Merge branch 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[sfrench/cifs-2.6.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         trace_seq_puts(s, "# compressed entry header\n");
38         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40         trace_seq_puts(s, "\tarray       :   32 bits\n");
41         trace_seq_putc(s, '\n');
42         trace_seq_printf(s, "\tpadding     : type == %d\n",
43                          RINGBUF_TYPE_PADDING);
44         trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                          RINGBUF_TYPE_TIME_EXTEND);
46         trace_seq_printf(s, "\tdata max type_len  == %d\n",
47                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
48
49         return !trace_seq_has_overflowed(s);
50 }
51
52 /*
53  * The ring buffer is made up of a list of pages. A separate list of pages is
54  * allocated for each CPU. A writer may only write to a buffer that is
55  * associated with the CPU it is currently executing on.  A reader may read
56  * from any per cpu buffer.
57  *
58  * The reader is special. For each per cpu buffer, the reader has its own
59  * reader page. When a reader has read the entire reader page, this reader
60  * page is swapped with another page in the ring buffer.
61  *
62  * Now, as long as the writer is off the reader page, the reader can do what
63  * ever it wants with that page. The writer will never write to that page
64  * again (as long as it is out of the ring buffer).
65  *
66  * Here's some silly ASCII art.
67  *
68  *   +------+
69  *   |reader|          RING BUFFER
70  *   |page  |
71  *   +------+        +---+   +---+   +---+
72  *                   |   |-->|   |-->|   |
73  *                   +---+   +---+   +---+
74  *                     ^               |
75  *                     |               |
76  *                     +---------------+
77  *
78  *
79  *   +------+
80  *   |reader|          RING BUFFER
81  *   |page  |------------------v
82  *   +------+        +---+   +---+   +---+
83  *                   |   |-->|   |-->|   |
84  *                   +---+   +---+   +---+
85  *                     ^               |
86  *                     |               |
87  *                     +---------------+
88  *
89  *
90  *   +------+
91  *   |reader|          RING BUFFER
92  *   |page  |------------------v
93  *   +------+        +---+   +---+   +---+
94  *      ^            |   |-->|   |-->|   |
95  *      |            +---+   +---+   +---+
96  *      |                              |
97  *      |                              |
98  *      +------------------------------+
99  *
100  *
101  *   +------+
102  *   |buffer|          RING BUFFER
103  *   |page  |------------------v
104  *   +------+        +---+   +---+   +---+
105  *      ^            |   |   |   |-->|   |
106  *      |   New      +---+   +---+   +---+
107  *      |  Reader------^               |
108  *      |   page                       |
109  *      +------------------------------+
110  *
111  *
112  * After we make this swap, the reader can hand this page off to the splice
113  * code and be done with it. It can even allocate a new page if it needs to
114  * and swap that into the ring buffer.
115  *
116  * We will be using cmpxchg soon to make all this lockless.
117  *
118  */
119
120 /*
121  * A fast way to enable or disable all ring buffers is to
122  * call tracing_on or tracing_off. Turning off the ring buffers
123  * prevents all ring buffers from being recorded to.
124  * Turning this switch on, makes it OK to write to the
125  * ring buffer, if the ring buffer is enabled itself.
126  *
127  * There's three layers that must be on in order to write
128  * to the ring buffer.
129  *
130  * 1) This global flag must be set.
131  * 2) The ring buffer must be enabled for recording.
132  * 3) The per cpu buffer must be enabled for recording.
133  *
134  * In case of an anomaly, this global flag has a bit set that
135  * will permantly disable all ring buffers.
136  */
137
138 /*
139  * Global flag to disable all recording to ring buffers
140  *  This has two bits: ON, DISABLED
141  *
142  *  ON   DISABLED
143  * ---- ----------
144  *   0      0        : ring buffers are off
145  *   1      0        : ring buffers are on
146  *   X      1        : ring buffers are permanently disabled
147  */
148
149 enum {
150         RB_BUFFERS_ON_BIT       = 0,
151         RB_BUFFERS_DISABLED_BIT = 1,
152 };
153
154 enum {
155         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
156         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
157 };
158
159 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
160
161 /* Used for individual buffers (after the counter) */
162 #define RB_BUFFER_OFF           (1 << 20)
163
164 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165
166 /**
167  * tracing_off_permanent - permanently disable ring buffers
168  *
169  * This function, once called, will disable all ring buffers
170  * permanently.
171  */
172 void tracing_off_permanent(void)
173 {
174         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
175 }
176
177 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
178 #define RB_ALIGNMENT            4U
179 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
180 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
181
182 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
183 # define RB_FORCE_8BYTE_ALIGNMENT       0
184 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
185 #else
186 # define RB_FORCE_8BYTE_ALIGNMENT       1
187 # define RB_ARCH_ALIGNMENT              8U
188 #endif
189
190 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
191
192 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
193 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
194
195 enum {
196         RB_LEN_TIME_EXTEND = 8,
197         RB_LEN_TIME_STAMP = 16,
198 };
199
200 #define skip_time_extend(event) \
201         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
202
203 static inline int rb_null_event(struct ring_buffer_event *event)
204 {
205         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
206 }
207
208 static void rb_event_set_padding(struct ring_buffer_event *event)
209 {
210         /* padding has a NULL time_delta */
211         event->type_len = RINGBUF_TYPE_PADDING;
212         event->time_delta = 0;
213 }
214
215 static unsigned
216 rb_event_data_length(struct ring_buffer_event *event)
217 {
218         unsigned length;
219
220         if (event->type_len)
221                 length = event->type_len * RB_ALIGNMENT;
222         else
223                 length = event->array[0];
224         return length + RB_EVNT_HDR_SIZE;
225 }
226
227 /*
228  * Return the length of the given event. Will return
229  * the length of the time extend if the event is a
230  * time extend.
231  */
232 static inline unsigned
233 rb_event_length(struct ring_buffer_event *event)
234 {
235         switch (event->type_len) {
236         case RINGBUF_TYPE_PADDING:
237                 if (rb_null_event(event))
238                         /* undefined */
239                         return -1;
240                 return  event->array[0] + RB_EVNT_HDR_SIZE;
241
242         case RINGBUF_TYPE_TIME_EXTEND:
243                 return RB_LEN_TIME_EXTEND;
244
245         case RINGBUF_TYPE_TIME_STAMP:
246                 return RB_LEN_TIME_STAMP;
247
248         case RINGBUF_TYPE_DATA:
249                 return rb_event_data_length(event);
250         default:
251                 BUG();
252         }
253         /* not hit */
254         return 0;
255 }
256
257 /*
258  * Return total length of time extend and data,
259  *   or just the event length for all other events.
260  */
261 static inline unsigned
262 rb_event_ts_length(struct ring_buffer_event *event)
263 {
264         unsigned len = 0;
265
266         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
267                 /* time extends include the data event after it */
268                 len = RB_LEN_TIME_EXTEND;
269                 event = skip_time_extend(event);
270         }
271         return len + rb_event_length(event);
272 }
273
274 /**
275  * ring_buffer_event_length - return the length of the event
276  * @event: the event to get the length of
277  *
278  * Returns the size of the data load of a data event.
279  * If the event is something other than a data event, it
280  * returns the size of the event itself. With the exception
281  * of a TIME EXTEND, where it still returns the size of the
282  * data load of the data event after it.
283  */
284 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
285 {
286         unsigned length;
287
288         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
289                 event = skip_time_extend(event);
290
291         length = rb_event_length(event);
292         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
293                 return length;
294         length -= RB_EVNT_HDR_SIZE;
295         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
296                 length -= sizeof(event->array[0]);
297         return length;
298 }
299 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
300
301 /* inline for ring buffer fast paths */
302 static void *
303 rb_event_data(struct ring_buffer_event *event)
304 {
305         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
306                 event = skip_time_extend(event);
307         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
308         /* If length is in len field, then array[0] has the data */
309         if (event->type_len)
310                 return (void *)&event->array[0];
311         /* Otherwise length is in array[0] and array[1] has the data */
312         return (void *)&event->array[1];
313 }
314
315 /**
316  * ring_buffer_event_data - return the data of the event
317  * @event: the event to get the data from
318  */
319 void *ring_buffer_event_data(struct ring_buffer_event *event)
320 {
321         return rb_event_data(event);
322 }
323 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
324
325 #define for_each_buffer_cpu(buffer, cpu)                \
326         for_each_cpu(cpu, buffer->cpumask)
327
328 #define TS_SHIFT        27
329 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
330 #define TS_DELTA_TEST   (~TS_MASK)
331
332 /* Flag when events were overwritten */
333 #define RB_MISSED_EVENTS        (1 << 31)
334 /* Missed count stored at end */
335 #define RB_MISSED_STORED        (1 << 30)
336
337 struct buffer_data_page {
338         u64              time_stamp;    /* page time stamp */
339         local_t          commit;        /* write committed index */
340         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
341 };
342
343 /*
344  * Note, the buffer_page list must be first. The buffer pages
345  * are allocated in cache lines, which means that each buffer
346  * page will be at the beginning of a cache line, and thus
347  * the least significant bits will be zero. We use this to
348  * add flags in the list struct pointers, to make the ring buffer
349  * lockless.
350  */
351 struct buffer_page {
352         struct list_head list;          /* list of buffer pages */
353         local_t          write;         /* index for next write */
354         unsigned         read;          /* index for next read */
355         local_t          entries;       /* entries on this page */
356         unsigned long    real_end;      /* real end of data */
357         struct buffer_data_page *page;  /* Actual data page */
358 };
359
360 /*
361  * The buffer page counters, write and entries, must be reset
362  * atomically when crossing page boundaries. To synchronize this
363  * update, two counters are inserted into the number. One is
364  * the actual counter for the write position or count on the page.
365  *
366  * The other is a counter of updaters. Before an update happens
367  * the update partition of the counter is incremented. This will
368  * allow the updater to update the counter atomically.
369  *
370  * The counter is 20 bits, and the state data is 12.
371  */
372 #define RB_WRITE_MASK           0xfffff
373 #define RB_WRITE_INTCNT         (1 << 20)
374
375 static void rb_init_page(struct buffer_data_page *bpage)
376 {
377         local_set(&bpage->commit, 0);
378 }
379
380 /**
381  * ring_buffer_page_len - the size of data on the page.
382  * @page: The page to read
383  *
384  * Returns the amount of data on the page, including buffer page header.
385  */
386 size_t ring_buffer_page_len(void *page)
387 {
388         return local_read(&((struct buffer_data_page *)page)->commit)
389                 + BUF_PAGE_HDR_SIZE;
390 }
391
392 /*
393  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
394  * this issue out.
395  */
396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398         free_page((unsigned long)bpage->page);
399         kfree(bpage);
400 }
401
402 /*
403  * We need to fit the time_stamp delta into 27 bits.
404  */
405 static inline int test_time_stamp(u64 delta)
406 {
407         if (delta & TS_DELTA_TEST)
408                 return 1;
409         return 0;
410 }
411
412 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
413
414 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
415 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
416
417 int ring_buffer_print_page_header(struct trace_seq *s)
418 {
419         struct buffer_data_page field;
420
421         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
422                          "offset:0;\tsize:%u;\tsigned:%u;\n",
423                          (unsigned int)sizeof(field.time_stamp),
424                          (unsigned int)is_signed_type(u64));
425
426         trace_seq_printf(s, "\tfield: local_t commit;\t"
427                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
428                          (unsigned int)offsetof(typeof(field), commit),
429                          (unsigned int)sizeof(field.commit),
430                          (unsigned int)is_signed_type(long));
431
432         trace_seq_printf(s, "\tfield: int overwrite;\t"
433                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
434                          (unsigned int)offsetof(typeof(field), commit),
435                          1,
436                          (unsigned int)is_signed_type(long));
437
438         trace_seq_printf(s, "\tfield: char data;\t"
439                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
440                          (unsigned int)offsetof(typeof(field), data),
441                          (unsigned int)BUF_PAGE_SIZE,
442                          (unsigned int)is_signed_type(char));
443
444         return !trace_seq_has_overflowed(s);
445 }
446
447 struct rb_irq_work {
448         struct irq_work                 work;
449         wait_queue_head_t               waiters;
450         bool                            waiters_pending;
451 };
452
453 /*
454  * head_page == tail_page && head == tail then buffer is empty.
455  */
456 struct ring_buffer_per_cpu {
457         int                             cpu;
458         atomic_t                        record_disabled;
459         struct ring_buffer              *buffer;
460         raw_spinlock_t                  reader_lock;    /* serialize readers */
461         arch_spinlock_t                 lock;
462         struct lock_class_key           lock_key;
463         unsigned int                    nr_pages;
464         struct list_head                *pages;
465         struct buffer_page              *head_page;     /* read from head */
466         struct buffer_page              *tail_page;     /* write to tail */
467         struct buffer_page              *commit_page;   /* committed pages */
468         struct buffer_page              *reader_page;
469         unsigned long                   lost_events;
470         unsigned long                   last_overrun;
471         local_t                         entries_bytes;
472         local_t                         entries;
473         local_t                         overrun;
474         local_t                         commit_overrun;
475         local_t                         dropped_events;
476         local_t                         committing;
477         local_t                         commits;
478         unsigned long                   read;
479         unsigned long                   read_bytes;
480         u64                             write_stamp;
481         u64                             read_stamp;
482         /* ring buffer pages to update, > 0 to add, < 0 to remove */
483         int                             nr_pages_to_update;
484         struct list_head                new_pages; /* new pages to add */
485         struct work_struct              update_pages_work;
486         struct completion               update_done;
487
488         struct rb_irq_work              irq_work;
489 };
490
491 struct ring_buffer {
492         unsigned                        flags;
493         int                             cpus;
494         atomic_t                        record_disabled;
495         atomic_t                        resize_disabled;
496         cpumask_var_t                   cpumask;
497
498         struct lock_class_key           *reader_lock_key;
499
500         struct mutex                    mutex;
501
502         struct ring_buffer_per_cpu      **buffers;
503
504 #ifdef CONFIG_HOTPLUG_CPU
505         struct notifier_block           cpu_notify;
506 #endif
507         u64                             (*clock)(void);
508
509         struct rb_irq_work              irq_work;
510 };
511
512 struct ring_buffer_iter {
513         struct ring_buffer_per_cpu      *cpu_buffer;
514         unsigned long                   head;
515         struct buffer_page              *head_page;
516         struct buffer_page              *cache_reader_page;
517         unsigned long                   cache_read;
518         u64                             read_stamp;
519 };
520
521 /*
522  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
523  *
524  * Schedules a delayed work to wake up any task that is blocked on the
525  * ring buffer waiters queue.
526  */
527 static void rb_wake_up_waiters(struct irq_work *work)
528 {
529         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
530
531         wake_up_all(&rbwork->waiters);
532 }
533
534 /**
535  * ring_buffer_wait - wait for input to the ring buffer
536  * @buffer: buffer to wait on
537  * @cpu: the cpu buffer to wait on
538  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
539  *
540  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
541  * as data is added to any of the @buffer's cpu buffers. Otherwise
542  * it will wait for data to be added to a specific cpu buffer.
543  */
544 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
545 {
546         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
547         DEFINE_WAIT(wait);
548         struct rb_irq_work *work;
549         int ret = 0;
550
551         /*
552          * Depending on what the caller is waiting for, either any
553          * data in any cpu buffer, or a specific buffer, put the
554          * caller on the appropriate wait queue.
555          */
556         if (cpu == RING_BUFFER_ALL_CPUS)
557                 work = &buffer->irq_work;
558         else {
559                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
560                         return -ENODEV;
561                 cpu_buffer = buffer->buffers[cpu];
562                 work = &cpu_buffer->irq_work;
563         }
564
565
566         while (true) {
567                 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569                 /*
570                  * The events can happen in critical sections where
571                  * checking a work queue can cause deadlocks.
572                  * After adding a task to the queue, this flag is set
573                  * only to notify events to try to wake up the queue
574                  * using irq_work.
575                  *
576                  * We don't clear it even if the buffer is no longer
577                  * empty. The flag only causes the next event to run
578                  * irq_work to do the work queue wake up. The worse
579                  * that can happen if we race with !trace_empty() is that
580                  * an event will cause an irq_work to try to wake up
581                  * an empty queue.
582                  *
583                  * There's no reason to protect this flag either, as
584                  * the work queue and irq_work logic will do the necessary
585                  * synchronization for the wake ups. The only thing
586                  * that is necessary is that the wake up happens after
587                  * a task has been queued. It's OK for spurious wake ups.
588                  */
589                 work->waiters_pending = true;
590
591                 if (signal_pending(current)) {
592                         ret = -EINTR;
593                         break;
594                 }
595
596                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
597                         break;
598
599                 if (cpu != RING_BUFFER_ALL_CPUS &&
600                     !ring_buffer_empty_cpu(buffer, cpu)) {
601                         unsigned long flags;
602                         bool pagebusy;
603
604                         if (!full)
605                                 break;
606
607                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
608                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
609                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
610
611                         if (!pagebusy)
612                                 break;
613                 }
614
615                 schedule();
616         }
617
618         finish_wait(&work->waiters, &wait);
619
620         return ret;
621 }
622
623 /**
624  * ring_buffer_poll_wait - poll on buffer input
625  * @buffer: buffer to wait on
626  * @cpu: the cpu buffer to wait on
627  * @filp: the file descriptor
628  * @poll_table: The poll descriptor
629  *
630  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
631  * as data is added to any of the @buffer's cpu buffers. Otherwise
632  * it will wait for data to be added to a specific cpu buffer.
633  *
634  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
635  * zero otherwise.
636  */
637 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
638                           struct file *filp, poll_table *poll_table)
639 {
640         struct ring_buffer_per_cpu *cpu_buffer;
641         struct rb_irq_work *work;
642
643         if (cpu == RING_BUFFER_ALL_CPUS)
644                 work = &buffer->irq_work;
645         else {
646                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
647                         return -EINVAL;
648
649                 cpu_buffer = buffer->buffers[cpu];
650                 work = &cpu_buffer->irq_work;
651         }
652
653         poll_wait(filp, &work->waiters, poll_table);
654         work->waiters_pending = true;
655         /*
656          * There's a tight race between setting the waiters_pending and
657          * checking if the ring buffer is empty.  Once the waiters_pending bit
658          * is set, the next event will wake the task up, but we can get stuck
659          * if there's only a single event in.
