d102d9d2ffaa640f4406dc59a576fa79e7e396b1
[sfrench/cifs-2.6.git] / lib / rbtree.c
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
21   linux/lib/rbtree.c
22 */
23
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26
27 /*
28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29  *
30  *  1) A node is either red or black
31  *  2) The root is black
32  *  3) All leaves (NULL) are black
33  *  4) Both children of every red node are black
34  *  5) Every simple path from root to leaves contains the same number
35  *     of black nodes.
36  *
37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  *  consecutive red nodes in a path and every red node is therefore followed by
39  *  a black. So if B is the number of black nodes on every simple path (as per
40  *  5), then the longest possible path due to 4 is 2B.
41  *
42  *  We shall indicate color with case, where black nodes are uppercase and red
43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  *  parentheses and have some accompanying text comment.
45  */
46
47 /*
48  * Notes on lockless lookups:
49  *
50  * All stores to the tree structure (rb_left and rb_right) must be done using
51  * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52  * tree structure as seen in program order.
53  *
54  * These two requirements will allow lockless iteration of the tree -- not
55  * correct iteration mind you, tree rotations are not atomic so a lookup might
56  * miss entire subtrees.
57  *
58  * But they do guarantee that any such traversal will only see valid elements
59  * and that it will indeed complete -- does not get stuck in a loop.
60  *
61  * It also guarantees that if the lookup returns an element it is the 'correct'
62  * one. But not returning an element does _NOT_ mean it's not present.
63  *
64  * NOTE:
65  *
66  * Stores to __rb_parent_color are not important for simple lookups so those
67  * are left undone as of now. Nor did I check for loops involving parent
68  * pointers.
69  */
70
71 static inline void rb_set_black(struct rb_node *rb)
72 {
73         rb->__rb_parent_color |= RB_BLACK;
74 }
75
76 static inline struct rb_node *rb_red_parent(struct rb_node *red)
77 {
78         return (struct rb_node *)red->__rb_parent_color;
79 }
80
81 /*
82  * Helper function for rotations:
83  * - old's parent and color get assigned to new
84  * - old gets assigned new as a parent and 'color' as a color.
85  */
86 static inline void
87 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88                         struct rb_root *root, int color)
89 {
90         struct rb_node *parent = rb_parent(old);
91         new->__rb_parent_color = old->__rb_parent_color;
92         rb_set_parent_color(old, new, color);
93         __rb_change_child(old, new, parent, root);
94 }
95
96 static __always_inline void
97 __rb_insert(struct rb_node *node, struct rb_root *root,
98             bool newleft, struct rb_node **leftmost,
99             void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
100 {
101         struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
102
103         if (newleft)
104                 *leftmost = node;
105
106         while (true) {
107                 /*
108                  * Loop invariant: node is red
109                  *
110                  * If there is a black parent, we are done.
111                  * Otherwise, take some corrective action as we don't
112                  * want a red root or two consecutive red nodes.
113                  */
114                 if (!parent) {
115                         rb_set_parent_color(node, NULL, RB_BLACK);
116                         break;
117                 } else if (rb_is_black(parent))
118                         break;
119
120                 gparent = rb_red_parent(parent);
121
122                 tmp = gparent->rb_right;
123                 if (parent != tmp) {    /* parent == gparent->rb_left */
124                         if (tmp && rb_is_red(tmp)) {
125                                 /*
126                                  * Case 1 - color flips
127                                  *
128                                  *       G            g
129                                  *      / \          / \
130                                  *     p   u  -->   P   U
131                                  *    /            /
132                                  *   n            n
133                                  *
134                                  * However, since g's parent might be red, and
135                                  * 4) does not allow this, we need to recurse
136                                  * at g.
137                                  */
138                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
139                                 rb_set_parent_color(parent, gparent, RB_BLACK);
140                                 node = gparent;
141                                 parent = rb_parent(node);
142                                 rb_set_parent_color(node, parent, RB_RED);
143                                 continue;
144                         }
145
146                         tmp = parent->rb_right;
147                         if (node == tmp) {
148                                 /*
149                                  * Case 2 - left rotate at parent
150                                  *
151                                  *      G             G
152                                  *     / \           / \
153                                  *    p   U  -->    n   U
154                                  *     \           /
155                                  *      n         p
156                                  *
157                                  * This still leaves us in violation of 4), the
158                                  * continuation into Case 3 will fix that.
