Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 /*
62                  * SCHED_DEADLINE updates the bandwidth, as a run away
63                  * RT task with a DL task could hog a CPU. But DL does
64                  * not reset the period. If a deadline task was running
65                  * without an RT task running, it can cause RT tasks to
66                  * throttle when they start up. Kick the timer right away
67                  * to update the period.
68                  */
69                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71         }
72         raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 void init_rt_rq(struct rt_rq *rt_rq)
76 {
77         struct rt_prio_array *array;
78         int i;
79
80         array = &rt_rq->active;
81         for (i = 0; i < MAX_RT_PRIO; i++) {
82                 INIT_LIST_HEAD(array->queue + i);
83                 __clear_bit(i, array->bitmap);
84         }
85         /* delimiter for bitsearch: */
86         __set_bit(MAX_RT_PRIO, array->bitmap);
87
88 #if defined CONFIG_SMP
89         rt_rq->highest_prio.curr = MAX_RT_PRIO;
90         rt_rq->highest_prio.next = MAX_RT_PRIO;
91         rt_rq->rt_nr_migratory = 0;
92         rt_rq->overloaded = 0;
93         plist_head_init(&rt_rq->pushable_tasks);
94 #endif /* CONFIG_SMP */
95         /* We start is dequeued state, because no RT tasks are queued */
96         rt_rq->rt_queued = 0;
97
98         rt_rq->rt_time = 0;
99         rt_rq->rt_throttled = 0;
100         rt_rq->rt_runtime = 0;
101         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
102 }
103
104 #ifdef CONFIG_RT_GROUP_SCHED
105 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
106 {
107         hrtimer_cancel(&rt_b->rt_period_timer);
108 }
109
110 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
111
112 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
113 {
114 #ifdef CONFIG_SCHED_DEBUG
115         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
116 #endif
117         return container_of(rt_se, struct task_struct, rt);
118 }
119
120 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
121 {
122         return rt_rq->rq;
123 }
124
125 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
126 {
127         return rt_se->rt_rq;
128 }
129
130 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
131 {
132         struct rt_rq *rt_rq = rt_se->rt_rq;
133
134         return rt_rq->rq;
135 }
136
137 void free_rt_sched_group(struct task_group *tg)
138 {
139         int i;
140
141         if (tg->rt_se)
142                 destroy_rt_bandwidth(&tg->rt_bandwidth);
143
144         for_each_possible_cpu(i) {
145                 if (tg->rt_rq)
146                         kfree(tg->rt_rq[i]);
147                 if (tg->rt_se)
148                         kfree(tg->rt_se[i]);
149         }
150
151         kfree(tg->rt_rq);
152         kfree(tg->rt_se);
153 }
154
155 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
156                 struct sched_rt_entity *rt_se, int cpu,
157                 struct sched_rt_entity *parent)
158 {
159         struct rq *rq = cpu_rq(cpu);
160
161         rt_rq->highest_prio.curr = MAX_RT_PRIO;
162         rt_rq->rt_nr_boosted = 0;
163         rt_rq->rq = rq;
164         rt_rq->tg = tg;
165
166         tg->rt_rq[cpu] = rt_rq;
167         tg->rt_se[cpu] = rt_se;
168
169         if (!rt_se)
170                 return;
171
172         if (!parent)
173                 rt_se->rt_rq = &rq->rt;
174         else
175                 rt_se->rt_rq = parent->my_q;
176
177         rt_se->my_q = rt_rq;
178         rt_se->parent = parent;
179         INIT_LIST_HEAD(&rt_se->run_list);
180 }
181
182 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
183 {
184         struct rt_rq *rt_rq;
185         struct sched_rt_entity *rt_se;
186         int i;
187
188         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
189         if (!tg->rt_rq)
190                 goto err;
191         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
192         if (!tg->rt_se)
193                 goto err;
194
195         init_rt_bandwidth(&tg->rt_bandwidth,
196                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
197
198         for_each_possible_cpu(i) {
199                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
200                                      GFP_KERNEL, cpu_to_node(i));
201                 if (!rt_rq)
202                         goto err;
203
204                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
205                                      GFP_KERNEL, cpu_to_node(i));
206                 if (!rt_se)
207                         goto err_free_rq;
208
209                 init_rt_rq(rt_rq);
210                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
211                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
212         }
213
214         return 1;
215
216 err_free_rq:
217         kfree(rt_rq);
218 err:
219         return 0;
220 }
221
222 #else /* CONFIG_RT_GROUP_SCHED */
223
224 #define rt_entity_is_task(rt_se) (1)
225
226 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
227 {
228         return container_of(rt_se, struct task_struct, rt);
229 }
230
231 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
232 {
233         return container_of(rt_rq, struct rq, rt);
234 }
235
236 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
237 {
238         struct task_struct *p = rt_task_of(rt_se);
239
240         return task_rq(p);
241 }
242
243 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
244 {
245         struct rq *rq = rq_of_rt_se(rt_se);
246
247         return &rq->rt;
248 }
249
250 void free_rt_sched_group(struct task_group *tg) { }
251
252 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
253 {
254         return 1;
255 }
256 #endif /* CONFIG_RT_GROUP_SCHED */
257
258 #ifdef CONFIG_SMP
259
260 static void pull_rt_task(struct rq *this_rq);
261
262 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
263 {
264         /* Try to pull RT tasks here if we lower this rq's prio */
265         return rq->rt.highest_prio.curr > prev->prio;
266 }
267
268 static inline int rt_overloaded(struct rq *rq)
269 {
270         return atomic_read(&rq->rd->rto_count);
271 }
272
273 static inline void rt_set_overload(struct rq *rq)
274 {
275         if (!rq->online)
276                 return;
277
278         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
279         /*
280          * Make sure the mask is visible before we set
281          * the overload count. That is checked to determine
282          * if we should look at the mask. It would be a shame
283          * if we looked at the mask, but the mask was not
284          * updated yet.
285          *
286          * Matched by the barrier in pull_rt_task().
287          */
288         smp_wmb();
289         atomic_inc(&rq->rd->rto_count);
290 }
291
292 static inline void rt_clear_overload(struct rq *rq)
293 {
294         if (!rq->online)
295                 return;
296
297         /* the order here really doesn't matter */
298         atomic_dec(&rq->rd->rto_count);
299         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
300 }
301
302 static void update_rt_migration(struct rt_rq *rt_rq)
303 {
304         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
305                 if (!rt_rq->overloaded) {
306                         rt_set_overload(rq_of_rt_rq(rt_rq));
307                         rt_rq->overloaded = 1;
308                 }
309         } else if (rt_rq->overloaded) {
310                 rt_clear_overload(rq_of_rt_rq(rt_rq));
311                 rt_rq->overloaded = 0;
312         }
313 }
314
315 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
316 {
317         struct task_struct *p;
318
319         if (!rt_entity_is_task(rt_se))
320                 return;
321
322         p = rt_task_of(rt_se);
323         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
324
325         rt_rq->rt_nr_total++;
326         if (p->nr_cpus_allowed > 1)
327                 rt_rq->rt_nr_migratory++;
328
329         update_rt_migration(rt_rq);
330 }
331
332 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
333 {
334         struct task_struct *p;
335
336         if (!rt_entity_is_task(rt_se))
337                 return;
338
339         p = rt_task_of(rt_se);
340         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
341
342         rt_rq->rt_nr_total--;
343         if (p->nr_cpus_allowed > 1)
344                 rt_rq->rt_nr_migratory--;
345
346         update_rt_migration(rt_rq);
347 }
348
349 static inline int has_pushable_tasks(struct rq *rq)
350 {
351         return !plist_head_empty(&rq->rt.pushable_tasks);
352 }
353
354 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
355 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
356
357 static void push_rt_tasks(struct rq *);
358 static void pull_rt_task(struct rq *);
359
360 static inline void rt_queue_push_tasks(struct rq *rq)
361 {
362         if (!has_pushable_tasks(rq))
363                 return;
364
365         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
366 }
367
368 static inline void rt_queue_pull_task(struct rq *rq)
369 {
370         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
371 }
372
373 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
374 {
375         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376         plist_node_init(&p->pushable_tasks, p->prio);
377         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
378
379         /* Update the highest prio pushable task */
380         if (p->prio < rq->rt.highest_prio.next)
381                 rq->rt.highest_prio.next = p->prio;
382 }
383
384 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387
388         /* Update the new highest prio pushable task */
389         if (has_pushable_tasks(rq)) {
390                 p = plist_first_entry(&rq->rt.pushable_tasks,
391                                       struct task_struct, pushable_tasks);
392                 rq->rt.highest_prio.next = p->prio;
393         } else
394                 rq->rt.highest_prio.next = MAX_RT_PRIO;
395 }
396
397 #else
398
399 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
400 {
401 }
402
403 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
404 {
405 }
406
407 static inline
408 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
409 {
410 }
411
412 static inline
413 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414 {
415 }
416
417 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
418 {
419         return false;
420 }
421
422 static inline void pull_rt_task(struct rq *this_rq)
423 {
424 }
425
426 static inline void rt_queue_push_tasks(struct rq *rq)
427 {
428 }
429 #endif /* CONFIG_SMP */
430
431 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
432 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
433
434 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
435 {
436         return rt_se->on_rq;
437 }
438
439 #ifdef CONFIG_RT_GROUP_SCHED
440
441 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
442 {
443         if (!rt_rq->tg)
444                 return RUNTIME_INF;
445
446         return rt_rq->rt_runtime;
447 }
448
449 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
450 {
451         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
452 }
453
454 typedef struct task_group *rt_rq_iter_t;
455
456 static inline struct task_group *next_task_group(struct task_group *tg)
457 {
458         do {
459                 tg = list_entry_rcu(tg->list.next,
460                         typeof(struct task_group), list);
461         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
462
463         if (&tg->list == &task_groups)
464                 tg = NULL;
465
466         return tg;
467 }
468
469 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