660          *
661          * FIXME: Ideally, we need a memory barrier on the writer side as well,
662          * but adding a memory barrier to all events will cause too much of a
663          * performance hit in the fast path.  We only need a memory barrier when
664          * the buffer goes from empty to having content.  But as this race is
665          * extremely small, and it's not a problem if another event comes in, we
666          * will fix it later.
667          */
668         smp_mb();
669
670         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
671             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
672                 return POLLIN | POLLRDNORM;
673         return 0;
674 }
675
676 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
677 #define RB_WARN_ON(b, cond)                                             \
678         ({                                                              \
679                 int _____ret = unlikely(cond);                          \
680                 if (_____ret) {                                         \
681                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
682                                 struct ring_buffer_per_cpu *__b =       \
683                                         (void *)b;                      \
684                                 atomic_inc(&__b->buffer->record_disabled); \
685                         } else                                          \
686                                 atomic_inc(&b->record_disabled);        \
687                         WARN_ON(1);                                     \
688                 }                                                       \
689                 _____ret;                                               \
690         })
691
692 /* Up this if you want to test the TIME_EXTENTS and normalization */
693 #define DEBUG_SHIFT 0
694
695 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
696 {
697         /* shift to debug/test normalization and TIME_EXTENTS */
698         return buffer->clock() << DEBUG_SHIFT;
699 }
700
701 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
702 {
703         u64 time;
704
705         preempt_disable_notrace();
706         time = rb_time_stamp(buffer);
707         preempt_enable_no_resched_notrace();
708
709         return time;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
712
713 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
714                                       int cpu, u64 *ts)
715 {
716         /* Just stupid testing the normalize function and deltas */
717         *ts >>= DEBUG_SHIFT;
718 }
719 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
720
721 /*
722  * Making the ring buffer lockless makes things tricky.
723  * Although writes only happen on the CPU that they are on,
724  * and they only need to worry about interrupts. Reads can
725  * happen on any CPU.
726  *
727  * The reader page is always off the ring buffer, but when the
728  * reader finishes with a page, it needs to swap its page with
729  * a new one from the buffer. The reader needs to take from
730  * the head (writes go to the tail). But if a writer is in overwrite
731  * mode and wraps, it must push the head page forward.
732  *
733  * Here lies the problem.
734  *
735  * The reader must be careful to replace only the head page, and
736  * not another one. As described at the top of the file in the
737  * ASCII art, the reader sets its old page to point to the next
738  * page after head. It then sets the page after head to point to
739  * the old reader page. But if the writer moves the head page
740  * during this operation, the reader could end up with the tail.
741  *
742  * We use cmpxchg to help prevent this race. We also do something
743  * special with the page before head. We set the LSB to 1.
744  *
745  * When the writer must push the page forward, it will clear the
746  * bit that points to the head page, move the head, and then set
747  * the bit that points to the new head page.
748  *
749  * We also don't want an interrupt coming in and moving the head
750  * page on another writer. Thus we use the second LSB to catch
751  * that too. Thus:
752  *
753  * head->list->prev->next        bit 1          bit 0
754  *                              -------        -------
755  * Normal page                     0              0
756  * Points to head page             0              1
757  * New head page                   1              0
758  *
759  * Note we can not trust the prev pointer of the head page, because:
760  *
761  * +----+       +-----+        +-----+
762  * |    |------>|  T  |---X--->|  N  |
763  * |    |<------|     |        |     |
764  * +----+       +-----+        +-----+
765  *   ^                           ^ |
766  *   |          +-----+          | |
767  *   +----------|  R  |----------+ |
768  *              |     |<-----------+
769  *              +-----+
770  *
771  * Key:  ---X-->  HEAD flag set in pointer
772  *         T      Tail page
773  *         R      Reader page
774  *         N      Next page
775  *
776  * (see __rb_reserve_next() to see where this happens)
777  *
778  *  What the above shows is that the reader just swapped out
779  *  the reader page with a page in the buffer, but before it
780  *  could make the new header point back to the new page added
781  *  it was preempted by a writer. The writer moved forward onto
782  *  the new page added by the reader and is about to move forward
783  *  again.
784  *
785  *  You can see, it is legitimate for the previous pointer of
786  *  the head (or any page) not to point back to itself. But only
787  *  temporarially.
788  */
789
790 #define RB_PAGE_NORMAL          0UL
791 #define RB_PAGE_HEAD            1UL
792 #define RB_PAGE_UPDATE          2UL
793
794
795 #define RB_FLAG_MASK            3UL
796
797 /* PAGE_MOVED is not part of the mask */
798 #define RB_PAGE_MOVED           4UL
799
800 /*
801  * rb_list_head - remove any bit
802  */
803 static struct list_head *rb_list_head(struct list_head *list)
804 {
805         unsigned long val = (unsigned long)list;
806
807         return (struct list_head *)(val & ~RB_FLAG_MASK);
808 }
809
810 /*
811  * rb_is_head_page - test if the given page is the head page
812  *
813  * Because the reader may move the head_page pointer, we can
814  * not trust what the head page is (it may be pointing to
815  * the reader page). But if the next page is a header page,
816  * its flags will be non zero.
817  */
818 static inline int
819 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
820                 struct buffer_page *page, struct list_head *list)
821 {
822         unsigned long val;
823
824         val = (unsigned long)list->next;
825
826         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
827                 return RB_PAGE_MOVED;
828
829         return val & RB_FLAG_MASK;
830 }
831
832 /*
833  * rb_is_reader_page
834  *
835  * The unique thing about the reader page, is that, if the
836  * writer is ever on it, the previous pointer never points
837  * back to the reader page.
838  */
839 static int rb_is_reader_page(struct buffer_page *page)
840 {
841         struct list_head *list = page->list.prev;
842
843         return rb_list_head(list->next) != &page->list;
844 }
845
846 /*
847  * rb_set_list_to_head - set a list_head to be pointing to head.
848  */
849 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
850                                 struct list_head *list)
851 {
852         unsigned long *ptr;
853
854         ptr = (unsigned long *)&list->next;
855         *ptr |= RB_PAGE_HEAD;
856         *ptr &= ~RB_PAGE_UPDATE;
857 }
858
859 /*
860  * rb_head_page_activate - sets up head page
861  */
862 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
863 {
864         struct buffer_page *head;
865
866         head = cpu_buffer->head_page;
867         if (!head)
868                 return;
869
870         /*
871          * Set the previous list pointer to have the HEAD flag.
872          */
873         rb_set_list_to_head(cpu_buffer, head->list.prev);
874 }
875
876 static void rb_list_head_clear(struct list_head *list)
877 {
878         unsigned long *ptr = (unsigned long *)&list->next;
879
880         *ptr &= ~RB_FLAG_MASK;
881 }
882
883 /*
884  * rb_head_page_dactivate - clears head page ptr (for free list)
885  */
886 static void
887 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889         struct list_head *hd;
890
891         /* Go through the whole list and clear any pointers found. */
892         rb_list_head_clear(cpu_buffer->pages);
893
894         list_for_each(hd, cpu_buffer->pages)
895                 rb_list_head_clear(hd);
896 }
897
898 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
899                             struct buffer_page *head,
900                             struct buffer_page *prev,
901                             int old_flag, int new_flag)
902 {
903         struct list_head *list;
904         unsigned long val = (unsigned long)&head->list;
905         unsigned long ret;
906
907         list = &prev->list;
908
909         val &= ~RB_FLAG_MASK;
910
911         ret = cmpxchg((unsigned long *)&list->next,
912                       val | old_flag, val | new_flag);
913
914         /* check if the reader took the page */
915         if ((ret & ~RB_FLAG_MASK) != val)
916                 return RB_PAGE_MOVED;
917
918         return ret & RB_FLAG_MASK;
919 }
920
921 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
922                                    struct buffer_page *head,
923                                    struct buffer_page *prev,
924                                    int old_flag)
925 {
926         return rb_head_page_set(cpu_buffer, head, prev,
927                                 old_flag, RB_PAGE_UPDATE);
928 }
929
930 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
931                                  struct buffer_page *head,
932                                  struct buffer_page *prev,
933                                  int old_flag)
934 {
935         return rb_head_page_set(cpu_buffer, head, prev,
936                                 old_flag, RB_PAGE_HEAD);
937 }
938
939 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
940                                    struct buffer_page *head,
941                                    struct buffer_page *prev,
942                                    int old_flag)
943 {
944         return rb_head_page_set(cpu_buffer, head, prev,
945                                 old_flag, RB_PAGE_NORMAL);
946 }
947
948 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
949                                struct buffer_page **bpage)
950 {
951         struct list_head *p = rb_list_head((*bpage)->list.next);
952
953         *bpage = list_entry(p, struct buffer_page, list);
954 }
955
956 static struct buffer_page *
957 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
958 {
959         struct buffer_page *head;
960         struct buffer_page *page;
961         struct list_head *list;
962         int i;
963
964         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
965                 return NULL;
966
967         /* sanity check */
968         list = cpu_buffer->pages;
969         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
970                 return NULL;
971
972         page = head = cpu_buffer->head_page;
973         /*
974          * It is possible that the writer moves the header behind
975          * where we started, and we miss in one loop.
976          * A second loop should grab the header, but we'll do
977          * three loops just because I'm paranoid.
978          */
979         for (i = 0; i < 3; i++) {
980                 do {
981                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
982                                 cpu_buffer->head_page = page;
983                                 return page;
984                         }
985                         rb_inc_page(cpu_buffer, &page);
986                 } while (page != head);
987         }
988
989         RB_WARN_ON(cpu_buffer, 1);
990
991         return NULL;
992 }
993
994 static int rb_head_page_replace(struct buffer_page *old,
995                                 struct buffer_page *new)
996 {
997         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
998         unsigned long val;
999         unsigned long ret;
1000
1001         val = *ptr & ~RB_FLAG_MASK;
1002         val |= RB_PAGE_HEAD;
1003
1004         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1005
1006         return ret == val;
1007 }
1008
1009 /*
1010  * rb_tail_page_update - move the tail page forward
1011  *
1012  * Returns 1 if moved tail page, 0 if someone else did.
1013  */
1014 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1015                                struct buffer_page *tail_page,
1016                                struct buffer_page *next_page)
1017 {
1018         struct buffer_page *old_tail;
1019         unsigned long old_entries;
1020         unsigned long old_write;
1021         int ret = 0;
1022
1023         /*
1024          * The tail page now needs to be moved forward.
1025          *
1026          * We need to reset the tail page, but without messing
1027          * with possible erasing of data brought in by interrupts
1028          * that have moved the tail page and are currently on it.
1029          *
1030          * We add a counter to the write field to denote this.
1031          */
1032         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1033         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1034
1035         /*
1036          * Just make sure we have seen our old_write and synchronize
1037          * with any interrupts that come in.
1038          */
1039         barrier();
1040
1041         /*
1042          * If the tail page is still the same as what we think
1043          * it is, then it is up to us to update the tail
1044          * pointer.
1045          */
1046         if (tail_page == cpu_buffer->tail_page) {
1047                 /* Zero the write counter */
1048                 unsigned long val = old_write & ~RB_WRITE_MASK;
1049                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1050
1051                 /*
1052                  * This will only succeed if an interrupt did
1053                  * not come in and change it. In which case, we
1054                  * do not want to modify it.
1055                  *
1056                  * We add (void) to let the compiler know that we do not care
1057                  * about the return value of these functions. We use the
1058                  * cmpxchg to only update if an interrupt did not already
1059                  * do it for us. If the cmpxchg fails, we don't care.
1060                  */
1061                 (void)local_cmpxchg(&next_page->write, old_write, val);
1062                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1063
1064                 /*
1065                  * No need to worry about races with clearing out the commit.
1066                  * it only can increment when a commit takes place. But that
1067                  * only happens in the outer most nested commit.
1068                  */
1069                 local_set(&next_page->page->commit, 0);
1070
1071                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1072                                    tail_page, next_page);
1073
1074                 if (old_tail == tail_page)
1075                         ret = 1;
1076         }
1077
1078         return ret;
1079 }
1080
1081 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1082                           struct buffer_page *bpage)
1083 {
1084         unsigned long val = (unsigned long)bpage;
1085
1086         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1087                 return 1;
1088
1089         return 0;
1090 }
1091
1092 /**
1093  * rb_check_list - make sure a pointer to a list has the last bits zero
1094  */
1095 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1096                          struct list_head *list)
1097 {
1098         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1099                 return 1;
1100         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1101                 return 1;
1102         return 0;
1103 }
1104
1105 /**
1106  * rb_check_pages - integrity check of buffer pages
1107  * @cpu_buffer: CPU buffer with pages to test
1108  *
1109  * As a safety measure we check to make sure the data pages have not
1110  * been corrupted.
1111  */
1112 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1113 {
1114         struct list_head *head = cpu_buffer->pages;
1115         struct buffer_page *bpage, *tmp;
1116
1117         /* Reset the head page if it exists */
1118         if (cpu_buffer->head_page)
1119                 rb_set_head_page(cpu_buffer);
1120
1121         rb_head_page_deactivate(cpu_buffer);
1122
1123         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1124                 return -1;
1125         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1126                 return -1;
1127
1128         if (rb_check_list(cpu_buffer, head))
1129                 return -1;
1130
1131         list_for_each_entry_safe(bpage, tmp, head, list) {
1132                 if (RB_WARN_ON(cpu_buffer,
1133                                bpage->list.next->prev != &bpage->list))
1134                         return -1;
1135                 if (RB_WARN_ON(cpu_buffer,
1136                                bpage->list.prev->next != &bpage->list))
1137                         return -1;
1138                 if (rb_check_list(cpu_buffer, &bpage->list))
1139                         return -1;
1140         }
1141
1142         rb_head_page_activate(cpu_buffer);
1143
1144         return 0;
1145 }
1146
1147 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1148 {
1149         int i;
1150         struct buffer_page *bpage, *tmp;
1151
1152         for (i = 0; i < nr_pages; i++) {
1153                 struct page *page;
1154                 /*
1155                  * __GFP_NORETRY flag makes sure that the allocation fails
1156                  * gracefully without invoking oom-killer and the system is
1157                  * not destabilized.
1158                  */
1159                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1160                                     GFP_KERNEL | __GFP_NORETRY,
1161                                     cpu_to_node(cpu));
1162                 if (!bpage)
1163                         goto free_pages;
1164
1165                 list_add(&bpage->list, pages);
1166
1167                 page = alloc_pages_node(cpu_to_node(cpu),
1168                                         GFP_KERNEL | __GFP_NORETRY, 0);
1169                 if (!page)
1170                         goto free_pages;
1171                 bpage->page = page_address(page);
1172                 rb_init_page(bpage->page);
1173         }
1174
1175         return 0;
1176
1177 free_pages:
1178         list_for_each_entry_safe(bpage, tmp, pages, list) {
1179                 list_del_init(&bpage->list);
1180                 free_buffer_page(bpage);
1181         }
1182
1183         return -ENOMEM;
1184 }
1185
1186 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1187                              unsigned nr_pages)
1188 {
1189         LIST_HEAD(pages);
1190
1191         WARN_ON(!nr_pages);
1192
1193         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1194                 return -ENOMEM;
1195
1196         /*
1197          * The ring buffer page list is a circular list that does not
1198          * start and end with a list head. All page list items point to
1199          * other pages.
1200          */
1201         cpu_buffer->pages = pages.next;
1202         list_del(&pages);
1203
1204         cpu_buffer->nr_pages = nr_pages;
1205
1206         rb_check_pages(cpu_buffer);
1207
1208         return 0;
1209 }
1210
1211 static struct ring_buffer_per_cpu *
1212 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1213 {
1214         struct ring_buffer_per_cpu *cpu_buffer;
1215         struct buffer_page *bpage;
1216         struct page *page;
1217         int ret;
1218
1219         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1220                                   GFP_KERNEL, cpu_to_node(cpu));
1221         if (!cpu_buffer)
1222                 return NULL;
1223
1224         cpu_buffer->cpu = cpu;
1225         cpu_buffer->buffer = buffer;
1226         raw_spin_lock_init(&cpu_buffer->reader_lock);
1227         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1228         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1229         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1230         init_completion(&cpu_buffer->update_done);
1231         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1232         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1233
1234         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1235                             GFP_KERNEL, cpu_to_node(cpu));
1236         if (!bpage)
1237                 goto fail_free_buffer;
1238
1239         rb_check_bpage(cpu_buffer, bpage);
1240
1241         cpu_buffer->reader_page = bpage;
1242         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1243         if (!page)
1244                 goto fail_free_reader;
1245         bpage->page = page_address(page);
1246         rb_init_page(bpage->page);
1247
1248         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1249         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1250
1251         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1252         if (ret < 0)
1253                 goto fail_free_reader;
1254
1255         cpu_buffer->head_page
1256                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1257         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1258
1259         rb_head_page_activate(cpu_buffer);
1260
1261         return cpu_buffer;
1262
1263  fail_free_reader:
1264         free_buffer_page(cpu_buffer->reader_page);
1265
1266  fail_free_buffer:
1267         kfree(cpu_buffer);
1268         return NULL;
1269 }
1270
1271 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1272 {
1273         struct list_head *head = cpu_buffer->pages;
1274         struct buffer_page *bpage, *tmp;
1275
1276         free_buffer_page(cpu_buffer->reader_page);
1277
1278         rb_head_page_deactivate(cpu_buffer);
1279
1280         if (head) {
1281                 list_for_each_entry_safe(bpage, tmp, head, list) {
1282                         list_del_init(&bpage->list);
1283                         free_buffer_page(bpage);
1284                 }
1285                 bpage = list_entry(head, struct buffer_page, list);
1286                 free_buffer_page(bpage);
1287         }
1288
1289         kfree(cpu_buffer);
1290 }
1291
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 static int rb_cpu_notify(struct notifier_block *self,
1294                          unsigned long action, void *hcpu);
1295 #endif
1296
1297 /**
1298  * __ring_buffer_alloc - allocate a new ring_buffer
1299  * @size: the size in bytes per cpu that is needed.
1300  * @flags: attributes to set for the ring buffer.
1301  *
1302  * Currently the only flag that is available is the RB_FL_OVERWRITE
1303  * flag. This flag means that the buffer will overwrite old data
1304  * when the buffer wraps. If this flag is not set, the buffer will
1305  * drop data when the tail hits the head.
