id];
3084
3085         if (!nhs->hugepages_kobj)
3086                 return;         /* no hstate attributes */
3087
3088         for_each_hstate(h) {
3089                 int idx = hstate_index(h);
3090                 if (nhs->hstate_kobjs[idx]) {
3091                         kobject_put(nhs->hstate_kobjs[idx]);
3092                         nhs->hstate_kobjs[idx] = NULL;
3093                 }
3094         }
3095
3096         kobject_put(nhs->hugepages_kobj);
3097         nhs->hugepages_kobj = NULL;
3098 }
3099
3100
3101 /*
3102  * Register hstate attributes for a single node device.
3103  * No-op if attributes already registered.
3104  */
3105 static void hugetlb_register_node(struct node *node)
3106 {
3107         struct hstate *h;
3108         struct node_hstate *nhs = &node_hstates[node->dev.id];
3109         int err;
3110
3111         if (nhs->hugepages_kobj)
3112                 return;         /* already allocated */
3113
3114         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3115                                                         &node->dev.kobj);
3116         if (!nhs->hugepages_kobj)
3117                 return;
3118
3119         for_each_hstate(h) {
3120                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3121                                                 nhs->hstate_kobjs,
3122                                                 &per_node_hstate_attr_group);
3123                 if (err) {
3124                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3125                                 h->name, node->dev.id);
3126                         hugetlb_unregister_node(node);
3127                         break;
3128                 }
3129         }
3130 }
3131
3132 /*
3133  * hugetlb init time:  register hstate attributes for all registered node
3134  * devices of nodes that have memory.  All on-line nodes should have
3135  * registered their associated device by this time.
3136  */
3137 static void __init hugetlb_register_all_nodes(void)
3138 {
3139         int nid;
3140
3141         for_each_node_state(nid, N_MEMORY) {
3142                 struct node *node = node_devices[nid];
3143                 if (node->dev.id == nid)
3144                         hugetlb_register_node(node);
3145         }
3146
3147         /*
3148          * Let the node device driver know we're here so it can
3149          * [un]register hstate attributes on node hotplug.
3150          */
3151         register_hugetlbfs_with_node(hugetlb_register_node,
3152                                      hugetlb_unregister_node);
3153 }
3154 #else   /* !CONFIG_NUMA */
3155
3156 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3157 {
3158         BUG();
3159         if (nidp)
3160                 *nidp = -1;
3161         return NULL;
3162 }
3163
3164 static void hugetlb_register_all_nodes(void) { }
3165
3166 #endif
3167
3168 static int __init hugetlb_init(void)
3169 {
3170         int i;
3171
3172         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3173                         __NR_HPAGEFLAGS);
3174
3175         if (!hugepages_supported()) {
3176                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3177                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3178                 return 0;
3179         }
3180
3181         /*
3182          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3183          * architectures depend on setup being done here.
3184          */
3185         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3186         if (!parsed_default_hugepagesz) {
3187                 /*
3188                  * If we did not parse a default huge page size, set
3189                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3190                  * number of huge pages for this default size was implicitly
3191                  * specified, set that here as well.
3192                  * Note that the implicit setting will overwrite an explicit
3193                  * setting.  A warning will be printed in this case.
3194                  */
3195                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3196                 if (default_hstate_max_huge_pages) {
3197                         if (default_hstate.max_huge_pages) {
3198                                 char buf[32];
3199
3200                                 string_get_size(huge_page_size(&default_hstate),
3201                                         1, STRING_UNITS_2, buf, 32);
3202                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3203                                         default_hstate.max_huge_pages, buf);
3204                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3205                                         default_hstate_max_huge_pages);
3206                         }
3207                         default_hstate.max_huge_pages =
3208                                 default_hstate_max_huge_pages;
3209                 }
3210         }
3211
3212         hugetlb_cma_check();
3213         hugetlb_init_hstates();
3214         gather_bootmem_prealloc();
3215         report_hugepages();
3216
3217         hugetlb_sysfs_init();
3218         hugetlb_register_all_nodes();
3219         hugetlb_cgroup_file_init();
3220
3221 #ifdef CONFIG_SMP
3222         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3223 #else
3224         num_fault_mutexes = 1;
3225 #endif
3226         hugetlb_fault_mutex_table =
3227                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3228                               GFP_KERNEL);
3229         BUG_ON(!hugetlb_fault_mutex_table);
3230
3231         for (i = 0; i < num_fault_mutexes; i++)
3232                 mutex_init(&hugetlb_fault_mutex_table[i]);
3233         return 0;
3234 }
3235 subsys_initcall(hugetlb_init);
3236
3237 /* Overwritten by architectures with more huge page sizes */
3238 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3239 {
3240         return size == HPAGE_SIZE;
3241 }
3242
3243 void __init hugetlb_add_hstate(unsigned int order)
3244 {
3245         struct hstate *h;
3246         unsigned long i;
3247
3248         if (size_to_hstate(PAGE_SIZE << order)) {
3249                 return;
3250         }
3251         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3252         BUG_ON(order == 0);
3253         h = &hstates[hugetlb_max_hstate++];
3254         h->order = order;
3255         h->mask = ~(huge_page_size(h) - 1);
3256         for (i = 0; i < MAX_NUMNODES; ++i)
3257                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3258         INIT_LIST_HEAD(&h->hugepage_activelist);
3259         h->next_nid_to_alloc = first_memory_node;
3260         h->next_nid_to_free = first_memory_node;
3261         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3262                                         huge_page_size(h)/1024);
3263
3264         parsed_hstate = h;
3265 }
3266
3267 /*
3268  * hugepages command line processing
3269  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3270  * specification.  If not, ignore the hugepages value.  hugepages can also
3271  * be the first huge page command line  option in which case it implicitly
3272  * specifies the number of huge pages for the default size.
3273  */
3274 static int __init hugepages_setup(char *s)
3275 {
3276         unsigned long *mhp;
3277         static unsigned long *last_mhp;
3278
3279         if (!parsed_valid_hugepagesz) {
3280                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3281                 parsed_valid_hugepagesz = true;
3282                 return 0;
3283         }
3284
3285         /*
3286          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3287          * yet, so this hugepages= parameter goes to the "default hstate".
3288          * Otherwise, it goes with the previously parsed hugepagesz or
3289          * default_hugepagesz.
3290          */
3291         else if (!hugetlb_max_hstate)
3292                 mhp = &default_hstate_max_huge_pages;
3293         else
3294                 mhp = &parsed_hstate->max_huge_pages;
3295
3296         if (mhp == last_mhp) {
3297                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3298                 return 0;
3299         }
3300
3301         if (sscanf(s, "%lu", mhp) <= 0)
3302                 *mhp = 0;
3303
3304         /*
3305          * Global state is always initialized later in hugetlb_init.
3306          * But we need to allocate >= MAX_ORDER hstates here early to still
3307          * use the bootmem allocator.
3308          */
3309         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3310                 hugetlb_hstate_alloc_pages(parsed_hstate);
3311
3312         last_mhp = mhp;
3313
3314         return 1;
3315 }
3316 __setup("hugepages=", hugepages_setup);
3317
3318 /*
3319  * hugepagesz command line processing
3320  * A specific huge page size can only be specified once with hugepagesz.
3321  * hugepagesz is followed by hugepages on the command line.  The global
3322  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3323  * hugepagesz argument was valid.
3324  */
3325 static int __init hugepagesz_setup(char *s)
3326 {
3327         unsigned long size;
3328         struct hstate *h;
3329
3330         parsed_valid_hugepagesz = false;
3331         size = (unsigned long)memparse(s, NULL);
3332
3333         if (!arch_hugetlb_valid_size(size)) {
3334                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3335                 return 0;
3336         }
3337
3338         h = size_to_hstate(size);
3339         if (h) {
3340                 /*
3341                  * hstate for this size already exists.  This is normally
3342                  * an error, but is allowed if the existing hstate is the
3343                  * default hstate.  More specifically, it is only allowed if
3344                  * the number of huge pages for the default hstate was not
3345                  * previously specified.
3346                  */
3347                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3348                     default_hstate.max_huge_pages) {
3349                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3350                         return 0;
3351                 }
3352
3353                 /*
3354                  * No need to call hugetlb_add_hstate() as hstate already
3355                  * exists.  But, do set parsed_hstate so that a following
3356                  * hugepages= parameter will be applied to this hstate.
3357                  */
3358                 parsed_hstate = h;
3359                 parsed_valid_hugepagesz = true;
3360                 return 1;
3361         }
3362
3363         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3364         parsed_valid_hugepagesz = true;
3365         return 1;
3366 }
3367 __setup("hugepagesz=", hugepagesz_setup);
3368
3369 /*
3370  * default_hugepagesz command line input
3371  * Only one instance of default_hugepagesz allowed on command line.
3372  */
3373 static int __init default_hugepagesz_setup(char *s)
3374 {
3375         unsigned long size;
3376
3377         parsed_valid_hugepagesz = false;
3378         if (parsed_default_hugepagesz) {
3379                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3380                 return 0;
3381         }
3382
3383         size = (unsigned long)memparse(s, NULL);
3384
3385         if (!arch_hugetlb_valid_size(size)) {
3386                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3387                 return 0;
3388         }
3389
3390         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3391         parsed_valid_hugepagesz = true;
3392         parsed_default_hugepagesz = true;
3393         default_hstate_idx = hstate_index(size_to_hstate(size));
3394
3395         /*
3396          * The number of default huge pages (for this size) could have been
3397          * specified as the first hugetlb parameter: hugepages=X.  If so,
3398          * then default_hstate_max_huge_pages is set.  If the default huge
3399          * page size is gigantic (>= MAX_ORDER), then the pages must be
3400          * allocated here from bootmem allocator.