470         for (iter = container_of(&task_groups, typeof(*iter), list);    \
471                 (iter = next_task_group(iter)) &&                       \
472                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
473
474 #define for_each_sched_rt_entity(rt_se) \
475         for (; rt_se; rt_se = rt_se->parent)
476
477 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
478 {
479         return rt_se->my_q;
480 }
481
482 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
483 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
484
485 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
486 {
487         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
488         struct rq *rq = rq_of_rt_rq(rt_rq);
489         struct sched_rt_entity *rt_se;
490
491         int cpu = cpu_of(rq);
492
493         rt_se = rt_rq->tg->rt_se[cpu];
494
495         if (rt_rq->rt_nr_running) {
496                 if (!rt_se)
497                         enqueue_top_rt_rq(rt_rq);
498                 else if (!on_rt_rq(rt_se))
499                         enqueue_rt_entity(rt_se, 0);
500
501                 if (rt_rq->highest_prio.curr < curr->prio)
502                         resched_curr(rq);
503         }
504 }
505
506 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
507 {
508         struct sched_rt_entity *rt_se;
509         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
510
511         rt_se = rt_rq->tg->rt_se[cpu];
512
513         if (!rt_se) {
514                 dequeue_top_rt_rq(rt_rq);
515                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
516                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
517         }
518         else if (on_rt_rq(rt_se))
519                 dequeue_rt_entity(rt_se, 0);
520 }
521
522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526
527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529         struct rt_rq *rt_rq = group_rt_rq(rt_se);
530         struct task_struct *p;
531
532         if (rt_rq)
533                 return !!rt_rq->rt_nr_boosted;
534
535         p = rt_task_of(rt_se);
536         return p->prio != p->normal_prio;
537 }
538
539 #ifdef CONFIG_SMP
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542         return this_rq()->rd->span;
543 }
544 #else
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547         return cpu_online_mask;
548 }
549 #endif
550
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559         return &rt_rq->tg->rt_bandwidth;
560 }
561
562 #else /* !CONFIG_RT_GROUP_SCHED */
563
564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566         return rt_rq->rt_runtime;
567 }
568
569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571         return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573
574 typedef struct rt_rq *rt_rq_iter_t;
575
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579 #define for_each_sched_rt_entity(rt_se) \
580         for (; rt_se; rt_se = NULL)
581
582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584         return NULL;
585 }
586
587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589         struct rq *rq = rq_of_rt_rq(rt_rq);
590
591         if (!rt_rq->rt_nr_running)
592                 return;
593
594         enqueue_top_rt_rq(rt_rq);
595         resched_curr(rq);
596 }
597
598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600         dequeue_top_rt_rq(rt_rq);
601 }
602
603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605         return rt_rq->rt_throttled;
606 }
607
608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610         return cpu_online_mask;
611 }
612
613 static inline
614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616         return &cpu_rq(cpu)->rt;
617 }
618
619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621         return &def_rt_bandwidth;
622 }
623
624 #endif /* CONFIG_RT_GROUP_SCHED */
625
626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630         return (hrtimer_active(&rt_b->rt_period_timer) ||
631                 rt_rq->rt_time < rt_b->rt_runtime);
632 }
633
634 #ifdef CONFIG_SMP
635 /*
636  * We ran out of runtime, see if we can borrow some from our neighbours.
637  */
638 static void do_balance_runtime(struct rt_rq *rt_rq)
639 {
640         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642         int i, weight;
643         u64 rt_period;
644
645         weight = cpumask_weight(rd->span);
646
647         raw_spin_lock(&rt_b->rt_runtime_lock);
648         rt_period = ktime_to_ns(rt_b->rt_period);
649         for_each_cpu(i, rd->span) {
650                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651                 s64 diff;
652
653                 if (iter == rt_rq)
654                         continue;
655
656                 raw_spin_lock(&iter->rt_runtime_lock);
657                 /*
658                  * Either all rqs have inf runtime and there's nothing to steal
659                  * or __disable_runtime() below sets a specific rq to inf to
660                  * indicate its been disabled and disalow stealing.
661                  */
662                 if (iter->rt_runtime == RUNTIME_INF)
663                         goto next;
664
665                 /*
666                  * From runqueues with spare time, take 1/n part of their
667                  * spare time, but no more than our period.
668                  */
669                 diff = iter->rt_runtime - iter->rt_time;
670                 if (diff > 0) {
671                         diff = div_u64((u64)diff, weight);
672                         if (rt_rq->rt_runtime + diff > rt_period)
673                                 diff = rt_period - rt_rq->rt_runtime;
674                         iter->rt_runtime -= diff;
675                         rt_rq->rt_runtime += diff;
676                         if (rt_rq->rt_runtime == rt_period) {
677                                 raw_spin_unlock(&iter->rt_runtime_lock);
678                                 break;
679                         }
680                 }
681 next:
682                 raw_spin_unlock(&iter->rt_runtime_lock);
683         }
684         raw_spin_unlock(&rt_b->rt_runtime_lock);
685 }
686
687 /*
688  * Ensure this RQ takes back all the runtime it lend to its neighbours.
689  */
690 static void __disable_runtime(struct rq *rq)
691 {
692         struct root_domain *rd = rq->rd;
693         rt_rq_iter_t iter;
694         struct rt_rq *rt_rq;
695
696         if (unlikely(!scheduler_running))
697                 return;
698
699         for_each_rt_rq(rt_rq, iter, rq) {
700                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701                 s64 want;
702                 int i;
703
704                 raw_spin_lock(&rt_b->rt_runtime_lock);
705                 raw_spin_lock(&rt_rq->rt_runtime_lock);
706                 /*
707                  * Either we're all inf and nobody needs to borrow, or we're
708                  * already disabled and thus have nothing to do, or we have
709                  * exactly the right amount of runtime to take out.
710                  */
711                 if (rt_rq->rt_runtime == RUNTIME_INF ||
712                                 rt_rq->rt_runtime == rt_b->rt_runtime)
713                         goto balanced;
714                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716                 /*
717                  * Calculate the difference between what we started out with
718                  * and what we current have, that's the amount of runtime
719                  * we lend and now have to reclaim.
720                  */
721                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723                 /*
724                  * Greedy reclaim, take back as much as we can.
725                  */
726                 for_each_cpu(i, rd->span) {
727                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728                         s64 diff;
729
730                         /*
731                          * Can't reclaim from ourselves or disabled runqueues.
732                          */
733                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734                                 continue;
735
736                         raw_spin_lock(&iter->rt_runtime_lock);
737                         if (want > 0) {
738                                 diff = min_t(s64, iter->rt_runtime, want);
739                                 iter->rt_runtime -= diff;
740                                 want -= diff;
741                         } else {
742                                 iter->rt_runtime -= want;
743                                 want -= want;
744                         }
745                         raw_spin_unlock(&iter->rt_runtime_lock);
746
747                         if (!want)
748                                 break;
749                 }
750
751                 raw_spin_lock(&rt_rq->rt_runtime_lock);
752                 /*
753                  * We cannot be left wanting - that would mean some runtime
754                  * leaked out of the system.
755                  */
756                 BUG_ON(want);
757 balanced:
758                 /*
759                  * Disable all the borrow logic by pretending we have inf
760                  * runtime - in which case borrowing doesn't make sense.
761                  */
762                 rt_rq->rt_runtime = RUNTIME_INF;
763                 rt_rq->rt_throttled = 0;
764                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765                 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767                 /* Make rt_rq available for pick_next_task() */
768                 sched_rt_rq_enqueue(rt_rq);
769         }
770 }
771
772 static void __enable_runtime(struct rq *rq)
773 {
774         rt_rq_iter_t iter;
775         struct rt_rq *rt_rq;
776
777         if (unlikely(!scheduler_running))
778                 return;
779
780         /*
781          * Reset each runqueue's bandwidth settings
782          */
783         for_each_rt_rq(rt_rq, iter, rq) {
784                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786                 raw_spin_lock(&rt_b->rt_runtime_lock);
787                 raw_spin_lock(&rt_rq->rt_runtime_lock);
788                 rt_rq->rt_runtime = rt_b->rt_runtime;
789                 rt_rq->rt_time = 0;
790                 rt_rq->rt_throttled = 0;
791                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792                 raw_spin_unlock(&rt_b->rt_runtime_lock);
793         }
794 }
795
796 static void balance_runtime(struct rt_rq *rt_rq)
797 {
798         if (!sched_feat(RT_RUNTIME_SHARE))
799                 return;
800
801         if (rt_rq->rt_time > rt_rq->rt_runtime) {
802                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803                 do_balance_runtime(rt_rq);
804                 raw_spin_lock(&rt_rq->rt_runtime_lock);
805         }
806 }
807 #else /* !CONFIG_SMP */
808 static inline void balance_runtime(struct rt_rq *rt_rq) {}
809 #endif /* CONFIG_SMP */
810
811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 {
813         int i, idle = 1, throttled = 0;
814         const struct cpumask *span;
815
816         span = sched_rt_period_mask();
817 #ifdef CONFIG_RT_GROUP_SCHED
818         /*
819          * FIXME: isolated CPUs should really leave the root task group,
820          * whether they are isolcpus or were isolated via cpusets, lest
821          * the timer run on a CPU which does not service all runqueues,
822          * potentially leaving other CPUs indefinitely throttled.  If
823          * isolation is really required, the user will turn the throttle
824          * off to kill the perturbations it causes anyway.  Meanwhile,
825          * this maintains functionality for boot and/or troubleshooting.