1306  */
1307 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1308                                         struct lock_class_key *key)
1309 {
1310         struct ring_buffer *buffer;
1311         int bsize;
1312         int cpu, nr_pages;
1313
1314         /* keep it in its own cache line */
1315         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1316                          GFP_KERNEL);
1317         if (!buffer)
1318                 return NULL;
1319
1320         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1321                 goto fail_free_buffer;
1322
1323         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1324         buffer->flags = flags;
1325         buffer->clock = trace_clock_local;
1326         buffer->reader_lock_key = key;
1327
1328         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1329         init_waitqueue_head(&buffer->irq_work.waiters);
1330
1331         /* need at least two pages */
1332         if (nr_pages < 2)
1333                 nr_pages = 2;
1334
1335         /*
1336          * In case of non-hotplug cpu, if the ring-buffer is allocated
1337          * in early initcall, it will not be notified of secondary cpus.
1338          * In that off case, we need to allocate for all possible cpus.
1339          */
1340 #ifdef CONFIG_HOTPLUG_CPU
1341         cpu_notifier_register_begin();
1342         cpumask_copy(buffer->cpumask, cpu_online_mask);
1343 #else
1344         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1345 #endif
1346         buffer->cpus = nr_cpu_ids;
1347
1348         bsize = sizeof(void *) * nr_cpu_ids;
1349         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1350                                   GFP_KERNEL);
1351         if (!buffer->buffers)
1352                 goto fail_free_cpumask;
1353
1354         for_each_buffer_cpu(buffer, cpu) {
1355                 buffer->buffers[cpu] =
1356                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1357                 if (!buffer->buffers[cpu])
1358                         goto fail_free_buffers;
1359         }
1360
1361 #ifdef CONFIG_HOTPLUG_CPU
1362         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1363         buffer->cpu_notify.priority = 0;
1364         __register_cpu_notifier(&buffer->cpu_notify);
1365         cpu_notifier_register_done();
1366 #endif
1367
1368         mutex_init(&buffer->mutex);
1369
1370         return buffer;
1371
1372  fail_free_buffers:
1373         for_each_buffer_cpu(buffer, cpu) {
1374                 if (buffer->buffers[cpu])
1375                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1376         }
1377         kfree(buffer->buffers);
1378
1379  fail_free_cpumask:
1380         free_cpumask_var(buffer->cpumask);
1381 #ifdef CONFIG_HOTPLUG_CPU
1382         cpu_notifier_register_done();
1383 #endif
1384
1385  fail_free_buffer:
1386         kfree(buffer);
1387         return NULL;
1388 }
1389 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1390
1391 /**
1392  * ring_buffer_free - free a ring buffer.
1393  * @buffer: the buffer to free.
1394  */
1395 void
1396 ring_buffer_free(struct ring_buffer *buffer)
1397 {
1398         int cpu;
1399
1400 #ifdef CONFIG_HOTPLUG_CPU
1401         cpu_notifier_register_begin();
1402         __unregister_cpu_notifier(&buffer->cpu_notify);
1403 #endif
1404
1405         for_each_buffer_cpu(buffer, cpu)
1406                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1407
1408 #ifdef CONFIG_HOTPLUG_CPU
1409         cpu_notifier_register_done();
1410 #endif
1411
1412         kfree(buffer->buffers);
1413         free_cpumask_var(buffer->cpumask);
1414
1415         kfree(buffer);
1416 }
1417 EXPORT_SYMBOL_GPL(ring_buffer_free);
1418
1419 void ring_buffer_set_clock(struct ring_buffer *buffer,
1420                            u64 (*clock)(void))
1421 {
1422         buffer->clock = clock;
1423 }
1424
1425 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1426
1427 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1428 {
1429         return local_read(&bpage->entries) & RB_WRITE_MASK;
1430 }
1431
1432 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1433 {
1434         return local_read(&bpage->write) & RB_WRITE_MASK;
1435 }
1436
1437 static int
1438 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1439 {
1440         struct list_head *tail_page, *to_remove, *next_page;
1441         struct buffer_page *to_remove_page, *tmp_iter_page;
1442         struct buffer_page *last_page, *first_page;
1443         unsigned int nr_removed;
1444         unsigned long head_bit;
1445         int page_entries;
1446
1447         head_bit = 0;
1448
1449         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1450         atomic_inc(&cpu_buffer->record_disabled);
1451         /*
1452          * We don't race with the readers since we have acquired the reader
1453          * lock. We also don't race with writers after disabling recording.
1454          * This makes it easy to figure out the first and the last page to be
1455          * removed from the list. We unlink all the pages in between including
1456          * the first and last pages. This is done in a busy loop so that we
1457          * lose the least number of traces.
1458          * The pages are freed after we restart recording and unlock readers.
1459          */
1460         tail_page = &cpu_buffer->tail_page->list;
1461
1462         /*
1463          * tail page might be on reader page, we remove the next page
1464          * from the ring buffer
1465          */
1466         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1467                 tail_page = rb_list_head(tail_page->next);
1468         to_remove = tail_page;
1469
1470         /* start of pages to remove */
1471         first_page = list_entry(rb_list_head(to_remove->next),
1472                                 struct buffer_page, list);
1473
1474         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1475                 to_remove = rb_list_head(to_remove)->next;
1476                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1477         }
1478
1479         next_page = rb_list_head(to_remove)->next;
1480
1481         /*
1482          * Now we remove all pages between tail_page and next_page.
1483          * Make sure that we have head_bit value preserved for the
1484          * next page
1485          */
1486         tail_page->next = (struct list_head *)((unsigned long)next_page |
1487                                                 head_bit);
1488         next_page = rb_list_head(next_page);
1489         next_page->prev = tail_page;
1490
1491         /* make sure pages points to a valid page in the ring buffer */
1492         cpu_buffer->pages = next_page;
1493
1494         /* update head page */
1495         if (head_bit)
1496                 cpu_buffer->head_page = list_entry(next_page,
1497                                                 struct buffer_page, list);
1498
1499         /*
1500          * change read pointer to make sure any read iterators reset
1501          * themselves
1502          */
1503         cpu_buffer->read = 0;
1504
1505         /* pages are removed, resume tracing and then free the pages */
1506         atomic_dec(&cpu_buffer->record_disabled);
1507         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1508
1509         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1510
1511         /* last buffer page to remove */
1512         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1513                                 list);
1514         tmp_iter_page = first_page;
1515
1516         do {
1517                 to_remove_page = tmp_iter_page;
1518                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1519
1520                 /* update the counters */
1521                 page_entries = rb_page_entries(to_remove_page);
1522                 if (page_entries) {
1523                         /*
1524                          * If something was added to this page, it was full
1525                          * since it is not the tail page. So we deduct the
1526                          * bytes consumed in ring buffer from here.
1527                          * Increment overrun to account for the lost events.
1528                          */
1529                         local_add(page_entries, &cpu_buffer->overrun);
1530                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1531                 }
1532
1533                 /*
1534                  * We have already removed references to this list item, just
1535                  * free up the buffer_page and its page
1536                  */
1537                 free_buffer_page(to_remove_page);
1538                 nr_removed--;
1539
1540         } while (to_remove_page != last_page);
1541
1542         RB_WARN_ON(cpu_buffer, nr_removed);
1543
1544         return nr_removed == 0;
1545 }
1546
1547 static int
1548 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1549 {
1550         struct list_head *pages = &cpu_buffer->new_pages;
1551         int retries, success;
1552
1553         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1554         /*
1555          * We are holding the reader lock, so the reader page won't be swapped
1556          * in the ring buffer. Now we are racing with the writer trying to
1557          * move head page and the tail page.
1558          * We are going to adapt the reader page update process where:
1559          * 1. We first splice the start and end of list of new pages between
1560          *    the head page and its previous page.
1561          * 2. We cmpxchg the prev_page->next to point from head page to the
1562          *    start of new pages list.
1563          * 3. Finally, we update the head->prev to the end of new list.
1564          *
1565          * We will try this process 10 times, to make sure that we don't keep
1566          * spinning.
1567          */
1568         retries = 10;
1569         success = 0;
1570         while (retries--) {
1571                 struct list_head *head_page, *prev_page, *r;
1572                 struct list_head *last_page, *first_page;
1573                 struct list_head *head_page_with_bit;
1574
1575                 head_page = &rb_set_head_page(cpu_buffer)->list;
1576                 if (!head_page)
1577                         break;
1578                 prev_page = head_page->prev;
1579
1580                 first_page = pages->next;
1581                 last_page  = pages->prev;
1582
1583                 head_page_with_bit = (struct list_head *)
1584                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1585
1586                 last_page->next = head_page_with_bit;
1587                 first_page->prev = prev_page;
1588
1589                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1590
1591                 if (r == head_page_with_bit) {
1592                         /*
1593                          * yay, we replaced the page pointer to our new list,
1594                          * now, we just have to update to head page's prev
1595                          * pointer to point to end of list
1596                          */
1597                         head_page->prev = last_page;
1598                         success = 1;
1599                         break;
1600                 }
1601         }
1602
1603         if (success)
1604                 INIT_LIST_HEAD(pages);
1605         /*
1606          * If we weren't successful in adding in new pages, warn and stop
1607          * tracing
1608          */
1609         RB_WARN_ON(cpu_buffer, !success);
1610         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1611
1612         /* free pages if they weren't inserted */
1613         if (!success) {
1614                 struct buffer_page *bpage, *tmp;
1615                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1616                                          list) {
1617                         list_del_init(&bpage->list);
1618                         free_buffer_page(bpage);
1619                 }
1620         }
1621         return success;
1622 }
1623
1624 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1625 {
1626         int success;
1627
1628         if (cpu_buffer->nr_pages_to_update > 0)
1629                 success = rb_insert_pages(cpu_buffer);
1630         else
1631                 success = rb_remove_pages(cpu_buffer,
1632                                         -cpu_buffer->nr_pages_to_update);
1633
1634         if (success)
1635                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1636 }
1637
1638 static void update_pages_handler(struct work_struct *work)
1639 {
1640         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1641                         struct ring_buffer_per_cpu, update_pages_work);
1642         rb_update_pages(cpu_buffer);
1643         complete(&cpu_buffer->update_done);
1644 }
1645
1646 /**
1647  * ring_buffer_resize - resize the ring buffer
1648  * @buffer: the buffer to resize.
1649  * @size: the new size.
1650  * @cpu_id: the cpu buffer to resize
1651  *
1652  * Minimum size is 2 * BUF_PAGE_SIZE.
1653  *
1654  * Returns 0 on success and < 0 on failure.
1655  */
1656 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657                         int cpu_id)
1658 {
1659         struct ring_buffer_per_cpu *cpu_buffer;
1660         unsigned nr_pages;
1661         int cpu, err = 0;
1662
1663         /*
1664          * Always succeed at resizing a non-existent buffer:
1665          */
1666         if (!buffer)
1667                 return size;
1668
1669         /* Make sure the requested buffer exists */
1670         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672                 return size;
1673
1674         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675         size *= BUF_PAGE_SIZE;
1676
1677         /* we need a minimum of two pages */
1678         if (size < BUF_PAGE_SIZE * 2)
1679                 size = BUF_PAGE_SIZE * 2;
1680
1681         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1682
1683         /*
1684          * Don't succeed if resizing is disabled, as a reader might be
1685          * manipulating the ring buffer and is expecting a sane state while
1686          * this is true.
1687          */
1688         if (atomic_read(&buffer->resize_disabled))
1689                 return -EBUSY;
1690
1691         /* prevent another thread from changing buffer sizes */
1692         mutex_lock(&buffer->mutex);
1693
1694         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695                 /* calculate the pages to update */
1696                 for_each_buffer_cpu(buffer, cpu) {
1697                         cpu_buffer = buffer->buffers[cpu];
1698
1699                         cpu_buffer->nr_pages_to_update = nr_pages -
1700                                                         cpu_buffer->nr_pages;
1701                         /*
1702                          * nothing more to do for removing pages or no update
1703                          */
1704                         if (cpu_buffer->nr_pages_to_update <= 0)
1705                                 continue;
1706                         /*
1707                          * to add pages, make sure all new pages can be
1708                          * allocated without receiving ENOMEM
1709                          */
1710                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712                                                 &cpu_buffer->new_pages, cpu)) {
1713                                 /* not enough memory for new pages */
1714                                 err = -ENOMEM;
1715                                 goto out_err;
1716                         }
1717                 }
1718
1719                 get_online_cpus();
1720                 /*
1721                  * Fire off all the required work handlers
1722                  * We can't schedule on offline CPUs, but it's not necessary
1723                  * since we can change their buffer sizes without any race.
1724                  */
1725                 for_each_buffer_cpu(buffer, cpu) {
1726                         cpu_buffer = buffer->buffers[cpu];
1727                         if (!cpu_buffer->nr_pages_to_update)
1728                                 continue;
1729
1730                         /* Can't run something on an offline CPU. */
1731                         if (!cpu_online(cpu)) {
1732                                 rb_update_pages(cpu_buffer);
1733                                 cpu_buffer->nr_pages_to_update = 0;
1734                         } else {
1735                                 schedule_work_on(cpu,
1736                                                 &cpu_buffer->update_pages_work);
1737                         }
1738                 }
1739
1740                 /* wait for all the updates to complete */
1741                 for_each_buffer_cpu(buffer, cpu) {
1742                         cpu_buffer = buffer->buffers[cpu];
1743                         if (!cpu_buffer->nr_pages_to_update)
1744                                 continue;
1745
1746                         if (cpu_online(cpu))
1747                                 wait_for_completion(&cpu_buffer->update_done);
1748                         cpu_buffer->nr_pages_to_update = 0;
1749                 }
1750
1751                 put_online_cpus();
1752         } else {
1753                 /* Make sure this CPU has been intitialized */
1754                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1755                         goto out;
1756
1757                 cpu_buffer = buffer->buffers[cpu_id];
1758
1759                 if (nr_pages == cpu_buffer->nr_pages)
1760                         goto out;
1761
1762                 cpu_buffer->nr_pages_to_update = nr_pages -
1763                                                 cpu_buffer->nr_pages;
1764
1765                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1766                 if (cpu_buffer->nr_pages_to_update > 0 &&
1767                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1768                                             &cpu_buffer->new_pages, cpu_id)) {
1769                         err = -ENOMEM;
1770                         goto out_err;
1771                 }
1772
1773                 get_online_cpus();
1774
1775                 /* Can't run something on an offline CPU. */
1776                 if (!cpu_online(cpu_id))
1777                         rb_update_pages(cpu_buffer);
1778                 else {
1779                         schedule_work_on(cpu_id,
1780                                          &cpu_buffer->update_pages_work);
1781                         wait_for_completion(&cpu_buffer->update_done);
1782                 }
1783
1784                 cpu_buffer->nr_pages_to_update = 0;
1785                 put_online_cpus();
1786         }
1787
1788  out:
1789         /*
1790          * The ring buffer resize can happen with the ring buffer
1791          * enabled, so that the update disturbs the tracing as little
1792          * as possible. But if the buffer is disabled, we do not need
1793          * to worry about that, and we can take the time to verify
1794          * that the buffer is not corrupt.
1795          */
1796         if (atomic_read(&buffer->record_disabled)) {
1797                 atomic_inc(&buffer->record_disabled);
1798                 /*
1799                  * Even though the buffer was disabled, we must make sure
1800                  * that it is truly disabled before calling rb_check_pages.
1801                  * There could have been a race between checking
1802                  * record_disable and incrementing it.
1803                  */
1804                 synchronize_sched();
1805                 for_each_buffer_cpu(buffer, cpu) {
1806                         cpu_buffer = buffer->buffers[cpu];
1807                         rb_check_pages(cpu_buffer);
1808                 }
1809                 atomic_dec(&buffer->record_disabled);
1810         }
1811
1812         mutex_unlock(&buffer->mutex);
1813         return size;
1814
1815  out_err:
1816         for_each_buffer_cpu(buffer, cpu) {
1817                 struct buffer_page *bpage, *tmp;
1818
1819                 cpu_buffer = buffer->buffers[cpu];
1820                 cpu_buffer->nr_pages_to_update = 0;
1821
1822                 if (list_empty(&cpu_buffer->new_pages))
1823                         continue;
1824
1825                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1826                                         list) {
1827                         list_del_init(&bpage->list);
1828                         free_buffer_page(bpage);
1829                 }
1830         }
1831         mutex_unlock(&buffer->mutex);
1832         return err;
1833 }
1834 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1835
1836 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1837 {
1838         mutex_lock(&buffer->mutex);
1839         if (val)
1840                 buffer->flags |= RB_FL_OVERWRITE;
1841         else
1842                 buffer->flags &= ~RB_FL_OVERWRITE;
1843         mutex_unlock(&buffer->mutex);
1844 }
1845 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1846
1847 static inline void *
1848 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1849 {
1850         return bpage->data + index;
1851 }
1852
1853 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1854 {
1855         return bpage->page->data + index;
1856 }
1857
1858 static inline struct ring_buffer_event *
1859 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1860 {
1861         return __rb_page_index(cpu_buffer->reader_page,
1862                                cpu_buffer->reader_page->read);
1863 }
1864
1865 static inline struct ring_buffer_event *
1866 rb_iter_head_event(struct ring_buffer_iter *iter)
1867 {
1868         return __rb_page_index(iter->head_page, iter->head);
1869 }
1870
1871 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1872 {
1873         return local_read(&bpage->page->commit);
1874 }
1875
1876 /* Size is determined by what has been committed */
1877 static inline unsigned rb_page_size(struct buffer_page *bpage)
1878 {
1879         return rb_page_commit(bpage);
1880 }
1881
1882 static inline unsigned
1883 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1884 {
1885         return rb_page_commit(cpu_buffer->commit_page);
1886 }
1887
1888 static inline unsigned
1889 rb_event_index(struct ring_buffer_event *event)
1890 {
1891         unsigned long addr = (unsigned long)event;
1892
1893         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1894 }
1895
1896 static inline int
1897 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1898                    struct ring_buffer_event *event)
1899 {
1900         unsigned long addr = (unsigned long)event;
1901         unsigned long index;
1902
1903         index = rb_event_index(event);
1904         addr &= PAGE_MASK;
1905
1906         return cpu_buffer->commit_page->page == (void *)addr &&
1907                 rb_commit_index(cpu_buffer) == index;
1908 }
1909
1910 static void
1911 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1912 {
1913         unsigned long max_count;
1914
1915         /*
1916          * We only race with interrupts and NMIs on this CPU.
