Merge tag 'pci-v4.18-fixes-4' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[sfrench/cifs-2.6.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 int sched_rr_timeslice = RR_TIMESLICE;
9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16 {
17         struct rt_bandwidth *rt_b =
18                 container_of(timer, struct rt_bandwidth, rt_period_timer);
19         int idle = 0;
20         int overrun;
21
22         raw_spin_lock(&rt_b->rt_runtime_lock);
23         for (;;) {
24                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
25                 if (!overrun)
26                         break;
27
28                 raw_spin_unlock(&rt_b->rt_runtime_lock);
29                 idle = do_sched_rt_period_timer(rt_b, overrun);
30                 raw_spin_lock(&rt_b->rt_runtime_lock);
31         }
32         if (idle)
33                 rt_b->rt_period_active = 0;
34         raw_spin_unlock(&rt_b->rt_runtime_lock);
35
36         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
37 }
38
39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
40 {
41         rt_b->rt_period = ns_to_ktime(period);
42         rt_b->rt_runtime = runtime;
43
44         raw_spin_lock_init(&rt_b->rt_runtime_lock);
45
46         hrtimer_init(&rt_b->rt_period_timer,
47                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
48         rt_b->rt_period_timer.function = sched_rt_period_timer;
49 }
50
51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
52 {
53         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
54                 return;
55
56         raw_spin_lock(&rt_b->rt_runtime_lock);
57         if (!rt_b->rt_period_active) {
58                 rt_b->rt_period_active = 1;
59                 /*
60                  * SCHED_DEADLINE updates the bandwidth, as a run away
61                  * RT task with a DL task could hog a CPU. But DL does
62                  * not reset the period. If a deadline task was running
63                  * without an RT task running, it can cause RT tasks to
64                  * throttle when they start up. Kick the timer right away
65                  * to update the period.
66                  */
67                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
68                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
69         }
70         raw_spin_unlock(&rt_b->rt_runtime_lock);
71 }
72
73 void init_rt_rq(struct rt_rq *rt_rq)
74 {
75         struct rt_prio_array *array;
76         int i;
77
78         array = &rt_rq->active;
79         for (i = 0; i < MAX_RT_PRIO; i++) {
80                 INIT_LIST_HEAD(array->queue + i);
81                 __clear_bit(i, array->bitmap);
82         }
83         /* delimiter for bitsearch: */
84         __set_bit(MAX_RT_PRIO, array->bitmap);
85
86 #if defined CONFIG_SMP
87         rt_rq->highest_prio.curr = MAX_RT_PRIO;
88         rt_rq->highest_prio.next = MAX_RT_PRIO;
89         rt_rq->rt_nr_migratory = 0;
90         rt_rq->overloaded = 0;
91         plist_head_init(&rt_rq->pushable_tasks);
92 #endif /* CONFIG_SMP */
93         /* We start is dequeued state, because no RT tasks are queued */
94         rt_rq->rt_queued = 0;
95
96         rt_rq->rt_time = 0;
97         rt_rq->rt_throttled = 0;
98         rt_rq->rt_runtime = 0;
99         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
100 }
101
102 #ifdef CONFIG_RT_GROUP_SCHED
103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
104 {
105         hrtimer_cancel(&rt_b->rt_period_timer);
106 }
107
108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
109
110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
111 {
112 #ifdef CONFIG_SCHED_DEBUG
113         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
114 #endif
115         return container_of(rt_se, struct task_struct, rt);
116 }
117
118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
119 {
120         return rt_rq->rq;
121 }
122
123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
124 {
125         return rt_se->rt_rq;
126 }
127
128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
129 {
130         struct rt_rq *rt_rq = rt_se->rt_rq;
131
132         return rt_rq->rq;
133 }
134
135 void free_rt_sched_group(struct task_group *tg)
136 {
137         int i;
138
139         if (tg->rt_se)
140                 destroy_rt_bandwidth(&tg->rt_bandwidth);
141
142         for_each_possible_cpu(i) {
143                 if (tg->rt_rq)
144                         kfree(tg->rt_rq[i]);
145                 if (tg->rt_se)
146                         kfree(tg->rt_se[i]);
147         }
148
149         kfree(tg->rt_rq);
150         kfree(tg->rt_se);
151 }
152
153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
154                 struct sched_rt_entity *rt_se, int cpu,
155                 struct sched_rt_entity *parent)
156 {
157         struct rq *rq = cpu_rq(cpu);
158
159         rt_rq->highest_prio.curr = MAX_RT_PRIO;
160         rt_rq->rt_nr_boosted = 0;
161         rt_rq->rq = rq;
162         rt_rq->tg = tg;
163
164         tg->rt_rq[cpu] = rt_rq;
165         tg->rt_se[cpu] = rt_se;
166
167         if (!rt_se)
168                 return;
169
170         if (!parent)
171                 rt_se->rt_rq = &rq->rt;
172         else
173                 rt_se->rt_rq = parent->my_q;
174
175         rt_se->my_q = rt_rq;
176         rt_se->parent = parent;
177         INIT_LIST_HEAD(&rt_se->run_list);
178 }
179
180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
181 {
182         struct rt_rq *rt_rq;
183         struct sched_rt_entity *rt_se;
184         int i;
185
186         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
187         if (!tg->rt_rq)
188                 goto err;
189         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
190         if (!tg->rt_se)
191                 goto err;
192
193         init_rt_bandwidth(&tg->rt_bandwidth,
194                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
195
196         for_each_possible_cpu(i) {
197                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
198                                      GFP_KERNEL, cpu_to_node(i));
199                 if (!rt_rq)
200                         goto err;
201
202                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_se)
205                         goto err_free_rq;
206
207                 init_rt_rq(rt_rq);
208                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
209                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
210         }
211
212         return 1;
213
214 err_free_rq:
215         kfree(rt_rq);
216 err:
217         return 0;
218 }
219
220 #else /* CONFIG_RT_GROUP_SCHED */
221
222 #define rt_entity_is_task(rt_se) (1)
223
224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
225 {
226         return container_of(rt_se, struct task_struct, rt);
227 }
228
229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
230 {
231         return container_of(rt_rq, struct rq, rt);
232 }
233
234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
235 {
236         struct task_struct *p = rt_task_of(rt_se);
237
238         return task_rq(p);
239 }
240
241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
242 {
243         struct rq *rq = rq_of_rt_se(rt_se);
244
245         return &rq->rt;
246 }
247
248 void free_rt_sched_group(struct task_group *tg) { }
249
250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
251 {
252         return 1;
253 }
254 #endif /* CONFIG_RT_GROUP_SCHED */
255
256 #ifdef CONFIG_SMP
257
258 static void pull_rt_task(struct rq *this_rq);
259
260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
261 {
262         /* Try to pull RT tasks here if we lower this rq's prio */
263         return rq->rt.highest_prio.curr > prev->prio;
264 }
265
266 static inline int rt_overloaded(struct rq *rq)
267 {
268         return atomic_read(&rq->rd->rto_count);
269 }
270
271 static inline void rt_set_overload(struct rq *rq)
272 {
273         if (!rq->online)
274                 return;
275
276         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
277         /*
278          * Make sure the mask is visible before we set
279          * the overload count. That is checked to determine
280          * if we should look at the mask. It would be a shame
281          * if we looked at the mask, but the mask was not
282          * updated yet.
283          *
284          * Matched by the barrier in pull_rt_task().