3401          */
3402         if (default_hstate_max_huge_pages) {
3403                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3404                 if (hstate_is_gigantic(&default_hstate))
3405                         hugetlb_hstate_alloc_pages(&default_hstate);
3406                 default_hstate_max_huge_pages = 0;
3407         }
3408
3409         return 1;
3410 }
3411 __setup("default_hugepagesz=", default_hugepagesz_setup);
3412
3413 static unsigned int allowed_mems_nr(struct hstate *h)
3414 {
3415         int node;
3416         unsigned int nr = 0;
3417         nodemask_t *mpol_allowed;
3418         unsigned int *array = h->free_huge_pages_node;
3419         gfp_t gfp_mask = htlb_alloc_mask(h);
3420
3421         mpol_allowed = policy_nodemask_current(gfp_mask);
3422
3423         for_each_node_mask(node, cpuset_current_mems_allowed) {
3424                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3425                         nr += array[node];
3426         }
3427
3428         return nr;
3429 }
3430
3431 #ifdef CONFIG_SYSCTL
3432 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3433                                           void *buffer, size_t *length,
3434                                           loff_t *ppos, unsigned long *out)
3435 {
3436         struct ctl_table dup_table;
3437
3438         /*
3439          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3440          * can duplicate the @table and alter the duplicate of it.
3441          */
3442         dup_table = *table;
3443         dup_table.data = out;
3444
3445         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3446 }
3447
3448 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3449                          struct ctl_table *table, int write,
3450                          void *buffer, size_t *length, loff_t *ppos)
3451 {
3452         struct hstate *h = &default_hstate;
3453         unsigned long tmp = h->max_huge_pages;
3454         int ret;
3455
3456         if (!hugepages_supported())
3457                 return -EOPNOTSUPP;
3458
3459         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3460                                              &tmp);
3461         if (ret)
3462                 goto out;
3463
3464         if (write)
3465                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3466                                                   NUMA_NO_NODE, tmp, *length);
3467 out:
3468         return ret;
3469 }
3470
3471 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3472                           void *buffer, size_t *length, loff_t *ppos)
3473 {
3474
3475         return hugetlb_sysctl_handler_common(false, table, write,
3476                                                         buffer, length, ppos);
3477 }
3478
3479 #ifdef CONFIG_NUMA
3480 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3481                           void *buffer, size_t *length, loff_t *ppos)
3482 {
3483         return hugetlb_sysctl_handler_common(true, table, write,
3484                                                         buffer, length, ppos);
3485 }
3486 #endif /* CONFIG_NUMA */
3487
3488 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3489                 void *buffer, size_t *length, loff_t *ppos)
3490 {
3491         struct hstate *h = &default_hstate;
3492         unsigned long tmp;
3493         int ret;
3494
3495         if (!hugepages_supported())
3496                 return -EOPNOTSUPP;
3497
3498         tmp = h->nr_overcommit_huge_pages;
3499
3500         if (write && hstate_is_gigantic(h))
3501                 return -EINVAL;
3502
3503         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3504                                              &tmp);
3505         if (ret)
3506                 goto out;
3507
3508         if (write) {
3509                 spin_lock(&hugetlb_lock);
3510                 h->nr_overcommit_huge_pages = tmp;
3511                 spin_unlock(&hugetlb_lock);
3512         }
3513 out:
3514         return ret;
3515 }
3516
3517 #endif /* CONFIG_SYSCTL */
3518
3519 void hugetlb_report_meminfo(struct seq_file *m)
3520 {
3521         struct hstate *h;
3522         unsigned long total = 0;
3523
3524         if (!hugepages_supported())
3525                 return;
3526
3527         for_each_hstate(h) {
3528                 unsigned long count = h->nr_huge_pages;
3529
3530                 total += huge_page_size(h) * count;
3531
3532                 if (h == &default_hstate)
3533                         seq_printf(m,
3534                                    "HugePages_Total:   %5lu\n"
3535                                    "HugePages_Free:    %5lu\n"
3536                                    "HugePages_Rsvd:    %5lu\n"
3537                                    "HugePages_Surp:    %5lu\n"
3538                                    "Hugepagesize:   %8lu kB\n",
3539                                    count,
3540                                    h->free_huge_pages,
3541                                    h->resv_huge_pages,
3542                                    h->surplus_huge_pages,
3543                                    huge_page_size(h) / SZ_1K);
3544         }
3545
3546         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3547 }
3548
3549 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3550 {
3551         struct hstate *h = &default_hstate;
3552
3553         if (!hugepages_supported())
3554                 return 0;
3555
3556         return sysfs_emit_at(buf, len,
3557                              "Node %d HugePages_Total: %5u\n"
3558                              "Node %d HugePages_Free:  %5u\n"
3559                              "Node %d HugePages_Surp:  %5u\n",
3560                              nid, h->nr_huge_pages_node[nid],
3561                              nid, h->free_huge_pages_node[nid],
3562                              nid, h->surplus_huge_pages_node[nid]);
3563 }
3564
3565 void hugetlb_show_meminfo(void)
3566 {
3567         struct hstate *h;
3568         int nid;
3569
3570         if (!hugepages_supported())
3571                 return;
3572
3573         for_each_node_state(nid, N_MEMORY)
3574                 for_each_hstate(h)
3575                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3576                                 nid,
3577                                 h->nr_huge_pages_node[nid],
3578                                 h->free_huge_pages_node[nid],
3579                                 h->surplus_huge_pages_node[nid],
3580                                 huge_page_size(h) / SZ_1K);
3581 }
3582
3583 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3584 {
3585         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3586                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3587 }
3588
3589 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3590 unsigned long hugetlb_total_pages(void)
3591 {
3592         struct hstate *h;
3593         unsigned long nr_total_pages = 0;
3594
3595         for_each_hstate(h)
3596                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3597         return nr_total_pages;
3598 }
3599
3600 static int hugetlb_acct_memory(struct hstate *h, long delta)
3601 {
3602         int ret = -ENOMEM;
3603
3604         if (!delta)
3605                 return 0;
3606
3607         spin_lock(&hugetlb_lock);
3608         /*
3609          * When cpuset is configured, it breaks the strict hugetlb page
3610          * reservation as the accounting is done on a global variable. Such
3611          * reservation is completely rubbish in the presence of cpuset because
3612          * the reservation is not checked against page availability for the
3613          * current cpuset. Application can still potentially OOM'ed by kernel
3614          * with lack of free htlb page in cpuset that the task is in.
3615          * Attempt to enforce strict accounting with cpuset is almost
3616          * impossible (or too ugly) because cpuset is too fluid that
3617          * task or memory node can be dynamically moved between cpusets.
3618          *
3619          * The change of semantics for shared hugetlb mapping with cpuset is
3620          * undesirable. However, in order to preserve some of the semantics,
3621          * we fall back to check against current free page availability as
3622          * a best attempt and hopefully to minimize the impact of changing
3623          * semantics that cpuset has.
3624          *
3625          * Apart from cpuset, we also have memory policy mechanism that
3626          * also determines from which node the kernel will allocate memory
3627          * in a NUMA system. So similar to cpuset, we also should consider
3628          * the memory policy of the current task. Similar to the description
3629          * above.
3630          */
3631         if (delta > 0) {
3632                 if (gather_surplus_pages(h, delta) < 0)
3633                         goto out;
3634
3635                 if (delta > allowed_mems_nr(h)) {
3636                         return_unused_surplus_pages(h, delta);
3637                         goto out;
3638                 }
3639         }
3640
3641         ret = 0;
3642         if (delta < 0)
3643                 return_unused_surplus_pages(h, (unsigned long) -delta);
3644
3645 out:
3646         spin_unlock(&hugetlb_lock);
3647         return ret;
3648 }
3649
3650 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3651 {
3652         struct resv_map *resv = vma_resv_map(vma);
3653
3654         /*
3655          * This new VMA should share its siblings reservation map if present.
3656          * The VMA will only ever have a valid reservation map pointer where
3657          * it is being copied for another still existing VMA.  As that VMA
3658          * has a reference to the reservation map it cannot disappear until
3659          * after this open call completes.  It is therefore safe to take a
3660          * new reference here without additional locking.
3661          */
3662         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3663                 kref_get(&resv->refs);
3664 }
3665
3666 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3667 {
3668         struct hstate *h = hstate_vma(vma);
3669         struct resv_map *resv = vma_resv_map(vma);
3670         struct hugepage_subpool *spool = subpool_vma(vma);
3671         unsigned long reserve, start, end;
3672         long gbl_reserve;
3673
3674         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3675                 return;
3676
3677         start = vma_hugecache_offset(h, vma, vma->vm_start);
3678         end = vma_hugecache_offset(h, vma, vma->vm_end);
3679
3680         reserve = (end - start) - region_count(resv, start, end);
3681         hugetlb_cgroup_uncharge_counter(resv, start, end);
3682         if (reserve) {
3683                 /*
3684                  * Decrement reserve counts.  The global reserve count may be
3685                  * adjusted if the subpool has a minimum size.
3686                  */
3687                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3688                 hugetlb_acct_memory(h, -gbl_reserve);
3689         }
3690
3691         kref_put(&resv->refs, resv_map_release);
3692 }
3693
3694 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3695 {
3696         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3697                 return -EINVAL;
3698         return 0;
3699 }
3700
3701 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3702 {
3703         return huge_page_size(hstate_vma(vma));
3704 }
3705
3706 /*
3707  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3708  * handle_mm_fault() to try to instantiate regular-sized pages in the
3709  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3710  * this far.
3711  */
3712 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3713 {
3714         BUG();
3715         return 0;
3716 }
3717
3718 /*
3719  * When a new function is introduced to vm_operations_struct and added
3720  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3721  * This is because under System V memory model, mappings created via
3722  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3723  * their original vm_ops are overwritten with shm_vm_ops.