159                                  */
160                                 tmp = node->rb_left;
161                                 WRITE_ONCE(parent->rb_right, tmp);
162                                 WRITE_ONCE(node->rb_left, parent);
163                                 if (tmp)
164                                         rb_set_parent_color(tmp, parent,
165                                                             RB_BLACK);
166                                 rb_set_parent_color(parent, node, RB_RED);
167                                 augment_rotate(parent, node);
168                                 parent = node;
169                                 tmp = node->rb_right;
170                         }
171
172                         /*
173                          * Case 3 - right rotate at gparent
174                          *
175                          *        G           P
176                          *       / \         / \
177                          *      p   U  -->  n   g
178                          *     /                 \
179                          *    n                   U
180                          */
181                         WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
182                         WRITE_ONCE(parent->rb_right, gparent);
183                         if (tmp)
184                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
185                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
186                         augment_rotate(gparent, parent);
187                         break;
188                 } else {
189                         tmp = gparent->rb_left;
190                         if (tmp && rb_is_red(tmp)) {
191                                 /* Case 1 - color flips */
192                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
193                                 rb_set_parent_color(parent, gparent, RB_BLACK);
194                                 node = gparent;
195                                 parent = rb_parent(node);
196                                 rb_set_parent_color(node, parent, RB_RED);
197                                 continue;
198                         }
199
200                         tmp = parent->rb_left;
201                         if (node == tmp) {
202                                 /* Case 2 - right rotate at parent */
203                                 tmp = node->rb_right;
204                                 WRITE_ONCE(parent->rb_left, tmp);
205                                 WRITE_ONCE(node->rb_right, parent);
206                                 if (tmp)
207                                         rb_set_parent_color(tmp, parent,
208                                                             RB_BLACK);
209                                 rb_set_parent_color(parent, node, RB_RED);
210                                 augment_rotate(parent, node);
211                                 parent = node;
212                                 tmp = node->rb_left;
213                         }
214
215                         /* Case 3 - left rotate at gparent */
216                         WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
217                         WRITE_ONCE(parent->rb_left, gparent);
218                         if (tmp)
219                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
220                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
221                         augment_rotate(gparent, parent);
222                         break;
223                 }
224         }
225 }
226
227 /*
228  * Inline version for rb_erase() use - we want to be able to inline
229  * and eliminate the dummy_rotate callback there
230  */
231 static __always_inline void
232 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
233         void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
234 {
235         struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
236
237         while (true) {
238                 /*
239                  * Loop invariants:
240                  * - node is black (or NULL on first iteration)
241                  * - node is not the root (parent is not NULL)
242                  * - All leaf paths going through parent and node have a
243                  *   black node count that is 1 lower than other leaf paths.
244                  */
245                 sibling = parent->rb_right;
246                 if (node != sibling) {  /* node == parent->rb_left */
247                         if (rb_is_red(sibling)) {
248                                 /*
249                                  * Case 1 - left rotate at parent
250                                  *
251                                  *     P               S
252                                  *    / \             / \
253                                  *   N   s    -->    p   Sr
254                                  *      / \         / \
255                                  *     Sl  Sr      N   Sl
256                                  */
257                                 tmp1 = sibling->rb_left;
258                                 WRITE_ONCE(parent->rb_right, tmp1);
259                                 WRITE_ONCE(sibling->rb_left, parent);
260                                 rb_set_parent_color(tmp1, parent, RB_BLACK);
261                                 __rb_rotate_set_parents(parent, sibling, root,
262                                                         RB_RED);
263                                 augment_rotate(parent, sibling);
264                                 sibling = tmp1;
265                         }
266                         tmp1 = sibling->rb_right;
267                         if (!tmp1 || rb_is_black(tmp1)) {
268                                 tmp2 = sibling->rb_left;
269                                 if (!tmp2 || rb_is_black(tmp2)) {
270                                         /*
271                                          * Case 2 - sibling color flip
272                                          * (p could be either color here)
273                                          *
274                                          *    (p)           (p)
275                                          *    / \           / \
276                                          *   N   S    -->  N   s
277                                          *      / \           / \
278                                          *     Sl  Sr        Sl  Sr
279                                          *
280                                          * This leaves us violating 5) which
281                                          * can be fixed by flipping p to black
282                                          * if it was red, or by recursing at p.