285          */
286         smp_wmb();
287         atomic_inc(&rq->rd->rto_count);
288 }
289
290 static inline void rt_clear_overload(struct rq *rq)
291 {
292         if (!rq->online)
293                 return;
294
295         /* the order here really doesn't matter */
296         atomic_dec(&rq->rd->rto_count);
297         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
298 }
299
300 static void update_rt_migration(struct rt_rq *rt_rq)
301 {
302         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
303                 if (!rt_rq->overloaded) {
304                         rt_set_overload(rq_of_rt_rq(rt_rq));
305                         rt_rq->overloaded = 1;
306                 }
307         } else if (rt_rq->overloaded) {
308                 rt_clear_overload(rq_of_rt_rq(rt_rq));
309                 rt_rq->overloaded = 0;
310         }
311 }
312
313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
314 {
315         struct task_struct *p;
316
317         if (!rt_entity_is_task(rt_se))
318                 return;
319
320         p = rt_task_of(rt_se);
321         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
322
323         rt_rq->rt_nr_total++;
324         if (p->nr_cpus_allowed > 1)
325                 rt_rq->rt_nr_migratory++;
326
327         update_rt_migration(rt_rq);
328 }
329
330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
331 {
332         struct task_struct *p;
333
334         if (!rt_entity_is_task(rt_se))
335                 return;
336
337         p = rt_task_of(rt_se);
338         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
339
340         rt_rq->rt_nr_total--;
341         if (p->nr_cpus_allowed > 1)
342                 rt_rq->rt_nr_migratory--;
343
344         update_rt_migration(rt_rq);
345 }
346
347 static inline int has_pushable_tasks(struct rq *rq)
348 {
349         return !plist_head_empty(&rq->rt.pushable_tasks);
350 }
351
352 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
354
355 static void push_rt_tasks(struct rq *);
356 static void pull_rt_task(struct rq *);
357
358 static inline void rt_queue_push_tasks(struct rq *rq)
359 {
360         if (!has_pushable_tasks(rq))
361                 return;
362
363         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
364 }
365
366 static inline void rt_queue_pull_task(struct rq *rq)
367 {
368         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
369 }
370
371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
372 {
373         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
374         plist_node_init(&p->pushable_tasks, p->prio);
375         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
376
377         /* Update the highest prio pushable task */
378         if (p->prio < rq->rt.highest_prio.next)
379                 rq->rt.highest_prio.next = p->prio;
380 }
381
382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385
386         /* Update the new highest prio pushable task */
387         if (has_pushable_tasks(rq)) {
388                 p = plist_first_entry(&rq->rt.pushable_tasks,
389                                       struct task_struct, pushable_tasks);
390                 rq->rt.highest_prio.next = p->prio;
391         } else
392                 rq->rt.highest_prio.next = MAX_RT_PRIO;
393 }
394
395 #else
396
397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 }
400
401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404
405 static inline
406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
407 {
408 }
409
410 static inline
411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414
415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
416 {
417         return false;
418 }
419
420 static inline void pull_rt_task(struct rq *this_rq)
421 {
422 }
423
424 static inline void rt_queue_push_tasks(struct rq *rq)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
431
432 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
433 {
434         return rt_se->on_rq;
435 }
436
437 #ifdef CONFIG_RT_GROUP_SCHED
438
439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
440 {
441         if (!rt_rq->tg)
442                 return RUNTIME_INF;
443
444         return rt_rq->rt_runtime;
445 }
446
447 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
448 {
449         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
450 }
451
452 typedef struct task_group *rt_rq_iter_t;
453
454 static inline struct task_group *next_task_group(struct task_group *tg)
455 {
456         do {
457                 tg = list_entry_rcu(tg->list.next,
458                         typeof(struct task_group), list);
459         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
460
461         if (&tg->list == &task_groups)
462                 tg = NULL;
463
464         return tg;
465 }
466
467 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
468         for (iter = container_of(&task_groups, typeof(*iter), list);    \
469                 (iter = next_task_group(iter)) &&                       \
470                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
471
472 #define for_each_sched_rt_entity(rt_se) \
473         for (; rt_se; rt_se = rt_se->parent)
474
475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
476 {
477         return rt_se->my_q;
478 }
479
480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
482
483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
484 {
485         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
486         struct rq *rq = rq_of_rt_rq(rt_rq);
487         struct sched_rt_entity *rt_se;
488
489         int cpu = cpu_of(rq);
490
491         rt_se = rt_rq->tg->rt_se[cpu];
492
493         if (rt_rq->rt_nr_running) {
494                 if (!rt_se)
495                         enqueue_top_rt_rq(rt_rq);
496                 else if (!on_rt_rq(rt_se))
497                         enqueue_rt_entity(rt_se, 0);
498
499                 if (rt_rq->highest_prio.curr < curr->prio)
500                         resched_curr(rq);
501         }
502 }
503
504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
505 {
506         struct sched_rt_entity *rt_se;
507         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
508
509         rt_se = rt_rq->tg->rt_se[cpu];
510
511         if (!rt_se) {
512                 dequeue_top_rt_rq(rt_rq);
513                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
514                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
515         }
516         else if (on_rt_rq(rt_se))
517                 dequeue_rt_entity(rt_se, 0);
518 }
519
520 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
521 {
522         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
523 }
524
525 static int rt_se_boosted(struct sched_rt_entity *rt_se)
526 {
527         struct rt_rq *rt_rq = group_rt_rq(rt_se);
528         struct task_struct *p;
529
530         if (rt_rq)
531                 return !!rt_rq->rt_nr_boosted;
532
533         p = rt_task_of(rt_se);
534         return p->prio != p->normal_prio;
535 }
536
537 #ifdef CONFIG_SMP
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540         return this_rq()->rd->span;
541 }
542 #else
543 static inline const struct cpumask *sched_rt_period_mask(void)
544 {
545         return cpu_online_mask;
546 }
547 #endif
548
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551 {
552         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
553 }
554
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556 {
557         return &rt_rq->tg->rt_bandwidth;
558 }
559
560 #else /* !CONFIG_RT_GROUP_SCHED */
561
562 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
563 {
564         return rt_rq->rt_runtime;
565 }
566
567 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
568 {
569         return ktime_to_ns(def_rt_bandwidth.rt_period);
570 }
571
572 typedef struct rt_rq *rt_rq_iter_t;
573
574 #define for_each_rt_rq(rt_rq, iter, rq) \
575         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
576
577 #define for_each_sched_rt_entity(rt_se) \
578         for (; rt_se; rt_se = NULL)
579
580 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
581 {
582         return NULL;
583 }
584
585 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
586 {
587         struct rq *rq = rq_of_rt_rq(rt_rq);
588
589         if (!rt_rq->rt_nr_running)
590                 return;
591
592         enqueue_top_rt_rq(rt_rq);
593         resched_curr(rq);
594 }
595
596 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598         dequeue_top_rt_rq(rt_rq);
599 }
600
601 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
602 {
603         return rt_rq->rt_throttled;
604 }
605
606 static inline const struct cpumask *sched_rt_period_mask(void)
607 {
608         return cpu_online_mask;
609 }
610
611 static inline
612 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
613 {
614         return &cpu_rq(cpu)->rt;
615 }
616
617 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
618 {
619         return &def_rt_bandwidth;
620 }
621
622 #endif /* CONFIG_RT_GROUP_SCHED */
623
624 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
625 {
626         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
627
628         return (hrtimer_active(&rt_b->rt_period_timer) ||
629                 rt_rq->rt_time < rt_b->rt_runtime);
630 }
631
632 #ifdef CONFIG_SMP
633 /*
634  * We ran out of runtime, see if we can borrow some from our neighbours.
635  */
636 static void do_balance_runtime(struct rt_rq *rt_rq)
637 {
638         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
640         int i, weight;
641         u64 rt_period;
642
643         weight = cpumask_weight(rd->span);
644
645         raw_spin_lock(&rt_b->rt_runtime_lock);
646         rt_period = ktime_to_ns(rt_b->rt_period);
647         for_each_cpu(i, rd->span) {
648                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
649                 s64 diff;
650
651                 if (iter == rt_rq)
652                         continue;
653
654                 raw_spin_lock(&iter->rt_runtime_lock);
655                 /*
656                  * Either all rqs have inf runtime and there's nothing to steal
657                  * or __disable_runtime() below sets a specific rq to inf to
658                  * indicate its been disabled and disalow stealing.
659                  */
660                 if (iter->rt_runtime == RUNTIME_INF)
661                         goto next;
662
663                 /*
664                  * From runqueues with spare time, take 1/n part of their
665                  * spare time, but no more than our period.
666                  */
667                 diff = iter->rt_runtime - iter->rt_time;
668                 if (diff > 0) {
669                         diff = div_u64((u64)diff, weight);
670                         if (rt_rq->rt_runtime + diff > rt_period)
671                                 diff = rt_period - rt_rq->rt_runtime;
672                         iter->rt_runtime -= diff;
673                         rt_rq->rt_runtime += diff;
674                         if (rt_rq->rt_runtime == rt_period) {
675                                 raw_spin_unlock(&iter->rt_runtime_lock);
676                                 break;
677                         }
678                 }
679 next:
680                 raw_spin_unlock(&iter->rt_runtime_lock);
681         }
682         raw_spin_unlock(&rt_b->rt_runtime_lock);
683 }
684
685 /*
686  * Ensure this RQ takes back all the runtime it lend to its neighbours.
687  */
688 static void __disable_runtime(struct rq *rq)
689 {
690         struct root_domain *rd = rq->rd;
691         rt_rq_iter_t iter;
692         struct rt_rq *rt_rq;
693
694         if (unlikely(!scheduler_running))
695                 return;
696
697         for_each_rt_rq(rt_rq, iter, rq) {
698                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
699                 s64 want;
700                 int i;
701
702                 raw_spin_lock(&rt_b->rt_runtime_lock);
703                 raw_spin_lock(&rt_rq->rt_runtime_lock);
704                 /*
705                  * Either we're all inf and nobody needs to borrow, or we're
706                  * already disabled and thus have nothing to do, or we have
707                  * exactly the right amount of runtime to take out.
708                  */
709                 if (rt_rq->rt_runtime == RUNTIME_INF ||
710                                 rt_rq->rt_runtime == rt_b->rt_runtime)
711                         goto balanced;
712                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
713
714                 /*
715                  * Calculate the difference between what we started out with
716                  * and what we current have, that's the amount of runtime
717                  * we lend and now have to reclaim.
718                  */
719                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
720
721                 /*
722                  * Greedy reclaim, take back as much as we can.
723                  */
724                 for_each_cpu(i, rd->span) {
725                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
726                         s64 diff;
727
728                         /*
729                          * Can't reclaim from ourselves or disabled runqueues.
730                          */
731                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
732                                 continue;
733
734                         raw_spin_lock(&iter->rt_runtime_lock);
735                         if (want > 0) {
736                                 diff = min_t(s64, iter->rt_runtime, want);
737                                 iter->rt_runtime -= diff;
738                                 want -= diff;
739                         } else {
740                                 iter->rt_runtime -= want;
741                                 want -= want;
742                         }
743                         raw_spin_unlock(&iter->rt_runtime_lock);
744
745                         if (!want)
746                                 break;
747                 }
748
749                 raw_spin_lock(&rt_rq->rt_runtime_lock);
750                 /*
751                  * We cannot be left wanting - that would mean some runtime
752                  * leaked out of the system.
753                  */
754                 BUG_ON(want);
755 balanced:
756                 /*
757                  * Disable all the borrow logic by pretending we have inf
758                  * runtime - in which case borrowing doesn't make sense.