3724  */
3725 const struct vm_operations_struct hugetlb_vm_ops = {
3726         .fault = hugetlb_vm_op_fault,
3727         .open = hugetlb_vm_op_open,
3728         .close = hugetlb_vm_op_close,
3729         .may_split = hugetlb_vm_op_split,
3730         .pagesize = hugetlb_vm_op_pagesize,
3731 };
3732
3733 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3734                                 int writable)
3735 {
3736         pte_t entry;
3737
3738         if (writable) {
3739                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3740                                          vma->vm_page_prot)));
3741         } else {
3742                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3743                                            vma->vm_page_prot));
3744         }
3745         entry = pte_mkyoung(entry);
3746         entry = pte_mkhuge(entry);
3747         entry = arch_make_huge_pte(entry, vma, page, writable);
3748
3749         return entry;
3750 }
3751
3752 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3753                                    unsigned long address, pte_t *ptep)
3754 {
3755         pte_t entry;
3756
3757         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3758         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3759                 update_mmu_cache(vma, address, ptep);
3760 }
3761
3762 bool is_hugetlb_entry_migration(pte_t pte)
3763 {
3764         swp_entry_t swp;
3765
3766         if (huge_pte_none(pte) || pte_present(pte))
3767                 return false;
3768         swp = pte_to_swp_entry(pte);
3769         if (is_migration_entry(swp))
3770                 return true;
3771         else
3772                 return false;
3773 }
3774
3775 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3776 {
3777         swp_entry_t swp;
3778
3779         if (huge_pte_none(pte) || pte_present(pte))
3780                 return false;
3781         swp = pte_to_swp_entry(pte);
3782         if (is_hwpoison_entry(swp))
3783                 return true;
3784         else
3785                 return false;
3786 }
3787
3788 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3789                             struct vm_area_struct *vma)
3790 {
3791         pte_t *src_pte, *dst_pte, entry, dst_entry;
3792         struct page *ptepage;
3793         unsigned long addr;
3794         int cow;
3795         struct hstate *h = hstate_vma(vma);
3796         unsigned long sz = huge_page_size(h);
3797         struct address_space *mapping = vma->vm_file->f_mapping;
3798         struct mmu_notifier_range range;
3799         int ret = 0;
3800
3801         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3802
3803         if (cow) {
3804                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3805                                         vma->vm_start,
3806                                         vma->vm_end);
3807                 mmu_notifier_invalidate_range_start(&range);
3808         } else {
3809                 /*
3810                  * For shared mappings i_mmap_rwsem must be held to call
3811                  * huge_pte_alloc, otherwise the returned ptep could go
3812                  * away if part of a shared pmd and another thread calls
3813                  * huge_pmd_unshare.
3814                  */
3815                 i_mmap_lock_read(mapping);
3816         }
3817
3818         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3819                 spinlock_t *src_ptl, *dst_ptl;
3820                 src_pte = huge_pte_offset(src, addr, sz);
3821                 if (!src_pte)
3822                         continue;
3823                 dst_pte = huge_pte_alloc(dst, addr, sz);
3824                 if (!dst_pte) {
3825                         ret = -ENOMEM;
3826                         break;
3827                 }
3828
3829                 /*
3830                  * If the pagetables are shared don't copy or take references.
3831                  * dst_pte == src_pte is the common case of src/dest sharing.
3832                  *
3833                  * However, src could have 'unshared' and dst shares with
3834                  * another vma.  If dst_pte !none, this implies sharing.
3835                  * Check here before taking page table lock, and once again
3836                  * after taking the lock below.
3837                  */
3838                 dst_entry = huge_ptep_get(dst_pte);
3839                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3840                         continue;
3841
3842                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3843                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3844                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3845                 entry = huge_ptep_get(src_pte);
3846                 dst_entry = huge_ptep_get(dst_pte);
3847                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3848                         /*
3849                          * Skip if src entry none.  Also, skip in the
3850                          * unlikely case dst entry !none as this implies
3851                          * sharing with another vma.
3852                          */
3853                         ;
3854                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3855                                     is_hugetlb_entry_hwpoisoned(entry))) {
3856                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3857
3858                         if (is_write_migration_entry(swp_entry) && cow) {
3859                                 /*
3860                                  * COW mappings require pages in both
3861                                  * parent and child to be set to read.
3862                                  */
3863                                 make_migration_entry_read(&swp_entry);
3864                                 entry = swp_entry_to_pte(swp_entry);
3865                                 set_huge_swap_pte_at(src, addr, src_pte,
3866                                                      entry, sz);
3867                         }
3868                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3869                 } else {
3870                         if (cow) {
3871                                 /*
3872                                  * No need to notify as we are downgrading page
3873                                  * table protection not changing it to point
3874                                  * to a new page.
3875                                  *
3876                                  * See Documentation/vm/mmu_notifier.rst
3877                                  */
3878                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3879                         }
3880                         entry = huge_ptep_get(src_pte);
3881                         ptepage = pte_page(entry);
3882                         get_page(ptepage);
3883                         page_dup_rmap(ptepage, true);
3884                         set_huge_pte_at(dst, addr, dst_pte, entry);
3885                         hugetlb_count_add(pages_per_huge_page(h), dst);
3886                 }
3887                 spin_unlock(src_ptl);
3888                 spin_unlock(dst_ptl);
3889         }
3890
3891         if (cow)
3892                 mmu_notifier_invalidate_range_end(&range);
3893         else
3894                 i_mmap_unlock_read(mapping);
3895
3896         return ret;
3897 }
3898
3899 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3900                             unsigned long start, unsigned long end,
3901                             struct page *ref_page)
3902 {
3903         struct mm_struct *mm = vma->vm_mm;
3904         unsigned long address;
3905         pte_t *ptep;
3906         pte_t pte;
3907         spinlock_t *ptl;
3908         struct page *page;
3909         struct hstate *h = hstate_vma(vma);
3910         unsigned long sz = huge_page_size(h);
3911         struct mmu_notifier_range range;
3912
3913         WARN_ON(!is_vm_hugetlb_page(vma));
3914         BUG_ON(start & ~huge_page_mask(h));
3915         BUG_ON(end & ~huge_page_mask(h));
3916
3917         /*
3918          * This is a hugetlb vma, all the pte entries should point
3919          * to huge page.
3920          */
3921         tlb_change_page_size(tlb, sz);
3922         tlb_start_vma(tlb, vma);
3923
3924         /*
3925          * If sharing possible, alert mmu notifiers of worst case.
3926          */
3927         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3928                                 end);
3929         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3930         mmu_notifier_invalidate_range_start(&range);
3931         address = start;
3932         for (; address < end; address += sz) {
3933                 ptep = huge_pte_offset(mm, address, sz);
3934                 if (!ptep)
3935                         continue;
3936
3937                 ptl = huge_pte_lock(h, mm, ptep);
3938                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3939                         spin_unlock(ptl);
3940                         /*
3941                          * We just unmapped a page of PMDs by clearing a PUD.
3942                          * The caller's TLB flush range should cover this area.
3943                          */
3944                         continue;
3945                 }
3946
3947                 pte = huge_ptep_get(ptep);
3948                 if (huge_pte_none(pte)) {
3949                         spin_unlock(ptl);
3950                         continue;
3951                 }
3952
3953                 /*
3954                  * Migrating hugepage or HWPoisoned hugepage is already
3955                  * unmapped and its refcount is dropped, so just clear pte here.
3956                  */
3957                 if (unlikely(!pte_present(pte))) {
3958                         huge_pte_clear(mm, address, ptep, sz);
3959                         spin_unlock(ptl);
3960                         continue;
3961                 }
3962
3963                 page = pte_page(pte);
3964                 /*
3965                  * If a reference page is supplied, it is because a specific
3966                  * page is being unmapped, not a range. Ensure the page we
3967                  * are about to unmap is the actual page of interest.
3968                  */
3969                 if (ref_page) {
3970                         if (page != ref_page) {
3971                                 spin_unlock(ptl);
3972                                 continue;
3973                         }
3974                         /*
3975                          * Mark the VMA as having unmapped its page so that
3976                          * future faults in this VMA will fail rather than
3977                          * looking like data was lost
3978                          */
3979                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3980                 }
3981
3982                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3983                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3984                 if (huge_pte_dirty(pte))
3985                         set_page_dirty(page);
3986
3987                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3988                 page_remove_rmap(page, true);
3989
3990                 spin_unlock(ptl);
3991                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3992                 /*
3993                  * Bail out after unmapping reference page if supplied
3994                  */
3995                 if (ref_page)
3996                         break;
3997         }
3998         mmu_notifier_invalidate_range_end(&range);
3999         tlb_end_vma(tlb, vma);
4000 }
4001
4002 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4003                           struct vm_area_struct *vma, unsigned long start,
4004                           unsigned long end, struct page *ref_page)
4005 {
4006         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4007
4008         /*
4009          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4010          * test will fail on a vma being torn down, and not grab a page table
4011          * on its way out.  We're lucky that the flag has such an appropriate
4012          * name, and can in fact be safely cleared here. We could clear it
4013          * before the __unmap_hugepage_range above, but all that's necessary
4014          * is to clear it before releasing the i_mmap_rwsem. This works
4015          * because in the context this is called, the VMA is about to be
4016          * destroyed and the i_mmap_rwsem is held.
4017          */
4018         vma->vm_flags &= ~VM_MAYSHARE;
4019 }
4020
4021 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4022                           unsigned long end, struct page *ref_page)
4023 {
4024         struct mmu_gather tlb;
4025
4026         tlb_gather_mmu(&tlb, vma->vm_mm);
4027         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4028         tlb_finish_mmu(&tlb);
4029 }
4030
4031 /*
4032  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4033  * mapping it owns the reserve page for. The intention is to unmap the page
4034  * from other VMAs and let the children be SIGKILLed if they are faulting the
4035  * same region.
4036  */
4037 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4038                               struct page *page, unsigned long address)
4039 {
4040         struct hstate *h = hstate_vma(vma);
4041         struct vm_area_struct *iter_vma;
4042         struct address_space *mapping;
4043         pgoff_t pgoff;
4044
4045         /*
4046          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4047          * from page cache lookup which is in HPAGE_SIZE units.
4048          */
4049         address = address & huge_page_mask(h);
4050         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4051                         vma->vm_pgoff;
4052         mapping = vma->vm_file->f_mapping;
4053
4054         /*
4055          * Take the mapping lock for the duration of the table walk. As
4056          * this mapping should be shared between all the VMAs,
4057          * __unmap_hugepage_range() is called as the lock is already held
4058          */
4059         i_mmap_lock_write(mapping);
4060         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4061                 /* Do not unmap the current VMA */
4062                 if (iter_vma == vma)
4063                         continue;
4064
4065                 /*
4066                  * Shared VMAs have their own reserves and do not affect
4067                  * MAP_PRIVATE accounting but it is possible that a shared
4068                  * VMA is using the same page so check and skip such VMAs.
4069                  */
4070                 if (iter_vma->vm_flags & VM_MAYSHARE)
4071                         continue;
4072
4073                 /*
4074                  * Unmap the page from other VMAs without their own reserves.
4075                  * They get marked to be SIGKILLed if they fault in these
4076                  * areas. This is because a future no-page fault on this VMA
4077                  * could insert a zeroed page instead of the data existing
4078                  * from the time of fork. This would look like data corruption
4079                  */
4080                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4081                         unmap_hugepage_range(iter_vma, address,
4082                                              address + huge_page_size(h), page);
4083         }
4084         i_mmap_unlock_write(mapping);
4085 }
4086
4087 /*
4088  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4089  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4090  * cannot race with other handlers or page migration.