283                                          * p is red when coming from Case 1.
284                                          */
285                                         rb_set_parent_color(sibling, parent,
286                                                             RB_RED);
287                                         if (rb_is_red(parent))
288                                                 rb_set_black(parent);
289                                         else {
290                                                 node = parent;
291                                                 parent = rb_parent(node);
292                                                 if (parent)
293                                                         continue;
294                                         }
295                                         break;
296                                 }
297                                 /*
298                                  * Case 3 - right rotate at sibling
299                                  * (p could be either color here)
300                                  *
301                                  *   (p)           (p)
302                                  *   / \           / \
303                                  *  N   S    -->  N   sl
304                                  *     / \             \
305                                  *    sl  Sr            S
306                                  *                       \
307                                  *                        Sr
308                                  *
309                                  * Note: p might be red, and then both
310                                  * p and sl are red after rotation(which
311                                  * breaks property 4). This is fixed in
312                                  * Case 4 (in __rb_rotate_set_parents()
313                                  *         which set sl the color of p
314                                  *         and set p RB_BLACK)
315                                  *
316                                  *   (p)            (sl)
317                                  *   / \            /  \
318                                  *  N   sl   -->   P    S
319                                  *       \        /      \
320                                  *        S      N        Sr
321                                  *         \
322                                  *          Sr
323                                  */
324                                 tmp1 = tmp2->rb_right;
325                                 WRITE_ONCE(sibling->rb_left, tmp1);
326                                 WRITE_ONCE(tmp2->rb_right, sibling);
327                                 WRITE_ONCE(parent->rb_right, tmp2);
328                                 if (tmp1)
329                                         rb_set_parent_color(tmp1, sibling,
330                                                             RB_BLACK);
331                                 augment_rotate(sibling, tmp2);
332                                 tmp1 = sibling;
333                                 sibling = tmp2;
334                         }
335                         /*
336                          * Case 4 - left rotate at parent + color flips
337                          * (p and sl could be either color here.
338                          *  After rotation, p becomes black, s acquires
339                          *  p's color, and sl keeps its color)
340                          *
341                          *      (p)             (s)
342                          *      / \             / \
343                          *     N   S     -->   P   Sr
344                          *        / \         / \
345                          *      (sl) sr      N  (sl)
346                          */
347                         tmp2 = sibling->rb_left;
348                         WRITE_ONCE(parent->rb_right, tmp2);
349                         WRITE_ONCE(sibling->rb_left, parent);
350                         rb_set_parent_color(tmp1, sibling, RB_BLACK);
351                         if (tmp2)
352                                 rb_set_parent(tmp2, parent);
353                         __rb_rotate_set_parents(parent, sibling, root,
354                                                 RB_BLACK);
355                         augment_rotate(parent, sibling);
356                         break;
357                 } else {
358                         sibling = parent->rb_left;
359                         if (rb_is_red(sibling)) {
360                                 /* Case 1 - right rotate at parent */
361                                 tmp1 = sibling->rb_right;
362                                 WRITE_ONCE(parent->rb_left, tmp1);
363                                 WRITE_ONCE(sibling->rb_right, parent);
364                                 rb_set_parent_color(tmp1, parent, RB_BLACK);
365                                 __rb_rotate_set_parents(parent, sibling, root,
366                                                         RB_RED);
367                                 augment_rotate(parent, sibling);
368                                 sibling = tmp1;
369                         }
370                         tmp1 = sibling->rb_left;
371                         if (!tmp1 || rb_is_black(tmp1)) {
372                                 tmp2 = sibling->rb_right;
373                                 if (!tmp2 || rb_is_black(tmp2)) {
374                                         /* Case 2 - sibling color flip */
375                                         rb_set_parent_color(sibling, parent,
376                                                             RB_RED);