759                  */
760                 rt_rq->rt_runtime = RUNTIME_INF;
761                 rt_rq->rt_throttled = 0;
762                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
763                 raw_spin_unlock(&rt_b->rt_runtime_lock);
764
765                 /* Make rt_rq available for pick_next_task() */
766                 sched_rt_rq_enqueue(rt_rq);
767         }
768 }
769
770 static void __enable_runtime(struct rq *rq)
771 {
772         rt_rq_iter_t iter;
773         struct rt_rq *rt_rq;
774
775         if (unlikely(!scheduler_running))
776                 return;
777
778         /*
779          * Reset each runqueue's bandwidth settings
780          */
781         for_each_rt_rq(rt_rq, iter, rq) {
782                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
783
784                 raw_spin_lock(&rt_b->rt_runtime_lock);
785                 raw_spin_lock(&rt_rq->rt_runtime_lock);
786                 rt_rq->rt_runtime = rt_b->rt_runtime;
787                 rt_rq->rt_time = 0;
788                 rt_rq->rt_throttled = 0;
789                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
790                 raw_spin_unlock(&rt_b->rt_runtime_lock);
791         }
792 }
793
794 static void balance_runtime(struct rt_rq *rt_rq)
795 {
796         if (!sched_feat(RT_RUNTIME_SHARE))
797                 return;
798
799         if (rt_rq->rt_time > rt_rq->rt_runtime) {
800                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
801                 do_balance_runtime(rt_rq);
802                 raw_spin_lock(&rt_rq->rt_runtime_lock);
803         }
804 }
805 #else /* !CONFIG_SMP */
806 static inline void balance_runtime(struct rt_rq *rt_rq) {}
807 #endif /* CONFIG_SMP */
808
809 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
810 {
811         int i, idle = 1, throttled = 0;
812         const struct cpumask *span;
813
814         span = sched_rt_period_mask();
815 #ifdef CONFIG_RT_GROUP_SCHED
816         /*
817          * FIXME: isolated CPUs should really leave the root task group,
818          * whether they are isolcpus or were isolated via cpusets, lest
819          * the timer run on a CPU which does not service all runqueues,
820          * potentially leaving other CPUs indefinitely throttled.  If
821          * isolation is really required, the user will turn the throttle
822          * off to kill the perturbations it causes anyway.  Meanwhile,
823          * this maintains functionality for boot and/or troubleshooting.
824          */
825         if (rt_b == &root_task_group.rt_bandwidth)
826                 span = cpu_online_mask;
827 #endif
828         for_each_cpu(i, span) {
829                 int enqueue = 0;
830                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
831                 struct rq *rq = rq_of_rt_rq(rt_rq);
832                 int skip;
833
834                 /*
835                  * When span == cpu_online_mask, taking each rq->lock
836                  * can be time-consuming. Try to avoid it when possible.
837                  */
838                 raw_spin_lock(&rt_rq->rt_runtime_lock);
839                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
840                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
841                 if (skip)
842                         continue;
843
844                 raw_spin_lock(&rq->lock);
845                 update_rq_clock(rq);
846
847                 if (rt_rq->rt_time) {
848                         u64 runtime;
849
850                         raw_spin_lock(&rt_rq->rt_runtime_lock);
851                         if (rt_rq->rt_throttled)
852                                 balance_runtime(rt_rq);
853                         runtime = rt_rq->rt_runtime;
854                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
855                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
856                                 rt_rq->rt_throttled = 0;
857                                 enqueue = 1;
858
859                                 /*
860                                  * When we're idle and a woken (rt) task is
861                                  * throttled check_preempt_curr() will set
862                                  * skip_update and the time between the wakeup
863                                  * and this unthrottle will get accounted as
864                                  * 'runtime'.
865                                  */
866                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
867                                         rq_clock_cancel_skipupdate(rq);
868                         }
869                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
870                                 idle = 0;
871                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
872                 } else if (rt_rq->rt_nr_running) {
873                         idle = 0;
874                         if (!rt_rq_throttled(rt_rq))
875                                 enqueue = 1;
876                 }
877                 if (rt_rq->rt_throttled)
878                         throttled = 1;
879
880                 if (enqueue)
881                         sched_rt_rq_enqueue(rt_rq);
882                 raw_spin_unlock(&rq->lock);
883         }
884
885         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
886                 return 1;
887
888         return idle;
889 }
890
891 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
892 {
893 #ifdef CONFIG_RT_GROUP_SCHED
894         struct rt_rq *rt_rq = group_rt_rq(rt_se);
895
896         if (rt_rq)
897                 return rt_rq->highest_prio.curr;
898 #endif
899
900         return rt_task_of(rt_se)->prio;
901 }
902
903 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
904 {
905         u64 runtime = sched_rt_runtime(rt_rq);
906
907         if (rt_rq->rt_throttled)
908                 return rt_rq_throttled(rt_rq);
909
910         if (runtime >= sched_rt_period(rt_rq))
911                 return 0;
912
913         balance_runtime(rt_rq);
914         runtime = sched_rt_runtime(rt_rq);
915         if (runtime == RUNTIME_INF)
916                 return 0;
917
918         if (rt_rq->rt_time > runtime) {
919                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
920
921                 /*
922                  * Don't actually throttle groups that have no runtime assigned
923                  * but accrue some time due to boosting.
924                  */
925                 if (likely(rt_b->rt_runtime)) {
926                         rt_rq->rt_throttled = 1;
927                         printk_deferred_once("sched: RT throttling activated\n");
928                 } else {
929                         /*
930                          * In case we did anyway, make it go away,
931                          * replenishment is a joke, since it will replenish us
932                          * with exactly 0 ns.
933                          */
934                         rt_rq->rt_time = 0;
935                 }
936
937                 if (rt_rq_throttled(rt_rq)) {
938                         sched_rt_rq_dequeue(rt_rq);
939                         return 1;
940                 }
941         }
942
943         return 0;
944 }
945
946 /*
947  * Update the current task's runtime statistics. Skip current tasks that
948  * are not in our scheduling class.
949  */
950 static void update_curr_rt(struct rq *rq)
951 {
952         struct task_struct *curr = rq->curr;
953         struct sched_rt_entity *rt_se = &curr->rt;
954         u64 delta_exec;
955         u64 now;
956
957         if (curr->sched_class != &rt_sched_class)
958                 return;
959
960         now = rq_clock_task(rq);
961         delta_exec = now - curr->se.exec_start;
962         if (unlikely((s64)delta_exec <= 0))
963                 return;
964
965         schedstat_set(curr->se.statistics.exec_max,
966                       max(curr->se.statistics.exec_max, delta_exec));
967
968         curr->se.sum_exec_runtime += delta_exec;
969         account_group_exec_runtime(curr, delta_exec);
970
971         curr->se.exec_start = now;
972         cgroup_account_cputime(curr, delta_exec);
973
974         sched_rt_avg_update(rq, delta_exec);
975
976         if (!rt_bandwidth_enabled())
977                 return;
978
979         for_each_sched_rt_entity(rt_se) {
980                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
981
982                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
983                         raw_spin_lock(&rt_rq->rt_runtime_lock);
984                         rt_rq->rt_time += delta_exec;
985                         if (sched_rt_runtime_exceeded(rt_rq))
986                                 resched_curr(rq);
987                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
988                 }
989         }
990 }
991
992 static void
993 dequeue_top_rt_rq(struct rt_rq *rt_rq)
994 {
995         struct rq *rq = rq_of_rt_rq(rt_rq);
996
997         BUG_ON(&rq->rt != rt_rq);
998
999         if (!rt_rq->rt_queued)
1000                 return;
1001
1002         BUG_ON(!rq->nr_running);
1003
1004         sub_nr_running(rq, rt_rq->rt_nr_running);
1005         rt_rq->rt_queued = 0;
1006
1007 }
1008
1009 static void
1010 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1011 {
1012         struct rq *rq = rq_of_rt_rq(rt_rq);
1013
1014         BUG_ON(&rq->rt != rt_rq);
1015
1016         if (rt_rq->rt_queued)
1017                 return;
1018
1019         if (rt_rq_throttled(rt_rq))
1020                 return;
1021
1022         if (rt_rq->rt_nr_running) {
1023                 add_nr_running(rq, rt_rq->rt_nr_running);
1024                 rt_rq->rt_queued = 1;
1025         }
1026
1027         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1028         cpufreq_update_util(rq, 0);
1029 }
1030
1031 #if defined CONFIG_SMP
1032
1033 static void
1034 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1035 {
1036         struct rq *rq = rq_of_rt_rq(rt_rq);
1037
1038 #ifdef CONFIG_RT_GROUP_SCHED
1039         /*
1040          * Change rq's cpupri only if rt_rq is the top queue.
1041          */
1042         if (&rq->rt != rt_rq)
1043                 return;
1044 #endif
1045         if (rq->online && prio < prev_prio)
1046                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1047 }
1048
1049 static void
1050 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1051 {
1052         struct rq *rq = rq_of_rt_rq(rt_rq);
1053
1054 #ifdef CONFIG_RT_GROUP_SCHED
1055         /*
1056          * Change rq's cpupri only if rt_rq is the top queue.