4091  * Keep the pte_same checks anyway to make transition from the mutex easier.
4092  */
4093 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4094                        unsigned long address, pte_t *ptep,
4095                        struct page *pagecache_page, spinlock_t *ptl)
4096 {
4097         pte_t pte;
4098         struct hstate *h = hstate_vma(vma);
4099         struct page *old_page, *new_page;
4100         int outside_reserve = 0;
4101         vm_fault_t ret = 0;
4102         unsigned long haddr = address & huge_page_mask(h);
4103         struct mmu_notifier_range range;
4104
4105         pte = huge_ptep_get(ptep);
4106         old_page = pte_page(pte);
4107
4108 retry_avoidcopy:
4109         /* If no-one else is actually using this page, avoid the copy
4110          * and just make the page writable */
4111         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4112                 page_move_anon_rmap(old_page, vma);
4113                 set_huge_ptep_writable(vma, haddr, ptep);
4114                 return 0;
4115         }
4116
4117         /*
4118          * If the process that created a MAP_PRIVATE mapping is about to
4119          * perform a COW due to a shared page count, attempt to satisfy
4120          * the allocation without using the existing reserves. The pagecache
4121          * page is used to determine if the reserve at this address was
4122          * consumed or not. If reserves were used, a partial faulted mapping
4123          * at the time of fork() could consume its reserves on COW instead
4124          * of the full address range.
4125          */
4126         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4127                         old_page != pagecache_page)
4128                 outside_reserve = 1;
4129
4130         get_page(old_page);
4131
4132         /*
4133          * Drop page table lock as buddy allocator may be called. It will
4134          * be acquired again before returning to the caller, as expected.
4135          */
4136         spin_unlock(ptl);
4137         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4138
4139         if (IS_ERR(new_page)) {
4140                 /*
4141                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4142                  * it is due to references held by a child and an insufficient
4143                  * huge page pool. To guarantee the original mappers
4144                  * reliability, unmap the page from child processes. The child
4145                  * may get SIGKILLed if it later faults.
4146                  */
4147                 if (outside_reserve) {
4148                         struct address_space *mapping = vma->vm_file->f_mapping;
4149                         pgoff_t idx;
4150                         u32 hash;
4151
4152                         put_page(old_page);
4153                         BUG_ON(huge_pte_none(pte));
4154                         /*
4155                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4156                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4157                          * in write mode.  Dropping i_mmap_rwsem in read mode
4158                          * here is OK as COW mappings do not interact with
4159                          * PMD sharing.
4160                          *
4161                          * Reacquire both after unmap operation.
4162                          */
4163                         idx = vma_hugecache_offset(h, vma, haddr);
4164                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4165                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4166                         i_mmap_unlock_read(mapping);
4167
4168                         unmap_ref_private(mm, vma, old_page, haddr);
4169
4170                         i_mmap_lock_read(mapping);
4171                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4172                         spin_lock(ptl);
4173                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4174                         if (likely(ptep &&
4175                                    pte_same(huge_ptep_get(ptep), pte)))
4176                                 goto retry_avoidcopy;
4177                         /*
4178                          * race occurs while re-acquiring page table
4179                          * lock, and our job is done.
4180                          */
4181                         return 0;
4182                 }
4183
4184                 ret = vmf_error(PTR_ERR(new_page));
4185                 goto out_release_old;
4186         }
4187
4188         /*
4189          * When the original hugepage is shared one, it does not have
4190          * anon_vma prepared.
4191          */
4192         if (unlikely(anon_vma_prepare(vma))) {
4193                 ret = VM_FAULT_OOM;
4194                 goto out_release_all;
4195         }
4196
4197         copy_user_huge_page(new_page, old_page, address, vma,
4198                             pages_per_huge_page(h));
4199         __SetPageUptodate(new_page);
4200
4201         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4202                                 haddr + huge_page_size(h));
4203         mmu_notifier_invalidate_range_start(&range);
4204
4205         /*
4206          * Retake the page table lock to check for racing updates
4207          * before the page tables are altered
4208          */
4209         spin_lock(ptl);
4210         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4211         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4212                 ClearHPageRestoreReserve(new_page);
4213
4214                 /* Break COW */
4215                 huge_ptep_clear_flush(vma, haddr, ptep);
4216                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4217                 set_huge_pte_at(mm, haddr, ptep,
4218                                 make_huge_pte(vma, new_page, 1));
4219                 page_remove_rmap(old_page, true);
4220                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4221                 set_page_huge_active(new_page);
4222                 /* Make the old page be freed below */
4223                 new_page = old_page;
4224         }
4225         spin_unlock(ptl);
4226         mmu_notifier_invalidate_range_end(&range);
4227 out_release_all:
4228         restore_reserve_on_error(h, vma, haddr, new_page);
4229         put_page(new_page);
4230 out_release_old:
4231         put_page(old_page);
4232
4233         spin_lock(ptl); /* Caller expects lock to be held */
4234         return ret;
4235 }
4236
4237 /* Return the pagecache page at a given address within a VMA */
4238 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4239                         struct vm_area_struct *vma, unsigned long address)
4240 {
4241         struct address_space *mapping;
4242         pgoff_t idx;
4243
4244         mapping = vma->vm_file->f_mapping;
4245         idx = vma_hugecache_offset(h, vma, address);
4246
4247         return find_lock_page(mapping, idx);
4248 }
4249
4250 /*
4251  * Return whether there is a pagecache page to back given address within VMA.
4252  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4253  */
4254 static bool hugetlbfs_pagecache_present(struct hstate *h,
4255                         struct vm_area_struct *vma, unsigned long address)
4256 {
4257         struct address_space *mapping;
4258         pgoff_t idx;
4259         struct page *page;
4260
4261         mapping = vma->vm_file->f_mapping;
4262         idx = vma_hugecache_offset(h, vma, address);
4263
4264         page = find_get_page(mapping, idx);
4265         if (page)
4266                 put_page(page);
4267         return page != NULL;
4268 }
4269
4270 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4271                            pgoff_t idx)
4272 {
4273         struct inode *inode = mapping->host;
4274         struct hstate *h = hstate_inode(inode);
4275         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4276
4277         if (err)
4278                 return err;
4279         ClearHPageRestoreReserve(page);
4280
4281         /*
4282          * set page dirty so that it will not be removed from cache/file
4283          * by non-hugetlbfs specific code paths.
4284          */
4285         set_page_dirty(page);
4286
4287         spin_lock(&inode->i_lock);
4288         inode->i_blocks += blocks_per_huge_page(h);
4289         spin_unlock(&inode->i_lock);
4290         return 0;
4291 }
4292
4293 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4294                         struct vm_area_struct *vma,
4295                         struct address_space *mapping, pgoff_t idx,
4296                         unsigned long address, pte_t *ptep, unsigned int flags)
4297 {
4298         struct hstate *h = hstate_vma(vma);
4299         vm_fault_t ret = VM_FAULT_SIGBUS;
4300         int anon_rmap = 0;
4301         unsigned long size;
4302         struct page *page;
4303         pte_t new_pte;
4304         spinlock_t *ptl;
4305         unsigned long haddr = address & huge_page_mask(h);
4306         bool new_page = false;
4307
4308         /*
4309          * Currently, we are forced to kill the process in the event the
4310          * original mapper has unmapped pages from the child due to a failed
4311          * COW. Warn that such a situation has occurred as it may not be obvious
4312          */
4313         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4314                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4315                            current->pid);
4316                 return ret;
4317         }
4318
4319         /*
4320          * We can not race with truncation due to holding i_mmap_rwsem.
4321          * i_size is modified when holding i_mmap_rwsem, so check here
4322          * once for faults beyond end of file.
4323          */
4324         size = i_size_read(mapping->host) >> huge_page_shift(h);
4325         if (idx >= size)
4326                 goto out;
4327
4328 retry:
4329         page = find_lock_page(mapping, idx);
4330         if (!page) {
4331                 /*
4332                  * Check for page in userfault range
4333                  */
4334                 if (userfaultfd_missing(vma)) {
4335                         u32 hash;
4336                         struct vm_fault vmf = {
4337                                 .vma = vma,
4338                                 .address = haddr,
4339                                 .flags = flags,
4340                                 /*
4341                                  * Hard to debug if it ends up being
4342                                  * used by a callee that assumes
4343                                  * something about the other
4344                                  * uninitialized fields... same as in
4345                                  * memory.c
4346                                  */
4347                         };
4348
4349                         /*
4350                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4351                          * dropped before handling userfault.  Reacquire
4352                          * after handling fault to make calling code simpler.
4353                          */
4354                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4355                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4356                         i_mmap_unlock_read(mapping);
4357                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4358                         i_mmap_lock_read(mapping);
4359                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4360                         goto out;
4361                 }
4362
4363                 page = alloc_huge_page(vma, haddr, 0);
4364                 if (IS_ERR(page)) {
4365                         /*
4366                          * Returning error will result in faulting task being
4367                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4368                          * tasks from racing to fault in the same page which
4369                          * could result in false unable to allocate errors.
4370                          * Page migration does not take the fault mutex, but
4371                          * does a clear then write of pte's under page table
4372                          * lock.  Page fault code could race with migration,
4373                          * notice the clear pte and try to allocate a page
4374                          * here.  Before returning error, get ptl and make
4375                          * sure there really is no pte entry.
4376                          */
4377                         ptl = huge_pte_lock(h, mm, ptep);
4378                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4379                                 ret = 0;
4380                                 spin_unlock(ptl);
4381                                 goto out;
4382                         }
4383                         spin_unlock(ptl);
4384                         ret = vmf_error(PTR_ERR(page));
4385                         goto out;
4386                 }
4387                 clear_huge_page(page, address, pages_per_huge_page(h));
4388                 __SetPageUptodate(page);
4389                 new_page = true;
4390
4391                 if (vma->vm_flags & VM_MAYSHARE) {
4392                         int err = huge_add_to_page_cache(page, mapping, idx);
4393                         if (err) {
4394                                 put_page(page);
4395                                 if (err == -EEXIST)
4396                                         goto retry;
4397                                 goto out;
4398                         }
4399                 } else {
4400                         lock_page(page);
4401                         if (unlikely(anon_vma_prepare(vma))) {
4402                                 ret = VM_FAULT_OOM;
4403                                 goto backout_unlocked;
4404                         }
4405                         anon_rmap = 1;
4406                 }
4407         } else {
4408                 /*
4409                  * If memory error occurs between mmap() and fault, some process
4410                  * don't have hwpoisoned swap entry for errored virtual address.