377                                         if (rb_is_red(parent))
378                                                 rb_set_black(parent);
379                                         else {
380                                                 node = parent;
381                                                 parent = rb_parent(node);
382                                                 if (parent)
383                                                         continue;
384                                         }
385                                         break;
386                                 }
387                                 /* Case 3 - left rotate at sibling */
388                                 tmp1 = tmp2->rb_left;
389                                 WRITE_ONCE(sibling->rb_right, tmp1);
390                                 WRITE_ONCE(tmp2->rb_left, sibling);
391                                 WRITE_ONCE(parent->rb_left, tmp2);
392                                 if (tmp1)
393                                         rb_set_parent_color(tmp1, sibling,
394                                                             RB_BLACK);
395                                 augment_rotate(sibling, tmp2);
396                                 tmp1 = sibling;
397                                 sibling = tmp2;
398                         }
399                         /* Case 4 - right rotate at parent + color flips */
400                         tmp2 = sibling->rb_right;
401                         WRITE_ONCE(parent->rb_left, tmp2);
402                         WRITE_ONCE(sibling->rb_right, parent);
403                         rb_set_parent_color(tmp1, sibling, RB_BLACK);
404                         if (tmp2)
405                                 rb_set_parent(tmp2, parent);
406                         __rb_rotate_set_parents(parent, sibling, root,
407                                                 RB_BLACK);
408                         augment_rotate(parent, sibling);
409                         break;
410                 }
411         }
412 }
413
414 /* Non-inline version for rb_erase_augmented() use */
415 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
416         void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
417 {
418         ____rb_erase_color(parent, root, augment_rotate);
419 }
420 EXPORT_SYMBOL(__rb_erase_color);
421
422 /*
423  * Non-augmented rbtree manipulation functions.
424  *
425  * We use dummy augmented callbacks here, and have the compiler optimize them
426  * out of the rb_insert_color() and rb_erase() function definitions.
427  */
428
429 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
430 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
431 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
432
433 static const struct rb_augment_callbacks dummy_callbacks = {
434         .propagate = dummy_propagate,
435         .copy = dummy_copy,
436         .rotate = dummy_rotate
437 };
438
439 void rb_insert_color(struct rb_node *node, struct rb_root *root)
440 {
441         __rb_insert(node, root, false, NULL, dummy_rotate);
442 }
443 EXPORT_SYMBOL(rb_insert_color);
444
445 void rb_erase(struct rb_node *node, struct rb_root *root)
446 {
447         struct rb_node *rebalance;
448         rebalance = __rb_erase_augmented(node, root,
449                                          NULL, &dummy_callbacks);
450         if (rebalance)
451                 ____rb_erase_color(rebalance, root, dummy_rotate);
452 }
453 EXPORT_SYMBOL(rb_erase);
454
455 void rb_insert_color_cached(struct rb_node *node,
456                             struct rb_root_cached *root, bool leftmost)
457 {
458         __rb_insert(node, &root->rb_root, leftmost,
459                     &root->rb_leftmost, dummy_rotate);
460 }
461 EXPORT_SYMBOL(rb_insert_color_cached);
462
463 void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
464 {
465         struct rb_node *rebalance;
466         rebalance = __rb_erase_augmented(node, &root->rb_root,
467                                          &root->rb_leftmost, &dummy_callbacks);
468         if (rebalance)
469                 ____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
470 }
471 EXPORT_SYMBOL(rb_erase_cached);
472
473 /*
474  * Augmented rbtree manipulation functions.
475  *
476  * This instantiates the same __always_inline functions as in the non-augmented
477  * case, but this time with user-defined callbacks.
478  */
479
480 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
481                            bool newleft, struct rb_node **leftmost,
482         void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
483 {
484         __rb_insert(node, root, newleft, leftmost, augment_rotate);
485 }
486 EXPORT_SYMBOL(__rb_insert_augmented);
487
488 /*
489  * This function returns the first node (in sort order) of the tree.
490  */
491 struct rb_node *rb_first(const struct rb_root *root)
492 {
493         struct rb_node  *n;
494
495         n = root->rb_node;
496         if (!n)
497                 return NULL;
498         while (n->rb_left)
499                 n = n->rb_left;
500         return n;
501 }
502 EXPORT_SYMBOL(rb_first);
503
504 struct rb_node *rb_last(const struct rb_root *root)
505 {
506         struct rb_node  *n;
507
508         n = root->rb_node;
509         if (!n)
510                 return NULL;
511         while (n->rb_right)
512                 n = n->rb_right;
513         return n;
514 }
515 EXPORT_SYMBOL(rb_last);
516
517 struct rb_node *rb_next(const struct rb_node *node)
518 {
519         struct rb_node *parent;
520
521         if (RB_EMPTY_NODE(node))
522                 return NULL;
523
524         /*
525          * If we have a right-hand child, go down and then left as far
526          * as we can.