1057          */
1058         if (&rq->rt != rt_rq)
1059                 return;
1060 #endif
1061         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1062                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1063 }
1064
1065 #else /* CONFIG_SMP */
1066
1067 static inline
1068 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1069 static inline
1070 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071
1072 #endif /* CONFIG_SMP */
1073
1074 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1075 static void
1076 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1077 {
1078         int prev_prio = rt_rq->highest_prio.curr;
1079
1080         if (prio < prev_prio)
1081                 rt_rq->highest_prio.curr = prio;
1082
1083         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1084 }
1085
1086 static void
1087 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1088 {
1089         int prev_prio = rt_rq->highest_prio.curr;
1090
1091         if (rt_rq->rt_nr_running) {
1092
1093                 WARN_ON(prio < prev_prio);
1094
1095                 /*
1096                  * This may have been our highest task, and therefore
1097                  * we may have some recomputation to do
1098                  */
1099                 if (prio == prev_prio) {
1100                         struct rt_prio_array *array = &rt_rq->active;
1101
1102                         rt_rq->highest_prio.curr =
1103                                 sched_find_first_bit(array->bitmap);
1104                 }
1105
1106         } else
1107                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1108
1109         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1110 }
1111
1112 #else
1113
1114 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1115 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1116
1117 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1118
1119 #ifdef CONFIG_RT_GROUP_SCHED
1120
1121 static void
1122 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1123 {
1124         if (rt_se_boosted(rt_se))
1125                 rt_rq->rt_nr_boosted++;
1126
1127         if (rt_rq->tg)
1128                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1129 }
1130
1131 static void
1132 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1133 {
1134         if (rt_se_boosted(rt_se))
1135                 rt_rq->rt_nr_boosted--;
1136
1137         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1138 }
1139
1140 #else /* CONFIG_RT_GROUP_SCHED */
1141
1142 static void
1143 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144 {
1145         start_rt_bandwidth(&def_rt_bandwidth);
1146 }
1147
1148 static inline
1149 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1150
1151 #endif /* CONFIG_RT_GROUP_SCHED */
1152
1153 static inline
1154 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1155 {
1156         struct rt_rq *group_rq = group_rt_rq(rt_se);
1157
1158         if (group_rq)
1159                 return group_rq->rt_nr_running;
1160         else
1161                 return 1;
1162 }
1163
1164 static inline
1165 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1166 {
1167         struct rt_rq *group_rq = group_rt_rq(rt_se);
1168         struct task_struct *tsk;
1169
1170         if (group_rq)
1171                 return group_rq->rr_nr_running;
1172
1173         tsk = rt_task_of(rt_se);
1174
1175         return (tsk->policy == SCHED_RR) ? 1 : 0;
1176 }
1177
1178 static inline
1179 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1180 {
1181         int prio = rt_se_prio(rt_se);
1182
1183         WARN_ON(!rt_prio(prio));
1184         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1185         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1186
1187         inc_rt_prio(rt_rq, prio);
1188         inc_rt_migration(rt_se, rt_rq);
1189         inc_rt_group(rt_se, rt_rq);
1190 }
1191
1192 static inline
1193 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1194 {
1195         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1196         WARN_ON(!rt_rq->rt_nr_running);
1197         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1198         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1199
1200         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1201         dec_rt_migration(rt_se, rt_rq);
1202         dec_rt_group(rt_se, rt_rq);
1203 }
1204
1205 /*
1206  * Change rt_se->run_list location unless SAVE && !MOVE
1207  *
1208  * assumes ENQUEUE/DEQUEUE flags match
1209  */
1210 static inline bool move_entity(unsigned int flags)
1211 {
1212         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1213                 return false;
1214
1215         return true;
1216 }
1217
1218 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1219 {
1220         list_del_init(&rt_se->run_list);
1221
1222         if (list_empty(array->queue + rt_se_prio(rt_se)))
1223                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1224
1225         rt_se->on_list = 0;
1226 }
1227
1228 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1229 {
1230         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1231         struct rt_prio_array *array = &rt_rq->active;
1232         struct rt_rq *group_rq = group_rt_rq(rt_se);
1233         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1234
1235         /*
1236          * Don't enqueue the group if its throttled, or when empty.
1237          * The latter is a consequence of the former when a child group
1238          * get throttled and the current group doesn't have any other
1239          * active members.
1240          */
1241         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1242                 if (rt_se->on_list)
1243                         __delist_rt_entity(rt_se, array);
1244                 return;
1245         }
1246
1247         if (move_entity(flags)) {
1248                 WARN_ON_ONCE(rt_se->on_list);
1249                 if (flags & ENQUEUE_HEAD)
1250                         list_add(&rt_se->run_list, queue);
1251                 else
1252                         list_add_tail(&rt_se->run_list, queue);
1253
1254                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1255                 rt_se->on_list = 1;
1256         }
1257         rt_se->on_rq = 1;
1258
1259         inc_rt_tasks(rt_se, rt_rq);
1260 }
1261
1262 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1263 {
1264         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1265         struct rt_prio_array *array = &rt_rq->active;
1266
1267         if (move_entity(flags)) {
1268                 WARN_ON_ONCE(!rt_se->on_list);
1269                 __delist_rt_entity(rt_se, array);
1270         }
1271         rt_se->on_rq = 0;
1272
1273         dec_rt_tasks(rt_se, rt_rq);
1274 }
1275
1276 /*
1277  * Because the prio of an upper entry depends on the lower
1278  * entries, we must remove entries top - down.
1279  */
1280 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1281 {
1282         struct sched_rt_entity *back = NULL;
1283
1284         for_each_sched_rt_entity(rt_se) {
1285                 rt_se->back = back;
1286                 back = rt_se;
1287         }
1288
1289         dequeue_top_rt_rq(rt_rq_of_se(back));
1290
1291         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1292                 if (on_rt_rq(rt_se))
1293                         __dequeue_rt_entity(rt_se, flags);
1294         }
1295 }
1296
1297 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1298 {
1299         struct rq *rq = rq_of_rt_se(rt_se);
1300
1301         dequeue_rt_stack(rt_se, flags);
1302         for_each_sched_rt_entity(rt_se)
1303                 __enqueue_rt_entity(rt_se, flags);
1304         enqueue_top_rt_rq(&rq->rt);
1305 }
1306
1307 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1308 {
1309         struct rq *rq = rq_of_rt_se(rt_se);
1310
1311         dequeue_rt_stack(rt_se, flags);
1312
1313         for_each_sched_rt_entity(rt_se) {
1314                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1315
1316                 if (rt_rq && rt_rq->rt_nr_running)
1317                         __enqueue_rt_entity(rt_se, flags);
1318         }
1319         enqueue_top_rt_rq(&rq->rt);
1320 }
1321
1322 /*
1323  * Adding/removing a task to/from a priority array:
1324  */
1325 static void
1326 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1327 {
1328         struct sched_rt_entity *rt_se = &p->rt;
1329
1330         if (flags & ENQUEUE_WAKEUP)
1331                 rt_se->timeout = 0;
1332
1333         enqueue_rt_entity(rt_se, flags);
1334
1335         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1336                 enqueue_pushable_task(rq, p);
1337 }
1338
1339 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1340 {
1341         struct sched_rt_entity *rt_se = &p->rt;
1342
1343         update_curr_rt(rq);
1344         dequeue_rt_entity(rt_se, flags);
1345
1346         dequeue_pushable_task(rq, p);
1347 }
1348
1349 /*
1350  * Put task to the head or the end of the run list without the overhead of
1351  * dequeue followed by enqueue.
1352  */
1353 static void
1354 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1355 {
1356         if (on_rt_rq(rt_se)) {
1357                 struct rt_prio_array *array = &rt_rq->active;
1358                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1359
1360                 if (head)
1361                         list_move(&rt_se->run_list, queue);
1362                 else
1363                         list_move_tail(&rt_se->run_list, queue);
1364         }
1365 }
1366
1367 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1368 {
1369         struct sched_rt_entity *rt_se = &p->rt;
1370         struct rt_rq *rt_rq;
1371
1372         for_each_sched_rt_entity(rt_se) {
1373                 rt_rq = rt_rq_of_se(rt_se);
1374                 requeue_rt_entity(rt_rq, rt_se, head);
1375         }
1376 }
1377
1378 static void yield_task_rt(struct rq *rq)
1379 {
1380         requeue_task_rt(rq, rq->curr, 0);
1381 }
1382
1383 #ifdef CONFIG_SMP
1384 static int find_lowest_rq(struct task_struct *task);
1385
1386 static int
1387 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1388 {
1389         struct task_struct *curr;
1390         struct rq *rq;
1391
1392         /* For anything but wake ups, just return the task_cpu */
1393         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1394                 goto out;
1395
1396         rq = cpu_rq(cpu);
1397
1398         rcu_read_lock();
1399         curr = READ_ONCE(rq->curr); /* unlocked access */
1400
1401         /*
1402          * If the current task on @p's runqueue is an RT task, then
1403          * try to see if we can wake this RT task up on another
1404          * runqueue. Otherwise simply start this RT task
1405          * on its current runqueue.
1406          *
1407          * We want to avoid overloading runqueues. If the woken
1408          * task is a higher priority, then it will stay on this CPU
1409          * and the lower prio task should be moved to another CPU.
1410          * Even though this will probably make the lower prio task
1411          * lose its cache, we do not want to bounce a higher task
1412          * around just because it gave up its CPU, perhaps for a
1413          * lock?
1414          *
1415          * For equal prio tasks, we just let the scheduler sort it out.
1416          *
1417          * Otherwise, just let it ride on the affined RQ and the
1418          * post-schedule router will push the preempted task away
1419          *
1420          * This test is optimistic, if we get it wrong the load-balancer
1421          * will have to sort it out.
1422          */
1423         if (curr && unlikely(rt_task(curr)) &&
1424             (curr->nr_cpus_allowed < 2 ||
1425              curr->prio <= p->prio)) {
1426                 int target = find_lowest_rq(p);
1427
1428                 /*
1429                  * Don't bother moving it if the destination CPU is
1430                  * not running a lower priority task.
1431                  */
1432                 if (target != -1 &&
1433                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1434                         cpu = target;
1435         }
1436         rcu_read_unlock();
1437
1438 out:
1439         return cpu;
1440 }
1441
1442 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1443 {
1444         /*
1445          * Current can't be migrated, useless to reschedule,
1446          * let's hope p can move out.
1447          */
1448         if (rq->curr->nr_cpus_allowed == 1 ||
1449             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1450                 return;
1451
1452         /*
1453          * p is migratable, so let's not schedule it and
1454          * see if it is pushed or pulled somewhere else.
1455          */
1456         if (p->nr_cpus_allowed != 1
1457             && cpupri_find(&rq->rd->cpupri, p, NULL))
1458                 return;
1459
1460         /*
1461          * There appear to be other CPUs that can accept
1462          * the current task but none can run 'p', so lets reschedule
1463          * to try and push the current task away:
1464          */
1465         requeue_task_rt(rq, p, 1);
1466         resched_curr(rq);
1467 }
1468
1469 #endif /* CONFIG_SMP */
1470
1471 /*
1472  * Preempt the current task with a newly woken task if needed:
1473  */
1474 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1475 {
1476         if (p->prio < rq->curr->prio) {
1477                 resched_curr(rq);
1478                 return;
1479         }
1480
1481 #ifdef CONFIG_SMP
1482         /*
1483          * If:
1484          *
1485          * - the newly woken task is of equal priority to the current task
1486          * - the newly woken task is non-migratable while current is migratable
1487          * - current will be preempted on the next reschedule
1488          *
1489          * we should check to see if current can readily move to a different
1490          * cpu.  If so, we will reschedule to allow the push logic to try
1491          * to move current somewhere else, making room for our non-migratable
1492          * task.
1493          */
1494         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1495                 check_preempt_equal_prio(rq, p);
1496 #endif
1497 }
1498
1499 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1500                                                    struct rt_rq *rt_rq)
1501 {
1502         struct rt_prio_array *array = &rt_rq->active;
1503         struct sched_rt_entity *next = NULL;
1504         struct list_head *queue;
1505         int idx;
1506
1507         idx = sched_find_first_bit(array->bitmap);
1508         BUG_ON(idx >= MAX_RT_PRIO);
1509
1510         queue = array->queue + idx;
1511         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1512
1513         return next;
1514 }
1515
1516 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1517 {
1518         struct sched_rt_entity *rt_se;
1519         struct task_struct *p;
1520         struct rt_rq *rt_rq  = &rq->rt;
1521
1522         do {
1523                 rt_se = pick_next_rt_entity(rq, rt_rq);
1524                 BUG_ON(!rt_se);
1525                 rt_rq = group_rt_rq(rt_se);
1526         } while (rt_rq);
1527
1528         p = rt_task_of(rt_se);
1529         p->se.exec_start = rq_clock_task(rq);
1530
1531         return p;
1532 }
1533
1534 static struct task_struct *
1535 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1536 {
1537         struct task_struct *p;
1538         struct rt_rq *rt_rq = &rq->rt;
1539
1540         if (need_pull_rt_task(rq, prev)) {
1541                 /*
1542                  * This is OK, because current is on_cpu, which avoids it being
1543                  * picked for load-balance and preemption/IRQs are still
1544                  * disabled avoiding further scheduler activity on it and we're
1545                  * being very careful to re-start the picking loop.
1546                  */
1547                 rq_unpin_lock(rq, rf);
1548                 pull_rt_task(rq);
1549                 rq_repin_lock(rq, rf);
1550                 /*
1551                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1552                  * means a dl or stop task can slip in, in which case we need
1553                  * to re-start task selection.
1554                  */
1555                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1556                              rq->dl.dl_nr_running))
1557                         return RETRY_TASK;
1558         }
1559
1560         /*
1561          * We may dequeue prev's rt_rq in put_prev_task().
1562          * So, we update time before rt_nr_running check.
1563          */
1564         if (prev->sched_class == &rt_sched_class)
1565                 update_curr_rt(rq);
1566
1567         if (!rt_rq->rt_queued)
1568                 return NULL;
1569
1570         put_prev_task(rq, prev);
1571
1572         p = _pick_next_task_rt(rq);
1573
1574         /* The running task is never eligible for pushing */
1575         dequeue_pushable_task(rq, p);
1576
1577         rt_queue_push_tasks(rq);
1578
1579         return p;
1580 }
1581
1582 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1583 {
1584         update_curr_rt(rq);
1585
1586         /*
1587          * The previous task needs to be made eligible for pushing
1588          * if it is still active
1589          */
1590         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1591                 enqueue_pushable_task(rq, p);
1592 }
1593
1594 #ifdef CONFIG_SMP
1595
1596 /* Only try algorithms three times */
1597 #define RT_MAX_TRIES 3
1598
1599 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1600 {
1601         if (!task_running(rq, p) &&
1602             cpumask_test_cpu(cpu, &p->cpus_allowed))
1603                 return 1;
1604
1605         return 0;
1606 }
1607
1608 /*
1609  * Return the highest pushable rq's task, which is suitable to be executed
1610  * on the CPU, NULL otherwise
1611  */
1612 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1613 {
1614         struct plist_head *head = &rq->rt.pushable_tasks;
1615         struct task_struct *p;
1616
1617         if (!has_pushable_tasks(rq))
1618                 return NULL;
1619
1620         plist_for_each_entry(p, head, pushable_tasks) {
1621                 if (pick_rt_task(rq, p, cpu))
1622                         return p;
1623         }
1624
1625         return NULL;
1626 }
1627
1628 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1629
1630 static int find_lowest_rq(struct task_struct *task)
1631 {
1632         struct sched_domain *sd;
1633         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1634         int this_cpu = smp_processor_id();
1635         int cpu      = task_cpu(task);
1636
1637         /* Make sure the mask is initialized first */
1638         if (unlikely(!lowest_mask))
1639                 return -1;
1640
1641         if (task->nr_cpus_allowed == 1)
1642                 return -1; /* No other targets possible */
1643
1644         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1645                 return -1; /* No targets found */
1646
1647         /*
1648          * At this point we have built a mask of CPUs representing the
1649          * lowest priority tasks in the system.  Now we want to elect
1650          * the best one based on our affinity and topology.
1651          *
1652          * We prioritize the last CPU that the task executed on since
1653          * it is most likely cache-hot in that location.
1654          */
1655         if (cpumask_test_cpu(cpu, lowest_mask))
1656                 return cpu;
1657
1658         /*
1659          * Otherwise, we consult the sched_domains span maps to figure
1660          * out which CPU is logically closest to our hot cache data.
1661          */
1662         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1663                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1664
1665         rcu_read_lock();
1666         for_each_domain(cpu, sd) {
1667                 if (sd->flags & SD_WAKE_AFFINE) {
1668                         int best_cpu;
1669
1670                         /*
1671                          * "this_cpu" is cheaper to preempt than a
1672                          * remote processor.
1673                          */
1674                         if (this_cpu != -1 &&
1675                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1676                                 rcu_read_unlock();
1677                                 return this_cpu;
1678                         }
1679
1680                         best_cpu = cpumask_first_and(lowest_mask,
1681                                                      sched_domain_span(sd));
1682                         if (best_cpu < nr_cpu_ids) {
1683                                 rcu_read_unlock();
1684                                 return best_cpu;
1685                         }
1686                 }
1687         }
1688         rcu_read_unlock();
1689
1690         /*
1691          * And finally, if there were no matches within the domains
1692          * just give the caller *something* to work with from the compatible
1693          * locations.
1694          */
1695         if (this_cpu != -1)
1696                 return this_cpu;
1697
1698         cpu = cpumask_any(lowest_mask);
1699         if (cpu < nr_cpu_ids)
1700                 return cpu;
1701
1702         return -1;
1703 }
1704
1705 /* Will lock the rq it finds */
1706 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1707 {
1708         struct rq *lowest_rq = NULL;
1709         int tries;
1710         int cpu;
1711
1712         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1713                 cpu = find_lowest_rq(task);
1714
1715                 if ((cpu == -1) || (cpu == rq->cpu))
1716                         break;
1717
1718                 lowest_rq = cpu_rq(cpu);
1719
1720                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1721                         /*
1722                          * Target rq has tasks of equal or higher priority,
1723                          * retrying does not release any lock and is unlikely
1724                          * to yield a different result.
1725                          */
1726                         lowest_rq = NULL;
1727                         break;
1728                 }
1729
1730                 /* if the prio of this runqueue changed, try again */
1731                 if (double_lock_balance(rq, lowest_rq)) {
1732                         /*
1733                          * We had to unlock the run queue. In
1734                          * the mean time, task could have
1735                          * migrated already or had its affinity changed.
1736                          * Also make sure that it wasn't scheduled on its rq.
1737                          */
1738                         if (unlikely(task_rq(task) != rq ||
1739                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1740                                      task_running(rq, task) ||
1741                                      !rt_task(task) ||
1742                                      !task_on_rq_queued(task))) {
1743
1744                                 double_unlock_balance(rq, lowest_rq);
1745                                 lowest_rq = NULL;
1746                                 break;
1747                         }
1748                 }
1749
1750                 /* If this rq is still suitable use it. */
1751                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1752                         break;
1753
1754                 /* try again */
1755                 double_unlock_balance(rq, lowest_rq);
1756                 lowest_rq = NULL;
1757         }
1758
1759         return lowest_rq;
1760 }
1761
1762 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1763 {
1764         struct task_struct *p;
1765
1766         if (!has_pushable_tasks(rq))
1767                 return NULL;
1768
1769         p = plist_first_entry(&rq->rt.pushable_tasks,
1770                               struct task_struct, pushable_tasks);
1771
1772         BUG_ON(rq->cpu != task_cpu(p));
1773         BUG_ON(task_current(rq, p));
1774         BUG_ON(p->nr_cpus_allowed <= 1);
1775
1776         BUG_ON(!task_on_rq_queued(p));
1777         BUG_ON(!rt_task(p));
1778
1779         return p;
1780 }
1781
1782 /*
1783  * If the current CPU has more than one RT task, see if the non
1784  * running task can migrate over to a CPU that is running a task
1785  * of lesser priority.
1786  */
1787 static int push_rt_task(struct rq *rq)
1788 {
1789         struct task_struct *next_task;
1790         struct rq *lowest_rq;
1791         int ret = 0;
1792
1793         if (!rq->rt.overloaded)
1794                 return 0;
1795
1796         next_task = pick_next_pushable_task(rq);
1797         if (!next_task)
1798                 return 0;
1799
1800 retry:
1801         if (unlikely(next_task == rq->curr)) {
1802                 WARN_ON(1);
1803                 return 0;
1804         }
1805
1806         /*
1807          * It's possible that the next_task slipped in of
1808          * higher priority than current. If that's the case
1809          * just reschedule current.
1810          */
1811         if (unlikely(next_task->prio < rq->curr->prio)) {
1812                 resched_curr(rq);
1813                 return 0;
1814         }
1815
1816         /* We might release rq lock */
1817         get_task_struct(next_task);
1818
1819         /* find_lock_lowest_rq locks the rq if found */
1820         lowest_rq = find_lock_lowest_rq(next_task, rq);
1821         if (!lowest_rq) {
1822                 struct task_struct *task;
1823                 /*
1824                  * find_lock_lowest_rq releases rq->lock
1825                  * so it is possible that next_task has migrated.
1826                  *
1827                  * We need to make sure that the task is still on the same
1828                  * run-queue and is also still the next task eligible for
1829                  * pushing.
1830                  */
1831                 task = pick_next_pushable_task(rq);
1832                 if (task == next_task) {
1833                         /*
1834                          * The task hasn't migrated, and is still the next
1835                          * eligible task, but we failed to find a run-queue
1836                          * to push it to.  Do not retry in this case, since
1837                          * other CPUs will pull from us when ready.
1838                          */
1839                         goto out;
1840                 }
1841
1842                 if (!task)
1843                         /* No more tasks, just exit */
1844                         goto out;
1845
1846                 /*
1847                  * Something has shifted, try again.
1848                  */
1849                 put_task_struct(next_task);
1850                 next_task = task;
1851                 goto retry;
1852         }
1853
1854         deactivate_task(rq, next_task, 0);
1855         set_task_cpu(next_task, lowest_rq->cpu);
1856         activate_task(lowest_rq, next_task, 0);
1857         ret = 1;
1858
1859         resched_curr(lowest_rq);
1860
1861         double_unlock_balance(rq, lowest_rq);
1862
1863 out:
1864         put_task_struct(next_task);
1865
1866         return ret;
1867 }
1868
1869 static void push_rt_tasks(struct rq *rq)
1870 {
1871         /* push_rt_task will return true if it moved an RT */
1872         while (push_rt_task(rq))
1873                 ;
1874 }
1875
1876 #ifdef HAVE_RT_PUSH_IPI
1877
1878 /*
1879  * When a high priority task schedules out from a CPU and a lower priority
1880  * task is scheduled in, a check is made to see if there's any RT tasks
1881  * on other CPUs that are waiting to run because a higher priority RT task
1882  * is currently running on its CPU. In this case, the CPU with multiple RT
1883  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1884  * up that may be able to run one of its non-running queued RT tasks.
1885  *
1886  * All CPUs with overloaded RT tasks need to be notified as there is currently
1887  * no way to know which of these CPUs have the highest priority task waiting
1888  * to run. Instead of trying to take a spinlock on each of these CPUs,
1889  * which has shown to cause large latency when done on machines with many
1890  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1891  * RT tasks waiting to run.
1892  *
1893  * Just sending an IPI to each of the CPUs is also an issue, as on large
1894  * count CPU machines, this can cause an IPI storm on a CPU, especially
1895  * if its the only CPU with multiple RT tasks queued, and a large number
1896  * of CPUs scheduling a lower priority task at the same time.
1897  *
1898  * Each root domain has its own irq work function that can iterate over
1899  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1900  * tassk must be checked if there's one or many CPUs that are lowering
1901  * their priority, there's a single irq work iterator that will try to
1902  * push off RT tasks that are waiting to run.
1903  *
1904  * When a CPU schedules a lower priority task, it will kick off the
1905  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1906  * As it only takes the first CPU that schedules a lower priority task
1907  * to start the process, the rto_start variable is incremented and if
1908  * the atomic result is one, then that CPU will try to take the rto_lock.
1909  * This prevents high contention on the lock as the process handles all
1910  * CPUs scheduling lower priority tasks.
1911  *
1912  * All CPUs that are scheduling a lower priority task will increment the
1913  * rt_loop_next variable. This will make sure that the irq work iterator
1914  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1915  * priority task, even if the iterator is in the middle of a scan. Incrementing
1916  * the rt_loop_next will cause the iterator to perform another scan.
1917  *
1918  */
1919 static int rto_next_cpu(struct root_domain *rd)
1920 {
1921         int next;
1922         int cpu;
1923
1924         /*
1925          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1926          * rt_next_cpu() will simply return the first CPU found in
1927          * the rto_mask.
1928          *
1929          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1930          * will return the next CPU found in the rto_mask.
1931          *
1932          * If there are no more CPUs left in the rto_mask, then a check is made
1933          * against rto_loop and rto_loop_next. rto_loop is only updated with
1934          * the rto_lock held, but any CPU may increment the rto_loop_next
1935          * without any locking.
1936          */
1937         for (;;) {
1938
1939                 /* When rto_cpu is -1 this acts like cpumask_first() */
1940                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1941
1942                 rd->rto_cpu = cpu;
1943
1944                 if (cpu < nr_cpu_ids)
1945                         return cpu;
1946
1947                 rd->rto_cpu = -1;
1948
1949                 /*
1950                  * ACQUIRE ensures we see the @rto_mask changes
1951                  * made prior to the @next value observed.
1952                  *
1953                  * Matches WMB in rt_set_overload().
1954                  */
1955                 next = atomic_read_acquire(&rd->rto_loop_next);
1956
1957                 if (rd->rto_loop == next)
1958                         break;
1959
1960                 rd->rto_loop = next;
1961         }
1962
1963         return -1;
1964 }
1965
1966 static inline bool rto_start_trylock(atomic_t *v)
1967 {
1968         return !atomic_cmpxchg_acquire(v, 0, 1);
1969 }
1970
1971 static inline void rto_start_unlock(atomic_t *v)
1972 {
1973         atomic_set_release(v, 0);
1974 }
1975
1976 static void tell_cpu_to_push(struct rq *rq)
1977 {
1978         int cpu = -1;
1979
1980         /* Keep the loop going if the IPI is currently active */
1981         atomic_inc(&rq->rd->rto_loop_next);
1982
1983         /* Only one CPU can initiate a loop at a time */
1984         if (!rto_start_trylock(&rq->rd->rto_loop_start))
1985                 return;
1986
1987         raw_spin_lock(&rq->rd->rto_lock);
1988
1989         /*
1990          * The rto_cpu is updated under the lock, if it has a valid CPU
1991          * then the IPI is still running and will continue due to the
1992          * update to loop_next, and nothing needs to be done here.
1993          * Otherwise it is finishing up and an ipi needs to be sent.
1994          */
1995         if (rq->rd->rto_cpu < 0)
1996                 cpu = rto_next_cpu(rq->rd);
1997
1998         raw_spin_unlock(&rq->rd->rto_lock);
1999
2000         rto_start_unlock(&rq->rd->rto_loop_start);
2001
2002         if (cpu >= 0) {
2003                 /* Make sure the rd does not get freed while pushing */
2004                 sched_get_rd(rq->rd);
2005                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2006         }
2007 }
2008
2009 /* Called from hardirq context */
2010 void rto_push_irq_work_func(struct irq_work *work)
2011 {
2012         struct root_domain *rd =
2013                 container_of(work, struct root_domain, rto_push_work);
2014         struct rq *rq;
2015         int cpu;
2016
2017         rq = this_rq();
2018
2019         /*
2020          * We do not need to grab the lock to check for has_pushable_tasks.
2021          * When it gets updated, a check is made if a push is possible.
2022          */
2023         if (has_pushable_tasks(rq)) {
2024                 raw_spin_lock(&rq->lock);
2025                 push_rt_tasks(rq);
2026                 raw_spin_unlock(&rq->lock);
2027         }
2028
2029         raw_spin_lock(&rd->rto_lock);
2030
2031         /* Pass the IPI to the next rt overloaded queue */
2032         cpu = rto_next_cpu(rd);
2033
2034         raw_spin_unlock(&rd->rto_lock);
2035
2036         if (cpu < 0) {
2037                 sched_put_rd(rd);
2038                 return;
2039         }
2040
2041         /* Try the next RT overloaded CPU */
2042         irq_work_queue_on(&rd->rto_push_work, cpu);
2043 }
2044 #endif /* HAVE_RT_PUSH_IPI */
2045
2046 static void pull_rt_task(struct rq *this_rq)
2047 {
2048         int this_cpu = this_rq->cpu, cpu;
2049         bool resched = false;
2050         struct task_struct *p;
2051         struct rq *src_rq;
2052         int rt_overload_count = rt_overloaded(this_rq);
2053
2054         if (likely(!rt_overload_count))
2055                 return;
2056
2057         /*
2058          * Match the barrier from rt_set_overloaded; this guarantees that if we
2059          * see overloaded we must also see the rto_mask bit.
2060          */
2061         smp_rmb();
2062
2063         /* If we are the only overloaded CPU do nothing */
2064         if (rt_overload_count == 1 &&
2065             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2066                 return;
2067
2068 #ifdef HAVE_RT_PUSH_IPI
2069         if (sched_feat(RT_PUSH_IPI)) {
2070                 tell_cpu_to_push(this_rq);
2071                 return;
2072         }
2073 #endif
2074
2075         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2076                 if (this_cpu == cpu)
2077                         continue;
2078
2079                 src_rq = cpu_rq(cpu);
2080
2081                 /*
2082                  * Don't bother taking the src_rq->lock if the next highest
2083                  * task is known to be lower-priority than our current task.
2084                  * This may look racy, but if this value is about to go
2085                  * logically higher, the src_rq will push this task away.
2086                  * And if its going logically lower, we do not care
2087                  */
2088                 if (src_rq->rt.highest_prio.next >=
2089                     this_rq->rt.highest_prio.curr)
2090                         continue;
2091
2092                 /*
2093                  * We can potentially drop this_rq's lock in
2094                  * double_lock_balance, and another CPU could
2095                  * alter this_rq
2096                  */
2097                 double_lock_balance(this_rq, src_rq);
2098
2099                 /*
2100                  * We can pull only a task, which is pushable
2101                  * on its rq, and no others.
2102                  */
2103                 p = pick_highest_pushable_task(src_rq, this_cpu);
2104
2105                 /*
2106                  * Do we have an RT task that preempts
2107                  * the to-be-scheduled task?
2108                  */
2109                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2110                         WARN_ON(p == src_rq->curr);
2111                         WARN_ON(!task_on_rq_queued(p));
2112
2113                         /*
2114                          * There's a chance that p is higher in priority
2115                          * than what's currently running on its CPU.
2116                          * This is just that p is wakeing up and hasn't
2117                          * had a chance to schedule. We only pull
2118                          * p if it is lower in priority than the
2119                          * current task on the run queue
2120                          */
2121                         if (p->prio < src_rq->curr->prio)
2122                                 goto skip;
2123
2124                         resched = true;
2125
2126                         deactivate_task(src_rq, p, 0);
2127                         set_task_cpu(p, this_cpu);
2128                         activate_task(this_rq, p, 0);
2129                         /*
2130                          * We continue with the search, just in
2131                          * case there's an even higher prio task
2132                          * in another runqueue. (low likelihood
2133                          * but possible)
2134                          */
2135                 }
2136 skip:
2137                 double_unlock_balance(this_rq, src_rq);
2138         }
2139
2140         if (resched)
2141                 resched_curr(this_rq);
2142 }
2143
2144 /*
2145  * If we are not running and we are not going to reschedule soon, we should
2146  * try to push tasks away now
2147  */
2148 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2149 {
2150         if (!task_running(rq, p) &&
2151             !test_tsk_need_resched(rq->curr) &&
2152             p->nr_cpus_allowed > 1 &&
2153             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2154             (rq->curr->nr_cpus_allowed < 2 ||
2155              rq->curr->prio <= p->prio))
2156                 push_rt_tasks(rq);
2157 }
2158
2159 /* Assumes rq->lock is held */
2160 static void rq_online_rt(struct rq *rq)
2161 {
2162         if (rq->rt.overloaded)
2163                 rt_set_overload(rq);
2164
2165         __enable_runtime(rq);
2166
2167         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2168 }
2169
2170 /* Assumes rq->lock is held */
2171 static void rq_offline_rt(struct rq *rq)
2172 {
2173         if (rq->rt.overloaded)
2174                 rt_clear_overload(rq);
2175
2176         __disable_runtime(rq);
2177
2178         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2179 }
2180
2181 /*
2182  * When switch from the rt queue, we bring ourselves to a position
2183  * that we might want to pull RT tasks from other runqueues.
2184  */
2185 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2186 {
2187         /*
2188          * If there are other RT tasks then we will reschedule
2189          * and the scheduling of the other RT tasks will handle
2190          * the balancing. But if we are the last RT task
2191          * we may need to handle the pulling of RT tasks
2192          * now.
2193          */
2194         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2195                 return;
2196
2197         rt_queue_pull_task(rq);
2198 }
2199
2200 void __init init_sched_rt_class(void)
2201 {
2202         unsigned int i;
2203
2204         for_each_possible_cpu(i) {
2205                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2206                                         GFP_KERNEL, cpu_to_node(i));
2207         }
2208 }
2209 #endif /* CONFIG_SMP */
2210
2211 /*
2212  * When switching a task to RT, we may overload the runqueue
2213  * with RT tasks. In this case we try to push them off to
2214  * other runqueues.
2215  */
2216 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2217 {
2218         /*
2219          * If we are already running, then there's nothing
2220          * that needs to be done. But if we are not running
2221          * we may need to preempt the current running task.
2222          * If that current running task is also an RT task
2223          * then see if we can move to another run queue.
2224          */
2225         if (task_on_rq_queued(p) && rq->curr != p) {
2226 #ifdef CONFIG_SMP
2227                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2228                         rt_queue_push_tasks(rq);
2229 #endif /* CONFIG_SMP */
2230                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2231                         resched_curr(rq);
2232         }
2233 }
2234
2235 /*
2236  * Priority of the task has changed. This may cause
2237  * us to initiate a push or pull.
2238  */
2239 static void
2240 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2241 {
2242         if (!task_on_rq_queued(p))
2243                 return;
2244
2245         if (rq->curr == p) {
2246 #ifdef CONFIG_SMP
2247                 /*
2248                  * If our priority decreases while running, we
2249                  * may need to pull tasks to this runqueue.
2250                  */
2251                 if (oldprio < p->prio)
2252                         rt_queue_pull_task(rq);
2253
2254                 /*
2255                  * If there's a higher priority task waiting to run
2256                  * then reschedule.
2257                  */
2258                 if (p->prio > rq->rt.highest_prio.curr)
2259                         resched_curr(rq);
2260 #else
2261                 /* For UP simply resched on drop of prio */
2262                 if (oldprio < p->prio)
2263                         resched_curr(rq);
2264 #endif /* CONFIG_SMP */
2265         } else {
2266                 /*
2267                  * This task is not running, but if it is
2268                  * greater than the current running task
2269                  * then reschedule.
2270                  */
2271                 if (p->prio < rq->curr->prio)
2272                         resched_curr(rq);
2273         }
2274 }
2275
2276 #ifdef CONFIG_POSIX_TIMERS
2277 static void watchdog(struct rq *rq, struct task_struct *p)
2278 {
2279         unsigned long soft, hard;
2280
2281         /* max may change after cur was read, this will be fixed next tick */
2282         soft = task_rlimit(p, RLIMIT_RTTIME);
2283         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2284
2285         if (soft != RLIM_INFINITY) {
2286                 unsigned long next;
2287
2288                 if (p->rt.watchdog_stamp != jiffies) {
2289                         p->rt.timeout++;
2290                         p->rt.watchdog_stamp = jiffies;
2291                 }
2292
2293                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2294                 if (p->rt.timeout > next)
2295                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2296         }
2297 }
2298 #else
2299 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2300 #endif
2301
2302 /*
2303  * scheduler tick hitting a task of our scheduling class.
2304  *
2305  * NOTE: This function can be called remotely by the tick offload that
2306  * goes along full dynticks. Therefore no local assumption can be made
2307  * and everything must be accessed through the @rq and @curr passed in
2308  * parameters.
2309  */
2310 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2311 {
2312         struct sched_rt_entity *rt_se = &p->rt;
2313
2314         update_curr_rt(rq);
2315
2316         watchdog(rq, p);
2317
2318         /*
2319          * RR tasks need a special form of timeslice management.
2320          * FIFO tasks have no timeslices.
2321          */
2322         if (p->policy != SCHED_RR)
2323                 return;
2324
2325         if (--p->rt.time_slice)
2326                 return;
2327
2328         p->rt.time_slice = sched_rr_timeslice;
2329
2330         /*
2331          * Requeue to the end of queue if we (and all of our ancestors) are not
2332          * the only element on the queue
2333          */
2334         for_each_sched_rt_entity(rt_se) {
2335                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2336                         requeue_task_rt(rq, p, 0);
2337                         resched_curr(rq);
2338                         return;
2339                 }
2340         }
2341 }
2342
2343 static void set_curr_task_rt(struct rq *rq)
2344 {
2345         struct task_struct *p = rq->curr;
2346
2347         p->se.exec_start = rq_clock_task(rq);
2348
2349         /* The running task is never eligible for pushing */
2350         dequeue_pushable_task(rq, p);
2351 }
2352
2353 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2354 {
2355         /*
2356          * Time slice is 0 for SCHED_FIFO tasks
2357          */
2358         if (task->policy == SCHED_RR)
2359                 return sched_rr_timeslice;
2360         else
2361                 return 0;
2362 }
2363
2364 const struct sched_class rt_sched_class = {
2365         .next                   = &fair_sched_class,
2366         .enqueue_task           = enqueue_task_rt,
2367         .dequeue_task           = dequeue_task_rt,
2368         .yield_task             = yield_task_rt,
2369
2370         .check_preempt_curr     = check_preempt_curr_rt,
2371
2372         .pick_next_task         = pick_next_task_rt,
2373         .put_prev_task          = put_prev_task_rt,
2374
2375 #ifdef CONFIG_SMP
2376         .select_task_rq         = select_task_rq_rt,
2377
2378         .set_cpus_allowed       = set_cpus_allowed_common,
2379         .rq_online              = rq_online_rt,
2380         .rq_offline             = rq_offline_rt,
2381         .task_woken             = task_woken_rt,
2382         .switched_from          = switched_from_rt,
2383 #endif
2384
2385         .set_curr_task          = set_curr_task_rt,
2386         .task_tick              = task_tick_rt,
2387
2388         .get_rr_interval        = get_rr_interval_rt,
2389
2390         .prio_changed           = prio_changed_rt,
2391         .switched_to            = switched_to_rt,
2392
2393         .update_curr            = update_curr_rt,
2394 };
2395
2396 #ifdef CONFIG_RT_GROUP_SCHED
2397 /*
2398  * Ensure that the real time constraints are schedulable.
2399  */
2400 static DEFINE_MUTEX(rt_constraints_mutex);
2401
2402 /* Must be called with tasklist_lock held */
2403 static inline int tg_has_rt_tasks(struct task_group *tg)
2404 {
2405         struct task_struct *g, *p;
2406
2407         /*
2408          * Autogroups do not have RT tasks; see autogroup_create().
2409          */
2410         if (task_group_is_autogroup(tg))
2411                 return 0;
2412
2413         for_each_process_thread(g, p) {
2414                 if (rt_task(p) && task_group(p) == tg)
2415                         return 1;
2416         }
2417
2418         return 0;
2419 }
2420
2421 struct rt_schedulable_data {
2422         struct task_group *tg;
2423         u64 rt_period;
2424         u64 rt_runtime;
2425 };
2426
2427 static int tg_rt_schedulable(struct task_group *tg, void *data)
2428 {
2429         struct rt_schedulable_data *d = data;
2430         struct task_group *child;
2431         unsigned long total, sum = 0;
2432         u64 period, runtime;
2433
2434         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2435         runtime = tg->rt_bandwidth.rt_runtime;
2436
2437         if (tg == d->tg) {
2438                 period = d->rt_period;
2439                 runtime = d->rt_runtime;
2440         }
2441
2442         /*
2443          * Cannot have more runtime than the period.
2444          */
2445         if (runtime > period && runtime != RUNTIME_INF)
2446                 return -EINVAL;
2447
2448         /*
2449          * Ensure we don't starve existing RT tasks.
2450          */
2451         if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2452                 return -EBUSY;
2453
2454         total = to_ratio(period, runtime);
2455
2456         /*
2457          * Nobody can have more than the global setting allows.
2458          */
2459         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2460                 return -EINVAL;
2461
2462         /*
2463          * The sum of our children's runtime should not exceed our own.
2464          */
2465         list_for_each_entry_rcu(child, &tg->children, siblings) {
2466                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2467                 runtime = child->rt_bandwidth.rt_runtime;
2468
2469                 if (child == d->tg) {
2470                         period = d->rt_period;
2471                         runtime = d->rt_runtime;
2472                 }
2473
2474                 sum += to_ratio(period, runtime);
2475         }
2476
2477         if (sum > total)
2478                 return -EINVAL;
2479
2480         return 0;
2481 }
2482
2483 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2484 {
2485         int ret;
2486
2487         struct rt_schedulable_data data = {
2488                 .tg = tg,
2489                 .rt_period = period,
2490                 .rt_runtime = runtime,
2491         };
2492
2493         rcu_read_lock();
2494         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2495         rcu_read_unlock();
2496
2497         return ret;
2498 }
2499
2500 static int tg_set_rt_bandwidth(struct task_group *tg,
2501                 u64 rt_period, u64 rt_runtime)
2502 {
2503         int i, err = 0;
2504
2505         /*
2506          * Disallowing the root group RT runtime is BAD, it would disallow the
2507          * kernel creating (and or operating) RT threads.
2508          */
2509         if (tg == &root_task_group && rt_runtime == 0)
2510                 return -EINVAL;
2511
2512         /* No period doesn't make any sense. */
2513         if (rt_period == 0)
2514                 return -EINVAL;
2515
2516         mutex_lock(&rt_constraints_mutex);
2517         read_lock(&tasklist_lock);
2518         err = __rt_schedulable(tg, rt_period, rt_runtime);
2519         if (err)
2520                 goto unlock;
2521
2522         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2523         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2524         tg->rt_bandwidth.rt_runtime = rt_runtime;
2525
2526         for_each_possible_cpu(i) {
2527                 struct rt_rq *rt_rq = tg->rt_rq[i];
2528
2529                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2530                 rt_rq->rt_runtime = rt_runtime;
2531                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2532         }
2533         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2534 unlock:
2535         read_unlock(&tasklist_lock);
2536         mutex_unlock(&rt_constraints_mutex);
2537
2538         return err;
2539 }
2540
2541 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2542 {
2543         u64 rt_runtime, rt_period;
2544
2545         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2546         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2547         if (rt_runtime_us < 0)
2548                 rt_runtime = RUNTIME_INF;
2549
2550         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2551 }
2552
2553 long sched_group_rt_runtime(struct task_group *tg)
2554 {
2555         u64 rt_runtime_us;
2556
2557         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2558                 return -1;
2559
2560         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2561         do_div(rt_runtime_us, NSEC_PER_USEC);
2562         return rt_runtime_us;
2563 }
2564
2565 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2566 {
2567         u64 rt_runtime, rt_period;
2568
2569         rt_period = rt_period_us * NSEC_PER_USEC;
2570         rt_runtime = tg->rt_bandwidth.rt_runtime;
2571
2572         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2573 }
2574
2575 long sched_group_rt_period(struct task_group *tg)
2576 {
2577         u64 rt_period_us;
2578
2579         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2580         do_div(rt_period_us, NSEC_PER_USEC);
2581         return rt_period_us;
2582 }
2583
2584 static int sched_rt_global_constraints(void)
2585 {
2586         int ret = 0;
2587
2588         mutex_lock(&rt_constraints_mutex);
2589         read_lock(&tasklist_lock);
2590         ret = __rt_schedulable(NULL, 0, 0);
2591         read_unlock(&tasklist_lock);
2592         mutex_unlock(&rt_constraints_mutex);
2593
2594         return ret;
2595 }
2596
2597 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2598 {
2599         /* Don't accept realtime tasks when there is no way for them to run */
2600         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2601                 return 0;
2602
2603         return 1;
2604 }
2605
2606 #else /* !CONFIG_RT_GROUP_SCHED */
2607 static int sched_rt_global_constraints(void)
2608 {
2609         unsigned long flags;
2610         int i;
2611
2612         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2613         for_each_possible_cpu(i) {
2614                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2615
2616                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2617                 rt_rq->rt_runtime = global_rt_runtime();
2618                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2619         }
2620         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2621
2622         return 0;
2623 }
2624 #endif /* CONFIG_RT_GROUP_SCHED */
2625
2626 static int sched_rt_global_validate(void)
2627 {
2628         if (sysctl_sched_rt_period <= 0)
2629                 return -EINVAL;
2630
2631         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2632                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2633                 return -EINVAL;
2634
2635         return 0;
2636 }
2637
2638 static void sched_rt_do_global(void)
2639 {
2640         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2641         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2642 }
2643
2644 int sched_rt_handler(struct ctl_table *table, int write,
2645                 void __user *buffer, size_t *lenp,
2646                 loff_t *ppos)
2647 {
2648         int old_period, old_runtime;
2649         static DEFINE_MUTEX(mutex);
2650         int ret;
2651
2652         mutex_lock(&mutex);
2653         old_period = sysctl_sched_rt_period;
2654         old_runtime = sysctl_sched_rt_runtime;
2655
2656         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2657
2658         if (!ret && write) {
2659                 ret = sched_rt_global_validate();
2660                 if (ret)
2661                         goto undo;
2662
2663                 ret = sched_dl_global_validate();
2664                 if (ret)
2665                         goto undo;
2666
2667                 ret = sched_rt_global_constraints();
2668                 if (ret)
2669                         goto undo;
2670
2671                 sched_rt_do_global();
2672                 sched_dl_do_global();
2673         }
2674         if (0) {
2675 undo:
2676                 sysctl_sched_rt_period = old_period;
2677                 sysctl_sched_rt_runtime = old_runtime;
2678         }
2679         mutex_unlock(&mutex);
2680
2681         return ret;
2682 }
2683
2684 int sched_rr_handler(struct ctl_table *table, int write,
2685                 void __user *buffer, size_t *lenp,
2686                 loff_t *ppos)
2687 {
2688         int ret;
2689         static DEFINE_MUTEX(mutex);
2690
2691         mutex_lock(&mutex);
2692         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2693         /*
2694          * Make sure that internally we keep jiffies.
2695          * Also, writing zero resets the timeslice to default:
2696          */
2697         if (!ret && write) {
2698                 sched_rr_timeslice =
2699                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2700                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2701         }
2702         mutex_unlock(&mutex);
2703
2704         return ret;
2705 }
2706
2707 #ifdef CONFIG_SCHED_DEBUG
2708 void print_rt_stats(struct seq_file *m, int cpu)
2709 {
2710         rt_rq_iter_t iter;
2711         struct rt_rq *rt_rq;
2712
2713         rcu_read_lock();
2714         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2715                 print_rt_rq(m, cpu, rt_rq);
2716         rcu_read_unlock();
2717 }
2718 #endif /* CONFIG_SCHED_DEBUG */