4411                  * So we need to block hugepage fault by PG_hwpoison bit check.
4412                  */
4413                 if (unlikely(PageHWPoison(page))) {
4414                         ret = VM_FAULT_HWPOISON_LARGE |
4415                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4416                         goto backout_unlocked;
4417                 }
4418         }
4419
4420         /*
4421          * If we are going to COW a private mapping later, we examine the
4422          * pending reservations for this page now. This will ensure that
4423          * any allocations necessary to record that reservation occur outside
4424          * the spinlock.
4425          */
4426         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4427                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4428                         ret = VM_FAULT_OOM;
4429                         goto backout_unlocked;
4430                 }
4431                 /* Just decrements count, does not deallocate */
4432                 vma_end_reservation(h, vma, haddr);
4433         }
4434
4435         ptl = huge_pte_lock(h, mm, ptep);
4436         ret = 0;
4437         if (!huge_pte_none(huge_ptep_get(ptep)))
4438                 goto backout;
4439
4440         if (anon_rmap) {
4441                 ClearHPageRestoreReserve(page);
4442                 hugepage_add_new_anon_rmap(page, vma, haddr);
4443         } else
4444                 page_dup_rmap(page, true);
4445         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4446                                 && (vma->vm_flags & VM_SHARED)));
4447         set_huge_pte_at(mm, haddr, ptep, new_pte);
4448
4449         hugetlb_count_add(pages_per_huge_page(h), mm);
4450         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4451                 /* Optimization, do the COW without a second fault */
4452                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4453         }
4454
4455         spin_unlock(ptl);
4456
4457         /*
4458          * Only make newly allocated pages active.  Existing pages found
4459          * in the pagecache could be !page_huge_active() if they have been
4460          * isolated for migration.
4461          */
4462         if (new_page)
4463                 set_page_huge_active(page);
4464
4465         unlock_page(page);
4466 out:
4467         return ret;
4468
4469 backout:
4470         spin_unlock(ptl);
4471 backout_unlocked:
4472         unlock_page(page);
4473         restore_reserve_on_error(h, vma, haddr, page);
4474         put_page(page);
4475         goto out;
4476 }
4477
4478 #ifdef CONFIG_SMP
4479 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4480 {
4481         unsigned long key[2];
4482         u32 hash;
4483
4484         key[0] = (unsigned long) mapping;
4485         key[1] = idx;
4486
4487         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4488
4489         return hash & (num_fault_mutexes - 1);
4490 }
4491 #else
4492 /*
4493  * For uniprocessor systems we always use a single mutex, so just
4494  * return 0 and avoid the hashing overhead.
4495  */
4496 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4497 {
4498         return 0;
4499 }
4500 #endif
4501
4502 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4503                         unsigned long address, unsigned int flags)
4504 {
4505         pte_t *ptep, entry;
4506         spinlock_t *ptl;
4507         vm_fault_t ret;
4508         u32 hash;
4509         pgoff_t idx;
4510         struct page *page = NULL;
4511         struct page *pagecache_page = NULL;
4512         struct hstate *h = hstate_vma(vma);
4513         struct address_space *mapping;
4514         int need_wait_lock = 0;
4515         unsigned long haddr = address & huge_page_mask(h);
4516
4517         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4518         if (ptep) {
4519                 /*
4520                  * Since we hold no locks, ptep could be stale.  That is
4521                  * OK as we are only making decisions based on content and
4522                  * not actually modifying content here.
4523                  */
4524                 entry = huge_ptep_get(ptep);
4525                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4526                         migration_entry_wait_huge(vma, mm, ptep);
4527                         return 0;
4528                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4529                         return VM_FAULT_HWPOISON_LARGE |
4530                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4531         }
4532
4533         /*
4534          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4535          * until finished with ptep.  This serves two purposes:
4536          * 1) It prevents huge_pmd_unshare from being called elsewhere
4537          *    and making the ptep no longer valid.
4538          * 2) It synchronizes us with i_size modifications during truncation.
4539          *
4540          * ptep could have already be assigned via huge_pte_offset.  That
4541          * is OK, as huge_pte_alloc will return the same value unless
4542          * something has changed.
4543          */
4544         mapping = vma->vm_file->f_mapping;
4545         i_mmap_lock_read(mapping);
4546         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4547         if (!ptep) {
4548                 i_mmap_unlock_read(mapping);
4549                 return VM_FAULT_OOM;
4550         }
4551
4552         /*
4553          * Serialize hugepage allocation and instantiation, so that we don't
4554          * get spurious allocation failures if two CPUs race to instantiate
4555          * the same page in the page cache.
4556          */
4557         idx = vma_hugecache_offset(h, vma, haddr);
4558         hash = hugetlb_fault_mutex_hash(mapping, idx);
4559         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4560
4561         entry = huge_ptep_get(ptep);
4562         if (huge_pte_none(entry)) {
4563                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4564                 goto out_mutex;
4565         }
4566
4567         ret = 0;
4568
4569         /*
4570          * entry could be a migration/hwpoison entry at this point, so this
4571          * check prevents the kernel from going below assuming that we have
4572          * an active hugepage in pagecache. This goto expects the 2nd page
4573          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4574          * properly handle it.
4575          */
4576         if (!pte_present(entry))
4577                 goto out_mutex;
4578
4579         /*
4580          * If we are going to COW the mapping later, we examine the pending
4581          * reservations for this page now. This will ensure that any
4582          * allocations necessary to record that reservation occur outside the
4583          * spinlock. For private mappings, we also lookup the pagecache
4584          * page now as it is used to determine if a reservation has been
4585          * consumed.
4586          */
4587         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4588                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4589                         ret = VM_FAULT_OOM;
4590                         goto out_mutex;
4591                 }
4592                 /* Just decrements count, does not deallocate */
4593                 vma_end_reservation(h, vma, haddr);
4594
4595                 if (!(vma->vm_flags & VM_MAYSHARE))
4596                         pagecache_page = hugetlbfs_pagecache_page(h,
4597                                                                 vma, haddr);
4598         }
4599
4600         ptl = huge_pte_lock(h, mm, ptep);
4601
4602         /* Check for a racing update before calling hugetlb_cow */
4603         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4604                 goto out_ptl;
4605
4606         /*
4607          * hugetlb_cow() requires page locks of pte_page(entry) and
4608          * pagecache_page, so here we need take the former one
4609          * when page != pagecache_page or !pagecache_page.
4610          */
4611         page = pte_page(entry);
4612         if (page != pagecache_page)
4613                 if (!trylock_page(page)) {
4614                         need_wait_lock = 1;
4615                         goto out_ptl;
4616                 }
4617
4618         get_page(page);
4619
4620         if (flags & FAULT_FLAG_WRITE) {
4621                 if (!huge_pte_write(entry)) {
4622                         ret = hugetlb_cow(mm, vma, address, ptep,
4623                                           pagecache_page, ptl);
4624                         goto out_put_page;
4625                 }
4626                 entry = huge_pte_mkdirty(entry);
4627         }
4628         entry = pte_mkyoung(entry);
4629         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4630                                                 flags & FAULT_FLAG_WRITE))
4631                 update_mmu_cache(vma, haddr, ptep);
4632 out_put_page:
4633         if (page != pagecache_page)
4634                 unlock_page(page);
4635         put_page(page);
4636 out_ptl:
4637         spin_unlock(ptl);
4638
4639         if (pagecache_page) {
4640                 unlock_page(pagecache_page);
4641                 put_page(pagecache_page);
4642         }
4643 out_mutex:
4644         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4645         i_mmap_unlock_read(mapping);
4646         /*
4647          * Generally it's safe to hold refcount during waiting page lock. But
4648          * here we just wait to defer the next page fault to avoid busy loop and
4649          * the page is not used after unlocked before returning from the current
4650          * page fault. So we are safe from accessing freed page, even if we wait
4651          * here without taking refcount.
4652          */
4653         if (need_wait_lock)
4654                 wait_on_page_locked(page);
4655         return ret;
4656 }
4657
4658 /*
4659  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4660  * modifications for huge pages.
4661  */
4662 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4663                             pte_t *dst_pte,
4664                             struct vm_area_struct *dst_vma,
4665                             unsigned long dst_addr,
4666                             unsigned long src_addr,
4667                             struct page **pagep)
4668 {
4669         struct address_space *mapping;
4670         pgoff_t idx;
4671         unsigned long size;
4672         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4673         struct hstate *h = hstate_vma(dst_vma);
4674         pte_t _dst_pte;
4675         spinlock_t *ptl;
4676         int ret;
4677         struct page *page;
4678
4679         if (!*pagep) {
4680                 ret = -ENOMEM;
4681                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4682                 if (IS_ERR(page))
4683                         goto out;
4684
4685                 ret = copy_huge_page_from_user(page,
4686                                                 (const void __user *) src_addr,
4687                                                 pages_per_huge_page(h), false);
4688
4689                 /* fallback to copy_from_user outside mmap_lock */
4690                 if (unlikely(ret)) {
4691                         ret = -ENOENT;
4692                         *pagep = page;
4693                         /* don't free the page */
4694                         goto out;
4695                 }
4696         } else {
4697                 page = *pagep;
4698                 *pagep = NULL;
4699         }
4700
4701         /*
4702          * The memory barrier inside __SetPageUptodate makes sure that
4703          * preceding stores to the page contents become visible before
4704          * the set_pte_at() write.
4705          */
4706         __SetPageUptodate(page);
4707
4708         mapping = dst_vma->vm_file->f_mapping;
4709         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4710
4711         /*
4712          * If shared, add to page cache
4713          */
4714         if (vm_shared) {
4715                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4716                 ret = -EFAULT;
4717                 if (idx >= size)
4718                         goto out_release_nounlock;
4719
4720                 /*
4721                  * Serialization between remove_inode_hugepages() and
4722                  * huge_add_to_page_cache() below happens through the
4723                  * hugetlb_fault_mutex_table that here must be hold by
4724                  * the caller.
