Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[sfrench/cifs-2.6.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 static struct mmu_notifier *hmm_alloc_notifier(struct mm_struct *mm)
30 {
31         struct hmm *hmm;
32
33         hmm = kzalloc(sizeof(*hmm), GFP_KERNEL);
34         if (!hmm)
35                 return ERR_PTR(-ENOMEM);
36
37         init_waitqueue_head(&hmm->wq);
38         INIT_LIST_HEAD(&hmm->mirrors);
39         init_rwsem(&hmm->mirrors_sem);
40         INIT_LIST_HEAD(&hmm->ranges);
41         spin_lock_init(&hmm->ranges_lock);
42         hmm->notifiers = 0;
43         return &hmm->mmu_notifier;
44 }
45
46 static void hmm_free_notifier(struct mmu_notifier *mn)
47 {
48         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
49
50         WARN_ON(!list_empty(&hmm->ranges));
51         WARN_ON(!list_empty(&hmm->mirrors));
52         kfree(hmm);
53 }
54
55 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
56 {
57         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
58         struct hmm_mirror *mirror;
59
60         /*
61          * Since hmm_range_register() holds the mmget() lock hmm_release() is
62          * prevented as long as a range exists.
63          */
64         WARN_ON(!list_empty_careful(&hmm->ranges));
65
66         down_read(&hmm->mirrors_sem);
67         list_for_each_entry(mirror, &hmm->mirrors, list) {
68                 /*
69                  * Note: The driver is not allowed to trigger
70                  * hmm_mirror_unregister() from this thread.
71                  */
72                 if (mirror->ops->release)
73                         mirror->ops->release(mirror);
74         }
75         up_read(&hmm->mirrors_sem);
76 }
77
78 static void notifiers_decrement(struct hmm *hmm)
79 {
80         unsigned long flags;
81
82         spin_lock_irqsave(&hmm->ranges_lock, flags);
83         hmm->notifiers--;
84         if (!hmm->notifiers) {
85                 struct hmm_range *range;
86
87                 list_for_each_entry(range, &hmm->ranges, list) {
88                         if (range->valid)
89                                 continue;
90                         range->valid = true;
91                 }
92                 wake_up_all(&hmm->wq);
93         }
94         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
95 }
96
97 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
98                         const struct mmu_notifier_range *nrange)
99 {
100         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
101         struct hmm_mirror *mirror;
102         struct hmm_range *range;
103         unsigned long flags;
104         int ret = 0;
105
106         spin_lock_irqsave(&hmm->ranges_lock, flags);
107         hmm->notifiers++;
108         list_for_each_entry(range, &hmm->ranges, list) {
109                 if (nrange->end < range->start || nrange->start >= range->end)
110                         continue;
111
112                 range->valid = false;
113         }
114         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
115
116         if (mmu_notifier_range_blockable(nrange))
117                 down_read(&hmm->mirrors_sem);
118         else if (!down_read_trylock(&hmm->mirrors_sem)) {
119                 ret = -EAGAIN;
120                 goto out;
121         }
122
123         list_for_each_entry(mirror, &hmm->mirrors, list) {
124                 int rc;
125
126                 rc = mirror->ops->sync_cpu_device_pagetables(mirror, nrange);
127                 if (rc) {
128                         if (WARN_ON(mmu_notifier_range_blockable(nrange) ||
129                             rc != -EAGAIN))
130                                 continue;
131                         ret = -EAGAIN;
132                         break;
133                 }
134         }
135         up_read(&hmm->mirrors_sem);
136
137 out:
138         if (ret)
139                 notifiers_decrement(hmm);
140         return ret;
141 }
142
143 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
144                         const struct mmu_notifier_range *nrange)
145 {
146         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
147
148         notifiers_decrement(hmm);
149 }
150
151 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
152         .release                = hmm_release,
153         .invalidate_range_start = hmm_invalidate_range_start,
154         .invalidate_range_end   = hmm_invalidate_range_end,
155         .alloc_notifier         = hmm_alloc_notifier,
156         .free_notifier          = hmm_free_notifier,
157 };
158
159 /*
160  * hmm_mirror_register() - register a mirror against an mm
161  *
162  * @mirror: new mirror struct to register
163  * @mm: mm to register against
164  * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
165  *
166  * To start mirroring a process address space, the device driver must register
167  * an HMM mirror struct.