826          */
827         if (rt_b == &root_task_group.rt_bandwidth)
828                 span = cpu_online_mask;
829 #endif
830         for_each_cpu(i, span) {
831                 int enqueue = 0;
832                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833                 struct rq *rq = rq_of_rt_rq(rt_rq);
834                 int skip;
835
836                 /*
837                  * When span == cpu_online_mask, taking each rq->lock
838                  * can be time-consuming. Try to avoid it when possible.
839                  */
840                 raw_spin_lock(&rt_rq->rt_runtime_lock);
841                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
842                         rt_rq->rt_runtime = rt_b->rt_runtime;
843                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
844                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
845                 if (skip)
846                         continue;
847
848                 raw_spin_lock(&rq->lock);
849                 update_rq_clock(rq);
850
851                 if (rt_rq->rt_time) {
852                         u64 runtime;
853
854                         raw_spin_lock(&rt_rq->rt_runtime_lock);
855                         if (rt_rq->rt_throttled)
856                                 balance_runtime(rt_rq);
857                         runtime = rt_rq->rt_runtime;
858                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
859                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
860                                 rt_rq->rt_throttled = 0;
861                                 enqueue = 1;
862
863                                 /*
864                                  * When we're idle and a woken (rt) task is
865                                  * throttled check_preempt_curr() will set
866                                  * skip_update and the time between the wakeup
867                                  * and this unthrottle will get accounted as
868                                  * 'runtime'.
869                                  */
870                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
871                                         rq_clock_cancel_skipupdate(rq);
872                         }
873                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
874                                 idle = 0;
875                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
876                 } else if (rt_rq->rt_nr_running) {
877                         idle = 0;
878                         if (!rt_rq_throttled(rt_rq))
879                                 enqueue = 1;
880                 }
881                 if (rt_rq->rt_throttled)
882                         throttled = 1;
883
884                 if (enqueue)
885                         sched_rt_rq_enqueue(rt_rq);
886                 raw_spin_unlock(&rq->lock);
887         }
888
889         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
890                 return 1;
891
892         return idle;
893 }
894
895 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
896 {
897 #ifdef CONFIG_RT_GROUP_SCHED
898         struct rt_rq *rt_rq = group_rt_rq(rt_se);
899
900         if (rt_rq)
901                 return rt_rq->highest_prio.curr;
902 #endif
903
904         return rt_task_of(rt_se)->prio;
905 }
906
907 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
908 {
909         u64 runtime = sched_rt_runtime(rt_rq);
910
911         if (rt_rq->rt_throttled)
912                 return rt_rq_throttled(rt_rq);
913
914         if (runtime >= sched_rt_period(rt_rq))
915                 return 0;
916
917         balance_runtime(rt_rq);
918         runtime = sched_rt_runtime(rt_rq);
919         if (runtime == RUNTIME_INF)
920                 return 0;
921
922         if (rt_rq->rt_time > runtime) {
923                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
924
925                 /*
926                  * Don't actually throttle groups that have no runtime assigned
927                  * but accrue some time due to boosting.
928                  */
929                 if (likely(rt_b->rt_runtime)) {
930                         rt_rq->rt_throttled = 1;
931                         printk_deferred_once("sched: RT throttling activated\n");
932                 } else {
933                         /*
934                          * In case we did anyway, make it go away,
935                          * replenishment is a joke, since it will replenish us
936                          * with exactly 0 ns.
937                          */
938                         rt_rq->rt_time = 0;
939                 }
940
941                 if (rt_rq_throttled(rt_rq)) {
942                         sched_rt_rq_dequeue(rt_rq);
943                         return 1;
944                 }
945         }
946
947         return 0;
948 }
949
950 /*
951  * Update the current task's runtime statistics. Skip current tasks that
952  * are not in our scheduling class.
953  */
954 static void update_curr_rt(struct rq *rq)
955 {
956         struct task_struct *curr = rq->curr;
957         struct sched_rt_entity *rt_se = &curr->rt;
958         u64 delta_exec;
959         u64 now;
960
961         if (curr->sched_class != &rt_sched_class)
962                 return;
963
964         now = rq_clock_task(rq);
965         delta_exec = now - curr->se.exec_start;
966         if (unlikely((s64)delta_exec <= 0))
967                 return;
968
969         schedstat_set(curr->se.statistics.exec_max,
970                       max(curr->se.statistics.exec_max, delta_exec));
971
972         curr->se.sum_exec_runtime += delta_exec;
973         account_group_exec_runtime(curr, delta_exec);
974
975         curr->se.exec_start = now;
976         cgroup_account_cputime(curr, delta_exec);
977
978         if (!rt_bandwidth_enabled())
979                 return;
980
981         for_each_sched_rt_entity(rt_se) {
982                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
983
984                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
985                         raw_spin_lock(&rt_rq->rt_runtime_lock);
986                         rt_rq->rt_time += delta_exec;
987                         if (sched_rt_runtime_exceeded(rt_rq))
988                                 resched_curr(rq);
989                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
990                 }
991         }
992 }
993
994 static void
995 dequeue_top_rt_rq(struct rt_rq *rt_rq)
996 {
997         struct rq *rq = rq_of_rt_rq(rt_rq);
998
999         BUG_ON(&rq->rt != rt_rq);
1000
1001         if (!rt_rq->rt_queued)
1002                 return;
1003
1004         BUG_ON(!rq->nr_running);
1005
1006         sub_nr_running(rq, rt_rq->rt_nr_running);
1007         rt_rq->rt_queued = 0;
1008
1009 }
1010
1011 static void
1012 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1013 {
1014         struct rq *rq = rq_of_rt_rq(rt_rq);
1015
1016         BUG_ON(&rq->rt != rt_rq);
1017
1018         if (rt_rq->rt_queued)
1019                 return;
1020
1021         if (rt_rq_throttled(rt_rq))
1022                 return;
1023
1024         if (rt_rq->rt_nr_running) {
1025                 add_nr_running(rq, rt_rq->rt_nr_running);
1026                 rt_rq->rt_queued = 1;
1027         }
1028
1029         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1030         cpufreq_update_util(rq, 0);
1031 }
1032
1033 #if defined CONFIG_SMP
1034
1035 static void
1036 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1037 {
1038         struct rq *rq = rq_of_rt_rq(rt_rq);
1039
1040 #ifdef CONFIG_RT_GROUP_SCHED
1041         /*
1042          * Change rq's cpupri only if rt_rq is the top queue.
1043          */
1044         if (&rq->rt != rt_rq)
1045                 return;
1046 #endif
1047         if (rq->online && prio < prev_prio)
1048                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1049 }
1050
1051 static void
1052 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1053 {
1054         struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056 #ifdef CONFIG_RT_GROUP_SCHED
1057         /*
1058          * Change rq's cpupri only if rt_rq is the top queue.