4725                  */
4726                 ret = huge_add_to_page_cache(page, mapping, idx);
4727                 if (ret)
4728                         goto out_release_nounlock;
4729         }
4730
4731         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4732         spin_lock(ptl);
4733
4734         /*
4735          * Recheck the i_size after holding PT lock to make sure not
4736          * to leave any page mapped (as page_mapped()) beyond the end
4737          * of the i_size (remove_inode_hugepages() is strict about
4738          * enforcing that). If we bail out here, we'll also leave a
4739          * page in the radix tree in the vm_shared case beyond the end
4740          * of the i_size, but remove_inode_hugepages() will take care
4741          * of it as soon as we drop the hugetlb_fault_mutex_table.
4742          */
4743         size = i_size_read(mapping->host) >> huge_page_shift(h);
4744         ret = -EFAULT;
4745         if (idx >= size)
4746                 goto out_release_unlock;
4747
4748         ret = -EEXIST;
4749         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4750                 goto out_release_unlock;
4751
4752         if (vm_shared) {
4753                 page_dup_rmap(page, true);
4754         } else {
4755                 ClearHPageRestoreReserve(page);
4756                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4757         }
4758
4759         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4760         if (dst_vma->vm_flags & VM_WRITE)
4761                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4762         _dst_pte = pte_mkyoung(_dst_pte);
4763
4764         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4765
4766         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4767                                         dst_vma->vm_flags & VM_WRITE);
4768         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4769
4770         /* No need to invalidate - it was non-present before */
4771         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4772
4773         spin_unlock(ptl);
4774         set_page_huge_active(page);
4775         if (vm_shared)
4776                 unlock_page(page);
4777         ret = 0;
4778 out:
4779         return ret;
4780 out_release_unlock:
4781         spin_unlock(ptl);
4782         if (vm_shared)
4783                 unlock_page(page);
4784 out_release_nounlock:
4785         put_page(page);
4786         goto out;
4787 }
4788
4789 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4790                                  int refs, struct page **pages,
4791                                  struct vm_area_struct **vmas)
4792 {
4793         int nr;
4794
4795         for (nr = 0; nr < refs; nr++) {
4796                 if (likely(pages))
4797                         pages[nr] = mem_map_offset(page, nr);
4798                 if (vmas)
4799                         vmas[nr] = vma;
4800         }
4801 }
4802
4803 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4804                          struct page **pages, struct vm_area_struct **vmas,
4805                          unsigned long *position, unsigned long *nr_pages,
4806                          long i, unsigned int flags, int *locked)
4807 {
4808         unsigned long pfn_offset;
4809         unsigned long vaddr = *position;
4810         unsigned long remainder = *nr_pages;
4811         struct hstate *h = hstate_vma(vma);
4812         int err = -EFAULT, refs;
4813
4814         while (vaddr < vma->vm_end && remainder) {
4815                 pte_t *pte;
4816                 spinlock_t *ptl = NULL;
4817                 int absent;
4818                 struct page *page;
4819
4820                 /*
4821                  * If we have a pending SIGKILL, don't keep faulting pages and
4822                  * potentially allocating memory.
4823                  */
4824                 if (fatal_signal_pending(current)) {
4825                         remainder = 0;
4826                         break;
4827                 }
4828
4829                 /*
4830                  * Some archs (sparc64, sh*) have multiple pte_ts to
4831                  * each hugepage.  We have to make sure we get the
4832                  * first, for the page indexing below to work.
4833                  *
4834                  * Note that page table lock is not held when pte is null.
4835                  */
4836                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4837                                       huge_page_size(h));
4838                 if (pte)
4839                         ptl = huge_pte_lock(h, mm, pte);
4840                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4841
4842                 /*
4843                  * When coredumping, it suits get_dump_page if we just return
4844                  * an error where there's an empty slot with no huge pagecache
4845                  * to back it.  This way, we avoid allocating a hugepage, and
4846                  * the sparse dumpfile avoids allocating disk blocks, but its
4847                  * huge holes still show up with zeroes where they need to be.
4848                  */
4849                 if (absent && (flags & FOLL_DUMP) &&
4850                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4851                         if (pte)
4852                                 spin_unlock(ptl);
4853                         remainder = 0;
4854                         break;
4855                 }
4856
4857                 /*
4858                  * We need call hugetlb_fault for both hugepages under migration
4859                  * (in which case hugetlb_fault waits for the migration,) and
4860                  * hwpoisoned hugepages (in which case we need to prevent the
4861                  * caller from accessing to them.) In order to do this, we use
4862                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4863                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4864                  * both cases, and because we can't follow correct pages
4865                  * directly from any kind of swap entries.
4866                  */
4867                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4868                     ((flags & FOLL_WRITE) &&
4869                       !huge_pte_write(huge_ptep_get(pte)))) {
4870                         vm_fault_t ret;
4871                         unsigned int fault_flags = 0;
4872
4873                         if (pte)
4874                                 spin_unlock(ptl);
4875                         if (flags & FOLL_WRITE)
4876                                 fault_flags |= FAULT_FLAG_WRITE;
4877                         if (locked)
4878                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4879                                         FAULT_FLAG_KILLABLE;
4880                         if (flags & FOLL_NOWAIT)
4881                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4882                                         FAULT_FLAG_RETRY_NOWAIT;
4883                         if (flags & FOLL_TRIED) {
4884                                 /*
4885                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4886                                  * FAULT_FLAG_TRIED can co-exist
4887                                  */
4888                                 fault_flags |= FAULT_FLAG_TRIED;
4889                         }
4890                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4891                         if (ret & VM_FAULT_ERROR) {
4892                                 err = vm_fault_to_errno(ret, flags);
4893                                 remainder = 0;
4894                                 break;
4895                         }
4896                         if (ret & VM_FAULT_RETRY) {
4897                                 if (locked &&
4898                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4899                                         *locked = 0;
4900                                 *nr_pages = 0;
4901                                 /*
4902                                  * VM_FAULT_RETRY must not return an
4903                                  * error, it will return zero
4904                                  * instead.
4905                                  *
4906                                  * No need to update "position" as the
4907                                  * caller will not check it after
4908                                  * *nr_pages is set to 0.
4909                                  */
4910                                 return i;
4911                         }
4912                         continue;
4913                 }
4914
4915                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4916                 page = pte_page(huge_ptep_get(pte));
4917
4918                 /*
4919                  * If subpage information not requested, update counters
4920                  * and skip the same_page loop below.
4921                  */
4922                 if (!pages && !vmas && !pfn_offset &&
4923                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4924                     (remainder >= pages_per_huge_page(h))) {
4925                         vaddr += huge_page_size(h);
4926                         remainder -= pages_per_huge_page(h);
4927                         i += pages_per_huge_page(h);
4928                         spin_unlock(ptl);
4929                         continue;
4930                 }
4931
4932                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4933                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4934
4935                 if (pages || vmas)
4936                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4937                                              vma, refs,
4938                                              likely(pages) ? pages + i : NULL,
4939                                              vmas ? vmas + i : NULL);
4940
4941                 if (pages) {
4942                         /*
4943                          * try_grab_compound_head() should always succeed here,
4944                          * because: a) we hold the ptl lock, and b) we've just
4945                          * checked that the huge page is present in the page
4946                          * tables. If the huge page is present, then the tail
4947                          * pages must also be present. The ptl prevents the
4948                          * head page and tail pages from being rearranged in
4949                          * any way. So this page must be available at this
4950                          * point, unless the page refcount overflowed:
4951                          */
4952                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4953                                                                  refs,
4954                                                                  flags))) {
4955                                 spin_unlock(ptl);
4956                                 remainder = 0;
4957                                 err = -ENOMEM;
4958                                 break;
4959                         }
4960                 }
4961
4962                 vaddr += (refs << PAGE_SHIFT);
4963                 remainder -= refs;
4964                 i += refs;
4965
4966                 spin_unlock(ptl);
4967         }
4968         *nr_pages = remainder;
4969         /*
4970          * setting position is actually required only if remainder is
4971          * not zero but it's faster not to add a "if (remainder)"
4972          * branch.
4973          */
4974         *position = vaddr;
4975
4976         return i ? i : err;
4977 }
4978
4979 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4980 /*
4981  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4982  * implement this.
4983  */
4984 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4985 #endif
4986
4987 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4988                 unsigned long address, unsigned long end, pgprot_t newprot)
4989 {
4990         struct mm_struct *mm = vma->vm_mm;
4991         unsigned long start = address;
4992         pte_t *ptep;
4993         pte_t pte;
4994         struct hstate *h = hstate_vma(vma);
4995         unsigned long pages = 0;
4996         bool shared_pmd = false;
4997         struct mmu_notifier_range range;
4998
4999         /*
5000          * In the case of shared PMDs, the area to flush could be beyond
5001          * start/end.  Set range.start/range.end to cover the maximum possible
5002          * range if PMD sharing is possible.
5003          */
5004         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5005                                 0, vma, mm, start, end);
5006         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5007
5008         BUG_ON(address >= end);
5009         flush_cache_range(vma, range.start, range.end);
5010
5011         mmu_notifier_invalidate_range_start(&range);
5012         i_mmap_lock_write(vma->vm_file->f_mapping);
5013         for (; address < end; address += huge_page_size(h)) {
5014                 spinlock_t *ptl;
5015                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5016                 if (!ptep)
5017                         continue;
5018                 ptl = huge_pte_lock(h, mm, ptep);
5019                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5020                         pages++;
5021                         spin_unlock(ptl);
5022                         shared_pmd = true;
5023                         continue;
5024                 }
5025                 pte = huge_ptep_get(ptep);
5026                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5027                         spin_unlock(ptl);
5028                         continue;
5029                 }
5030                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5031                         swp_entry_t entry = pte_to_swp_entry(pte);
5032
5033                         if (is_write_migration_entry(entry)) {
5034                                 pte_t newpte;
5035
5036                                 make_migration_entry_read(&entry);
5037                                 newpte = swp_entry_to_pte(entry);
5038                                 set_huge_swap_pte_at(mm, address, ptep,
5039                                                      newpte, huge_page_size(h));
5040                                 pages++;
5041                         }
5042                         spin_unlock(ptl);
5043                         continue;
5044                 }
5045                 if (!huge_pte_none(pte)) {
5046                         pte_t old_pte;
5047
5048                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5049                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5050                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5051                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5052                         pages++;
5053                 }
5054                 spin_unlock(ptl);
5055         }
5056         /*
5057          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5058          * may have cleared our pud entry and done put_page on the page table:
5059          * once we release i_mmap_rwsem, another task can do the final put_page
5060          * and that page table be reused and filled with junk.  If we actually
5061          * did unshare a page of pmds, flush the range corresponding to the pud.