168  *
169  * The caller cannot unregister the hmm_mirror while any ranges are
170  * registered.
171  *
172  * Callers using this function must put a call to mmu_notifier_synchronize()
173  * in their module exit functions.
174  */
175 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
176 {
177         struct mmu_notifier *mn;
178
179         lockdep_assert_held_write(&mm->mmap_sem);
180
181         /* Sanity check */
182         if (!mm || !mirror || !mirror->ops)
183                 return -EINVAL;
184
185         mn = mmu_notifier_get_locked(&hmm_mmu_notifier_ops, mm);
186         if (IS_ERR(mn))
187                 return PTR_ERR(mn);
188         mirror->hmm = container_of(mn, struct hmm, mmu_notifier);
189
190         down_write(&mirror->hmm->mirrors_sem);
191         list_add(&mirror->list, &mirror->hmm->mirrors);
192         up_write(&mirror->hmm->mirrors_sem);
193
194         return 0;
195 }
196 EXPORT_SYMBOL(hmm_mirror_register);
197
198 /*
199  * hmm_mirror_unregister() - unregister a mirror
200  *
201  * @mirror: mirror struct to unregister
202  *
203  * Stop mirroring a process address space, and cleanup.
204  */
205 void hmm_mirror_unregister(struct hmm_mirror *mirror)
206 {
207         struct hmm *hmm = mirror->hmm;
208
209         down_write(&hmm->mirrors_sem);
210         list_del(&mirror->list);
211         up_write(&hmm->mirrors_sem);
212         mmu_notifier_put(&hmm->mmu_notifier);
213 }
214 EXPORT_SYMBOL(hmm_mirror_unregister);
215
216 struct hmm_vma_walk {
217         struct hmm_range        *range;
218         struct dev_pagemap      *pgmap;
219         unsigned long           last;
220         unsigned int            flags;
221 };
222
223 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
224                             bool write_fault, uint64_t *pfn)
225 {
226         unsigned int flags = FAULT_FLAG_REMOTE;
227         struct hmm_vma_walk *hmm_vma_walk = walk->private;
228         struct hmm_range *range = hmm_vma_walk->range;
229         struct vm_area_struct *vma = walk->vma;
230         vm_fault_t ret;
231
232         if (!vma)
233                 goto err;
234
235         if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
236                 flags |= FAULT_FLAG_ALLOW_RETRY;
237         if (write_fault)
238                 flags |= FAULT_FLAG_WRITE;
239
240         ret = handle_mm_fault(vma, addr, flags);
241         if (ret & VM_FAULT_RETRY) {
242                 /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
243                 return -EAGAIN;
244         }
245         if (ret & VM_FAULT_ERROR)
246                 goto err;
247
248         return -EBUSY;
249
250 err:
251         *pfn = range->values[HMM_PFN_ERROR];
252         return -EFAULT;
253 }
254
255 static int hmm_pfns_bad(unsigned long addr,
256                         unsigned long end,
257                         struct mm_walk *walk)
258 {
259         struct hmm_vma_walk *hmm_vma_walk = walk->private;
260         struct hmm_range *range = hmm_vma_walk->range;
261         uint64_t *pfns = range->pfns;
262         unsigned long i;
263
264         i = (addr - range->start) >> PAGE_SHIFT;
265         for (; addr < end; addr += PAGE_SIZE, i++)
266                 pfns[i] = range->values[HMM_PFN_ERROR];
267
268         return 0;
269 }
270
271 /*
272  * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
273  * @addr: range virtual start address (inclusive)
274  * @end: range virtual end address (exclusive)
275  * @fault: should we fault or not ?
276  * @write_fault: write fault ?
277  * @walk: mm_walk structure
278  * Return: 0 on success, -EBUSY after page fault, or page fault error
279  *
280  * This function will be called whenever pmd_none() or pte_none() returns true,
281  * or whenever there is no page directory covering the virtual address range.