1917          * If we own the commit event, then we can commit
1918          * all others that interrupted us, since the interruptions
1919          * are in stack format (they finish before they come
1920          * back to us). This allows us to do a simple loop to
1921          * assign the commit to the tail.
1922          */
1923  again:
1924         max_count = cpu_buffer->nr_pages * 100;
1925
1926         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1927                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1928                         return;
1929                 if (RB_WARN_ON(cpu_buffer,
1930                                rb_is_reader_page(cpu_buffer->tail_page)))
1931                         return;
1932                 local_set(&cpu_buffer->commit_page->page->commit,
1933                           rb_page_write(cpu_buffer->commit_page));
1934                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1935                 cpu_buffer->write_stamp =
1936                         cpu_buffer->commit_page->page->time_stamp;
1937                 /* add barrier to keep gcc from optimizing too much */
1938                 barrier();
1939         }
1940         while (rb_commit_index(cpu_buffer) !=
1941                rb_page_write(cpu_buffer->commit_page)) {
1942
1943                 local_set(&cpu_buffer->commit_page->page->commit,
1944                           rb_page_write(cpu_buffer->commit_page));
1945                 RB_WARN_ON(cpu_buffer,
1946                            local_read(&cpu_buffer->commit_page->page->commit) &
1947                            ~RB_WRITE_MASK);
1948                 barrier();
1949         }
1950
1951         /* again, keep gcc from optimizing */
1952         barrier();
1953
1954         /*
1955          * If an interrupt came in just after the first while loop
1956          * and pushed the tail page forward, we will be left with
1957          * a dangling commit that will never go forward.
1958          */
1959         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1960                 goto again;
1961 }
1962
1963 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1964 {
1965         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1966         cpu_buffer->reader_page->read = 0;
1967 }
1968
1969 static void rb_inc_iter(struct ring_buffer_iter *iter)
1970 {
1971         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1972
1973         /*
1974          * The iterator could be on the reader page (it starts there).
1975          * But the head could have moved, since the reader was
1976          * found. Check for this case and assign the iterator
1977          * to the head page instead of next.
1978          */
1979         if (iter->head_page == cpu_buffer->reader_page)
1980                 iter->head_page = rb_set_head_page(cpu_buffer);
1981         else
1982                 rb_inc_page(cpu_buffer, &iter->head_page);
1983
1984         iter->read_stamp = iter->head_page->page->time_stamp;
1985         iter->head = 0;
1986 }
1987
1988 /* Slow path, do not inline */
1989 static noinline struct ring_buffer_event *
1990 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1991 {
1992         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1993
1994         /* Not the first event on the page? */
1995         if (rb_event_index(event)) {
1996                 event->time_delta = delta & TS_MASK;
1997                 event->array[0] = delta >> TS_SHIFT;
1998         } else {
1999                 /* nope, just zero it */
2000                 event->time_delta = 0;
2001                 event->array[0] = 0;
2002         }
2003
2004         return skip_time_extend(event);
2005 }
2006
2007 /**
2008  * rb_update_event - update event type and data
2009  * @event: the event to update
2010  * @type: the type of event
2011  * @length: the size of the event field in the ring buffer
2012  *
2013  * Update the type and data fields of the event. The length
2014  * is the actual size that is written to the ring buffer,
2015  * and with this, we can determine what to place into the
2016  * data field.
2017  */
2018 static void
2019 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2020                 struct ring_buffer_event *event, unsigned length,
2021                 int add_timestamp, u64 delta)
2022 {
2023         /* Only a commit updates the timestamp */
2024         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2025                 delta = 0;
2026
2027         /*
2028          * If we need to add a timestamp, then we
2029          * add it to the start of the resevered space.
2030          */
2031         if (unlikely(add_timestamp)) {
2032                 event = rb_add_time_stamp(event, delta);
2033                 length -= RB_LEN_TIME_EXTEND;
2034                 delta = 0;
2035         }
2036
2037         event->time_delta = delta;
2038         length -= RB_EVNT_HDR_SIZE;
2039         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2040                 event->type_len = 0;
2041                 event->array[0] = length;
2042         } else
2043                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2044 }
2045
2046 /*
2047  * rb_handle_head_page - writer hit the head page
2048  *
2049  * Returns: +1 to retry page
2050  *           0 to continue
2051  *          -1 on error
2052  */
2053 static int
2054 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2055                     struct buffer_page *tail_page,
2056                     struct buffer_page *next_page)
2057 {
2058         struct buffer_page *new_head;
2059         int entries;
2060         int type;
2061         int ret;
2062
2063         entries = rb_page_entries(next_page);
2064
2065         /*
2066          * The hard part is here. We need to move the head
2067          * forward, and protect against both readers on
2068          * other CPUs and writers coming in via interrupts.
2069          */
2070         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2071                                        RB_PAGE_HEAD);
2072
2073         /*
2074          * type can be one of four:
2075          *  NORMAL - an interrupt already moved it for us
2076          *  HEAD   - we are the first to get here.
2077          *  UPDATE - we are the interrupt interrupting
2078          *           a current move.
2079          *  MOVED  - a reader on another CPU moved the next
2080          *           pointer to its reader page. Give up
2081          *           and try again.
2082          */
2083
2084         switch (type) {
2085         case RB_PAGE_HEAD:
2086                 /*
2087                  * We changed the head to UPDATE, thus
2088                  * it is our responsibility to update
2089                  * the counters.
2090                  */
2091                 local_add(entries, &cpu_buffer->overrun);
2092                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2093
2094                 /*
2095                  * The entries will be zeroed out when we move the
2096                  * tail page.
2097                  */
2098
2099                 /* still more to do */
2100                 break;
2101
2102         case RB_PAGE_UPDATE:
2103                 /*
2104                  * This is an interrupt that interrupt the
2105                  * previous update. Still more to do.
2106                  */
2107                 break;
2108         case RB_PAGE_NORMAL:
2109                 /*
2110                  * An interrupt came in before the update
2111                  * and processed this for us.
2112                  * Nothing left to do.
2113                  */
2114                 return 1;
2115         case RB_PAGE_MOVED:
2116                 /*
2117                  * The reader is on another CPU and just did
2118                  * a swap with our next_page.
2119                  * Try again.
2120                  */
2121                 return 1;
2122         default:
2123                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2124                 return -1;
2125         }
2126
2127         /*
2128          * Now that we are here, the old head pointer is
2129          * set to UPDATE. This will keep the reader from
2130          * swapping the head page with the reader page.
2131          * The reader (on another CPU) will spin till
2132          * we are finished.
2133          *
2134          * We just need to protect against interrupts
2135          * doing the job. We will set the next pointer
2136          * to HEAD. After that, we set the old pointer
2137          * to NORMAL, but only if it was HEAD before.
2138          * otherwise we are an interrupt, and only
2139          * want the outer most commit to reset it.
2140          */
2141         new_head = next_page;
2142         rb_inc_page(cpu_buffer, &new_head);
2143
2144         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2145                                     RB_PAGE_NORMAL);
2146
2147         /*
2148          * Valid returns are:
2149          *  HEAD   - an interrupt came in and already set it.
2150          *  NORMAL - One of two things:
2151          *            1) We really set it.
2152          *            2) A bunch of interrupts came in and moved
2153          *               the page forward again.
2154          */
2155         switch (ret) {
2156         case RB_PAGE_HEAD:
2157         case RB_PAGE_NORMAL:
2158                 /* OK */
2159                 break;
2160         default:
2161                 RB_WARN_ON(cpu_buffer, 1);
2162                 return -1;
2163         }
2164
2165         /*
2166          * It is possible that an interrupt came in,
2167          * set the head up, then more interrupts came in
2168          * and moved it again. When we get back here,
2169          * the page would have been set to NORMAL but we
2170          * just set it back to HEAD.
2171          *
2172          * How do you detect this? Well, if that happened
2173          * the tail page would have moved.
2174          */
2175         if (ret == RB_PAGE_NORMAL) {
2176                 /*
2177                  * If the tail had moved passed next, then we need
2178                  * to reset the pointer.
2179                  */
2180                 if (cpu_buffer->tail_page != tail_page &&
2181                     cpu_buffer->tail_page != next_page)
2182                         rb_head_page_set_normal(cpu_buffer, new_head,
2183                                                 next_page,
2184                                                 RB_PAGE_HEAD);
2185         }
2186
2187         /*
2188          * If this was the outer most commit (the one that
2189          * changed the original pointer from HEAD to UPDATE),
2190          * then it is up to us to reset it to NORMAL.
2191          */
2192         if (type == RB_PAGE_HEAD) {
2193                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2194                                               tail_page,
2195                                               RB_PAGE_UPDATE);
2196                 if (RB_WARN_ON(cpu_buffer,
2197                                ret != RB_PAGE_UPDATE))
2198                         return -1;
2199         }
2200
2201         return 0;
2202 }
2203
2204 static unsigned rb_calculate_event_length(unsigned length)
2205 {
2206         struct ring_buffer_event event; /* Used only for sizeof array */
2207
2208         /* zero length can cause confusions */
2209         if (!length)
2210                 length = 1;
2211
2212         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2213                 length += sizeof(event.array[0]);
2214
2215         length += RB_EVNT_HDR_SIZE;
2216         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2217
2218         return length;
2219 }
2220
2221 static inline void
2222 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2223               struct buffer_page *tail_page,
2224               unsigned long tail, unsigned long length)
2225 {
2226         struct ring_buffer_event *event;
2227
2228         /*
2229          * Only the event that crossed the page boundary
2230          * must fill the old tail_page with padding.
2231          */
2232         if (tail >= BUF_PAGE_SIZE) {
2233                 /*
2234                  * If the page was filled, then we still need
2235                  * to update the real_end. Reset it to zero
2236                  * and the reader will ignore it.
2237                  */
2238                 if (tail == BUF_PAGE_SIZE)
2239                         tail_page->real_end = 0;
2240
2241                 local_sub(length, &tail_page->write);
2242                 return;
2243         }
2244
2245         event = __rb_page_index(tail_page, tail);
2246         kmemcheck_annotate_bitfield(event, bitfield);
2247
2248         /* account for padding bytes */
2249         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2250
2251         /*
2252          * Save the original length to the meta data.
2253          * This will be used by the reader to add lost event
2254          * counter.
2255          */
2256         tail_page->real_end = tail;
2257
2258         /*
2259          * If this event is bigger than the minimum size, then
2260          * we need to be careful that we don't subtract the
2261          * write counter enough to allow another writer to slip
2262          * in on this page.
2263          * We put in a discarded commit instead, to make sure
2264          * that this space is not used again.
2265          *
2266          * If we are less than the minimum size, we don't need to
2267          * worry about it.
2268          */
2269         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2270                 /* No room for any events */
2271
2272                 /* Mark the rest of the page with padding */
2273                 rb_event_set_padding(event);
2274
2275                 /* Set the write back to the previous setting */
2276                 local_sub(length, &tail_page->write);
2277                 return;
2278         }
2279
2280         /* Put in a discarded event */
2281         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2282         event->type_len = RINGBUF_TYPE_PADDING;
2283         /* time delta must be non zero */
2284         event->time_delta = 1;
2285
2286         /* Set write to end of buffer */
2287         length = (tail + length) - BUF_PAGE_SIZE;
2288         local_sub(length, &tail_page->write);
2289 }
2290
2291 /*
2292  * This is the slow path, force gcc not to inline it.
2293  */
2294 static noinline struct ring_buffer_event *
2295 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2296              unsigned long length, unsigned long tail,
2297              struct buffer_page *tail_page, u64 ts)
2298 {
2299         struct buffer_page *commit_page = cpu_buffer->commit_page;
2300         struct ring_buffer *buffer = cpu_buffer->buffer;
2301         struct buffer_page *next_page;
2302         int ret;
2303
2304         next_page = tail_page;
2305
2306         rb_inc_page(cpu_buffer, &next_page);
2307
2308         /*
2309          * If for some reason, we had an interrupt storm that made
2310          * it all the way around the buffer, bail, and warn
2311          * about it.
2312          */
2313         if (unlikely(next_page == commit_page)) {
2314                 local_inc(&cpu_buffer->commit_overrun);
2315                 goto out_reset;
2316         }
2317
2318         /*
2319          * This is where the fun begins!
2320          *
2321          * We are fighting against races between a reader that
2322          * could be on another CPU trying to swap its reader
2323          * page with the buffer head.
2324          *
2325          * We are also fighting against interrupts coming in and
2326          * moving the head or tail on us as well.
2327          *
2328          * If the next page is the head page then we have filled
2329          * the buffer, unless the commit page is still on the
2330          * reader page.
2331          */
2332         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2333
2334                 /*
2335                  * If the commit is not on the reader page, then
2336                  * move the header page.
2337                  */
2338                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2339                         /*
2340                          * If we are not in overwrite mode,
2341                          * this is easy, just stop here.
2342                          */
2343                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2344                                 local_inc(&cpu_buffer->dropped_events);
2345                                 goto out_reset;
2346                         }
2347
2348                         ret = rb_handle_head_page(cpu_buffer,
2349                                                   tail_page,
2350                                                   next_page);
2351                         if (ret < 0)
2352                                 goto out_reset;
2353                         if (ret)
2354                                 goto out_again;
2355                 } else {
2356                         /*
2357                          * We need to be careful here too. The
2358                          * commit page could still be on the reader
2359                          * page. We could have a small buffer, and
2360                          * have filled up the buffer with events
2361                          * from interrupts and such, and wrapped.
2362                          *
2363                          * Note, if the tail page is also the on the
2364                          * reader_page, we let it move out.
2365                          */
2366                         if (unlikely((cpu_buffer->commit_page !=
2367                                       cpu_buffer->tail_page) &&
2368                                      (cpu_buffer->commit_page ==
2369                                       cpu_buffer->reader_page))) {
2370                                 local_inc(&cpu_buffer->commit_overrun);
2371                                 goto out_reset;
2372                         }
2373                 }
2374         }
2375
2376         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2377         if (ret) {
2378                 /*
2379                  * Nested commits always have zero deltas, so
2380                  * just reread the time stamp
2381                  */
2382                 ts = rb_time_stamp(buffer);
2383                 next_page->page->time_stamp = ts;
2384         }
2385
2386  out_again:
2387
2388         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2389
2390         /* fail and let the caller try again */
2391         return ERR_PTR(-EAGAIN);
2392
2393  out_reset:
2394         /* reset write */
2395         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2396
2397         return NULL;
2398 }
2399
2400 static struct ring_buffer_event *
2401 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2402                   unsigned long length, u64 ts,
2403                   u64 delta, int add_timestamp)
2404 {
2405         struct buffer_page *tail_page;
2406         struct ring_buffer_event *event;
2407         unsigned long tail, write;
2408
2409         /*
2410          * If the time delta since the last event is too big to
2411          * hold in the time field of the event, then we append a
2412          * TIME EXTEND event ahead of the data event.
2413          */
2414         if (unlikely(add_timestamp))
2415                 length += RB_LEN_TIME_EXTEND;
2416
2417         tail_page = cpu_buffer->tail_page;
2418         write = local_add_return(length, &tail_page->write);
2419
2420         /* set write to only the index of the write */
2421         write &= RB_WRITE_MASK;
2422         tail = write - length;
2423
2424         /*
2425          * If this is the first commit on the page, then it has the same
2426          * timestamp as the page itself.
2427          */
2428         if (!tail)
2429                 delta = 0;
2430
2431         /* See if we shot pass the end of this buffer page */
2432         if (unlikely(write > BUF_PAGE_SIZE))
2433                 return rb_move_tail(cpu_buffer, length, tail,
2434                                     tail_page, ts);
2435
2436         /* We reserved something on the buffer */
2437
2438         event = __rb_page_index(tail_page, tail);
2439         kmemcheck_annotate_bitfield(event, bitfield);
2440         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2441
2442         local_inc(&tail_page->entries);
2443
2444         /*
2445          * If this is the first commit on the page, then update
2446          * its timestamp.
2447          */
2448         if (!tail)
2449                 tail_page->page->time_stamp = ts;
2450
2451         /* account for these added bytes */
2452         local_add(length, &cpu_buffer->entries_bytes);
2453
2454         return event;
2455 }
2456
2457 static inline int
2458 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2459                   struct ring_buffer_event *event)
2460 {
2461         unsigned long new_index, old_index;
2462         struct buffer_page *bpage;
2463         unsigned long index;
2464         unsigned long addr;
2465
2466         new_index = rb_event_index(event);
2467         old_index = new_index + rb_event_ts_length(event);
2468         addr = (unsigned long)event;
2469         addr &= PAGE_MASK;
2470
2471         bpage = cpu_buffer->tail_page;
2472
2473         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2474                 unsigned long write_mask =
2475                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2476                 unsigned long event_length = rb_event_length(event);
2477                 /*
2478                  * This is on the tail page. It is possible that
2479                  * a write could come in and move the tail page
2480                  * and write to the next page. That is fine
2481                  * because we just shorten what is on this page.
2482                  */
2483                 old_index += write_mask;
2484                 new_index += write_mask;
2485                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2486                 if (index == old_index) {
2487                         /* update counters */
2488                         local_sub(event_length, &cpu_buffer->entries_bytes);
2489                         return 1;
2490                 }
2491         }
2492
2493         /* could not discard */
2494         return 0;
2495 }
2496
2497 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2498 {
2499         local_inc(&cpu_buffer->committing);
2500         local_inc(&cpu_buffer->commits);
2501 }
2502
2503 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2504 {
2505         unsigned long commits;
2506
2507         if (RB_WARN_ON(cpu_buffer,
2508                        !local_read(&cpu_buffer->committing)))
2509                 return;
2510
2511  again:
2512         commits = local_read(&cpu_buffer->commits);
2513         /* synchronize with interrupts */
2514         barrier();
2515         if (local_read(&cpu_buffer->committing) == 1)
2516                 rb_set_commit_to_write(cpu_buffer);
2517
2518         local_dec(&cpu_buffer->committing);
2519
2520         /* synchronize with interrupts */
2521         barrier();
2522
2523         /*
2524          * Need to account for interrupts coming in between the
2525          * updating of the commit page and the clearing of the
2526          * committing counter.