1059          */
1060         if (&rq->rt != rt_rq)
1061                 return;
1062 #endif
1063         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1064                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1065 }
1066
1067 #else /* CONFIG_SMP */
1068
1069 static inline
1070 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071 static inline
1072 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073
1074 #endif /* CONFIG_SMP */
1075
1076 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1077 static void
1078 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080         int prev_prio = rt_rq->highest_prio.curr;
1081
1082         if (prio < prev_prio)
1083                 rt_rq->highest_prio.curr = prio;
1084
1085         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1086 }
1087
1088 static void
1089 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1090 {
1091         int prev_prio = rt_rq->highest_prio.curr;
1092
1093         if (rt_rq->rt_nr_running) {
1094
1095                 WARN_ON(prio < prev_prio);
1096
1097                 /*
1098                  * This may have been our highest task, and therefore
1099                  * we may have some recomputation to do
1100                  */
1101                 if (prio == prev_prio) {
1102                         struct rt_prio_array *array = &rt_rq->active;
1103
1104                         rt_rq->highest_prio.curr =
1105                                 sched_find_first_bit(array->bitmap);
1106                 }
1107
1108         } else
1109                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1110
1111         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1112 }
1113
1114 #else
1115
1116 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1117 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118
1119 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1120
1121 #ifdef CONFIG_RT_GROUP_SCHED
1122
1123 static void
1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126         if (rt_se_boosted(rt_se))
1127                 rt_rq->rt_nr_boosted++;
1128
1129         if (rt_rq->tg)
1130                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1131 }
1132
1133 static void
1134 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136         if (rt_se_boosted(rt_se))
1137                 rt_rq->rt_nr_boosted--;
1138
1139         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1140 }
1141
1142 #else /* CONFIG_RT_GROUP_SCHED */
1143
1144 static void
1145 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146 {
1147         start_rt_bandwidth(&def_rt_bandwidth);
1148 }
1149
1150 static inline
1151 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1152
1153 #endif /* CONFIG_RT_GROUP_SCHED */
1154
1155 static inline
1156 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158         struct rt_rq *group_rq = group_rt_rq(rt_se);
1159
1160         if (group_rq)
1161                 return group_rq->rt_nr_running;
1162         else
1163                 return 1;
1164 }
1165
1166 static inline
1167 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1168 {
1169         struct rt_rq *group_rq = group_rt_rq(rt_se);
1170         struct task_struct *tsk;
1171
1172         if (group_rq)
1173                 return group_rq->rr_nr_running;
1174
1175         tsk = rt_task_of(rt_se);
1176
1177         return (tsk->policy == SCHED_RR) ? 1 : 0;
1178 }
1179
1180 static inline
1181 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183         int prio = rt_se_prio(rt_se);
1184
1185         WARN_ON(!rt_prio(prio));
1186         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1187         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1188
1189         inc_rt_prio(rt_rq, prio);
1190         inc_rt_migration(rt_se, rt_rq);
1191         inc_rt_group(rt_se, rt_rq);
1192 }
1193
1194 static inline
1195 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1198         WARN_ON(!rt_rq->rt_nr_running);
1199         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1200         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1201
1202         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1203         dec_rt_migration(rt_se, rt_rq);
1204         dec_rt_group(rt_se, rt_rq);
1205 }
1206
1207 /*
1208  * Change rt_se->run_list location unless SAVE && !MOVE
1209  *
1210  * assumes ENQUEUE/DEQUEUE flags match
1211  */
1212 static inline bool move_entity(unsigned int flags)
1213 {
1214         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1215                 return false;
1216
1217         return true;
1218 }
1219
1220 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1221 {
1222         list_del_init(&rt_se->run_list);
1223
1224         if (list_empty(array->queue + rt_se_prio(rt_se)))
1225                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1226
1227         rt_se->on_list = 0;
1228 }
1229
1230 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1231 {
1232         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1233         struct rt_prio_array *array = &rt_rq->active;
1234         struct rt_rq *group_rq = group_rt_rq(rt_se);
1235         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1236
1237         /*
1238          * Don't enqueue the group if its throttled, or when empty.
1239          * The latter is a consequence of the former when a child group
1240          * get throttled and the current group doesn't have any other
1241          * active members.
1242          */
1243         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1244                 if (rt_se->on_list)
1245                         __delist_rt_entity(rt_se, array);
1246                 return;
1247         }
1248
1249         if (move_entity(flags)) {
1250                 WARN_ON_ONCE(rt_se->on_list);
1251                 if (flags & ENQUEUE_HEAD)
1252                         list_add(&rt_se->run_list, queue);
1253                 else
1254                         list_add_tail(&rt_se->run_list, queue);
1255
1256                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1257                 rt_se->on_list = 1;
1258         }
1259         rt_se->on_rq = 1;
1260
1261         inc_rt_tasks(rt_se, rt_rq);
1262 }
1263
1264 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1265 {
1266         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1267         struct rt_prio_array *array = &rt_rq->active;
1268
1269         if (move_entity(flags)) {
1270                 WARN_ON_ONCE(!rt_se->on_list);
1271                 __delist_rt_entity(rt_se, array);
1272         }
1273         rt_se->on_rq = 0;
1274
1275         dec_rt_tasks(rt_se, rt_rq);
1276 }
1277
1278 /*
1279  * Because the prio of an upper entry depends on the lower
1280  * entries, we must remove entries top - down.
1281  */
1282 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1283 {
1284         struct sched_rt_entity *back = NULL;
1285
1286         for_each_sched_rt_entity(rt_se) {
1287                 rt_se->back = back;
1288                 back = rt_se;
1289         }
1290
1291         dequeue_top_rt_rq(rt_rq_of_se(back));
1292
1293         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1294                 if (on_rt_rq(rt_se))
1295                         __dequeue_rt_entity(rt_se, flags);
1296         }
1297 }
1298
1299 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301         struct rq *rq = rq_of_rt_se(rt_se);
1302
1303         dequeue_rt_stack(rt_se, flags);
1304         for_each_sched_rt_entity(rt_se)
1305                 __enqueue_rt_entity(rt_se, flags);
1306         enqueue_top_rt_rq(&rq->rt);
1307 }
1308
1309 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1310 {
1311         struct rq *rq = rq_of_rt_se(rt_se);
1312
1313         dequeue_rt_stack(rt_se, flags);
1314
1315         for_each_sched_rt_entity(rt_se) {
1316                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1317
1318                 if (rt_rq && rt_rq->rt_nr_running)
1319                         __enqueue_rt_entity(rt_se, flags);
1320         }
1321         enqueue_top_rt_rq(&rq->rt);
1322 }
1323
1324 /*
1325  * Adding/removing a task to/from a priority array:
1326  */
1327 static void
1328 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1329 {
1330         struct sched_rt_entity *rt_se = &p->rt;
1331
1332         if (flags & ENQUEUE_WAKEUP)
1333                 rt_se->timeout = 0;
1334
1335         enqueue_rt_entity(rt_se, flags);
1336
1337         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1338                 enqueue_pushable_task(rq, p);
1339 }
1340
1341 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1342 {
1343         struct sched_rt_entity *rt_se = &p->rt;
1344
1345         update_curr_rt(rq);
1346         dequeue_rt_entity(rt_se, flags);
1347
1348         dequeue_pushable_task(rq, p);
1349 }
1350
1351 /*
1352  * Put task to the head or the end of the run list without the overhead of
1353  * dequeue followed by enqueue.
1354  */
1355 static void
1356 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1357 {
1358         if (on_rt_rq(rt_se)) {
1359                 struct rt_prio_array *array = &rt_rq->active;
1360                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1361
1362                 if (head)
1363                         list_move(&rt_se->run_list, queue);
1364                 else
1365                         list_move_tail(&rt_se->run_list, queue);
1366         }
1367 }
1368
1369 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1370 {
1371         struct sched_rt_entity *rt_se = &p->rt;
1372         struct rt_rq *rt_rq;
1373
1374         for_each_sched_rt_entity(rt_se) {
1375                 rt_rq = rt_rq_of_se(rt_se);
1376                 requeue_rt_entity(rt_rq, rt_se, head);
1377         }
1378 }
1379
1380 static void yield_task_rt(struct rq *rq)
1381 {
1382         requeue_task_rt(rq, rq->curr, 0);
1383 }
1384
1385 #ifdef CONFIG_SMP
1386 static int find_lowest_rq(struct task_struct *task);
1387
1388 static int
1389 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1390 {
1391         struct task_struct *curr;
1392         struct rq *rq;
1393
1394         /* For anything but wake ups, just return the task_cpu */
1395         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1396                 goto out;
1397
1398         rq = cpu_rq(cpu);
1399
1400         rcu_read_lock();
1401         curr = READ_ONCE(rq->curr); /* unlocked access */
1402
1403         /*
1404          * If the current task on @p's runqueue is an RT task, then
1405          * try to see if we can wake this RT task up on another
1406          * runqueue. Otherwise simply start this RT task
1407          * on its current runqueue.
1408          *
1409          * We want to avoid overloading runqueues. If the woken
1410          * task is a higher priority, then it will stay on this CPU
1411          * and the lower prio task should be moved to another CPU.
1412          * Even though this will probably make the lower prio task
1413          * lose its cache, we do not want to bounce a higher task
1414          * around just because it gave up its CPU, perhaps for a
1415          * lock?
1416          *
1417          * For equal prio tasks, we just let the scheduler sort it out.
1418          *
1419          * Otherwise, just let it ride on the affined RQ and the
1420          * post-schedule router will push the preempted task away
1421          *
1422          * This test is optimistic, if we get it wrong the load-balancer
1423          * will have to sort it out.
1424          */
1425         if (curr && unlikely(rt_task(curr)) &&
1426             (curr->nr_cpus_allowed < 2 ||
1427              curr->prio <= p->prio)) {
1428                 int target = find_lowest_rq(p);
1429
1430                 /*
1431                  * Don't bother moving it if the destination CPU is
1432                  * not running a lower priority task.
1433                  */
1434                 if (target != -1 &&
1435                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1436                         cpu = target;
1437         }
1438         rcu_read_unlock();
1439
1440 out:
1441         return cpu;
1442 }
1443
1444 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1445 {
1446         /*
1447          * Current can't be migrated, useless to reschedule,
1448          * let's hope p can move out.
1449          */
1450         if (rq->curr->nr_cpus_allowed == 1 ||
1451             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1452                 return;
1453
1454         /*
1455          * p is migratable, so let's not schedule it and
1456          * see if it is pushed or pulled somewhere else.
1457          */
1458         if (p->nr_cpus_allowed != 1
1459             && cpupri_find(&rq->rd->cpupri, p, NULL))
1460                 return;
1461
1462         /*
1463          * There appear to be other CPUs that can accept
1464          * the current task but none can run 'p', so lets reschedule
1465          * to try and push the current task away:
1466          */
1467         requeue_task_rt(rq, p, 1);
1468         resched_curr(rq);
1469 }
1470
1471 #endif /* CONFIG_SMP */
1472
1473 /*
1474  * Preempt the current task with a newly woken task if needed:
1475  */
1476 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1477 {
1478         if (p->prio < rq->curr->prio) {
1479                 resched_curr(rq);
1480                 return;
1481         }
1482
1483 #ifdef CONFIG_SMP
1484         /*
1485          * If:
1486          *
1487          * - the newly woken task is of equal priority to the current task
1488          * - the newly woken task is non-migratable while current is migratable
1489          * - current will be preempted on the next reschedule
1490          *
1491          * we should check to see if current can readily move to a different
1492          * cpu.  If so, we will reschedule to allow the push logic to try
1493          * to move current somewhere else, making room for our non-migratable
1494          * task.
1495          */
1496         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1497                 check_preempt_equal_prio(rq, p);
1498 #endif
1499 }
1500
1501 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1502                                                    struct rt_rq *rt_rq)
1503 {
1504         struct rt_prio_array *array = &rt_rq->active;
1505         struct sched_rt_entity *next = NULL;
1506         struct list_head *queue;
1507         int idx;
1508
1509         idx = sched_find_first_bit(array->bitmap);
1510         BUG_ON(idx >= MAX_RT_PRIO);
1511
1512         queue = array->queue + idx;
1513         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1514
1515         return next;
1516 }
1517
1518 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1519 {
1520         struct sched_rt_entity *rt_se;
1521         struct task_struct *p;
1522         struct rt_rq *rt_rq  = &rq->rt;
1523
1524         do {
1525                 rt_se = pick_next_rt_entity(rq, rt_rq);
1526                 BUG_ON(!rt_se);
1527                 rt_rq = group_rt_rq(rt_se);
1528         } while (rt_rq);
1529
1530         p = rt_task_of(rt_se);
1531         p->se.exec_start = rq_clock_task(rq);
1532
1533         return p;
1534 }
1535
1536 static struct task_struct *
1537 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1538 {
1539         struct task_struct *p;
1540         struct rt_rq *rt_rq = &rq->rt;
1541
1542         if (need_pull_rt_task(rq, prev)) {
1543                 /*
1544                  * This is OK, because current is on_cpu, which avoids it being
1545                  * picked for load-balance and preemption/IRQs are still
1546                  * disabled avoiding further scheduler activity on it and we're
1547                  * being very careful to re-start the picking loop.
1548                  */
1549                 rq_unpin_lock(rq, rf);
1550                 pull_rt_task(rq);
1551                 rq_repin_lock(rq, rf);
1552                 /*
1553                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1554                  * means a dl or stop task can slip in, in which case we need
1555                  * to re-start task selection.
1556                  */
1557                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1558                              rq->dl.dl_nr_running))
1559                         return RETRY_TASK;
1560         }
1561
1562         /*
1563          * We may dequeue prev's rt_rq in put_prev_task().
1564          * So, we update time before rt_nr_running check.
1565          */
1566         if (prev->sched_class == &rt_sched_class)
1567                 update_curr_rt(rq);
1568
1569         if (!rt_rq->rt_queued)
1570                 return NULL;
1571
1572         put_prev_task(rq, prev);
1573
1574         p = _pick_next_task_rt(rq);
1575
1576         /* The running task is never eligible for pushing */
1577         dequeue_pushable_task(rq, p);
1578
1579         rt_queue_push_tasks(rq);
1580
1581         /*
1582          * If prev task was rt, put_prev_task() has already updated the
1583          * utilization. We only care of the case where we start to schedule a
1584          * rt task
1585          */
1586         if (rq->curr->sched_class != &rt_sched_class)
1587                 update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
1588
1589         return p;
1590 }
1591
1592 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1593 {
1594         update_curr_rt(rq);
1595
1596         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
1597
1598         /*
1599          * The previous task needs to be made eligible for pushing
1600          * if it is still active
1601          */
1602         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1603                 enqueue_pushable_task(rq, p);
1604 }
1605
1606 #ifdef CONFIG_SMP
1607
1608 /* Only try algorithms three times */
1609 #define RT_MAX_TRIES 3
1610
1611 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1612 {
1613         if (!task_running(rq, p) &&
1614             cpumask_test_cpu(cpu, &p->cpus_allowed))
1615                 return 1;
1616
1617         return 0;
1618 }
1619
1620 /*
1621  * Return the highest pushable rq's task, which is suitable to be executed
1622  * on the CPU, NULL otherwise
1623  */
1624 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1625 {
1626         struct plist_head *head = &rq->rt.pushable_tasks;
1627         struct task_struct *p;
1628
1629         if (!has_pushable_tasks(rq))
1630                 return NULL;
1631
1632         plist_for_each_entry(p, head, pushable_tasks) {
1633                 if (pick_rt_task(rq, p, cpu))
1634                         return p;
1635         }
1636
1637         return NULL;
1638 }
1639
1640 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1641
1642 static int find_lowest_rq(struct task_struct *task)
1643 {
1644         struct sched_domain *sd;
1645         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1646         int this_cpu = smp_processor_id();
1647         int cpu      = task_cpu(task);
1648
1649         /* Make sure the mask is initialized first */
1650         if (unlikely(!lowest_mask))
1651                 return -1;
1652
1653         if (task->nr_cpus_allowed == 1)
1654                 return -1; /* No other targets possible */
1655
1656         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1657                 return -1; /* No targets found */
1658
1659         /*
1660          * At this point we have built a mask of CPUs representing the
1661          * lowest priority tasks in the system.  Now we want to elect
1662          * the best one based on our affinity and topology.
1663          *
1664          * We prioritize the last CPU that the task executed on since
1665          * it is most likely cache-hot in that location.
1666          */
1667         if (cpumask_test_cpu(cpu, lowest_mask))
1668                 return cpu;
1669
1670         /*
1671          * Otherwise, we consult the sched_domains span maps to figure
1672          * out which CPU is logically closest to our hot cache data.
1673          */
1674         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1675                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1676
1677         rcu_read_lock();
1678         for_each_domain(cpu, sd) {
1679                 if (sd->flags & SD_WAKE_AFFINE) {
1680                         int best_cpu;
1681
1682                         /*
1683                          * "this_cpu" is cheaper to preempt than a
1684                          * remote processor.
1685                          */
1686                         if (this_cpu != -1 &&
1687                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1688                                 rcu_read_unlock();
1689                                 return this_cpu;
1690                         }
1691
1692                         best_cpu = cpumask_first_and(lowest_mask,
1693                                                      sched_domain_span(sd));
1694                         if (best_cpu < nr_cpu_ids) {
1695                                 rcu_read_unlock();
1696                                 return best_cpu;
1697                         }
1698                 }
1699         }
1700         rcu_read_unlock();
1701
1702         /*
1703          * And finally, if there were no matches within the domains
1704          * just give the caller *something* to work with from the compatible
1705          * locations.
1706          */
1707         if (this_cpu != -1)
1708                 return this_cpu;
1709
1710         cpu = cpumask_any(lowest_mask);
1711         if (cpu < nr_cpu_ids)
1712                 return cpu;
1713
1714         return -1;
1715 }
1716
1717 /* Will lock the rq it finds */
1718 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1719 {
1720         struct rq *lowest_rq = NULL;
1721         int tries;
1722         int cpu;
1723
1724         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1725                 cpu = find_lowest_rq(task);
1726
1727                 if ((cpu == -1) || (cpu == rq->cpu))
1728                         break;
1729
1730                 lowest_rq = cpu_rq(cpu);
1731
1732                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1733                         /*
1734                          * Target rq has tasks of equal or higher priority,
1735                          * retrying does not release any lock and is unlikely
1736                          * to yield a different result.
1737                          */
1738                         lowest_rq = NULL;
1739                         break;
1740                 }
1741
1742                 /* if the prio of this runqueue changed, try again */
1743                 if (double_lock_balance(rq, lowest_rq)) {
1744                         /*
1745                          * We had to unlock the run queue. In
1746                          * the mean time, task could have
1747                          * migrated already or had its affinity changed.
1748                          * Also make sure that it wasn't scheduled on its rq.
1749                          */
1750                         if (unlikely(task_rq(task) != rq ||
1751                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1752                                      task_running(rq, task) ||
1753                                      !rt_task(task) ||
1754                                      !task_on_rq_queued(task))) {
1755
1756                                 double_unlock_balance(rq, lowest_rq);
1757                                 lowest_rq = NULL;
1758                                 break;
1759                         }
1760                 }
1761
1762                 /* If this rq is still suitable use it. */
1763                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1764                         break;
1765
1766                 /* try again */
1767                 double_unlock_balance(rq, lowest_rq);
1768                 lowest_rq = NULL;
1769         }
1770
1771         return lowest_rq;
1772 }
1773
1774 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1775 {
1776         struct task_struct *p;
1777
1778         if (!has_pushable_tasks(rq))
1779                 return NULL;
1780
1781         p = plist_first_entry(&rq->rt.pushable_tasks,
1782                               struct task_struct, pushable_tasks);
1783
1784         BUG_ON(rq->cpu != task_cpu(p));
1785         BUG_ON(task_current(rq, p));
1786         BUG_ON(p->nr_cpus_allowed <= 1);
1787
1788         BUG_ON(!task_on_rq_queued(p));
1789         BUG_ON(!rt_task(p));
1790
1791         return p;
1792 }
1793
1794 /*
1795  * If the current CPU has more than one RT task, see if the non
1796  * running task can migrate over to a CPU that is running a task
1797  * of lesser priority.
1798  */
1799 static int push_rt_task(struct rq *rq)
1800 {
1801         struct task_struct *next_task;
1802         struct rq *lowest_rq;
1803         int ret = 0;
1804
1805         if (!rq->rt.overloaded)
1806                 return 0;
1807
1808         next_task = pick_next_pushable_task(rq);
1809         if (!next_task)
1810                 return 0;
1811
1812 retry:
1813         if (unlikely(next_task == rq->curr)) {
1814                 WARN_ON(1);
1815                 return 0;
1816         }
1817
1818         /*
1819          * It's possible that the next_task slipped in of
1820          * higher priority than current. If that's the case
1821          * just reschedule current.
1822          */
1823         if (unlikely(next_task->prio < rq->curr->prio)) {
1824                 resched_curr(rq);
1825                 return 0;
1826         }
1827
1828         /* We might release rq lock */
1829         get_task_struct(next_task);
1830
1831         /* find_lock_lowest_rq locks the rq if found */
1832         lowest_rq = find_lock_lowest_rq(next_task, rq);
1833         if (!lowest_rq) {
1834                 struct task_struct *task;
1835                 /*
1836                  * find_lock_lowest_rq releases rq->lock
1837                  * so it is possible that next_task has migrated.
1838                  *
1839                  * We need to make sure that the task is still on the same
1840                  * run-queue and is also still the next task eligible for
1841                  * pushing.
1842                  */
1843                 task = pick_next_pushable_task(rq);
1844                 if (task == next_task) {
1845                         /*
1846                          * The task hasn't migrated, and is still the next
1847                          * eligible task, but we failed to find a run-queue
1848                          * to push it to.  Do not retry in this case, since
1849                          * other CPUs will pull from us when ready.
1850                          */
1851                         goto out;
1852                 }
1853
1854                 if (!task)
1855                         /* No more tasks, just exit */
1856                         goto out;
1857
1858                 /*
1859                  * Something has shifted, try again.
1860                  */
1861                 put_task_struct(next_task);
1862                 next_task = task;
1863                 goto retry;
1864         }
1865
1866         deactivate_task(rq, next_task, 0);
1867         set_task_cpu(next_task, lowest_rq->cpu);
1868         activate_task(lowest_rq, next_task, 0);
1869         ret = 1;
1870
1871         resched_curr(lowest_rq);
1872
1873         double_unlock_balance(rq, lowest_rq);
1874
1875 out:
1876         put_task_struct(next_task);
1877
1878         return ret;
1879 }
1880
1881 static void push_rt_tasks(struct rq *rq)
1882 {
1883         /* push_rt_task will return true if it moved an RT */
1884         while (push_rt_task(rq))
1885                 ;
1886 }
1887
1888 #ifdef HAVE_RT_PUSH_IPI
1889
1890 /*
1891  * When a high priority task schedules out from a CPU and a lower priority
1892  * task is scheduled in, a check is made to see if there's any RT tasks
1893  * on other CPUs that are waiting to run because a higher priority RT task
1894  * is currently running on its CPU. In this case, the CPU with multiple RT
1895  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1896  * up that may be able to run one of its non-running queued RT tasks.
1897  *
1898  * All CPUs with overloaded RT tasks need to be notified as there is currently
1899  * no way to know which of these CPUs have the highest priority task waiting
1900  * to run. Instead of trying to take a spinlock on each of these CPUs,
1901  * which has shown to cause large latency when done on machines with many
1902  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1903  * RT tasks waiting to run.
1904  *
1905  * Just sending an IPI to each of the CPUs is also an issue, as on large
1906  * count CPU machines, this can cause an IPI storm on a CPU, especially
1907  * if its the only CPU with multiple RT tasks queued, and a large number
1908  * of CPUs scheduling a lower priority task at the same time.
1909  *
1910  * Each root domain has its own irq work function that can iterate over
1911  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1912  * tassk must be checked if there's one or many CPUs that are lowering
1913  * their priority, there's a single irq work iterator that will try to
1914  * push off RT tasks that are waiting to run.
1915  *
1916  * When a CPU schedules a lower priority task, it will kick off the
1917  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1918  * As it only takes the first CPU that schedules a lower priority task
1919  * to start the process, the rto_start variable is incremented and if
1920  * the atomic result is one, then that CPU will try to take the rto_lock.
1921  * This prevents high contention on the lock as the process handles all
1922  * CPUs scheduling lower priority tasks.
1923  *
1924  * All CPUs that are scheduling a lower priority task will increment the
1925  * rt_loop_next variable. This will make sure that the irq work iterator
1926  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1927  * priority task, even if the iterator is in the middle of a scan. Incrementing
1928  * the rt_loop_next will cause the iterator to perform another scan.
1929  *
1930  */
1931 static int rto_next_cpu(struct root_domain *rd)
1932 {
1933         int next;
1934         int cpu;
1935
1936         /*
1937          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1938          * rt_next_cpu() will simply return the first CPU found in
1939          * the rto_mask.
1940          *
1941          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1942          * will return the next CPU found in the rto_mask.
1943          *
1944          * If there are no more CPUs left in the rto_mask, then a check is made
1945          * against rto_loop and rto_loop_next. rto_loop is only updated with
1946          * the rto_lock held, but any CPU may increment the rto_loop_next
1947          * without any locking.
1948          */
1949         for (;;) {
1950
1951                 /* When rto_cpu is -1 this acts like cpumask_first() */
1952                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1953
1954                 rd->rto_cpu = cpu;
1955
1956                 if (cpu < nr_cpu_ids)
1957                         return cpu;
1958
1959                 rd->rto_cpu = -1;
1960
1961                 /*
1962                  * ACQUIRE ensures we see the @rto_mask changes
1963                  * made prior to the @next value observed.
1964                  *
1965                  * Matches WMB in rt_set_overload().
1966                  */
1967                 next = atomic_read_acquire(&rd->rto_loop_next);
1968
1969                 if (rd->rto_loop == next)
1970                         break;
1971
1972                 rd->rto_loop = next;
1973         }
1974
1975         return -1;
1976 }
1977
1978 static inline bool rto_start_trylock(atomic_t *v)
1979 {
1980         return !atomic_cmpxchg_acquire(v, 0, 1);
1981 }
1982
1983 static inline void rto_start_unlock(atomic_t *v)
1984 {
1985         atomic_set_release(v, 0);
1986 }
1987
1988 static void tell_cpu_to_push(struct rq *rq)
1989 {
1990         int cpu = -1;
1991
1992         /* Keep the loop going if the IPI is currently active */
1993         atomic_inc(&rq->rd->rto_loop_next);
1994
1995         /* Only one CPU can initiate a loop at a time */
1996         if (!rto_start_trylock(&rq->rd->rto_loop_start))
1997                 return;
1998
1999         raw_spin_lock(&rq->rd->rto_lock);
2000
2001         /*
2002          * The rto_cpu is updated under the lock, if it has a valid CPU
2003          * then the IPI is still running and will continue due to the
2004          * update to loop_next, and nothing needs to be done here.
2005          * Otherwise it is finishing up and an ipi needs to be sent.
2006          */
2007         if (rq->rd->rto_cpu < 0)
2008                 cpu = rto_next_cpu(rq->rd);
2009
2010         raw_spin_unlock(&rq->rd->rto_lock);
2011
2012         rto_start_unlock(&rq->rd->rto_loop_start);
2013
2014         if (cpu >= 0) {
2015                 /* Make sure the rd does not get freed while pushing */
2016                 sched_get_rd(rq->rd);
2017                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2018         }
2019 }
2020
2021 /* Called from hardirq context */
2022 void rto_push_irq_work_func(struct irq_work *work)
2023 {
2024         struct root_domain *rd =
2025                 container_of(work, struct root_domain, rto_push_work);
2026         struct rq *rq;
2027         int cpu;
2028
2029         rq = this_rq();
2030
2031         /*
2032          * We do not need to grab the lock to check for has_pushable_tasks.
2033          * When it gets updated, a check is made if a push is possible.
2034          */
2035         if (has_pushable_tasks(rq)) {
2036                 raw_spin_lock(&rq->lock);
2037                 push_rt_tasks(rq);
2038                 raw_spin_unlock(&rq->lock);
2039         }
2040
2041         raw_spin_lock(&rd->rto_lock);
2042
2043         /* Pass the IPI to the next rt overloaded queue */
2044         cpu = rto_next_cpu(rd);
2045
2046         raw_spin_unlock(&rd->rto_lock);
2047
2048         if (cpu < 0) {
2049                 sched_put_rd(rd);
2050                 return;
2051         }
2052
2053         /* Try the next RT overloaded CPU */
2054         irq_work_queue_on(&rd->rto_push_work, cpu);
2055 }
2056 #endif /* HAVE_RT_PUSH_IPI */
2057
2058 static void pull_rt_task(struct rq *this_rq)
2059 {
2060         int this_cpu = this_rq->cpu, cpu;
2061         bool resched = false;
2062         struct task_struct *p;
2063         struct rq *src_rq;
2064         int rt_overload_count = rt_overloaded(this_rq);
2065
2066         if (likely(!rt_overload_count))
2067                 return;
2068
2069         /*
2070          * Match the barrier from rt_set_overloaded; this guarantees that if we
2071          * see overloaded we must also see the rto_mask bit.
2072          */
2073         smp_rmb();
2074
2075         /* If we are the only overloaded CPU do nothing */
2076         if (rt_overload_count == 1 &&
2077             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2078                 return;
2079
2080 #ifdef HAVE_RT_PUSH_IPI
2081         if (sched_feat(RT_PUSH_IPI)) {
2082                 tell_cpu_to_push(this_rq);
2083                 return;
2084         }
2085 #endif
2086
2087         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2088                 if (this_cpu == cpu)
2089                         continue;
2090
2091                 src_rq = cpu_rq(cpu);
2092
2093                 /*
2094                  * Don't bother taking the src_rq->lock if the next highest
2095                  * task is known to be lower-priority than our current task.
2096                  * This may look racy, but if this value is about to go
2097                  * logically higher, the src_rq will push this task away.
2098                  * And if its going logically lower, we do not care
2099                  */
2100                 if (src_rq->rt.highest_prio.next >=
2101                     this_rq->rt.highest_prio.curr)
2102                         continue;
2103
2104                 /*
2105                  * We can potentially drop this_rq's lock in
2106                  * double_lock_balance, and another CPU could
2107                  * alter this_rq
2108                  */
2109                 double_lock_balance(this_rq, src_rq);
2110
2111                 /*
2112                  * We can pull only a task, which is pushable
2113                  * on its rq, and no others.
2114                  */
2115                 p = pick_highest_pushable_task(src_rq, this_cpu);
2116
2117                 /*
2118                  * Do we have an RT task that preempts
2119                  * the to-be-scheduled task?
2120                  */
2121                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2122                         WARN_ON(p == src_rq->curr);
2123                         WARN_ON(!task_on_rq_queued(p));
2124
2125                         /*
2126                          * There's a chance that p is higher in priority
2127                          * than what's currently running on its CPU.
2128                          * This is just that p is wakeing up and hasn't
2129                          * had a chance to schedule. We only pull
2130                          * p if it is lower in priority than the
2131                          * current task on the run queue
2132                          */
2133                         if (p->prio < src_rq->curr->prio)
2134                                 goto skip;
2135
2136                         resched = true;
2137
2138                         deactivate_task(src_rq, p, 0);
2139                         set_task_cpu(p, this_cpu);
2140                         activate_task(this_rq, p, 0);
2141                         /*
2142                          * We continue with the search, just in
2143                          * case there's an even higher prio task
2144                          * in another runqueue. (low likelihood
2145                          * but possible)
2146                          */
2147                 }
2148 skip:
2149                 double_unlock_balance(this_rq, src_rq);
2150         }
2151
2152         if (resched)
2153                 resched_curr(this_rq);
2154 }
2155
2156 /*
2157  * If we are not running and we are not going to reschedule soon, we should
2158  * try to push tasks away now
2159  */
2160 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2161 {
2162         if (!task_running(rq, p) &&
2163             !test_tsk_need_resched(rq->curr) &&
2164             p->nr_cpus_allowed > 1 &&
2165             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2166             (rq->curr->nr_cpus_allowed < 2 ||
2167              rq->curr->prio <= p->prio))
2168                 push_rt_tasks(rq);
2169 }
2170
2171 /* Assumes rq->lock is held */
2172 static void rq_online_rt(struct rq *rq)
2173 {
2174         if (rq->rt.overloaded)
2175                 rt_set_overload(rq);
2176
2177         __enable_runtime(rq);
2178
2179         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2180 }
2181
2182 /* Assumes rq->lock is held */
2183 static void rq_offline_rt(struct rq *rq)
2184 {
2185         if (rq->rt.overloaded)
2186                 rt_clear_overload(rq);
2187
2188         __disable_runtime(rq);
2189
2190         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2191 }
2192
2193 /*
2194  * When switch from the rt queue, we bring ourselves to a position
2195  * that we might want to pull RT tasks from other runqueues.
2196  */
2197 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2198 {
2199         /*
2200          * If there are other RT tasks then we will reschedule
2201          * and the scheduling of the other RT tasks will handle
2202          * the balancing. But if we are the last RT task
2203          * we may need to handle the pulling of RT tasks
2204          * now.
2205          */
2206         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2207                 return;
2208
2209         rt_queue_pull_task(rq);
2210 }
2211
2212 void __init init_sched_rt_class(void)
2213 {
2214         unsigned int i;
2215
2216         for_each_possible_cpu(i) {
2217                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2218                                         GFP_KERNEL, cpu_to_node(i));
2219         }
2220 }
2221 #endif /* CONFIG_SMP */
2222
2223 /*
2224  * When switching a task to RT, we may overload the runqueue
2225  * with RT tasks. In this case we try to push them off to
2226  * other runqueues.
2227  */
2228 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2229 {
2230         /*
2231          * If we are already running, then there's nothing
2232          * that needs to be done. But if we are not running
2233          * we may need to preempt the current running task.
2234          * If that current running task is also an RT task
2235          * then see if we can move to another run queue.
2236          */
2237         if (task_on_rq_queued(p) && rq->curr != p) {
2238 #ifdef CONFIG_SMP
2239                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2240                         rt_queue_push_tasks(rq);
2241 #endif /* CONFIG_SMP */
2242                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2243                         resched_curr(rq);
2244         }
2245 }
2246
2247 /*
2248  * Priority of the task has changed. This may cause
2249  * us to initiate a push or pull.
2250  */
2251 static void
2252 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2253 {
2254         if (!task_on_rq_queued(p))
2255                 return;
2256
2257         if (rq->curr == p) {
2258 #ifdef CONFIG_SMP
2259                 /*
2260                  * If our priority decreases while running, we
2261                  * may need to pull tasks to this runqueue.
2262                  */
2263                 if (oldprio < p->prio)
2264                         rt_queue_pull_task(rq);
2265
2266                 /*
2267                  * If there's a higher priority task waiting to run
2268                  * then reschedule.
2269                  */
2270                 if (p->prio > rq->rt.highest_prio.curr)
2271                         resched_curr(rq);
2272 #else
2273                 /* For UP simply resched on drop of prio */
2274                 if (oldprio < p->prio)
2275                         resched_curr(rq);
2276 #endif /* CONFIG_SMP */
2277         } else {
2278                 /*
2279                  * This task is not running, but if it is
2280                  * greater than the current running task
2281                  * then reschedule.
2282                  */
2283                 if (p->prio < rq->curr->prio)
2284                         resched_curr(rq);
2285         }
2286 }
2287
2288 #ifdef CONFIG_POSIX_TIMERS
2289 static void watchdog(struct rq *rq, struct task_struct *p)
2290 {
2291         unsigned long soft, hard;
2292
2293         /* max may change after cur was read, this will be fixed next tick */
2294         soft = task_rlimit(p, RLIMIT_RTTIME);
2295         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2296
2297         if (soft != RLIM_INFINITY) {
2298                 unsigned long next;
2299
2300                 if (p->rt.watchdog_stamp != jiffies) {
2301                         p->rt.timeout++;
2302                         p->rt.watchdog_stamp = jiffies;
2303                 }
2304
2305                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2306                 if (p->rt.timeout > next)
2307                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2308         }
2309 }
2310 #else
2311 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2312 #endif
2313
2314 /*
2315  * scheduler tick hitting a task of our scheduling class.
2316  *
2317  * NOTE: This function can be called remotely by the tick offload that
2318  * goes along full dynticks. Therefore no local assumption can be made
2319  * and everything must be accessed through the @rq and @curr passed in
2320  * parameters.
2321  */
2322 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2323 {
2324         struct sched_rt_entity *rt_se = &p->rt;
2325
2326         update_curr_rt(rq);
2327         update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
2328
2329         watchdog(rq, p);
2330
2331         /*
2332          * RR tasks need a special form of timeslice management.
2333          * FIFO tasks have no timeslices.
2334          */
2335         if (p->policy != SCHED_RR)
2336                 return;
2337
2338         if (--p->rt.time_slice)
2339                 return;
2340
2341         p->rt.time_slice = sched_rr_timeslice;
2342
2343         /*
2344          * Requeue to the end of queue if we (and all of our ancestors) are not
2345          * the only element on the queue
2346          */
2347         for_each_sched_rt_entity(rt_se) {
2348                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2349                         requeue_task_rt(rq, p, 0);
2350                         resched_curr(rq);
2351                         return;
2352                 }
2353         }
2354 }
2355
2356 static void set_curr_task_rt(struct rq *rq)
2357 {
2358         struct task_struct *p = rq->curr;
2359
2360         p->se.exec_start = rq_clock_task(rq);
2361
2362         /* The running task is never eligible for pushing */
2363         dequeue_pushable_task(rq, p);
2364 }
2365
2366 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2367 {
2368         /*
2369          * Time slice is 0 for SCHED_FIFO tasks
2370          */
2371         if (task->policy == SCHED_RR)
2372                 return sched_rr_timeslice;
2373         else
2374                 return 0;
2375 }
2376
2377 const struct sched_class rt_sched_class = {
2378         .next                   = &fair_sched_class,
2379         .enqueue_task           = enqueue_task_rt,
2380         .dequeue_task           = dequeue_task_rt,
2381         .yield_task             = yield_task_rt,
2382
2383         .check_preempt_curr     = check_preempt_curr_rt,
2384
2385         .pick_next_task         = pick_next_task_rt,
2386         .put_prev_task          = put_prev_task_rt,
2387
2388 #ifdef CONFIG_SMP
2389         .select_task_rq         = select_task_rq_rt,
2390
2391         .set_cpus_allowed       = set_cpus_allowed_common,
2392         .rq_online              = rq_online_rt,
2393         .rq_offline             = rq_offline_rt,
2394         .task_woken             = task_woken_rt,
2395         .switched_from          = switched_from_rt,
2396 #endif
2397
2398         .set_curr_task          = set_curr_task_rt,
2399         .task_tick              = task_tick_rt,
2400
2401         .get_rr_interval        = get_rr_interval_rt,
2402
2403         .prio_changed           = prio_changed_rt,
2404         .switched_to            = switched_to_rt,
2405
2406         .update_curr            = update_curr_rt,
2407 };
2408
2409 #ifdef CONFIG_RT_GROUP_SCHED
2410 /*
2411  * Ensure that the real time constraints are schedulable.
2412  */
2413 static DEFINE_MUTEX(rt_constraints_mutex);
2414
2415 /* Must be called with tasklist_lock held */
2416 static inline int tg_has_rt_tasks(struct task_group *tg)
2417 {
2418         struct task_struct *g, *p;
2419
2420         /*
2421          * Autogroups do not have RT tasks; see autogroup_create().
2422          */
2423         if (task_group_is_autogroup(tg))
2424                 return 0;
2425
2426         for_each_process_thread(g, p) {
2427                 if (rt_task(p) && task_group(p) == tg)
2428                         return 1;
2429         }
2430
2431         return 0;
2432 }
2433
2434 struct rt_schedulable_data {
2435         struct task_group *tg;
2436         u64 rt_period;
2437         u64 rt_runtime;
2438 };
2439
2440 static int tg_rt_schedulable(struct task_group *tg, void *data)
2441 {
2442         struct rt_schedulable_data *d = data;
2443         struct task_group *child;
2444         unsigned long total, sum = 0;
2445         u64 period, runtime;
2446
2447         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2448         runtime = tg->rt_bandwidth.rt_runtime;
2449
2450         if (tg == d->tg) {
2451                 period = d->rt_period;
2452                 runtime = d->rt_runtime;
2453         }
2454
2455         /*
2456          * Cannot have more runtime than the period.
2457          */
2458         if (runtime > period && runtime != RUNTIME_INF)
2459                 return -EINVAL;
2460
2461         /*
2462          * Ensure we don't starve existing RT tasks.
2463          */
2464         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2465                 return -EBUSY;
2466
2467         total = to_ratio(period, runtime);
2468
2469         /*
2470          * Nobody can have more than the global setting allows.
2471          */
2472         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2473                 return -EINVAL;
2474
2475         /*
2476          * The sum of our children's runtime should not exceed our own.
2477          */
2478         list_for_each_entry_rcu(child, &tg->children, siblings) {
2479                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2480                 runtime = child->rt_bandwidth.rt_runtime;
2481
2482                 if (child == d->tg) {
2483                         period = d->rt_period;
2484                         runtime = d->rt_runtime;
2485                 }
2486
2487                 sum += to_ratio(period, runtime);
2488         }
2489
2490         if (sum > total)
2491                 return -EINVAL;
2492
2493         return 0;
2494 }
2495
2496 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2497 {
2498         int ret;
2499
2500         struct rt_schedulable_data data = {
2501                 .tg = tg,
2502                 .rt_period = period,
2503                 .rt_runtime = runtime,
2504         };
2505
2506         rcu_read_lock();
2507         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2508         rcu_read_unlock();
2509
2510         return ret;
2511 }
2512
2513 static int tg_set_rt_bandwidth(struct task_group *tg,
2514                 u64 rt_period, u64 rt_runtime)
2515 {
2516         int i, err = 0;
2517
2518         /*
2519          * Disallowing the root group RT runtime is BAD, it would disallow the
2520          * kernel creating (and or operating) RT threads.
2521          */
2522         if (tg == &root_task_group && rt_runtime == 0)
2523                 return -EINVAL;
2524
2525         /* No period doesn't make any sense. */
2526         if (rt_period == 0)
2527                 return -EINVAL;
2528
2529         mutex_lock(&rt_constraints_mutex);
2530         read_lock(&tasklist_lock);
2531         err = __rt_schedulable(tg, rt_period, rt_runtime);
2532         if (err)
2533                 goto unlock;
2534
2535         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2536         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2537         tg->rt_bandwidth.rt_runtime = rt_runtime;
2538
2539         for_each_possible_cpu(i) {
2540                 struct rt_rq *rt_rq = tg->rt_rq[i];
2541
2542                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2543                 rt_rq->rt_runtime = rt_runtime;
2544                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2545         }
2546         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2547 unlock:
2548         read_unlock(&tasklist_lock);
2549         mutex_unlock(&rt_constraints_mutex);
2550
2551         return err;
2552 }
2553
2554 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2555 {
2556         u64 rt_runtime, rt_period;
2557
2558         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2559         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2560         if (rt_runtime_us < 0)
2561                 rt_runtime = RUNTIME_INF;
2562
2563         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2564 }
2565
2566 long sched_group_rt_runtime(struct task_group *tg)
2567 {
2568         u64 rt_runtime_us;
2569
2570         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2571                 return -1;
2572
2573         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2574         do_div(rt_runtime_us, NSEC_PER_USEC);
2575         return rt_runtime_us;
2576 }
2577
2578 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2579 {
2580         u64 rt_runtime, rt_period;
2581
2582         rt_period = rt_period_us * NSEC_PER_USEC;
2583         rt_runtime = tg->rt_bandwidth.rt_runtime;
2584
2585         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2586 }
2587
2588 long sched_group_rt_period(struct task_group *tg)
2589 {
2590         u64 rt_period_us;
2591
2592         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2593         do_div(rt_period_us, NSEC_PER_USEC);
2594         return rt_period_us;
2595 }
2596
2597 static int sched_rt_global_constraints(void)
2598 {
2599         int ret = 0;
2600
2601         mutex_lock(&rt_constraints_mutex);
2602         read_lock(&tasklist_lock);
2603         ret = __rt_schedulable(NULL, 0, 0);
2604         read_unlock(&tasklist_lock);
2605         mutex_unlock(&rt_constraints_mutex);
2606
2607         return ret;
2608 }
2609
2610 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2611 {
2612         /* Don't accept realtime tasks when there is no way for them to run */
2613         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2614                 return 0;
2615
2616         return 1;
2617 }
2618
2619 #else /* !CONFIG_RT_GROUP_SCHED */
2620 static int sched_rt_global_constraints(void)
2621 {
2622         unsigned long flags;
2623         int i;
2624
2625         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2626         for_each_possible_cpu(i) {
2627                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2628
2629                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2630                 rt_rq->rt_runtime = global_rt_runtime();
2631                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2632         }
2633         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2634
2635         return 0;
2636 }
2637 #endif /* CONFIG_RT_GROUP_SCHED */
2638
2639 static int sched_rt_global_validate(void)
2640 {
2641         if (sysctl_sched_rt_period <= 0)
2642                 return -EINVAL;
2643
2644         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2645                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2646                 return -EINVAL;
2647
2648         return 0;
2649 }
2650
2651 static void sched_rt_do_global(void)
2652 {
2653         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2654         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2655 }
2656
2657 int sched_rt_handler(struct ctl_table *table, int write,
2658                 void __user *buffer, size_t *lenp,
2659                 loff_t *ppos)
2660 {
2661         int old_period, old_runtime;
2662         static DEFINE_MUTEX(mutex);
2663         int ret;
2664
2665         mutex_lock(&mutex);
2666         old_period = sysctl_sched_rt_period;
2667         old_runtime = sysctl_sched_rt_runtime;
2668
2669         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2670
2671         if (!ret && write) {
2672                 ret = sched_rt_global_validate();
2673                 if (ret)
2674                         goto undo;
2675
2676                 ret = sched_dl_global_validate();
2677                 if (ret)
2678                         goto undo;
2679
2680                 ret = sched_rt_global_constraints();
2681                 if (ret)
2682                         goto undo;
2683
2684                 sched_rt_do_global();
2685                 sched_dl_do_global();
2686         }
2687         if (0) {
2688 undo:
2689                 sysctl_sched_rt_period = old_period;
2690                 sysctl_sched_rt_runtime = old_runtime;
2691         }
2692         mutex_unlock(&mutex);
2693
2694         return ret;
2695 }
2696
2697 int sched_rr_handler(struct ctl_table *table, int write,
2698                 void __user *buffer, size_t *lenp,
2699                 loff_t *ppos)
2700 {
2701         int ret;
2702         static DEFINE_MUTEX(mutex);
2703
2704         mutex_lock(&mutex);
2705         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2706         /*
2707          * Make sure that internally we keep jiffies.
2708          * Also, writing zero resets the timeslice to default:
2709          */
2710         if (!ret && write) {
2711                 sched_rr_timeslice =
2712                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2713                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2714         }
2715         mutex_unlock(&mutex);
2716
2717         return ret;
2718 }
2719
2720 #ifdef CONFIG_SCHED_DEBUG
2721 void print_rt_stats(struct seq_file *m, int cpu)
2722 {
2723         rt_rq_iter_t iter;
2724         struct rt_rq *rt_rq;
2725
2726         rcu_read_lock();
2727         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2728                 print_rt_rq(m, cpu, rt_rq);
2729         rcu_read_unlock();
2730 }
2731 #endif /* CONFIG_SCHED_DEBUG */