5062          */
5063         if (shared_pmd)
5064                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5065         else
5066                 flush_hugetlb_tlb_range(vma, start, end);
5067         /*
5068          * No need to call mmu_notifier_invalidate_range() we are downgrading
5069          * page table protection not changing it to point to a new page.
5070          *
5071          * See Documentation/vm/mmu_notifier.rst
5072          */
5073         i_mmap_unlock_write(vma->vm_file->f_mapping);
5074         mmu_notifier_invalidate_range_end(&range);
5075
5076         return pages << h->order;
5077 }
5078
5079 int hugetlb_reserve_pages(struct inode *inode,
5080                                         long from, long to,
5081                                         struct vm_area_struct *vma,
5082                                         vm_flags_t vm_flags)
5083 {
5084         long ret, chg, add = -1;
5085         struct hstate *h = hstate_inode(inode);
5086         struct hugepage_subpool *spool = subpool_inode(inode);
5087         struct resv_map *resv_map;
5088         struct hugetlb_cgroup *h_cg = NULL;
5089         long gbl_reserve, regions_needed = 0;
5090
5091         /* This should never happen */
5092         if (from > to) {
5093                 VM_WARN(1, "%s called with a negative range\n", __func__);
5094                 return -EINVAL;
5095         }
5096
5097         /*
5098          * Only apply hugepage reservation if asked. At fault time, an
5099          * attempt will be made for VM_NORESERVE to allocate a page
5100          * without using reserves
5101          */
5102         if (vm_flags & VM_NORESERVE)
5103                 return 0;
5104
5105         /*
5106          * Shared mappings base their reservation on the number of pages that
5107          * are already allocated on behalf of the file. Private mappings need
5108          * to reserve the full area even if read-only as mprotect() may be
5109          * called to make the mapping read-write. Assume !vma is a shm mapping
5110          */
5111         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5112                 /*
5113                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5114                  * called for inodes for which resv_maps were created (see
5115                  * hugetlbfs_get_inode).
5116                  */
5117                 resv_map = inode_resv_map(inode);
5118
5119                 chg = region_chg(resv_map, from, to, &regions_needed);
5120
5121         } else {
5122                 /* Private mapping. */
5123                 resv_map = resv_map_alloc();
5124                 if (!resv_map)
5125                         return -ENOMEM;
5126
5127                 chg = to - from;
5128
5129                 set_vma_resv_map(vma, resv_map);
5130                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5131         }
5132
5133         if (chg < 0) {
5134                 ret = chg;
5135                 goto out_err;
5136         }
5137
5138         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5139                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5140
5141         if (ret < 0) {
5142                 ret = -ENOMEM;
5143                 goto out_err;
5144         }
5145
5146         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5147                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5148                  * of the resv_map.
5149                  */
5150                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5151         }
5152
5153         /*
5154          * There must be enough pages in the subpool for the mapping. If
5155          * the subpool has a minimum size, there may be some global
5156          * reservations already in place (gbl_reserve).
5157          */
5158         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5159         if (gbl_reserve < 0) {
5160                 ret = -ENOSPC;
5161                 goto out_uncharge_cgroup;
5162         }
5163
5164         /*
5165          * Check enough hugepages are available for the reservation.
5166          * Hand the pages back to the subpool if there are not
5167          */
5168         ret = hugetlb_acct_memory(h, gbl_reserve);
5169         if (ret < 0) {
5170                 goto out_put_pages;
5171         }
5172
5173         /*
5174          * Account for the reservations made. Shared mappings record regions
5175          * that have reservations as they are shared by multiple VMAs.
5176          * When the last VMA disappears, the region map says how much
5177          * the reservation was and the page cache tells how much of
5178          * the reservation was consumed. Private mappings are per-VMA and
5179          * only the consumed reservations are tracked. When the VMA
5180          * disappears, the original reservation is the VMA size and the
5181          * consumed reservations are stored in the map. Hence, nothing
5182          * else has to be done for private mappings here
5183          */
5184         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5185                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5186
5187                 if (unlikely(add < 0)) {
5188                         hugetlb_acct_memory(h, -gbl_reserve);
5189                         ret = add;
5190                         goto out_put_pages;
5191                 } else if (unlikely(chg > add)) {
5192                         /*
5193                          * pages in this range were added to the reserve
5194                          * map between region_chg and region_add.  This
5195                          * indicates a race with alloc_huge_page.  Adjust
5196                          * the subpool and reserve counts modified above
5197                          * based on the difference.
5198                          */
5199                         long rsv_adjust;
5200
5201                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5202                                 hstate_index(h),
5203                                 (chg - add) * pages_per_huge_page(h), h_cg);
5204
5205                         rsv_adjust = hugepage_subpool_put_pages(spool,
5206                                                                 chg - add);
5207                         hugetlb_acct_memory(h, -rsv_adjust);
5208                 }
5209         }
5210         return 0;
5211 out_put_pages:
5212         /* put back original number of pages, chg */
5213         (void)hugepage_subpool_put_pages(spool, chg);
5214 out_uncharge_cgroup:
5215         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5216                                             chg * pages_per_huge_page(h), h_cg);
5217 out_err:
5218         if (!vma || vma->vm_flags & VM_MAYSHARE)
5219                 /* Only call region_abort if the region_chg succeeded but the
5220                  * region_add failed or didn't run.
5221                  */
5222                 if (chg >= 0 && add < 0)
5223                         region_abort(resv_map, from, to, regions_needed);
5224         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5225                 kref_put(&resv_map->refs, resv_map_release);
5226         return ret;
5227 }
5228
5229 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5230                                                                 long freed)
5231 {
5232         struct hstate *h = hstate_inode(inode);
5233         struct resv_map *resv_map = inode_resv_map(inode);
5234         long chg = 0;
5235         struct hugepage_subpool *spool = subpool_inode(inode);
5236         long gbl_reserve;
5237
5238         /*
5239          * Since this routine can be called in the evict inode path for all
5240          * hugetlbfs inodes, resv_map could be NULL.
5241          */
5242         if (resv_map) {
5243                 chg = region_del(resv_map, start, end);
5244                 /*
5245                  * region_del() can fail in the rare case where a region
5246                  * must be split and another region descriptor can not be
5247                  * allocated.  If end == LONG_MAX, it will not fail.
5248                  */
5249                 if (chg < 0)
5250                         return chg;
5251         }
5252
5253         spin_lock(&inode->i_lock);
5254         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5255         spin_unlock(&inode->i_lock);
5256
5257         /*
5258          * If the subpool has a minimum size, the number of global
5259          * reservations to be released may be adjusted.
5260          */
5261         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5262         hugetlb_acct_memory(h, -gbl_reserve);
5263
5264         return 0;
5265 }
5266
5267 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5268 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5269                                 struct vm_area_struct *vma,
5270                                 unsigned long addr, pgoff_t idx)
5271 {
5272         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5273                                 svma->vm_start;
5274         unsigned long sbase = saddr & PUD_MASK;
5275         unsigned long s_end = sbase + PUD_SIZE;
5276
5277         /* Allow segments to share if only one is marked locked */
5278         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5279         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5280
5281         /*
5282          * match the virtual addresses, permission and the alignment of the
5283          * page table page.
5284          */
5285         if (pmd_index(addr) != pmd_index(saddr) ||
5286             vm_flags != svm_flags ||
5287             !range_in_vma(svma, sbase, s_end))
5288                 return 0;
5289
5290         return saddr;
5291 }
5292
5293 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5294 {
5295         unsigned long base = addr & PUD_MASK;
5296         unsigned long end = base + PUD_SIZE;
5297
5298         /*
5299          * check on proper vm_flags and page table alignment
5300          */
5301         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5302                 return true;
5303         return false;
5304 }
5305
5306 /*
5307  * Determine if start,end range within vma could be mapped by shared pmd.
5308  * If yes, adjust start and end to cover range associated with possible
5309  * shared pmd mappings.
5310  */
5311 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5312                                 unsigned long *start, unsigned long *end)
5313 {
5314         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5315                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5316
5317         /*
5318          * vma need span at least one aligned PUD size and the start,end range
5319          * must at least partialy within it.
5320          */
5321         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5322                 (*end <= v_start) || (*start >= v_end))
5323                 return;
5324
5325         /* Extend the range to be PUD aligned for a worst case scenario */
5326         if (*start > v_start)
5327                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5328
5329         if (*end < v_end)
5330                 *end = ALIGN(*end, PUD_SIZE);
5331 }
5332
5333 /*
5334  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5335  * and returns the corresponding pte. While this is not necessary for the
5336  * !shared pmd case because we can allocate the pmd later as well, it makes the
5337  * code much cleaner.
5338  *
5339  * This routine must be called with i_mmap_rwsem held in at least read mode if
5340  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5341  * table entries associated with the address space.  This is important as we
5342  * are setting up sharing based on existing page table entries (mappings).
5343  *
5344  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5345  * huge_pte_alloc know that sharing is not possible and do not take
5346  * i_mmap_rwsem as a performance optimization.  This is handled by the
5347  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5348  * only required for subsequent processing.
5349  */
5350 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5351 {
5352         struct vm_area_struct *vma = find_vma(mm, addr);
5353         struct address_space *mapping = vma->vm_file->f_mapping;
5354         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5355                         vma->vm_pgoff;
5356         struct vm_area_struct *svma;
5357         unsigned long saddr;
5358         pte_t *spte = NULL;
5359         pte_t *pte;
5360         spinlock_t *ptl;
5361
5362         if (!vma_shareable(vma, addr))
5363                 return (pte_t *)pmd_alloc(mm, pud, addr);
5364
5365         i_mmap_assert_locked(mapping);
5366         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5367                 if (svma == vma)
5368                         continue;
5369
5370                 saddr = page_table_shareable(svma, vma, addr, idx);
5371                 if (saddr) {
5372                         spte = huge_pte_offset(svma->vm_mm, saddr,
5373                                                vma_mmu_pagesize(svma));
5374                         if (spte) {
5375                                 get_page(virt_to_page(spte));
5376                                 break;
5377                         }
5378                 }
5379         }
5380
5381         if (!spte)
5382                 goto out;
5383
5384         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5385         if (pud_none(*pud)) {
5386                 pud_populate(mm, pud,
5387                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5388                 mm_inc_nr_pmds(mm);
5389         } else {
5390                 put_page(virt_to_page(spte));
5391         }
5392         spin_unlock(ptl);
5393 out:
5394         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5395         return pte;
5396 }
5397
5398 /*
5399  * unmap huge page backed by shared pte.
5400  *
5401  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5402  * indicated by page_count > 1, unmap is achieved by clearing pud and
5403  * decrementing the ref count. If count == 1, the pte page is not shared.
5404  *
5405  * Called with page table lock held and i_mmap_rwsem held in write mode.
5406  *
5407  * returns: 1 successfully unmapped a shared pte page
5408  *          0 the underlying pte page is not shared, or it is the last user
5409  */
5410 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5411                                         unsigned long *addr, pte_t *ptep)
5412 {
5413         pgd_t *pgd = pgd_offset(mm, *addr);
5414         p4d_t *p4d = p4d_offset(pgd, *addr);
5415         pud_t *pud = pud_offset(p4d, *addr);
5416
5417         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5418         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5419         if (page_count(virt_to_page(ptep)) == 1)
5420                 return 0;
5421
5422         pud_clear(pud);
5423         put_page(virt_to_page(ptep));
5424         mm_dec_nr_pmds(mm);
5425         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5426         return 1;
5427 }
5428 #define want_pmd_share()        (1)
5429 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5430 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5431 {
5432         return NULL;
5433 }
5434
5435 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5436                                 unsigned long *addr, pte_t *ptep)
5437 {
5438         return 0;
5439 }
5440
5441 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5442                                 unsigned long *start, unsigned long *end)
5443 {
5444 }
5445 #define want_pmd_share()        (0)
5446 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5447
5448 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5449 pte_t *huge_pte_alloc(struct mm_struct *mm,
5450                         unsigned long addr, unsigned long sz)
5451 {
5452         pgd_t *pgd;
5453         p4d_t *p4d;
5454         pud_t *pud;
5455         pte_t *pte = NULL;
5456
5457         pgd = pgd_offset(mm, addr);
5458         p4d = p4d_alloc(mm, pgd, addr);
5459         if (!p4d)
5460                 return NULL;
5461         pud = pud_alloc(mm, p4d, addr);
5462         if (pud) {
5463                 if (sz == PUD_SIZE) {
5464                         pte = (pte_t *)pud;
5465                 } else {
5466                         BUG_ON(sz != PMD_SIZE);
5467                         if (want_pmd_share() && pud_none(*pud))
5468                                 pte = huge_pmd_share(mm, addr, pud);
5469                         else
5470                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5471                 }
5472         }
5473         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5474
5475         return pte;
5476 }
5477
5478 /*
5479  * huge_pte_offset() - Walk the page table to resolve the hugepage
5480  * entry at address @addr
5481  *
5482  * Return: Pointer to page table entry (PUD or PMD) for
5483  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5484  * size @sz doesn't match the hugepage size at this level of the page
5485  * table.
5486  */
5487 pte_t *huge_pte_offset(struct mm_struct *mm,
5488                        unsigned long addr, unsigned long sz)
5489 {
5490         pgd_t *pgd;
5491         p4d_t *p4d;
5492         pud_t *pud;
5493         pmd_t *pmd;
5494
5495         pgd = pgd_offset(mm, addr);
5496         if (!pgd_present(*pgd))
5497                 return NULL;
5498         p4d = p4d_offset(pgd, addr);
5499         if (!p4d_present(*p4d))
5500                 return NULL;
5501
5502         pud = pud_offset(p4d, addr);
5503         if (sz == PUD_SIZE)
5504                 /* must be pud huge, non-present or none */
5505                 return (pte_t *)pud;
5506         if (!pud_present(*pud))
5507                 return NULL;
5508         /* must have a valid entry and size to go further */
5509
5510         pmd = pmd_offset(pud, addr);
5511         /* must be pmd huge, non-present or none */
5512         return (pte_t *)pmd;
5513 }
5514
5515 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5516
5517 /*
5518  * These functions are overwritable if your architecture needs its own
5519  * behavior.
5520  */
5521 struct page * __weak
5522 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5523                               int write)
5524 {
5525         return ERR_PTR(-EINVAL);
5526 }
5527
5528 struct page * __weak
5529 follow_huge_pd(struct vm_area_struct *vma,
5530                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5531 {
5532         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5533         return NULL;
5534 }
5535
5536 struct page * __weak
5537 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5538                 pmd_t *pmd, int flags)
5539 {
5540         struct page *page = NULL;
5541         spinlock_t *ptl;
5542         pte_t pte;
5543
5544         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5545         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5546                          (FOLL_PIN | FOLL_GET)))
5547                 return NULL;
5548
5549 retry:
5550         ptl = pmd_lockptr(mm, pmd);
5551         spin_lock(ptl);
5552         /*
5553          * make sure that the address range covered by this pmd is not
5554          * unmapped from other threads.
5555          */
5556         if (!pmd_huge(*pmd))
5557                 goto out;
5558         pte = huge_ptep_get((pte_t *)pmd);
5559         if (pte_present(pte)) {
5560                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5561                 /*
5562                  * try_grab_page() should always succeed here, because: a) we
5563                  * hold the pmd (ptl) lock, and b) we've just checked that the
5564                  * huge pmd (head) page is present in the page tables. The ptl
5565                  * prevents the head page and tail pages from being rearranged
5566                  * in any way. So this page must be available at this point,
5567                  * unless the page refcount overflowed:
5568                  */
5569                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5570                         page = NULL;
5571                         goto out;
5572                 }
5573         } else {
5574                 if (is_hugetlb_entry_migration(pte)) {
5575                         spin_unlock(ptl);
5576                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5577                         goto retry;
5578                 }
5579                 /*
5580                  * hwpoisoned entry is treated as no_page_table in
5581                  * follow_page_mask().
5582                  */
5583         }
5584 out:
5585         spin_unlock(ptl);
5586         return page;
5587 }
5588
5589 struct page * __weak
5590 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5591                 pud_t *pud, int flags)
5592 {
5593         if (flags & (FOLL_GET | FOLL_PIN))
5594                 return NULL;
5595
5596         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5597 }
5598
5599 struct page * __weak
5600 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5601 {
5602         if (flags & (FOLL_GET | FOLL_PIN))
5603                 return NULL;
5604
5605         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5606 }
5607
5608 bool isolate_huge_page(struct page *page, struct list_head *list)
5609 {
5610         bool ret = true;
5611
5612         spin_lock(&hugetlb_lock);
5613         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5614             !get_page_unless_zero(page)) {
5615                 ret = false;
5616                 goto unlock;
5617         }
5618         clear_page_huge_active(page);
5619         list_move_tail(&page->lru, list);
5620 unlock:
5621         spin_unlock(&hugetlb_lock);
5622         return ret;
5623 }
5624
5625 void putback_active_hugepage(struct page *page)
5626 {
5627         spin_lock(&hugetlb_lock);
5628         set_page_huge_active(page);
5629         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5630         spin_unlock(&hugetlb_lock);
5631         put_page(page);
5632 }
5633
5634 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5635 {
5636         struct hstate *h = page_hstate(oldpage);
5637
5638         hugetlb_cgroup_migrate(oldpage, newpage);
5639         set_page_owner_migrate_reason(newpage, reason);
5640
5641         /*
5642          * transfer temporary state of the new huge page. This is
5643          * reverse to other transitions because the newpage is going to
5644          * be final while the old one will be freed so it takes over
5645          * the temporary status.
5646          *
5647          * Also note that we have to transfer the per-node surplus state
5648          * here as well otherwise the global surplus count will not match
5649          * the per-node's.
5650          */
5651         if (PageHugeTemporary(newpage)) {
5652                 int old_nid = page_to_nid(oldpage);
5653                 int new_nid = page_to_nid(newpage);
5654
5655                 SetPageHugeTemporary(oldpage);
5656                 ClearPageHugeTemporary(newpage);
5657
5658                 spin_lock(&hugetlb_lock);
5659                 if (h->surplus_huge_pages_node[old_nid]) {
5660                         h->surplus_huge_pages_node[old_nid]--;
5661                         h->surplus_huge_pages_node[new_nid]++;
5662                 }
5663                 spin_unlock(&hugetlb_lock);
5664         }
5665 }
5666
5667 #ifdef CONFIG_CMA
5668 static bool cma_reserve_called __initdata;
5669
5670 static int __init cmdline_parse_hugetlb_cma(char *p)
5671 {
5672         hugetlb_cma_size = memparse(p, &p);
5673         return 0;
5674 }
5675
5676 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5677
5678 void __init hugetlb_cma_reserve(int order)
5679 {
5680         unsigned long size, reserved, per_node;
5681         int nid;
5682
5683         cma_reserve_called = true;
5684
5685         if (!hugetlb_cma_size)
5686                 return;
5687
5688         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5689                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5690                         (PAGE_SIZE << order) / SZ_1M);
5691                 return;
5692         }
5693
5694         /*
5695          * If 3 GB area is requested on a machine with 4 numa nodes,
5696          * let's allocate 1 GB on first three nodes and ignore the last one.
5697          */
5698         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5699         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5700                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5701
5702         reserved = 0;
5703         for_each_node_state(nid, N_ONLINE) {
5704                 int res;
5705                 char name[CMA_MAX_NAME];
5706
5707                 size = min(per_node, hugetlb_cma_size - reserved);
5708                 size = round_up(size, PAGE_SIZE << order);
5709
5710                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5711                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5712                                                  0, false, name,
5713                                                  &hugetlb_cma[nid], nid);
5714                 if (res) {
5715                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5716                                 res, nid);
5717                         continue;
5718                 }
5719
5720                 reserved += size;
5721                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5722                         size / SZ_1M, nid);
5723
5724                 if (reserved >= hugetlb_cma_size)
5725                         break;
5726         }
5727 }
5728
5729 void __init hugetlb_cma_check(void)
5730 {
5731         if (!hugetlb_cma_size || cma_reserve_called)
5732                 return;
5733
5734         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5735 }
5736
5737 #endif /* CONFIG_CMA */