2527          */
2528         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2529             !local_read(&cpu_buffer->committing)) {
2530                 local_inc(&cpu_buffer->committing);
2531                 goto again;
2532         }
2533 }
2534
2535 static struct ring_buffer_event *
2536 rb_reserve_next_event(struct ring_buffer *buffer,
2537                       struct ring_buffer_per_cpu *cpu_buffer,
2538                       unsigned long length)
2539 {
2540         struct ring_buffer_event *event;
2541         u64 ts, delta;
2542         int nr_loops = 0;
2543         int add_timestamp;
2544         u64 diff;
2545
2546         rb_start_commit(cpu_buffer);
2547
2548 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2549         /*
2550          * Due to the ability to swap a cpu buffer from a buffer
2551          * it is possible it was swapped before we committed.
2552          * (committing stops a swap). We check for it here and
2553          * if it happened, we have to fail the write.
2554          */
2555         barrier();
2556         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2557                 local_dec(&cpu_buffer->committing);
2558                 local_dec(&cpu_buffer->commits);
2559                 return NULL;
2560         }
2561 #endif
2562
2563         length = rb_calculate_event_length(length);
2564  again:
2565         add_timestamp = 0;
2566         delta = 0;
2567
2568         /*
2569          * We allow for interrupts to reenter here and do a trace.
2570          * If one does, it will cause this original code to loop
2571          * back here. Even with heavy interrupts happening, this
2572          * should only happen a few times in a row. If this happens
2573          * 1000 times in a row, there must be either an interrupt
2574          * storm or we have something buggy.
2575          * Bail!
2576          */
2577         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2578                 goto out_fail;
2579
2580         ts = rb_time_stamp(cpu_buffer->buffer);
2581         diff = ts - cpu_buffer->write_stamp;
2582
2583         /* make sure this diff is calculated here */
2584         barrier();
2585
2586         /* Did the write stamp get updated already? */
2587         if (likely(ts >= cpu_buffer->write_stamp)) {
2588                 delta = diff;
2589                 if (unlikely(test_time_stamp(delta))) {
2590                         int local_clock_stable = 1;
2591 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2592                         local_clock_stable = sched_clock_stable();
2593 #endif
2594                         WARN_ONCE(delta > (1ULL << 59),
2595                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2596                                   (unsigned long long)delta,
2597                                   (unsigned long long)ts,
2598                                   (unsigned long long)cpu_buffer->write_stamp,
2599                                   local_clock_stable ? "" :
2600                                   "If you just came from a suspend/resume,\n"
2601                                   "please switch to the trace global clock:\n"
2602                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2603                         add_timestamp = 1;
2604                 }
2605         }
2606
2607         event = __rb_reserve_next(cpu_buffer, length, ts,
2608                                   delta, add_timestamp);
2609         if (unlikely(PTR_ERR(event) == -EAGAIN))
2610                 goto again;
2611
2612         if (!event)
2613                 goto out_fail;
2614
2615         return event;
2616
2617  out_fail:
2618         rb_end_commit(cpu_buffer);
2619         return NULL;
2620 }
2621
2622 #ifdef CONFIG_TRACING
2623
2624 /*
2625  * The lock and unlock are done within a preempt disable section.
2626  * The current_context per_cpu variable can only be modified
2627  * by the current task between lock and unlock. But it can
2628  * be modified more than once via an interrupt. To pass this
2629  * information from the lock to the unlock without having to
2630  * access the 'in_interrupt()' functions again (which do show
2631  * a bit of overhead in something as critical as function tracing,
2632  * we use a bitmask trick.
2633  *
2634  *  bit 0 =  NMI context
2635  *  bit 1 =  IRQ context
2636  *  bit 2 =  SoftIRQ context
2637  *  bit 3 =  normal context.
2638  *
2639  * This works because this is the order of contexts that can
2640  * preempt other contexts. A SoftIRQ never preempts an IRQ
2641  * context.
2642  *
2643  * When the context is determined, the corresponding bit is
2644  * checked and set (if it was set, then a recursion of that context
2645  * happened).
2646  *
2647  * On unlock, we need to clear this bit. To do so, just subtract
2648  * 1 from the current_context and AND it to itself.
2649  *
2650  * (binary)
2651  *  101 - 1 = 100
2652  *  101 & 100 = 100 (clearing bit zero)
2653  *
2654  *  1010 - 1 = 1001
2655  *  1010 & 1001 = 1000 (clearing bit 1)
2656  *
2657  * The least significant bit can be cleared this way, and it
2658  * just so happens that it is the same bit corresponding to
2659  * the current context.
2660  */
2661 static DEFINE_PER_CPU(unsigned int, current_context);
2662
2663 static __always_inline int trace_recursive_lock(void)
2664 {
2665         unsigned int val = this_cpu_read(current_context);
2666         int bit;
2667
2668         if (in_interrupt()) {
2669                 if (in_nmi())
2670                         bit = 0;
2671                 else if (in_irq())
2672                         bit = 1;
2673                 else
2674                         bit = 2;
2675         } else
2676                 bit = 3;
2677
2678         if (unlikely(val & (1 << bit)))
2679                 return 1;
2680
2681         val |= (1 << bit);
2682         this_cpu_write(current_context, val);
2683
2684         return 0;
2685 }
2686
2687 static __always_inline void trace_recursive_unlock(void)
2688 {
2689         unsigned int val = this_cpu_read(current_context);
2690
2691         val--;
2692         val &= this_cpu_read(current_context);
2693         this_cpu_write(current_context, val);
2694 }
2695
2696 #else
2697
2698 #define trace_recursive_lock()          (0)
2699 #define trace_recursive_unlock()        do { } while (0)
2700
2701 #endif
2702
2703 /**
2704  * ring_buffer_lock_reserve - reserve a part of the buffer
2705  * @buffer: the ring buffer to reserve from
2706  * @length: the length of the data to reserve (excluding event header)
2707  *
2708  * Returns a reseverd event on the ring buffer to copy directly to.
2709  * The user of this interface will need to get the body to write into
2710  * and can use the ring_buffer_event_data() interface.
2711  *
2712  * The length is the length of the data needed, not the event length
2713  * which also includes the event header.
2714  *
2715  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2716  * If NULL is returned, then nothing has been allocated or locked.
2717  */
2718 struct ring_buffer_event *
2719 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2720 {
2721         struct ring_buffer_per_cpu *cpu_buffer;
2722         struct ring_buffer_event *event;
2723         int cpu;
2724
2725         if (ring_buffer_flags != RB_BUFFERS_ON)
2726                 return NULL;
2727
2728         /* If we are tracing schedule, we don't want to recurse */
2729         preempt_disable_notrace();
2730
2731         if (atomic_read(&buffer->record_disabled))
2732                 goto out_nocheck;
2733
2734         if (trace_recursive_lock())
2735                 goto out_nocheck;
2736
2737         cpu = raw_smp_processor_id();
2738
2739         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2740                 goto out;
2741
2742         cpu_buffer = buffer->buffers[cpu];
2743
2744         if (atomic_read(&cpu_buffer->record_disabled))
2745                 goto out;
2746
2747         if (length > BUF_MAX_DATA_SIZE)
2748                 goto out;
2749
2750         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2751         if (!event)
2752                 goto out;
2753
2754         return event;
2755
2756  out:
2757         trace_recursive_unlock();
2758
2759  out_nocheck:
2760         preempt_enable_notrace();
2761         return NULL;
2762 }
2763 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2764
2765 static void
2766 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2767                       struct ring_buffer_event *event)
2768 {
2769         u64 delta;
2770
2771         /*
2772          * The event first in the commit queue updates the
2773          * time stamp.
2774          */
2775         if (rb_event_is_commit(cpu_buffer, event)) {
2776                 /*
2777                  * A commit event that is first on a page
2778                  * updates the write timestamp with the page stamp
2779                  */
2780                 if (!rb_event_index(event))
2781                         cpu_buffer->write_stamp =
2782                                 cpu_buffer->commit_page->page->time_stamp;
2783                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2784                         delta = event->array[0];
2785                         delta <<= TS_SHIFT;
2786                         delta += event->time_delta;
2787                         cpu_buffer->write_stamp += delta;
2788                 } else
2789                         cpu_buffer->write_stamp += event->time_delta;
2790         }
2791 }
2792
2793 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2794                       struct ring_buffer_event *event)
2795 {
2796         local_inc(&cpu_buffer->entries);
2797         rb_update_write_stamp(cpu_buffer, event);
2798         rb_end_commit(cpu_buffer);
2799 }
2800
2801 static __always_inline void
2802 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2803 {
2804         if (buffer->irq_work.waiters_pending) {
2805                 buffer->irq_work.waiters_pending = false;
2806                 /* irq_work_queue() supplies it's own memory barriers */
2807                 irq_work_queue(&buffer->irq_work.work);
2808         }
2809
2810         if (cpu_buffer->irq_work.waiters_pending) {
2811                 cpu_buffer->irq_work.waiters_pending = false;
2812                 /* irq_work_queue() supplies it's own memory barriers */
2813                 irq_work_queue(&cpu_buffer->irq_work.work);
2814         }
2815 }
2816
2817 /**
2818  * ring_buffer_unlock_commit - commit a reserved
2819  * @buffer: The buffer to commit to
2820  * @event: The event pointer to commit.
2821  *
2822  * This commits the data to the ring buffer, and releases any locks held.
2823  *
2824  * Must be paired with ring_buffer_lock_reserve.
2825  */
2826 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2827                               struct ring_buffer_event *event)
2828 {
2829         struct ring_buffer_per_cpu *cpu_buffer;
2830         int cpu = raw_smp_processor_id();
2831
2832         cpu_buffer = buffer->buffers[cpu];
2833
2834         rb_commit(cpu_buffer, event);
2835
2836         rb_wakeups(buffer, cpu_buffer);
2837
2838         trace_recursive_unlock();
2839
2840         preempt_enable_notrace();
2841
2842         return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2845
2846 static inline void rb_event_discard(struct ring_buffer_event *event)
2847 {
2848         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2849                 event = skip_time_extend(event);
2850
2851         /* array[0] holds the actual length for the discarded event */
2852         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2853         event->type_len = RINGBUF_TYPE_PADDING;
2854         /* time delta must be non zero */
2855         if (!event->time_delta)
2856                 event->time_delta = 1;
2857 }
2858
2859 /*
2860  * Decrement the entries to the page that an event is on.
2861  * The event does not even need to exist, only the pointer
2862  * to the page it is on. This may only be called before the commit
2863  * takes place.
2864  */
2865 static inline void
2866 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2867                    struct ring_buffer_event *event)
2868 {
2869         unsigned long addr = (unsigned long)event;
2870         struct buffer_page *bpage = cpu_buffer->commit_page;
2871         struct buffer_page *start;
2872
2873         addr &= PAGE_MASK;
2874
2875         /* Do the likely case first */
2876         if (likely(bpage->page == (void *)addr)) {
2877                 local_dec(&bpage->entries);
2878                 return;
2879         }
2880
2881         /*
2882          * Because the commit page may be on the reader page we
2883          * start with the next page and check the end loop there.
2884          */
2885         rb_inc_page(cpu_buffer, &bpage);
2886         start = bpage;
2887         do {
2888                 if (bpage->page == (void *)addr) {
2889                         local_dec(&bpage->entries);
2890                         return;
2891                 }
2892                 rb_inc_page(cpu_buffer, &bpage);
2893         } while (bpage != start);
2894
2895         /* commit not part of this buffer?? */
2896         RB_WARN_ON(cpu_buffer, 1);
2897 }
2898
2899 /**
2900  * ring_buffer_commit_discard - discard an event that has not been committed
2901  * @buffer: the ring buffer
2902  * @event: non committed event to discard
2903  *
2904  * Sometimes an event that is in the ring buffer needs to be ignored.
2905  * This function lets the user discard an event in the ring buffer
2906  * and then that event will not be read later.
2907  *
2908  * This function only works if it is called before the the item has been
2909  * committed. It will try to free the event from the ring buffer
2910  * if another event has not been added behind it.
2911  *
2912  * If another event has been added behind it, it will set the event
2913  * up as discarded, and perform the commit.
2914  *
2915  * If this function is called, do not call ring_buffer_unlock_commit on
2916  * the event.
2917  */
2918 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2919                                 struct ring_buffer_event *event)
2920 {
2921         struct ring_buffer_per_cpu *cpu_buffer;
2922         int cpu;
2923
2924         /* The event is discarded regardless */
2925         rb_event_discard(event);
2926
2927         cpu = smp_processor_id();
2928         cpu_buffer = buffer->buffers[cpu];
2929
2930         /*
2931          * This must only be called if the event has not been
2932          * committed yet. Thus we can assume that preemption
2933          * is still disabled.
2934          */
2935         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2936
2937         rb_decrement_entry(cpu_buffer, event);
2938         if (rb_try_to_discard(cpu_buffer, event))
2939                 goto out;
2940
2941         /*
2942          * The commit is still visible by the reader, so we
2943          * must still update the timestamp.
2944          */
2945         rb_update_write_stamp(cpu_buffer, event);
2946  out:
2947         rb_end_commit(cpu_buffer);
2948
2949         trace_recursive_unlock();
2950
2951         preempt_enable_notrace();
2952
2953 }
2954 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2955
2956 /**
2957  * ring_buffer_write - write data to the buffer without reserving
2958  * @buffer: The ring buffer to write to.
2959  * @length: The length of the data being written (excluding the event header)
2960  * @data: The data to write to the buffer.
2961  *
2962  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2963  * one function. If you already have the data to write to the buffer, it
2964  * may be easier to simply call this function.
2965  *
2966  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2967  * and not the length of the event which would hold the header.
2968  */
2969 int ring_buffer_write(struct ring_buffer *buffer,
2970                       unsigned long length,
2971                       void *data)
2972 {
2973         struct ring_buffer_per_cpu *cpu_buffer;
2974         struct ring_buffer_event *event;
2975         void *body;
2976         int ret = -EBUSY;
2977         int cpu;
2978
2979         if (ring_buffer_flags != RB_BUFFERS_ON)
2980                 return -EBUSY;
2981
2982         preempt_disable_notrace();
2983
2984         if (atomic_read(&buffer->record_disabled))
2985                 goto out;
2986
2987         cpu = raw_smp_processor_id();
2988
2989         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2990                 goto out;
2991
2992         cpu_buffer = buffer->buffers[cpu];
2993
2994         if (atomic_read(&cpu_buffer->record_disabled))
2995                 goto out;
2996
2997         if (length > BUF_MAX_DATA_SIZE)
2998                 goto out;
2999
3000         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3001         if (!event)
3002                 goto out;
3003
3004         body = rb_event_data(event);
3005
3006         memcpy(body, data, length);
3007
3008         rb_commit(cpu_buffer, event);
3009
3010         rb_wakeups(buffer, cpu_buffer);
3011
3012         ret = 0;
3013  out:
3014         preempt_enable_notrace();
3015
3016         return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(ring_buffer_write);
3019
3020 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3021 {
3022         struct buffer_page *reader = cpu_buffer->reader_page;
3023         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3024         struct buffer_page *commit = cpu_buffer->commit_page;
3025
3026         /* In case of error, head will be NULL */
3027         if (unlikely(!head))
3028                 return 1;
3029
3030         return reader->read == rb_page_commit(reader) &&
3031                 (commit == reader ||
3032                  (commit == head &&
3033                   head->read == rb_page_commit(commit)));
3034 }
3035
3036 /**
3037  * ring_buffer_record_disable - stop all writes into the buffer
3038  * @buffer: The ring buffer to stop writes to.
3039  *
3040  * This prevents all writes to the buffer. Any attempt to write
3041  * to the buffer after this will fail and return NULL.
3042  *
3043  * The caller should call synchronize_sched() after this.
3044  */
3045 void ring_buffer_record_disable(struct ring_buffer *buffer)
3046 {
3047         atomic_inc(&buffer->record_disabled);
3048 }
3049 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3050
3051 /**
3052  * ring_buffer_record_enable - enable writes to the buffer
3053  * @buffer: The ring buffer to enable writes
3054  *
3055  * Note, multiple disables will need the same number of enables
3056  * to truly enable the writing (much like preempt_disable).
3057  */
3058 void ring_buffer_record_enable(struct ring_buffer *buffer)
3059 {
3060         atomic_dec(&buffer->record_disabled);
3061 }
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3063
3064 /**
3065  * ring_buffer_record_off - stop all writes into the buffer
3066  * @buffer: The ring buffer to stop writes to.
3067  *
3068  * This prevents all writes to the buffer. Any attempt to write
3069  * to the buffer after this will fail and return NULL.
3070  *
3071  * This is different than ring_buffer_record_disable() as
3072  * it works like an on/off switch, where as the disable() version
3073  * must be paired with a enable().
3074  */
3075 void ring_buffer_record_off(struct ring_buffer *buffer)
3076 {
3077         unsigned int rd;
3078         unsigned int new_rd;
3079
3080         do {
3081                 rd = atomic_read(&buffer->record_disabled);
3082                 new_rd = rd | RB_BUFFER_OFF;
3083         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3086
3087 /**
3088  * ring_buffer_record_on - restart writes into the buffer
3089  * @buffer: The ring buffer to start writes to.
3090  *
3091  * This enables all writes to the buffer that was disabled by
3092  * ring_buffer_record_off().
3093  *
3094  * This is different than ring_buffer_record_enable() as
3095  * it works like an on/off switch, where as the enable() version
3096  * must be paired with a disable().
3097  */
3098 void ring_buffer_record_on(struct ring_buffer *buffer)
3099 {
3100         unsigned int rd;
3101         unsigned int new_rd;
3102
3103         do {
3104                 rd = atomic_read(&buffer->record_disabled);
3105                 new_rd = rd & ~RB_BUFFER_OFF;
3106         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3109
3110 /**
3111  * ring_buffer_record_is_on - return true if the ring buffer can write
3112  * @buffer: The ring buffer to see if write is enabled
3113  *
3114  * Returns true if the ring buffer is in a state that it accepts writes.
3115  */
3116 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3117 {
3118         return !atomic_read(&buffer->record_disabled);
3119 }
3120
3121 /**
3122  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3123  * @buffer: The ring buffer to stop writes to.