527          */
528         if (node->rb_right) {
529                 node = node->rb_right;
530                 while (node->rb_left)
531                         node=node->rb_left;
532                 return (struct rb_node *)node;
533         }
534
535         /*
536          * No right-hand children. Everything down and left is smaller than us,
537          * so any 'next' node must be in the general direction of our parent.
538          * Go up the tree; any time the ancestor is a right-hand child of its
539          * parent, keep going up. First time it's a left-hand child of its
540          * parent, said parent is our 'next' node.
541          */
542         while ((parent = rb_parent(node)) && node == parent->rb_right)
543                 node = parent;
544
545         return parent;
546 }
547 EXPORT_SYMBOL(rb_next);
548
549 struct rb_node *rb_prev(const struct rb_node *node)
550 {
551         struct rb_node *parent;
552
553         if (RB_EMPTY_NODE(node))
554                 return NULL;
555
556         /*
557          * If we have a left-hand child, go down and then right as far
558          * as we can.
559          */
560         if (node->rb_left) {
561                 node = node->rb_left;
562                 while (node->rb_right)
563                         node=node->rb_right;
564                 return (struct rb_node *)node;
565         }
566
567         /*
568          * No left-hand children. Go up till we find an ancestor which
569          * is a right-hand child of its parent.
570          */
571         while ((parent = rb_parent(node)) && node == parent->rb_left)
572                 node = parent;
573
574         return parent;
575 }
576 EXPORT_SYMBOL(rb_prev);
577
578 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
579                      struct rb_root *root)
580 {
581         struct rb_node *parent = rb_parent(victim);
582
583         /* Copy the pointers/colour from the victim to the replacement */
584         *new = *victim;
585
586         /* Set the surrounding nodes to point to the replacement */
587         if (victim->rb_left)
588                 rb_set_parent(victim->rb_left, new);
589         if (victim->rb_right)
590                 rb_set_parent(victim->rb_right, new);
591         __rb_change_child(victim, new, parent, root);
592 }
593 EXPORT_SYMBOL(rb_replace_node);
594
595 void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
596                          struct rb_root *root)
597 {
598         struct rb_node *parent = rb_parent(victim);
599
600         /* Copy the pointers/colour from the victim to the replacement */
601         *new = *victim;
602
603         /* Set the surrounding nodes to point to the replacement */
604         if (victim->rb_left)
605                 rb_set_parent(victim->rb_left, new);
606         if (victim->rb_right)
607                 rb_set_parent(victim->rb_right, new);
608
609         /* Set the parent's pointer to the new node last after an RCU barrier
610          * so that the pointers onwards are seen to be set correctly when doing
611          * an RCU walk over the tree.
612          */
613         __rb_change_child_rcu(victim, new, parent, root);
614 }
615 EXPORT_SYMBOL(rb_replace_node_rcu);
616
617 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
618 {
619         for (;;) {
620                 if (node->rb_left)
621                         node = node->rb_left;
622                 else if (node->rb_right)
623                         node = node->rb_right;
624                 else
625                         return (struct rb_node *)node;
626         }
627 }
628
629 struct rb_node *rb_next_postorder(const struct rb_node *node)
630 {
631         const struct rb_node *parent;
632         if (!node)
633                 return NULL;
634         parent = rb_parent(node);
635
636         /* If we're sitting on node, we've already seen our children */
637         if (parent && node == parent->rb_left && parent->rb_right) {
638                 /* If we are the parent's left node, go to the parent's right
639                  * node then all the way down to the left */
640                 return rb_left_deepest_node(parent->rb_right);
641         } else
642                 /* Otherwise we are the parent's right node, and the parent
643                  * should be next */
644                 return (struct rb_node *)parent;
645 }
646 EXPORT_SYMBOL(rb_next_postorder);
647
648 struct rb_node *rb_first_postorder(const struct rb_root *root)
649 {
650         if (!root->rb_node)
651                 return NULL;
652
653         return rb_left_deepest_node(root->rb_node);
654 }
655 EXPORT_SYMBOL(rb_first_postorder);