282  */
283 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
284                               bool fault, bool write_fault,
285                               struct mm_walk *walk)
286 {
287         struct hmm_vma_walk *hmm_vma_walk = walk->private;
288         struct hmm_range *range = hmm_vma_walk->range;
289         uint64_t *pfns = range->pfns;
290         unsigned long i;
291
292         hmm_vma_walk->last = addr;
293         i = (addr - range->start) >> PAGE_SHIFT;
294
295         if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
296                 return -EPERM;
297
298         for (; addr < end; addr += PAGE_SIZE, i++) {
299                 pfns[i] = range->values[HMM_PFN_NONE];
300                 if (fault || write_fault) {
301                         int ret;
302
303                         ret = hmm_vma_do_fault(walk, addr, write_fault,
304                                                &pfns[i]);
305                         if (ret != -EBUSY)
306                                 return ret;
307                 }
308         }
309
310         return (fault || write_fault) ? -EBUSY : 0;
311 }
312
313 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
314                                       uint64_t pfns, uint64_t cpu_flags,
315                                       bool *fault, bool *write_fault)
316 {
317         struct hmm_range *range = hmm_vma_walk->range;
318
319         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
320                 return;
321
322         /*
323          * So we not only consider the individual per page request we also
324          * consider the default flags requested for the range. The API can
325          * be used 2 ways. The first one where the HMM user coalesces
326          * multiple page faults into one request and sets flags per pfn for
327          * those faults. The second one where the HMM user wants to pre-
328          * fault a range with specific flags. For the latter one it is a
329          * waste to have the user pre-fill the pfn arrays with a default
330          * flags value.
331          */
332         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
333
334         /* We aren't ask to do anything ... */
335         if (!(pfns & range->flags[HMM_PFN_VALID]))
336                 return;
337         /* If this is device memory then only fault if explicitly requested */
338         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
339                 /* Do we fault on device memory ? */
340                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
341                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
342                         *fault = true;
343                 }
344                 return;
345         }
346
347         /* If CPU page table is not valid then we need to fault */
348         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
349         /* Need to write fault ? */
350         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
351             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
352                 *write_fault = true;
353                 *fault = true;
354         }
355 }
356
357 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
358                                  const uint64_t *pfns, unsigned long npages,
359                                  uint64_t cpu_flags, bool *fault,
360                                  bool *write_fault)
361 {
362         unsigned long i;
363
364         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
365                 *fault = *write_fault = false;
366                 return;
367         }
368
369         *fault = *write_fault = false;
370         for (i = 0; i < npages; ++i) {
371                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
372                                    fault, write_fault);
373                 if ((*write_fault))
374                         return;
375         }
376 }
377
378 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
379                              struct mm_walk *walk)
380 {
381         struct hmm_vma_walk *hmm_vma_walk = walk->private;
382         struct hmm_range *range = hmm_vma_walk->range;
383         bool fault, write_fault;
384         unsigned long i, npages;
385         uint64_t *pfns;
386
387         i = (addr - range->start) >> PAGE_SHIFT;
388         npages = (end - addr) >> PAGE_SHIFT;
389         pfns = &range->pfns[i];
390         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
391                              0, &fault, &write_fault);
392         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
393 }
394
395 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
396 {
397         if (pmd_protnone(pmd))
398                 return 0;
399         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
400                                 range->flags[HMM_PFN_WRITE] :
401                                 range->flags[HMM_PFN_VALID];
402 }
403
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
406                 unsigned long end, uint64_t *pfns, pmd_t pmd)
407 {
408         struct hmm_vma_walk *hmm_vma_walk = walk->private;
409         struct hmm_range *range = hmm_vma_walk->range;
410         unsigned long pfn, npages, i;
411         bool fault, write_fault;
412         uint64_t cpu_flags;
413
414         npages = (end - addr) >> PAGE_SHIFT;
415         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
416         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
417                              &fault, &write_fault);
418
419         if (pmd_protnone(pmd) || fault || write_fault)
420                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
421
422         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
423         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
424                 if (pmd_devmap(pmd)) {
425                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
426                                               hmm_vma_walk->pgmap);
427                         if (unlikely(!hmm_vma_walk->pgmap))
428                                 return -EBUSY;
429                 }
430                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
431         }
432         if (hmm_vma_walk->pgmap) {
433                 put_dev_pagemap(hmm_vma_walk->pgmap);
434                 hmm_vma_walk->pgmap = NULL;
435         }
436         hmm_vma_walk->last = end;
437         return 0;
438 }
439 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
440 /* stub to allow the code below to compile */