3124  * @cpu: The CPU buffer to stop
3125  *
3126  * This prevents all writes to the buffer. Any attempt to write
3127  * to the buffer after this will fail and return NULL.
3128  *
3129  * The caller should call synchronize_sched() after this.
3130  */
3131 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3132 {
3133         struct ring_buffer_per_cpu *cpu_buffer;
3134
3135         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3136                 return;
3137
3138         cpu_buffer = buffer->buffers[cpu];
3139         atomic_inc(&cpu_buffer->record_disabled);
3140 }
3141 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3142
3143 /**
3144  * ring_buffer_record_enable_cpu - enable writes to the buffer
3145  * @buffer: The ring buffer to enable writes
3146  * @cpu: The CPU to enable.
3147  *
3148  * Note, multiple disables will need the same number of enables
3149  * to truly enable the writing (much like preempt_disable).
3150  */
3151 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3152 {
3153         struct ring_buffer_per_cpu *cpu_buffer;
3154
3155         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156                 return;
3157
3158         cpu_buffer = buffer->buffers[cpu];
3159         atomic_dec(&cpu_buffer->record_disabled);
3160 }
3161 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3162
3163 /*
3164  * The total entries in the ring buffer is the running counter
3165  * of entries entered into the ring buffer, minus the sum of
3166  * the entries read from the ring buffer and the number of
3167  * entries that were overwritten.
3168  */
3169 static inline unsigned long
3170 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172         return local_read(&cpu_buffer->entries) -
3173                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3174 }
3175
3176 /**
3177  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3178  * @buffer: The ring buffer
3179  * @cpu: The per CPU buffer to read from.
3180  */
3181 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3182 {
3183         unsigned long flags;
3184         struct ring_buffer_per_cpu *cpu_buffer;
3185         struct buffer_page *bpage;
3186         u64 ret = 0;
3187
3188         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3189                 return 0;
3190
3191         cpu_buffer = buffer->buffers[cpu];
3192         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3193         /*
3194          * if the tail is on reader_page, oldest time stamp is on the reader
3195          * page
3196          */
3197         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3198                 bpage = cpu_buffer->reader_page;
3199         else
3200                 bpage = rb_set_head_page(cpu_buffer);
3201         if (bpage)
3202                 ret = bpage->page->time_stamp;
3203         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3204
3205         return ret;
3206 }
3207 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3208
3209 /**
3210  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3211  * @buffer: The ring buffer
3212  * @cpu: The per CPU buffer to read from.
3213  */
3214 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3215 {
3216         struct ring_buffer_per_cpu *cpu_buffer;
3217         unsigned long ret;
3218
3219         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3220                 return 0;
3221
3222         cpu_buffer = buffer->buffers[cpu];
3223         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3224
3225         return ret;
3226 }
3227 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3228
3229 /**
3230  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3231  * @buffer: The ring buffer
3232  * @cpu: The per CPU buffer to get the entries from.
3233  */
3234 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3235 {
3236         struct ring_buffer_per_cpu *cpu_buffer;
3237
3238         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3239                 return 0;
3240
3241         cpu_buffer = buffer->buffers[cpu];
3242
3243         return rb_num_of_entries(cpu_buffer);
3244 }
3245 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3246
3247 /**
3248  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3249  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3250  * @buffer: The ring buffer
3251  * @cpu: The per CPU buffer to get the number of overruns from
3252  */
3253 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255         struct ring_buffer_per_cpu *cpu_buffer;
3256         unsigned long ret;
3257
3258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                 return 0;
3260
3261         cpu_buffer = buffer->buffers[cpu];
3262         ret = local_read(&cpu_buffer->overrun);
3263
3264         return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3267
3268 /**
3269  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3270  * commits failing due to the buffer wrapping around while there are uncommitted
3271  * events, such as during an interrupt storm.
3272  * @buffer: The ring buffer
3273  * @cpu: The per CPU buffer to get the number of overruns from
3274  */
3275 unsigned long
3276 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278         struct ring_buffer_per_cpu *cpu_buffer;
3279         unsigned long ret;
3280
3281         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282                 return 0;
3283
3284         cpu_buffer = buffer->buffers[cpu];
3285         ret = local_read(&cpu_buffer->commit_overrun);
3286
3287         return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3290
3291 /**
3292  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3293  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the number of overruns from
3296  */
3297 unsigned long
3298 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300         struct ring_buffer_per_cpu *cpu_buffer;
3301         unsigned long ret;
3302
3303         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3304                 return 0;
3305
3306         cpu_buffer = buffer->buffers[cpu];
3307         ret = local_read(&cpu_buffer->dropped_events);
3308
3309         return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3312
3313 /**
3314  * ring_buffer_read_events_cpu - get the number of events successfully read
3315  * @buffer: The ring buffer
3316  * @cpu: The per CPU buffer to get the number of events read
3317  */
3318 unsigned long
3319 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3320 {
3321         struct ring_buffer_per_cpu *cpu_buffer;
3322
3323         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3324                 return 0;
3325
3326         cpu_buffer = buffer->buffers[cpu];
3327         return cpu_buffer->read;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3330
3331 /**
3332  * ring_buffer_entries - get the number of entries in a buffer
3333  * @buffer: The ring buffer
3334  *
3335  * Returns the total number of entries in the ring buffer
3336  * (all CPU entries)
3337  */
3338 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3339 {
3340         struct ring_buffer_per_cpu *cpu_buffer;
3341         unsigned long entries = 0;
3342         int cpu;
3343
3344         /* if you care about this being correct, lock the buffer */
3345         for_each_buffer_cpu(buffer, cpu) {
3346                 cpu_buffer = buffer->buffers[cpu];
3347                 entries += rb_num_of_entries(cpu_buffer);
3348         }
3349
3350         return entries;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3353
3354 /**
3355  * ring_buffer_overruns - get the number of overruns in buffer
3356  * @buffer: The ring buffer
3357  *
3358  * Returns the total number of overruns in the ring buffer
3359  * (all CPU entries)
3360  */
3361 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer;
3364         unsigned long overruns = 0;
3365         int cpu;
3366
3367         /* if you care about this being correct, lock the buffer */
3368         for_each_buffer_cpu(buffer, cpu) {
3369                 cpu_buffer = buffer->buffers[cpu];
3370                 overruns += local_read(&cpu_buffer->overrun);
3371         }
3372
3373         return overruns;
3374 }
3375 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3376
3377 static void rb_iter_reset(struct ring_buffer_iter *iter)
3378 {
3379         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3380
3381         /* Iterator usage is expected to have record disabled */
3382         iter->head_page = cpu_buffer->reader_page;
3383         iter->head = cpu_buffer->reader_page->read;
3384
3385         iter->cache_reader_page = iter->head_page;
3386         iter->cache_read = cpu_buffer->read;
3387
3388         if (iter->head)
3389                 iter->read_stamp = cpu_buffer->read_stamp;
3390         else
3391                 iter->read_stamp = iter->head_page->page->time_stamp;
3392 }
3393
3394 /**
3395  * ring_buffer_iter_reset - reset an iterator
3396  * @iter: The iterator to reset
3397  *
3398  * Resets the iterator, so that it will start from the beginning
3399  * again.
3400  */
3401 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3402 {
3403         struct ring_buffer_per_cpu *cpu_buffer;
3404         unsigned long flags;
3405
3406         if (!iter)
3407                 return;
3408
3409         cpu_buffer = iter->cpu_buffer;
3410
3411         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3412         rb_iter_reset(iter);
3413         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3414 }
3415 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3416
3417 /**
3418  * ring_buffer_iter_empty - check if an iterator has no more to read
3419  * @iter: The iterator to check
3420  */
3421 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3422 {
3423         struct ring_buffer_per_cpu *cpu_buffer;
3424
3425         cpu_buffer = iter->cpu_buffer;
3426
3427         return iter->head_page == cpu_buffer->commit_page &&
3428                 iter->head == rb_commit_index(cpu_buffer);
3429 }
3430 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3431
3432 static void
3433 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3434                      struct ring_buffer_event *event)
3435 {
3436         u64 delta;
3437
3438         switch (event->type_len) {
3439         case RINGBUF_TYPE_PADDING:
3440                 return;
3441
3442         case RINGBUF_TYPE_TIME_EXTEND:
3443                 delta = event->array[0];
3444                 delta <<= TS_SHIFT;
3445                 delta += event->time_delta;
3446                 cpu_buffer->read_stamp += delta;
3447                 return;
3448
3449         case RINGBUF_TYPE_TIME_STAMP:
3450                 /* FIXME: not implemented */
3451                 return;
3452
3453         case RINGBUF_TYPE_DATA:
3454                 cpu_buffer->read_stamp += event->time_delta;
3455                 return;
3456
3457         default:
3458                 BUG();
3459         }
3460         return;
3461 }
3462
3463 static void
3464 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3465                           struct ring_buffer_event *event)
3466 {
3467         u64 delta;
3468
3469         switch (event->type_len) {
3470         case RINGBUF_TYPE_PADDING:
3471                 return;
3472
3473         case RINGBUF_TYPE_TIME_EXTEND:
3474                 delta = event->array[0];
3475                 delta <<= TS_SHIFT;
3476                 delta += event->time_delta;
3477                 iter->read_stamp += delta;
3478                 return;
3479
3480         case RINGBUF_TYPE_TIME_STAMP:
3481                 /* FIXME: not implemented */
3482                 return;
3483
3484         case RINGBUF_TYPE_DATA:
3485                 iter->read_stamp += event->time_delta;
3486                 return;
3487
3488         default:
3489                 BUG();
3490         }
3491         return;
3492 }
3493
3494 static struct buffer_page *
3495 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3496 {
3497         struct buffer_page *reader = NULL;
3498         unsigned long overwrite;
3499         unsigned long flags;
3500         int nr_loops = 0;
3501         int ret;
3502
3503         local_irq_save(flags);
3504         arch_spin_lock(&cpu_buffer->lock);
3505
3506  again:
3507         /*
3508          * This should normally only loop twice. But because the
3509          * start of the reader inserts an empty page, it causes
3510          * a case where we will loop three times. There should be no
3511          * reason to loop four times (that I know of).
3512          */
3513         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3514                 reader = NULL;
3515                 goto out;
3516         }
3517
3518         reader = cpu_buffer->reader_page;
3519
3520         /* If there's more to read, return this page */
3521         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3522                 goto out;
3523
3524         /* Never should we have an index greater than the size */
3525         if (RB_WARN_ON(cpu_buffer,
3526                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3527                 goto out;
3528
3529         /* check if we caught up to the tail */
3530         reader = NULL;
3531         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3532                 goto out;
3533
3534         /* Don't bother swapping if the ring buffer is empty */
3535         if (rb_num_of_entries(cpu_buffer) == 0)
3536                 goto out;
3537
3538         /*
3539          * Reset the reader page to size zero.
3540          */
3541         local_set(&cpu_buffer->reader_page->write, 0);
3542         local_set(&cpu_buffer->reader_page->entries, 0);
3543         local_set(&cpu_buffer->reader_page->page->commit, 0);
3544         cpu_buffer->reader_page->real_end = 0;
3545
3546  spin:
3547         /*
3548          * Splice the empty reader page into the list around the head.
3549          */
3550         reader = rb_set_head_page(cpu_buffer);
3551         if (!reader)
3552                 goto out;
3553         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3554         cpu_buffer->reader_page->list.prev = reader->list.prev;
3555
3556         /*
3557          * cpu_buffer->pages just needs to point to the buffer, it
3558          *  has no specific buffer page to point to. Lets move it out
3559          *  of our way so we don't accidentally swap it.
3560          */
3561         cpu_buffer->pages = reader->list.prev;
3562
3563         /* The reader page will be pointing to the new head */
3564         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3565
3566         /*
3567          * We want to make sure we read the overruns after we set up our
3568          * pointers to the next object. The writer side does a
3569          * cmpxchg to cross pages which acts as the mb on the writer
3570          * side. Note, the reader will constantly fail the swap
3571          * while the writer is updating the pointers, so this
3572          * guarantees that the overwrite recorded here is the one we
3573          * want to compare with the last_overrun.
3574          */
3575         smp_mb();
3576         overwrite = local_read(&(cpu_buffer->overrun));
3577
3578         /*
3579          * Here's the tricky part.
3580          *
3581          * We need to move the pointer past the header page.
3582          * But we can only do that if a writer is not currently
3583          * moving it. The page before the header page has the
3584          * flag bit '1' set if it is pointing to the page we want.
3585          * but if the writer is in the process of moving it
3586          * than it will be '2' or already moved '0'.
3587          */
3588
3589         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3590
3591         /*
3592          * If we did not convert it, then we must try again.
3593          */
3594         if (!ret)
3595                 goto spin;
3596
3597         /*
3598          * Yeah! We succeeded in replacing the page.
3599          *
3600          * Now make the new head point back to the reader page.
3601          */
3602         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3603         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3604
3605         /* Finally update the reader page to the new head */
3606         cpu_buffer->reader_page = reader;
3607         rb_reset_reader_page(cpu_buffer);
3608
3609         if (overwrite != cpu_buffer->last_overrun) {
3610                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3611                 cpu_buffer->last_overrun = overwrite;
3612         }
3613
3614         goto again;
3615
3616  out:
3617         arch_spin_unlock(&cpu_buffer->lock);
3618         local_irq_restore(flags);
3619
3620         return reader;
3621 }
3622
3623 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3624 {
3625         struct ring_buffer_event *event;
3626         struct buffer_page *reader;
3627         unsigned length;
3628
3629         reader = rb_get_reader_page(cpu_buffer);
3630
3631         /* This function should not be called when buffer is empty */
3632         if (RB_WARN_ON(cpu_buffer, !reader))
3633                 return;
3634
3635         event = rb_reader_event(cpu_buffer);
3636
3637         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3638                 cpu_buffer->read++;
3639
3640         rb_update_read_stamp(cpu_buffer, event);
3641
3642         length = rb_event_length(event);
3643         cpu_buffer->reader_page->read += length;
3644 }
3645
3646 static void rb_advance_iter(struct ring_buffer_iter *iter)
3647 {
3648         struct ring_buffer_per_cpu *cpu_buffer;
3649         struct ring_buffer_event *event;
3650         unsigned length;
3651
3652         cpu_buffer = iter->cpu_buffer;
3653
3654         /*
3655          * Check if we are at the end of the buffer.
3656          */
3657         if (iter->head >= rb_page_size(iter->head_page)) {
3658                 /* discarded commits can make the page empty */
3659                 if (iter->head_page == cpu_buffer->commit_page)
3660                         return;
3661                 rb_inc_iter(iter);
3662                 return;
3663         }
3664
3665         event = rb_iter_head_event(iter);
3666
3667         length = rb_event_length(event);
3668
3669         /*
3670          * This should not be called to advance the header if we are
3671          * at the tail of the buffer.
3672          */
3673         if (RB_WARN_ON(cpu_buffer,
3674                        (iter->head_page == cpu_buffer->commit_page) &&
3675                        (iter->head + length > rb_commit_index(cpu_buffer))))
3676                 return;
3677
3678         rb_update_iter_read_stamp(iter, event);
3679
3680         iter->head += length;
3681
3682         /* check for end of page padding */
3683         if ((iter->head >= rb_page_size(iter->head_page)) &&
3684             (iter->head_page != cpu_buffer->commit_page))
3685                 rb_inc_iter(iter);
3686 }
3687
3688 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3689 {
3690         return cpu_buffer->lost_events;
3691 }
3692
3693 static struct ring_buffer_event *
3694 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695                unsigned long *lost_events)
3696 {
3697         struct ring_buffer_event *event;
3698         struct buffer_page *reader;
3699         int nr_loops = 0;
3700
3701  again:
3702         /*
3703          * We repeat when a time extend is encountered.
3704          * Since the time extend is always attached to a data event,
3705          * we should never loop more than once.
3706          * (We never hit the following condition more than twice).
3707          */
3708         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3709                 return NULL;
3710
3711         reader = rb_get_reader_page(cpu_buffer);
3712         if (!reader)
3713                 return NULL;
3714
3715         event = rb_reader_event(cpu_buffer);
3716
3717         switch (event->type_len) {
3718         case RINGBUF_TYPE_PADDING:
3719                 if (rb_null_event(event))
3720                         RB_WARN_ON(cpu_buffer, 1);
3721                 /*
3722                  * Because the writer could be discarding every
3723                  * event it creates (which would probably be bad)
3724                  * if we were to go back to "again" then we may never
3725                  * catch up, and will trigger the warn on, or lock
3726                  * the box. Return the padding, and we will release
3727                  * the current locks, and try again.
3728                  */
3729                 return event;
3730
3731         case RINGBUF_TYPE_TIME_EXTEND:
3732                 /* Internal data, OK to advance */
3733                 rb_advance_reader(cpu_buffer);
3734                 goto again;
3735
3736         case RINGBUF_TYPE_TIME_STAMP:
3737                 /* FIXME: not implemented */
3738                 rb_advance_reader(cpu_buffer);
3739                 goto again;
3740
3741         case RINGBUF_TYPE_DATA:
3742                 if (ts) {
3743                         *ts = cpu_buffer->read_stamp + event->time_delta;
3744                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3745                                                          cpu_buffer->cpu, ts);
3746                 }
3747                 if (lost_events)
3748                         *lost_events = rb_lost_events(cpu_buffer);
3749                 return event;
3750
3751         default:
3752                 BUG();
3753         }
3754
3755         return NULL;
3756 }
3757 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3758
3759 static struct ring_buffer_event *
3760 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3761 {
3762         struct ring_buffer *buffer;
3763         struct ring_buffer_per_cpu *cpu_buffer;
3764         struct ring_buffer_event *event;
3765         int nr_loops = 0;
3766
3767         cpu_buffer = iter->cpu_buffer;
3768         buffer = cpu_buffer->buffer;
3769
3770         /*
3771          * Check if someone performed a consuming read to
3772          * the buffer. A consuming read invalidates the iterator
3773          * and we need to reset the iterator in this case.
3774          */
3775         if (unlikely(iter->cache_read != cpu_buffer->read ||
3776                      iter->cache_reader_page != cpu_buffer->reader_page))
3777                 rb_iter_reset(iter);
3778
3779  again:
3780         if (ring_buffer_iter_empty(iter))
3781                 return NULL;
3782
3783         /*
3784          * We repeat when a time extend is encountered or we hit
3785          * the end of the page. Since the time extend is always attached
3786          * to a data event, we should never loop more than three times.
3787          * Once for going to next page, once on time extend, and
3788          * finally once to get the event.
3789          * (We never hit the following condition more than thrice).
3790          */
3791         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3792                 return NULL;
3793
3794         if (rb_per_cpu_empty(cpu_buffer))
3795                 return NULL;
3796
3797         if (iter->head >= rb_page_size(iter->head_page)) {
3798                 rb_inc_iter(iter);
3799                 goto again;
3800         }
3801
3802         event = rb_iter_head_event(iter);
3803
3804         switch (event->type_len) {
3805         case RINGBUF_TYPE_PADDING:
3806                 if (rb_null_event(event)) {
3807                         rb_inc_iter(iter);
3808                         goto again;
3809                 }
3810                 rb_advance_iter(iter);
3811                 return event;
3812
3813         case RINGBUF_TYPE_TIME_EXTEND:
3814                 /* Internal data, OK to advance */
3815                 rb_advance_iter(iter);
3816                 goto again;
3817
3818         case RINGBUF_TYPE_TIME_STAMP:
3819                 /* FIXME: not implemented */
3820                 rb_advance_iter(iter);
3821                 goto again;
3822
3823         case RINGBUF_TYPE_DATA:
3824                 if (ts) {
3825                         *ts = iter->read_stamp + event->time_delta;
3826                         ring_buffer_normalize_time_stamp(buffer,
3827                                                          cpu_buffer->cpu, ts);
3828                 }
3829                 return event;
3830
3831         default:
3832                 BUG();
3833         }
3834
3835         return NULL;
3836 }
3837 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3838
3839 static inline int rb_ok_to_lock(void)
3840 {
3841         /*
3842          * If an NMI die dumps out the content of the ring buffer
3843          * do not grab locks. We also permanently disable the ring
3844          * buffer too. A one time deal is all you get from reading
3845          * the ring buffer from an NMI.
3846          */
3847         if (likely(!in_nmi()))
3848                 return 1;
3849
3850         tracing_off_permanent();
3851         return 0;
3852 }
3853
3854 /**
3855  * ring_buffer_peek - peek at the next event to be read
3856  * @buffer: The ring buffer to read
3857  * @cpu: The cpu to peak at
3858  * @ts: The timestamp counter of this event.
3859  * @lost_events: a variable to store if events were lost (may be NULL)
3860  *
3861  * This will return the event that will be read next, but does
3862  * not consume the data.
3863  */
3864 struct ring_buffer_event *
3865 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3866                  unsigned long *lost_events)
3867 {
3868         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3869         struct ring_buffer_event *event;
3870         unsigned long flags;
3871         int dolock;
3872
3873         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3874                 return NULL;
3875
3876         dolock = rb_ok_to_lock();
3877  again:
3878         local_irq_save(flags);
3879         if (dolock)
3880                 raw_spin_lock(&cpu_buffer->reader_lock);
3881         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3882         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3883                 rb_advance_reader(cpu_buffer);
3884         if (dolock)
3885                 raw_spin_unlock(&cpu_buffer->reader_lock);
3886         local_irq_restore(flags);
3887
3888         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3889                 goto again;
3890
3891         return event;
3892 }
3893
3894 /**
3895  * ring_buffer_iter_peek - peek at the next event to be read
3896  * @iter: The ring buffer iterator
3897  * @ts: The timestamp counter of this event.
3898  *
3899  * This will return the event that will be read next, but does
3900  * not increment the iterator.
3901  */
3902 struct ring_buffer_event *
3903 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3904 {
3905         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3906         struct ring_buffer_event *event;
3907         unsigned long flags;
3908
3909  again:
3910         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3911         event = rb_iter_peek(iter, ts);
3912         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3913
3914         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3915                 goto again;
3916
3917         return event;
3918 }
3919
3920 /**
3921  * ring_buffer_consume - return an event and consume it
3922  * @buffer: The ring buffer to get the next event from
3923  * @cpu: the cpu to read the buffer from
3924  * @ts: a variable to store the timestamp (may be NULL)
3925  * @lost_events: a variable to store if events were lost (may be NULL)
3926  *
3927  * Returns the next event in the ring buffer, and that event is consumed.
3928  * Meaning, that sequential reads will keep returning a different event,
3929  * and eventually empty the ring buffer if the producer is slower.
3930  */
3931 struct ring_buffer_event *
3932 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3933                     unsigned long *lost_events)
3934 {
3935         struct ring_buffer_per_cpu *cpu_buffer;
3936         struct ring_buffer_event *event = NULL;
3937         unsigned long flags;
3938         int dolock;
3939
3940         dolock = rb_ok_to_lock();
3941
3942  again:
3943         /* might be called in atomic */
3944         preempt_disable();
3945
3946         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3947                 goto out;
3948
3949         cpu_buffer = buffer->buffers[cpu];
3950         local_irq_save(flags);
3951         if (dolock)
3952                 raw_spin_lock(&cpu_buffer->reader_lock);
3953
3954         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3955         if (event) {
3956                 cpu_buffer->lost_events = 0;
3957                 rb_advance_reader(cpu_buffer);
3958         }
3959
3960         if (dolock)
3961                 raw_spin_unlock(&cpu_buffer->reader_lock);
3962         local_irq_restore(flags);
3963
3964  out:
3965         preempt_enable();
3966
3967         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3968                 goto again;
3969
3970         return event;
3971 }
3972 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3973
3974 /**
3975  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3976  * @buffer: The ring buffer to read from
3977  * @cpu: The cpu buffer to iterate over
3978  *
3979  * This performs the initial preparations necessary to iterate
3980  * through the buffer.  Memory is allocated, buffer recording
3981  * is disabled, and the iterator pointer is returned to the caller.
3982  *
3983  * Disabling buffer recordng prevents the reading from being
3984  * corrupted. This is not a consuming read, so a producer is not
3985  * expected.
3986  *
3987  * After a sequence of ring_buffer_read_prepare calls, the user is
3988  * expected to make at least one call to ring_buffer_read_prepare_sync.
3989  * Afterwards, ring_buffer_read_start is invoked to get things going
3990  * for real.
3991  *
3992  * This overall must be paired with ring_buffer_read_finish.
3993  */
3994 struct ring_buffer_iter *
3995 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3996 {
3997         struct ring_buffer_per_cpu *cpu_buffer;
3998         struct ring_buffer_iter *iter;
3999
4000         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4001                 return NULL;
4002
4003         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4004         if (!iter)
4005                 return NULL;
4006
4007         cpu_buffer = buffer->buffers[cpu];
4008
4009         iter->cpu_buffer = cpu_buffer;
4010
4011         atomic_inc(&buffer->resize_disabled);
4012         atomic_inc(&cpu_buffer->record_disabled);
4013
4014         return iter;
4015 }
4016 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4017
4018 /**
4019  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4020  *
4021  * All previously invoked ring_buffer_read_prepare calls to prepare
4022  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4023  * calls on those iterators are allowed.
4024  */
4025 void
4026 ring_buffer_read_prepare_sync(void)
4027 {
4028         synchronize_sched();
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4031
4032 /**
4033  * ring_buffer_read_start - start a non consuming read of the buffer
4034  * @iter: The iterator returned by ring_buffer_read_prepare
4035  *
4036  * This finalizes the startup of an iteration through the buffer.
4037  * The iterator comes from a call to ring_buffer_read_prepare and
4038  * an intervening ring_buffer_read_prepare_sync must have been
4039  * performed.
4040  *
4041  * Must be paired with ring_buffer_read_finish.
4042  */
4043 void
4044 ring_buffer_read_start(struct ring_buffer_iter *iter)
4045 {
4046         struct ring_buffer_per_cpu *cpu_buffer;
4047         unsigned long flags;
4048
4049         if (!iter)
4050                 return;
4051
4052         cpu_buffer = iter->cpu_buffer;
4053
4054         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4055         arch_spin_lock(&cpu_buffer->lock);
4056         rb_iter_reset(iter);
4057         arch_spin_unlock(&cpu_buffer->lock);
4058         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4061
4062 /**
4063  * ring_buffer_read_finish - finish reading the iterator of the buffer
4064  * @iter: The iterator retrieved by ring_buffer_start
4065  *
4066  * This re-enables the recording to the buffer, and frees the
4067  * iterator.
4068  */
4069 void
4070 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4071 {
4072         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4073         unsigned long flags;
4074
4075         /*
4076          * Ring buffer is disabled from recording, here's a good place
4077          * to check the integrity of the ring buffer.
4078          * Must prevent readers from trying to read, as the check
4079          * clears the HEAD page and readers require it.
4080          */
4081         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4082         rb_check_pages(cpu_buffer);
4083         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4084
4085         atomic_dec(&cpu_buffer->record_disabled);
4086         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4087         kfree(iter);
4088 }
4089 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4090
4091 /**
4092  * ring_buffer_read - read the next item in the ring buffer by the iterator
4093  * @iter: The ring buffer iterator
4094  * @ts: The time stamp of the event read.
4095  *
4096  * This reads the next event in the ring buffer and increments the iterator.
4097  */
4098 struct ring_buffer_event *
4099 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4100 {
4101         struct ring_buffer_event *event;
4102         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4103         unsigned long flags;
4104
4105         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4106  again:
4107         event = rb_iter_peek(iter, ts);
4108         if (!event)
4109                 goto out;
4110
4111         if (event->type_len == RINGBUF_TYPE_PADDING)
4112                 goto again;
4113
4114         rb_advance_iter(iter);
4115  out:
4116         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4117
4118         return event;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_read);
4121
4122 /**
4123  * ring_buffer_size - return the size of the ring buffer (in bytes)
4124  * @buffer: The ring buffer.
4125  */
4126 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4127 {
4128         /*
4129          * Earlier, this method returned
4130          *      BUF_PAGE_SIZE * buffer->nr_pages
4131          * Since the nr_pages field is now removed, we have converted this to
4132          * return the per cpu buffer value.
4133          */
4134         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4135                 return 0;
4136
4137         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4138 }
4139 EXPORT_SYMBOL_GPL(ring_buffer_size);
4140
4141 static void
4142 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4143 {
4144         rb_head_page_deactivate(cpu_buffer);
4145
4146         cpu_buffer->head_page
4147                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4148         local_set(&cpu_buffer->head_page->write, 0);
4149         local_set(&cpu_buffer->head_page->entries, 0);
4150         local_set(&cpu_buffer->head_page->page->commit, 0);
4151
4152         cpu_buffer->head_page->read = 0;
4153
4154         cpu_buffer->tail_page = cpu_buffer->head_page;
4155         cpu_buffer->commit_page = cpu_buffer->head_page;
4156
4157         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4158         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4159         local_set(&cpu_buffer->reader_page->write, 0);
4160         local_set(&cpu_buffer->reader_page->entries, 0);
4161         local_set(&cpu_buffer->reader_page->page->commit, 0);
4162         cpu_buffer->reader_page->read = 0;
4163
4164         local_set(&cpu_buffer->entries_bytes, 0);
4165         local_set(&cpu_buffer->overrun, 0);
4166         local_set(&cpu_buffer->commit_overrun, 0);
4167         local_set(&cpu_buffer->dropped_events, 0);
4168         local_set(&cpu_buffer->entries, 0);
4169         local_set(&cpu_buffer->committing, 0);
4170         local_set(&cpu_buffer->commits, 0);
4171         cpu_buffer->read = 0;
4172         cpu_buffer->read_bytes = 0;
4173
4174         cpu_buffer->write_stamp = 0;
4175         cpu_buffer->read_stamp = 0;
4176
4177         cpu_buffer->lost_events = 0;
4178         cpu_buffer->last_overrun = 0;
4179
4180         rb_head_page_activate(cpu_buffer);
4181 }
4182
4183 /**
4184  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4185  * @buffer: The ring buffer to reset a per cpu buffer of
4186  * @cpu: The CPU buffer to be reset
4187  */
4188 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4189 {
4190         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4191         unsigned long flags;
4192
4193         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4194                 return;
4195
4196         atomic_inc(&buffer->resize_disabled);
4197         atomic_inc(&cpu_buffer->record_disabled);
4198
4199         /* Make sure all commits have finished */
4200         synchronize_sched();
4201
4202         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4203
4204         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4205                 goto out;
4206
4207         arch_spin_lock(&cpu_buffer->lock);
4208
4209         rb_reset_cpu(cpu_buffer);
4210
4211         arch_spin_unlock(&cpu_buffer->lock);
4212
4213  out:
4214         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4215
4216         atomic_dec(&cpu_buffer->record_disabled);
4217         atomic_dec(&buffer->resize_disabled);
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4220
4221 /**
4222  * ring_buffer_reset - reset a ring buffer
4223  * @buffer: The ring buffer to reset all cpu buffers
4224  */
4225 void ring_buffer_reset(struct ring_buffer *buffer)
4226 {
4227         int cpu;
4228
4229         for_each_buffer_cpu(buffer, cpu)
4230                 ring_buffer_reset_cpu(buffer, cpu);
4231 }
4232 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4233
4234 /**
4235  * rind_buffer_empty - is the ring buffer empty?
4236  * @buffer: The ring buffer to test
4237  */
4238 int ring_buffer_empty(struct ring_buffer *buffer)
4239 {
4240         struct ring_buffer_per_cpu *cpu_buffer;
4241         unsigned long flags;
4242         int dolock;
4243         int cpu;
4244         int ret;
4245
4246         dolock = rb_ok_to_lock();
4247
4248         /* yes this is racy, but if you don't like the race, lock the buffer */
4249         for_each_buffer_cpu(buffer, cpu) {
4250                 cpu_buffer = buffer->buffers[cpu];
4251                 local_irq_save(flags);
4252                 if (dolock)
4253                         raw_spin_lock(&cpu_buffer->reader_lock);
4254                 ret = rb_per_cpu_empty(cpu_buffer);
4255                 if (dolock)
4256                         raw_spin_unlock(&cpu_buffer->reader_lock);
4257                 local_irq_restore(flags);
4258
4259                 if (!ret)
4260                         return 0;
4261         }
4262
4263         return 1;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4266
4267 /**
4268  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4269  * @buffer: The ring buffer
4270  * @cpu: The CPU buffer to test
4271  */
4272 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4273 {
4274         struct ring_buffer_per_cpu *cpu_buffer;
4275         unsigned long flags;
4276         int dolock;
4277         int ret;
4278
4279         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4280                 return 1;
4281
4282         dolock = rb_ok_to_lock();
4283
4284         cpu_buffer = buffer->buffers[cpu];
4285         local_irq_save(flags);
4286         if (dolock)
4287                 raw_spin_lock(&cpu_buffer->reader_lock);
4288         ret = rb_per_cpu_empty(cpu_buffer);
4289         if (dolock)
4290                 raw_spin_unlock(&cpu_buffer->reader_lock);
4291         local_irq_restore(flags);
4292
4293         return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4296
4297 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4298 /**
4299  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4300  * @buffer_a: One buffer to swap with
4301  * @buffer_b: The other buffer to swap with
4302  *
4303  * This function is useful for tracers that want to take a "snapshot"
4304  * of a CPU buffer and has another back up buffer lying around.
4305  * it is expected that the tracer handles the cpu buffer not being
4306  * used at the moment.
4307  */
4308 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4309                          struct ring_buffer *buffer_b, int cpu)
4310 {
4311         struct ring_buffer_per_cpu *cpu_buffer_a;
4312         struct ring_buffer_per_cpu *cpu_buffer_b;
4313         int ret = -EINVAL;
4314
4315         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4316             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4317                 goto out;
4318
4319         cpu_buffer_a = buffer_a->buffers[cpu];
4320         cpu_buffer_b = buffer_b->buffers[cpu];
4321
4322         /* At least make sure the two buffers are somewhat the same */
4323         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4324                 goto out;
4325
4326         ret = -EAGAIN;
4327
4328         if (ring_buffer_flags != RB_BUFFERS_ON)
4329                 goto out;
4330
4331         if (atomic_read(&buffer_a->record_disabled))
4332                 goto out;
4333
4334         if (atomic_read(&buffer_b->record_disabled))
4335                 goto out;
4336
4337         if (atomic_read(&cpu_buffer_a->record_disabled))
4338                 goto out;
4339
4340         if (atomic_read(&cpu_buffer_b->record_disabled))
4341                 goto out;
4342
4343         /*
4344          * We can't do a synchronize_sched here because this
4345          * function can be called in atomic context.
4346          * Normally this will be called from the same CPU as cpu.
4347          * If not it's up to the caller to protect this.
4348          */
4349         atomic_inc(&cpu_buffer_a->record_disabled);
4350         atomic_inc(&cpu_buffer_b->record_disabled);
4351
4352         ret = -EBUSY;
4353         if (local_read(&cpu_buffer_a->committing))
4354                 goto out_dec;
4355         if (local_read(&cpu_buffer_b->committing))
4356                 goto out_dec;
4357
4358         buffer_a->buffers[cpu] = cpu_buffer_b;
4359         buffer_b->buffers[cpu] = cpu_buffer_a;
4360
4361         cpu_buffer_b->buffer = buffer_a;
4362         cpu_buffer_a->buffer = buffer_b;
4363
4364         ret = 0;
4365
4366 out_dec:
4367         atomic_dec(&cpu_buffer_a->record_disabled);
4368         atomic_dec(&cpu_buffer_b->record_disabled);
4369 out:
4370         return ret;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4374
4375 /**
4376  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4377  * @buffer: the buffer to allocate for.
4378  * @cpu: the cpu buffer to allocate.
4379  *
4380  * This function is used in conjunction with ring_buffer_read_page.
4381  * When reading a full page from the ring buffer, these functions
4382  * can be used to speed up the process. The calling function should
4383  * allocate a few pages first with this function. Then when it
4384  * needs to get pages from the ring buffer, it passes the result
4385  * of this function into ring_buffer_read_page, which will swap
4386  * the page that was allocated, with the read page of the buffer.
4387  *
4388  * Returns:
4389  *  The page allocated, or NULL on error.