441 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
442                 unsigned long end, uint64_t *pfns, pmd_t pmd);
443 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
444
445 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
446 {
447         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
448                 return 0;
449         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
450                                 range->flags[HMM_PFN_WRITE] :
451                                 range->flags[HMM_PFN_VALID];
452 }
453
454 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
455                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
456                               uint64_t *pfn)
457 {
458         struct hmm_vma_walk *hmm_vma_walk = walk->private;
459         struct hmm_range *range = hmm_vma_walk->range;
460         bool fault, write_fault;
461         uint64_t cpu_flags;
462         pte_t pte = *ptep;
463         uint64_t orig_pfn = *pfn;
464
465         *pfn = range->values[HMM_PFN_NONE];
466         fault = write_fault = false;
467
468         if (pte_none(pte)) {
469                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
470                                    &fault, &write_fault);
471                 if (fault || write_fault)
472                         goto fault;
473                 return 0;
474         }
475
476         if (!pte_present(pte)) {
477                 swp_entry_t entry = pte_to_swp_entry(pte);
478
479                 if (!non_swap_entry(entry)) {
480                         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
481                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
482                                            &fault, &write_fault);
483                         if (fault || write_fault)
484                                 goto fault;
485                         return 0;
486                 }
487
488                 /*
489                  * This is a special swap entry, ignore migration, use
490                  * device and report anything else as error.
491                  */
492                 if (is_device_private_entry(entry)) {
493                         cpu_flags = range->flags[HMM_PFN_VALID] |
494                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
495                         cpu_flags |= is_write_device_private_entry(entry) ?
496                                 range->flags[HMM_PFN_WRITE] : 0;
497                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
498                                            &fault, &write_fault);
499                         if (fault || write_fault)
500                                 goto fault;
501                         *pfn = hmm_device_entry_from_pfn(range,
502                                             swp_offset(entry));
503                         *pfn |= cpu_flags;
504                         return 0;
505                 }
506
507                 if (is_migration_entry(entry)) {
508                         if (fault || write_fault) {
509                                 pte_unmap(ptep);
510                                 hmm_vma_walk->last = addr;
511                                 migration_entry_wait(walk->mm, pmdp, addr);
512                                 return -EBUSY;
513                         }
514                         return 0;
515                 }
516
517                 /* Report error for everything else */
518                 *pfn = range->values[HMM_PFN_ERROR];
519                 return -EFAULT;
520         } else {
521                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
522                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
523                                    &fault, &write_fault);
524         }
525
526         if (fault || write_fault)
527                 goto fault;
528
529         if (pte_devmap(pte)) {
530                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
531                                               hmm_vma_walk->pgmap);
532                 if (unlikely(!hmm_vma_walk->pgmap))
533                         return -EBUSY;
534         } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
535                 *pfn = range->values[HMM_PFN_SPECIAL];
536                 return -EFAULT;
537         }
538
539         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
540         return 0;
541
542 fault:
543         if (hmm_vma_walk->pgmap) {
544                 put_dev_pagemap(hmm_vma_walk->pgmap);
545                 hmm_vma_walk->pgmap = NULL;
546         }
547         pte_unmap(ptep);
548         /* Fault any virtual address we were asked to fault */
549         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
550 }
551
552 static int hmm_vma_walk_pmd(pmd_t *pmdp,
553                             unsigned long start,
554                             unsigned long end,
555                             struct mm_walk *walk)
556 {
557         struct hmm_vma_walk *hmm_vma_walk = walk->private;
558         struct hmm_range *range = hmm_vma_walk->range;
559         uint64_t *pfns = range->pfns;
560         unsigned long addr = start, i;
561         pte_t *ptep;
562         pmd_t pmd;
563
564 again:
565         pmd = READ_ONCE(*pmdp);
566         if (pmd_none(pmd))
567                 return hmm_vma_walk_hole(start, end, walk);
568
569         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
570                 bool fault, write_fault;
571                 unsigned long npages;
572                 uint64_t *pfns;
573
574                 i = (addr - range->start) >> PAGE_SHIFT;
575                 npages = (end - addr) >> PAGE_SHIFT;
576                 pfns = &range->pfns[i];
577
578                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
579                                      0, &fault, &write_fault);
580                 if (fault || write_fault) {
581                         hmm_vma_walk->last = addr;
582                         pmd_migration_entry_wait(walk->mm, pmdp);
583                         return -EBUSY;
584                 }
585                 return 0;
586         } else if (!pmd_present(pmd))
587                 return hmm_pfns_bad(start, end, walk);
588
589         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
590                 /*
591                  * No need to take pmd_lock here, even if some other thread
592                  * is splitting the huge pmd we will get that event through
593                  * mmu_notifier callback.
594                  *
595                  * So just read pmd value and check again it's a transparent
596                  * huge or device mapping one and compute corresponding pfn
597                  * values.
598                  */
599                 pmd = pmd_read_atomic(pmdp);
600                 barrier();
601                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
602                         goto again;
603
604                 i = (addr - range->start) >> PAGE_SHIFT;
605                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
606         }
607
608         /*
609          * We have handled all the valid cases above ie either none, migration,
610          * huge or transparent huge. At this point either it is a valid pmd
611          * entry pointing to pte directory or it is a bad pmd that will not
612          * recover.
613          */
614         if (pmd_bad(pmd))
615                 return hmm_pfns_bad(start, end, walk);
616
617         ptep = pte_offset_map(pmdp, addr);
618         i = (addr - range->start) >> PAGE_SHIFT;
619         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
620                 int r;
621
622                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
623                 if (r) {
624                         /* hmm_vma_handle_pte() did unmap pte directory */
625                         hmm_vma_walk->last = addr;
626                         return r;
627                 }
628         }
629         if (hmm_vma_walk->pgmap) {
630                 /*
631                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
632                  * so that we can leverage get_dev_pagemap() optimization which
633                  * will not re-take a reference on a pgmap if we already have
634                  * one.
635                  */
636                 put_dev_pagemap(hmm_vma_walk->pgmap);
637                 hmm_vma_walk->pgmap = NULL;
638         }
639         pte_unmap(ptep - 1);
640
641         hmm_vma_walk->last = addr;
642         return 0;
643 }
644
645 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
646     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
647 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
648 {
649         if (!pud_present(pud))
650                 return 0;
651         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
652                                 range->flags[HMM_PFN_WRITE] :
653                                 range->flags[HMM_PFN_VALID];
654 }
655
656 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
657                 struct mm_walk *walk)
658 {
659         struct hmm_vma_walk *hmm_vma_walk = walk->private;
660         struct hmm_range *range = hmm_vma_walk->range;
661         unsigned long addr = start, next;
662         pmd_t *pmdp;
663         pud_t pud;
664         int ret;
665
666 again:
667         pud = READ_ONCE(*pudp);
668         if (pud_none(pud))
669                 return hmm_vma_walk_hole(start, end, walk);
670
671         if (pud_huge(pud) && pud_devmap(pud)) {
672                 unsigned long i, npages, pfn;
673                 uint64_t *pfns, cpu_flags;
674                 bool fault, write_fault;
675
676                 if (!pud_present(pud))
677                         return hmm_vma_walk_hole(start, end, walk);
678
679                 i = (addr - range->start) >> PAGE_SHIFT;
680                 npages = (end - addr) >> PAGE_SHIFT;
681                 pfns = &range->pfns[i];
682
683                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
684                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
685                                      cpu_flags, &fault, &write_fault);
686                 if (fault || write_fault)
687                         return hmm_vma_walk_hole_(addr, end, fault,
688                                                 write_fault, walk);
689
690                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
691                 for (i = 0; i < npages; ++i, ++pfn) {
692                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
693                                               hmm_vma_walk->pgmap);
694                         if (unlikely(!hmm_vma_walk->pgmap))
695                                 return -EBUSY;
696                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
697                                   cpu_flags;
698                 }
699                 if (hmm_vma_walk->pgmap) {
700                         put_dev_pagemap(hmm_vma_walk->pgmap);
701                         hmm_vma_walk->pgmap = NULL;
702                 }
703                 hmm_vma_walk->last = end;
704                 return 0;
705         }
706
707         split_huge_pud(walk->vma, pudp, addr);
708         if (pud_none(*pudp))
709                 goto again;
710
711         pmdp = pmd_offset(pudp, addr);
712         do {
713                 next = pmd_addr_end(addr, end);
714                 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
715                 if (ret)
716                         return ret;
717         } while (pmdp++, addr = next, addr != end);
718
719         return 0;
720 }
721 #else
722 #define hmm_vma_walk_pud        NULL
723 #endif
724
725 #ifdef CONFIG_HUGETLB_PAGE
726 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
727                                       unsigned long start, unsigned long end,
728                                       struct mm_walk *walk)
729 {
730         unsigned long addr = start, i, pfn;
731         struct hmm_vma_walk *hmm_vma_walk = walk->private;
732         struct hmm_range *range = hmm_vma_walk->range;
733         struct vm_area_struct *vma = walk->vma;
734         uint64_t orig_pfn, cpu_flags;
735         bool fault, write_fault;
736         spinlock_t *ptl;
737         pte_t entry;
738         int ret = 0;
739
740         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
741         entry = huge_ptep_get(pte);
742
743         i = (start - range->start) >> PAGE_SHIFT;
744         orig_pfn = range->pfns[i];
745         range->pfns[i] = range->values[HMM_PFN_NONE];
746         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
747         fault = write_fault = false;
748         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
749                            &fault, &write_fault);
750         if (fault || write_fault) {
751                 ret = -ENOENT;
752                 goto unlock;
753         }
754
755         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
756         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
757                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
758                                  cpu_flags;
759         hmm_vma_walk->last = end;
760
761 unlock:
762         spin_unlock(ptl);
763
764         if (ret == -ENOENT)
765                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
766
767         return ret;
768 }
769 #else
770 #define hmm_vma_walk_hugetlb_entry NULL
771 #endif /* CONFIG_HUGETLB_PAGE */
772
773 static void hmm_pfns_clear(struct hmm_range *range,
774                            uint64_t *pfns,
775                            unsigned long addr,
776                            unsigned long end)
777 {
778         for (; addr < end; addr += PAGE_SIZE, pfns++)
779                 *pfns = range->values[HMM_PFN_NONE];
780 }
781
782 /*
783  * hmm_range_register() - start tracking change to CPU page table over a range
784  * @range: range
785  * @mm: the mm struct for the range of virtual address
786  *
787  * Return: 0 on success, -EFAULT if the address space is no longer valid
788  *
789  * Track updates to the CPU page table see include/linux/hmm.h
790  */
791 int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror)
792 {
793         struct hmm *hmm = mirror->hmm;
794         unsigned long flags;
795
796         range->valid = false;
797         range->hmm = NULL;
798
799         if ((range->start & (PAGE_SIZE - 1)) || (range->end & (PAGE_SIZE - 1)))
800                 return -EINVAL;
801         if (range->start >= range->end)
802                 return -EINVAL;
803
804         /* Prevent hmm_release() from running while the range is valid */
805         if (!mmget_not_zero(hmm->mmu_notifier.mm))
806                 return -EFAULT;
807
808         /* Initialize range to track CPU page table updates. */
809         spin_lock_irqsave(&hmm->ranges_lock, flags);
810
811         range->hmm = hmm;
812         list_add(&range->list, &hmm->ranges);
813
814         /*
815          * If there are any concurrent notifiers we have to wait for them for
816          * the range to be valid (see hmm_range_wait_until_valid()).
817          */
818         if (!hmm->notifiers)
819                 range->valid = true;
820         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
821
822         return 0;
823 }
824 EXPORT_SYMBOL(hmm_range_register);
825
826 /*
827  * hmm_range_unregister() - stop tracking change to CPU page table over a range
828  * @range: range
829  *
830  * Range struct is used to track updates to the CPU page table after a call to
831  * hmm_range_register(). See include/linux/hmm.h for how to use it.
832  */
833 void hmm_range_unregister(struct hmm_range *range)
834 {
835         struct hmm *hmm = range->hmm;
836         unsigned long flags;
837
838         spin_lock_irqsave(&hmm->ranges_lock, flags);
839         list_del_init(&range->list);
840         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
841
842         /* Drop reference taken by hmm_range_register() */
843         mmput(hmm->mmu_notifier.mm);
844
845         /*
846          * The range is now invalid and the ref on the hmm is dropped, so
847          * poison the pointer.  Leave other fields in place, for the caller's
848          * use.
849          */
850         range->valid = false;
851         memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
852 }
853 EXPORT_SYMBOL(hmm_range_unregister);
854
855 static const struct mm_walk_ops hmm_walk_ops = {
856         .pud_entry      = hmm_vma_walk_pud,
857         .pmd_entry      = hmm_vma_walk_pmd,
858         .pte_hole       = hmm_vma_walk_hole,
859         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
860 };
861
862 /**
863  * hmm_range_fault - try to fault some address in a virtual address range
864  * @range:      range being faulted
865  * @flags:      HMM_FAULT_* flags
866  *
867  * Return: the number of valid pages in range->pfns[] (from range start
868  * address), which may be zero.  On error one of the following status codes
869  * can be returned:
870  *
871  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
872  *              (e.g., device file vma).
873  * -ENOMEM:     Out of memory.
874  * -EPERM:      Invalid permission (e.g., asking for write and range is read
875  *              only).
876  * -EAGAIN:     A page fault needs to be retried and mmap_sem was dropped.
877  * -EBUSY:      The range has been invalidated and the caller needs to wait for
878  *              the invalidation to finish.
879  * -EFAULT:     Invalid (i.e., either no valid vma or it is illegal to access
880  *              that range) number of valid pages in range->pfns[] (from
881  *              range start address).
882  *
883  * This is similar to a regular CPU page fault except that it will not trigger
884  * any memory migration if the memory being faulted is not accessible by CPUs
885  * and caller does not ask for migration.
886  *
887  * On error, for one virtual address in the range, the function will mark the
888  * corresponding HMM pfn entry with an error flag.
889  */
890 long hmm_range_fault(struct hmm_range *range, unsigned int flags)
891 {
892         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
893         unsigned long start = range->start, end;
894         struct hmm_vma_walk hmm_vma_walk;
895         struct hmm *hmm = range->hmm;
896         struct vm_area_struct *vma;
897         int ret;
898
899         lockdep_assert_held(&hmm->mmu_notifier.mm->mmap_sem);
900
901         do {
902                 /* If range is no longer valid force retry. */
903                 if (!range->valid)
904                         return -EBUSY;
905
906                 vma = find_vma(hmm->mmu_notifier.mm, start);
907                 if (vma == NULL || (vma->vm_flags & device_vma))
908                         return -EFAULT;
909
910                 if (!(vma->vm_flags & VM_READ)) {
911                         /*
912                          * If vma do not allow read access, then assume that it
913                          * does not allow write access, either. HMM does not
914                          * support architecture that allow write without read.
915                          */
916                         hmm_pfns_clear(range, range->pfns,
917                                 range->start, range->end);
918                         return -EPERM;
919                 }
920
921                 hmm_vma_walk.pgmap = NULL;
922                 hmm_vma_walk.last = start;
923                 hmm_vma_walk.flags = flags;
924                 hmm_vma_walk.range = range;
925                 end = min(range->end, vma->vm_end);
926
927                 walk_page_range(vma->vm_mm, start, end, &hmm_walk_ops,
928                                 &hmm_vma_walk);
929
930                 do {
931                         ret = walk_page_range(vma->vm_mm, start, end,
932                                         &hmm_walk_ops, &hmm_vma_walk);
933                         start = hmm_vma_walk.last;
934
935                         /* Keep trying while the range is valid. */
936                 } while (ret == -EBUSY && range->valid);
937
938                 if (ret) {
939                         unsigned long i;
940
941                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
942                         hmm_pfns_clear(range, &range->pfns[i],
943                                 hmm_vma_walk.last, range->end);
944                         return ret;
945                 }
946                 start = end;
947
948         } while (start < range->end);
949
950         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
951 }
952 EXPORT_SYMBOL(hmm_range_fault);
953
954 /**
955  * hmm_range_dma_map - hmm_range_fault() and dma map page all in one.
956  * @range:      range being faulted
957  * @device:     device to map page to
958  * @daddrs:     array of dma addresses for the mapped pages
959  * @flags:      HMM_FAULT_*
960  *
961  * Return: the number of pages mapped on success (including zero), or any
962  * status return from hmm_range_fault() otherwise.
963  */
964 long hmm_range_dma_map(struct hmm_range *range, struct device *device,
965                 dma_addr_t *daddrs, unsigned int flags)
966 {
967         unsigned long i, npages, mapped;
968         long ret;
969
970         ret = hmm_range_fault(range, flags);
971         if (ret <= 0)
972                 return ret ? ret : -EBUSY;
973
974         npages = (range->end - range->start) >> PAGE_SHIFT;
975         for (i = 0, mapped = 0; i < npages; ++i) {
976                 enum dma_data_direction dir = DMA_TO_DEVICE;
977                 struct page *page;
978
979                 /*
980                  * FIXME need to update DMA API to provide invalid DMA address
981                  * value instead of a function to test dma address value. This
982                  * would remove lot of dumb code duplicated accross many arch.
983                  *
984                  * For now setting it to 0 here is good enough as the pfns[]
985                  * value is what is use to check what is valid and what isn't.
986                  */
987                 daddrs[i] = 0;
988
989                 page = hmm_device_entry_to_page(range, range->pfns[i]);
990                 if (page == NULL)
991                         continue;
992
993                 /* Check if range is being invalidated */
994                 if (!range->valid) {
995                         ret = -EBUSY;
996                         goto unmap;
997                 }
998
999                 /* If it is read and write than map bi-directional. */
1000                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1001                         dir = DMA_BIDIRECTIONAL;
1002
1003                 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1004                 if (dma_mapping_error(device, daddrs[i])) {
1005                         ret = -EFAULT;
1006                         goto unmap;
1007                 }
1008
1009                 mapped++;
1010         }
1011
1012         return mapped;
1013
1014 unmap:
1015         for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1016                 enum dma_data_direction dir = DMA_TO_DEVICE;
1017                 struct page *page;
1018
1019                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1020                 if (page == NULL)
1021                         continue;
1022
1023                 if (dma_mapping_error(device, daddrs[i]))
1024                         continue;
1025
1026                 /* If it is read and write than map bi-directional. */
1027                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1028                         dir = DMA_BIDIRECTIONAL;
1029
1030                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1031                 mapped--;
1032         }
1033
1034         return ret;
1035 }
1036 EXPORT_SYMBOL(hmm_range_dma_map);
1037
1038 /**
1039  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1040  * @range: range being unmapped
1041  * @device: device against which dma map was done
1042  * @daddrs: dma address of mapped pages
1043  * @dirty: dirty page if it had the write flag set
1044  * Return: number of page unmapped on success, -EINVAL otherwise
1045  *
1046  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1047  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1048  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1049  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1050  */
1051 long hmm_range_dma_unmap(struct hmm_range *range,
1052                          struct device *device,
1053                          dma_addr_t *daddrs,
1054                          bool dirty)
1055 {
1056         unsigned long i, npages;
1057         long cpages = 0;
1058
1059         /* Sanity check. */
1060         if (range->end <= range->start)
1061                 return -EINVAL;
1062         if (!daddrs)
1063                 return -EINVAL;
1064         if (!range->pfns)
1065                 return -EINVAL;
1066
1067         npages = (range->end - range->start) >> PAGE_SHIFT;
1068         for (i = 0; i < npages; ++i) {
1069                 enum dma_data_direction dir = DMA_TO_DEVICE;
1070                 struct page *page;
1071
1072                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1073                 if (page == NULL)
1074                         continue;
1075
1076                 /* If it is read and write than map bi-directional. */
1077                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1078                         dir = DMA_BIDIRECTIONAL;
1079
1080                         /*
1081                          * See comments in function description on why it is
1082                          * safe here to call set_page_dirty()
1083                          */
1084                         if (dirty)
1085                                 set_page_dirty(page);
1086                 }
1087
1088                 /* Unmap and clear pfns/dma address */
1089                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1090                 range->pfns[i] = range->values[HMM_PFN_NONE];
1091                 /* FIXME see comments in hmm_vma_dma_map() */
1092                 daddrs[i] = 0;
1093                 cpages++;
1094         }
1095
1096         return cpages;
1097 }
1098 EXPORT_SYMBOL(hmm_range_dma_unmap);