4390  */
4391 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4392 {
4393         struct buffer_data_page *bpage;
4394         struct page *page;
4395
4396         page = alloc_pages_node(cpu_to_node(cpu),
4397                                 GFP_KERNEL | __GFP_NORETRY, 0);
4398         if (!page)
4399                 return NULL;
4400
4401         bpage = page_address(page);
4402
4403         rb_init_page(bpage);
4404
4405         return bpage;
4406 }
4407 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4408
4409 /**
4410  * ring_buffer_free_read_page - free an allocated read page
4411  * @buffer: the buffer the page was allocate for
4412  * @data: the page to free
4413  *
4414  * Free a page allocated from ring_buffer_alloc_read_page.
4415  */
4416 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4417 {
4418         free_page((unsigned long)data);
4419 }
4420 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4421
4422 /**
4423  * ring_buffer_read_page - extract a page from the ring buffer
4424  * @buffer: buffer to extract from
4425  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4426  * @len: amount to extract
4427  * @cpu: the cpu of the buffer to extract
4428  * @full: should the extraction only happen when the page is full.
4429  *
4430  * This function will pull out a page from the ring buffer and consume it.
4431  * @data_page must be the address of the variable that was returned
4432  * from ring_buffer_alloc_read_page. This is because the page might be used
4433  * to swap with a page in the ring buffer.
4434  *
4435  * for example:
4436  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4437  *      if (!rpage)
4438  *              return error;
4439  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4440  *      if (ret >= 0)
4441  *              process_page(rpage, ret);
4442  *
4443  * When @full is set, the function will not return true unless
4444  * the writer is off the reader page.
4445  *
4446  * Note: it is up to the calling functions to handle sleeps and wakeups.
4447  *  The ring buffer can be used anywhere in the kernel and can not
4448  *  blindly call wake_up. The layer that uses the ring buffer must be
4449  *  responsible for that.
4450  *
4451  * Returns:
4452  *  >=0 if data has been transferred, returns the offset of consumed data.
4453  *  <0 if no data has been transferred.
4454  */
4455 int ring_buffer_read_page(struct ring_buffer *buffer,
4456                           void **data_page, size_t len, int cpu, int full)
4457 {
4458         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4459         struct ring_buffer_event *event;
4460         struct buffer_data_page *bpage;
4461         struct buffer_page *reader;
4462         unsigned long missed_events;
4463         unsigned long flags;
4464         unsigned int commit;
4465         unsigned int read;
4466         u64 save_timestamp;
4467         int ret = -1;
4468
4469         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4470                 goto out;
4471
4472         /*
4473          * If len is not big enough to hold the page header, then
4474          * we can not copy anything.
4475          */
4476         if (len <= BUF_PAGE_HDR_SIZE)
4477                 goto out;
4478
4479         len -= BUF_PAGE_HDR_SIZE;
4480
4481         if (!data_page)
4482                 goto out;
4483
4484         bpage = *data_page;
4485         if (!bpage)
4486                 goto out;
4487
4488         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4489
4490         reader = rb_get_reader_page(cpu_buffer);
4491         if (!reader)
4492                 goto out_unlock;
4493
4494         event = rb_reader_event(cpu_buffer);
4495
4496         read = reader->read;
4497         commit = rb_page_commit(reader);
4498
4499         /* Check if any events were dropped */
4500         missed_events = cpu_buffer->lost_events;
4501
4502         /*
4503          * If this page has been partially read or
4504          * if len is not big enough to read the rest of the page or
4505          * a writer is still on the page, then
4506          * we must copy the data from the page to the buffer.
4507          * Otherwise, we can simply swap the page with the one passed in.
4508          */
4509         if (read || (len < (commit - read)) ||
4510             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4511                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4512                 unsigned int rpos = read;
4513                 unsigned int pos = 0;
4514                 unsigned int size;
4515
4516                 if (full)
4517                         goto out_unlock;
4518
4519                 if (len > (commit - read))
4520                         len = (commit - read);
4521
4522                 /* Always keep the time extend and data together */
4523                 size = rb_event_ts_length(event);
4524
4525                 if (len < size)
4526                         goto out_unlock;
4527
4528                 /* save the current timestamp, since the user will need it */
4529                 save_timestamp = cpu_buffer->read_stamp;
4530
4531                 /* Need to copy one event at a time */
4532                 do {
4533                         /* We need the size of one event, because
4534                          * rb_advance_reader only advances by one event,
4535                          * whereas rb_event_ts_length may include the size of
4536                          * one or two events.
4537                          * We have already ensured there's enough space if this
4538                          * is a time extend. */
4539                         size = rb_event_length(event);
4540                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4541
4542                         len -= size;
4543
4544                         rb_advance_reader(cpu_buffer);
4545                         rpos = reader->read;
4546                         pos += size;
4547
4548                         if (rpos >= commit)
4549                                 break;
4550
4551                         event = rb_reader_event(cpu_buffer);
4552                         /* Always keep the time extend and data together */
4553                         size = rb_event_ts_length(event);
4554                 } while (len >= size);
4555
4556                 /* update bpage */
4557                 local_set(&bpage->commit, pos);
4558                 bpage->time_stamp = save_timestamp;
4559
4560                 /* we copied everything to the beginning */
4561                 read = 0;
4562         } else {
4563                 /* update the entry counter */
4564                 cpu_buffer->read += rb_page_entries(reader);
4565                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4566
4567                 /* swap the pages */
4568                 rb_init_page(bpage);
4569                 bpage = reader->page;
4570                 reader->page = *data_page;
4571                 local_set(&reader->write, 0);
4572                 local_set(&reader->entries, 0);
4573                 reader->read = 0;
4574                 *data_page = bpage;
4575
4576                 /*
4577                  * Use the real_end for the data size,
4578                  * This gives us a chance to store the lost events
4579                  * on the page.
4580                  */
4581                 if (reader->real_end)
4582                         local_set(&bpage->commit, reader->real_end);
4583         }
4584         ret = read;
4585
4586         cpu_buffer->lost_events = 0;
4587
4588         commit = local_read(&bpage->commit);
4589         /*
4590          * Set a flag in the commit field if we lost events
4591          */
4592         if (missed_events) {
4593                 /* If there is room at the end of the page to save the
4594                  * missed events, then record it there.
4595                  */
4596                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4597                         memcpy(&bpage->data[commit], &missed_events,
4598                                sizeof(missed_events));
4599                         local_add(RB_MISSED_STORED, &bpage->commit);
4600                         commit += sizeof(missed_events);
4601                 }
4602                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4603         }
4604
4605         /*
4606          * This page may be off to user land. Zero it out here.
4607          */
4608         if (commit < BUF_PAGE_SIZE)
4609                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4610
4611  out_unlock:
4612         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4613
4614  out:
4615         return ret;
4616 }
4617 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4618
4619 #ifdef CONFIG_HOTPLUG_CPU
4620 static int rb_cpu_notify(struct notifier_block *self,
4621                          unsigned long action, void *hcpu)
4622 {
4623         struct ring_buffer *buffer =
4624                 container_of(self, struct ring_buffer, cpu_notify);
4625         long cpu = (long)hcpu;
4626         int cpu_i, nr_pages_same;
4627         unsigned int nr_pages;
4628
4629         switch (action) {
4630         case CPU_UP_PREPARE:
4631         case CPU_UP_PREPARE_FROZEN:
4632                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4633                         return NOTIFY_OK;
4634
4635                 nr_pages = 0;
4636                 nr_pages_same = 1;
4637                 /* check if all cpu sizes are same */
4638                 for_each_buffer_cpu(buffer, cpu_i) {
4639                         /* fill in the size from first enabled cpu */
4640                         if (nr_pages == 0)
4641                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4642                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4643                                 nr_pages_same = 0;
4644                                 break;
4645                         }
4646                 }
4647                 /* allocate minimum pages, user can later expand it */
4648                 if (!nr_pages_same)
4649                         nr_pages = 2;
4650                 buffer->buffers[cpu] =
4651                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4652                 if (!buffer->buffers[cpu]) {
4653                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4654                              cpu);
4655                         return NOTIFY_OK;
4656                 }
4657                 smp_wmb();
4658                 cpumask_set_cpu(cpu, buffer->cpumask);
4659                 break;
4660         case CPU_DOWN_PREPARE:
4661         case CPU_DOWN_PREPARE_FROZEN:
4662                 /*
4663                  * Do nothing.
4664                  *  If we were to free the buffer, then the user would
4665                  *  lose any trace that was in the buffer.
4666                  */
4667                 break;
4668         default:
4669                 break;
4670         }
4671         return NOTIFY_OK;
4672 }
4673 #endif
4674
4675 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4676 /*
4677  * This is a basic integrity check of the ring buffer.
4678  * Late in the boot cycle this test will run when configured in.
4679  * It will kick off a thread per CPU that will go into a loop
4680  * writing to the per cpu ring buffer various sizes of data.
4681  * Some of the data will be large items, some small.
4682  *
4683  * Another thread is created that goes into a spin, sending out
4684  * IPIs to the other CPUs to also write into the ring buffer.
4685  * this is to test the nesting ability of the buffer.
4686  *
4687  * Basic stats are recorded and reported. If something in the
4688  * ring buffer should happen that's not expected, a big warning
4689  * is displayed and all ring buffers are disabled.
4690  */
4691 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4692
4693 struct rb_test_data {
4694         struct ring_buffer      *buffer;
4695         unsigned long           events;
4696         unsigned long           bytes_written;
4697         unsigned long           bytes_alloc;
4698         unsigned long           bytes_dropped;
4699         unsigned long           events_nested;
4700         unsigned long           bytes_written_nested;
4701         unsigned long           bytes_alloc_nested;
4702         unsigned long           bytes_dropped_nested;
4703         int                     min_size_nested;
4704         int                     max_size_nested;
4705         int                     max_size;
4706         int                     min_size;
4707         int                     cpu;
4708         int                     cnt;
4709 };
4710
4711 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4712
4713 /* 1 meg per cpu */
4714 #define RB_TEST_BUFFER_SIZE     1048576
4715
4716 static char rb_string[] __initdata =
4717         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4718         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4719         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4720
4721 static bool rb_test_started __initdata;
4722
4723 struct rb_item {
4724         int size;
4725         char str[];
4726 };
4727
4728 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4729 {
4730         struct ring_buffer_event *event;
4731         struct rb_item *item;
4732         bool started;
4733         int event_len;
4734         int size;
4735         int len;
4736         int cnt;
4737
4738         /* Have nested writes different that what is written */
4739         cnt = data->cnt + (nested ? 27 : 0);
4740
4741         /* Multiply cnt by ~e, to make some unique increment */
4742         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4743
4744         len = size + sizeof(struct rb_item);
4745
4746         started = rb_test_started;
4747         /* read rb_test_started before checking buffer enabled */
4748         smp_rmb();
4749
4750         event = ring_buffer_lock_reserve(data->buffer, len);
4751         if (!event) {
4752                 /* Ignore dropped events before test starts. */
4753                 if (started) {
4754                         if (nested)
4755                                 data->bytes_dropped += len;
4756                         else
4757                                 data->bytes_dropped_nested += len;
4758                 }
4759                 return len;
4760         }
4761
4762         event_len = ring_buffer_event_length(event);
4763
4764         if (RB_WARN_ON(data->buffer, event_len < len))
4765                 goto out;
4766
4767         item = ring_buffer_event_data(event);
4768         item->size = size;
4769         memcpy(item->str, rb_string, size);
4770
4771         if (nested) {
4772                 data->bytes_alloc_nested += event_len;
4773                 data->bytes_written_nested += len;
4774                 data->events_nested++;
4775                 if (!data->min_size_nested || len < data->min_size_nested)
4776                         data->min_size_nested = len;
4777                 if (len > data->max_size_nested)
4778                         data->max_size_nested = len;
4779         } else {
4780                 data->bytes_alloc += event_len;
4781                 data->bytes_written += len;
4782                 data->events++;
4783                 if (!data->min_size || len < data->min_size)
4784                         data->max_size = len;
4785                 if (len > data->max_size)
4786                         data->max_size = len;
4787         }
4788
4789  out:
4790         ring_buffer_unlock_commit(data->buffer, event);
4791
4792         return 0;
4793 }
4794
4795 static __init int rb_test(void *arg)
4796 {
4797         struct rb_test_data *data = arg;
4798
4799         while (!kthread_should_stop()) {
4800                 rb_write_something(data, false);
4801                 data->cnt++;
4802
4803                 set_current_state(TASK_INTERRUPTIBLE);
4804                 /* Now sleep between a min of 100-300us and a max of 1ms */
4805                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4806         }
4807
4808         return 0;
4809 }
4810
4811 static __init void rb_ipi(void *ignore)
4812 {
4813         struct rb_test_data *data;
4814         int cpu = smp_processor_id();
4815
4816         data = &rb_data[cpu];
4817         rb_write_something(data, true);
4818 }
4819
4820 static __init int rb_hammer_test(void *arg)
4821 {
4822         while (!kthread_should_stop()) {
4823
4824                 /* Send an IPI to all cpus to write data! */
4825                 smp_call_function(rb_ipi, NULL, 1);
4826                 /* No sleep, but for non preempt, let others run */
4827                 schedule();
4828         }
4829
4830         return 0;
4831 }
4832
4833 static __init int test_ringbuffer(void)
4834 {
4835         struct task_struct *rb_hammer;
4836         struct ring_buffer *buffer;
4837         int cpu;
4838         int ret = 0;
4839
4840         pr_info("Running ring buffer tests...\n");
4841
4842         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4843         if (WARN_ON(!buffer))
4844                 return 0;
4845
4846         /* Disable buffer so that threads can't write to it yet */
4847         ring_buffer_record_off(buffer);
4848
4849         for_each_online_cpu(cpu) {
4850                 rb_data[cpu].buffer = buffer;
4851                 rb_data[cpu].cpu = cpu;
4852                 rb_data[cpu].cnt = cpu;
4853                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4854                                                  "rbtester/%d", cpu);
4855                 if (WARN_ON(!rb_threads[cpu])) {
4856                         pr_cont("FAILED\n");
4857                         ret = -1;
4858                         goto out_free;
4859                 }
4860
4861                 kthread_bind(rb_threads[cpu], cpu);
4862                 wake_up_process(rb_threads[cpu]);
4863         }
4864
4865         /* Now create the rb hammer! */
4866         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4867         if (WARN_ON(!rb_hammer)) {
4868                 pr_cont("FAILED\n");
4869                 ret = -1;
4870                 goto out_free;
4871         }
4872
4873         ring_buffer_record_on(buffer);
4874         /*
4875          * Show buffer is enabled before setting rb_test_started.
4876          * Yes there's a small race window where events could be
4877          * dropped and the thread wont catch it. But when a ring
4878          * buffer gets enabled, there will always be some kind of
4879          * delay before other CPUs see it. Thus, we don't care about
4880          * those dropped events. We care about events dropped after
4881          * the threads see that the buffer is active.
4882          */
4883         smp_wmb();
4884         rb_test_started = true;
4885
4886         set_current_state(TASK_INTERRUPTIBLE);
4887         /* Just run for 10 seconds */;
4888         schedule_timeout(10 * HZ);
4889
4890         kthread_stop(rb_hammer);
4891
4892  out_free:
4893         for_each_online_cpu(cpu) {
4894                 if (!rb_threads[cpu])
4895                         break;
4896                 kthread_stop(rb_threads[cpu]);
4897         }
4898         if (ret) {
4899                 ring_buffer_free(buffer);
4900                 return ret;
4901         }
4902
4903         /* Report! */
4904         pr_info("finished\n");
4905         for_each_online_cpu(cpu) {
4906                 struct ring_buffer_event *event;
4907                 struct rb_test_data *data = &rb_data[cpu];
4908                 struct rb_item *item;
4909                 unsigned long total_events;
4910                 unsigned long total_dropped;
4911                 unsigned long total_written;
4912                 unsigned long total_alloc;
4913                 unsigned long total_read = 0;
4914                 unsigned long total_size = 0;
4915                 unsigned long total_len = 0;
4916                 unsigned long total_lost = 0;
4917                 unsigned long lost;
4918                 int big_event_size;
4919                 int small_event_size;
4920
4921                 ret = -1;
4922
4923                 total_events = data->events + data->events_nested;
4924                 total_written = data->bytes_written + data->bytes_written_nested;
4925                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4926                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4927
4928                 big_event_size = data->max_size + data->max_size_nested;
4929                 small_event_size = data->min_size + data->min_size_nested;
4930
4931                 pr_info("CPU %d:\n", cpu);
4932                 pr_info("              events:    %ld\n", total_events);
4933                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4934                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4935                 pr_info("       written bytes:    %ld\n", total_written);
4936                 pr_info("       biggest event:    %d\n", big_event_size);
4937                 pr_info("      smallest event:    %d\n", small_event_size);
4938
4939                 if (RB_WARN_ON(buffer, total_dropped))
4940                         break;
4941
4942                 ret = 0;
4943
4944                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4945                         total_lost += lost;
4946                         item = ring_buffer_event_data(event);
4947                         total_len += ring_buffer_event_length(event);
4948                         total_size += item->size + sizeof(struct rb_item);
4949                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4950                                 pr_info("FAILED!\n");
4951                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4952                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4953                                 RB_WARN_ON(buffer, 1);
4954                                 ret = -1;
4955                                 break;
4956                         }
4957                         total_read++;
4958                 }
4959                 if (ret)
4960                         break;
4961
4962                 ret = -1;
4963
4964                 pr_info("         read events:   %ld\n", total_read);
4965                 pr_info("         lost events:   %ld\n", total_lost);
4966                 pr_info("        total events:   %ld\n", total_lost + total_read);
4967                 pr_info("  recorded len bytes:   %ld\n", total_len);
4968                 pr_info(" recorded size bytes:   %ld\n", total_size);
4969                 if (total_lost)
4970                         pr_info(" With dropped events, record len and size may not match\n"
4971                                 " alloced and written from above\n");
4972                 if (!total_lost) {
4973                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4974                                        total_size != total_written))
4975                                 break;
4976                 }
4977                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4978                         break;
4979
4980                 ret = 0;
4981         }
4982         if (!ret)
4983                 pr_info("Ring buffer PASSED!\n");
4984
4985         ring_buffer_free(buffer);
4986         return 0;
4987 }
4988
4989 late_initcall(test_ringbuffer);
4990 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */