91b699aa658b1ff5368c50e3eaa4248932035a68
[sfrench/cifs-2.6.git] / kernel / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  */
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/timer.h>
15
16 #include "rtmutex_common.h"
17
18 #ifdef CONFIG_DEBUG_RT_MUTEXES
19 # include "rtmutex-debug.h"
20 #else
21 # include "rtmutex.h"
22 #endif
23
24 /*
25  * lock->owner state tracking:
26  *
27  * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
28  * are used to keep track of the "owner is pending" and "lock has
29  * waiters" state.
30  *
31  * owner        bit1    bit0
32  * NULL         0       0       lock is free (fast acquire possible)
33  * NULL         0       1       invalid state
34  * NULL         1       0       Transitional State*
35  * NULL         1       1       invalid state
36  * taskpointer  0       0       lock is held (fast release possible)
37  * taskpointer  0       1       task is pending owner
38  * taskpointer  1       0       lock is held and has waiters
39  * taskpointer  1       1       task is pending owner and lock has more waiters
40  *
41  * Pending ownership is assigned to the top (highest priority)
42  * waiter of the lock, when the lock is released. The thread is woken
43  * up and can now take the lock. Until the lock is taken (bit 0
44  * cleared) a competing higher priority thread can steal the lock
45  * which puts the woken up thread back on the waiters list.
46  *
47  * The fast atomic compare exchange based acquire and release is only
48  * possible when bit 0 and 1 of lock->owner are 0.
49  *
50  * (*) There's a small time where the owner can be NULL and the
51  * "lock has waiters" bit is set.  This can happen when grabbing the lock.
52  * To prevent a cmpxchg of the owner releasing the lock, we need to set this
53  * bit before looking at the lock, hence the reason this is a transitional
54  * state.
55  */
56
57 static void
58 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
59                    unsigned long mask)
60 {
61         unsigned long val = (unsigned long)owner | mask;
62
63         if (rt_mutex_has_waiters(lock))
64                 val |= RT_MUTEX_HAS_WAITERS;
65
66         lock->owner = (struct task_struct *)val;
67 }
68
69 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71         lock->owner = (struct task_struct *)
72                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
73 }
74
75 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
76 {
77         if (!rt_mutex_has_waiters(lock))
78                 clear_rt_mutex_waiters(lock);
79 }
80
81 /*
82  * We can speed up the acquire/release, if the architecture
83  * supports cmpxchg and if there's no debugging state to be set up
84  */
85 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
86 # define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
88 {
89         unsigned long owner, *p = (unsigned long *) &lock->owner;
90
91         do {
92                 owner = *p;
93         } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
94 }
95 #else
96 # define rt_mutex_cmpxchg(l,c,n)        (0)
97 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
98 {
99         lock->owner = (struct task_struct *)
100                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
101 }
102 #endif
103
104 /*
105  * Calculate task priority from the waiter list priority
106  *
107  * Return task->normal_prio when the waiter list is empty or when
108  * the waiter is not allowed to do priority boosting
109  */
110 int rt_mutex_getprio(struct task_struct *task)
111 {
112         if (likely(!task_has_pi_waiters(task)))
113                 return task->normal_prio;
114
115         return min(task_top_pi_waiter(task)->pi_list_entry.prio,
116                    task->normal_prio);
117 }
118
119 /*
120  * Adjust the priority of a task, after its pi_waiters got modified.
121  *
122  * This can be both boosting and unboosting. task->pi_lock must be held.
123  */
124 static void __rt_mutex_adjust_prio(struct task_struct *task)
125 {
126         int prio = rt_mutex_getprio(task);
127
128         if (task->prio != prio)
129                 rt_mutex_setprio(task, prio);
130 }
131
132 /*
133  * Adjust task priority (undo boosting). Called from the exit path of
134  * rt_mutex_slowunlock() and rt_mutex_slowlock().
135  *
136  * (Note: We do this outside of the protection of lock->wait_lock to
137  * allow the lock to be taken while or before we readjust the priority
138  * of task. We do not use the spin_xx_mutex() variants here as we are
139  * outside of the debug path.)
140  */
141 static void rt_mutex_adjust_prio(struct task_struct *task)
142 {
143         unsigned long flags;
144
145         spin_lock_irqsave(&task->pi_lock, flags);
146         __rt_mutex_adjust_prio(task);
147         spin_unlock_irqrestore(&task->pi_lock, flags);
148 }
149
150 /*
151  * Max number of times we'll walk the boosting chain:
152  */
153 int max_lock_depth = 1024;
154
155 /*
156  * Adjust the priority chain. Also used for deadlock detection.
157  * Decreases task's usage by one - may thus free the task.
158  * Returns 0 or -EDEADLK.
159  */
160 static int rt_mutex_adjust_prio_chain(task_t *task,
161                                       int deadlock_detect,
162                                       struct rt_mutex *orig_lock,
163                                       struct rt_mutex_waiter *orig_waiter,
164                                       struct task_struct *top_task)
165 {
166         struct rt_mutex *lock;
167         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
168         int detect_deadlock, ret = 0, depth = 0;
169         unsigned long flags;
170
171         detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
172                                                          deadlock_detect);
173
174         /*
175          * The (de)boosting is a step by step approach with a lot of
176          * pitfalls. We want this to be preemptible and we want hold a
177          * maximum of two locks per step. So we have to check
178          * carefully whether things change under us.
179          */
180  again:
181         if (++depth > max_lock_depth) {
182                 static int prev_max;
183
184                 /*
185                  * Print this only once. If the admin changes the limit,
186                  * print a new message when reaching the limit again.
187                  */
188                 if (prev_max != max_lock_depth) {
189                         prev_max = max_lock_depth;
190                         printk(KERN_WARNING "Maximum lock depth %d reached "
191                                "task: %s (%d)\n", max_lock_depth,
192                                top_task->comm, top_task->pid);
193                 }
194                 put_task_struct(task);
195
196                 return deadlock_detect ? -EDEADLK : 0;
197         }
198  retry:
199         /*
200          * Task can not go away as we did a get_task() before !
201          */
202         spin_lock_irqsave(&task->pi_lock, flags);
203
204         waiter = task->pi_blocked_on;
205         /*
206          * Check whether the end of the boosting chain has been
207          * reached or the state of the chain has changed while we
208          * dropped the locks.
209          */
210         if (!waiter || !waiter->task)
211                 goto out_unlock_pi;
212
213         if (top_waiter && (!task_has_pi_waiters(task) ||
214                            top_waiter != task_top_pi_waiter(task)))
215                 goto out_unlock_pi;
216
217         /*
218          * When deadlock detection is off then we check, if further
219          * priority adjustment is necessary.
220          */
221         if (!detect_deadlock && waiter->list_entry.prio == task->prio)
222                 goto out_unlock_pi;
223
224         lock = waiter->lock;
225         if (!spin_trylock(&lock->wait_lock)) {
226                 spin_unlock_irqrestore(&task->pi_lock, flags);
227                 cpu_relax();
228                 goto retry;
229         }
230
231         /* Deadlock detection */
232         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
233                 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
234                 spin_unlock(&lock->wait_lock);
235                 ret = deadlock_detect ? -EDEADLK : 0;
236                 goto out_unlock_pi;
237         }
238
239         top_waiter = rt_mutex_top_waiter(lock);
240
241         /* Requeue the waiter */
242         plist_del(&waiter->list_entry, &lock->wait_list);
243         waiter->list_entry.prio = task->prio;
244         plist_add(&waiter->list_entry, &lock->wait_list);
245
246         /* Release the task */
247         spin_unlock_irqrestore(&task->pi_lock, flags);
248         put_task_struct(task);
249
250         /* Grab the next task */
251         task = rt_mutex_owner(lock);
252         spin_lock_irqsave(&task->pi_lock, flags);
253
254         if (waiter == rt_mutex_top_waiter(lock)) {
255                 /* Boost the owner */
256                 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
257                 waiter->pi_list_entry.prio = waiter->list_entry.prio;
258                 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
259                 __rt_mutex_adjust_prio(task);
260
261         } else if (top_waiter == waiter) {
262                 /* Deboost the owner */
263                 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
264                 waiter = rt_mutex_top_waiter(lock);
265                 waiter->pi_list_entry.prio = waiter->list_entry.prio;
266                 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
267                 __rt_mutex_adjust_prio(task);
268         }
269
270         get_task_struct(task);
271         spin_unlock_irqrestore(&task->pi_lock, flags);
272
273         top_waiter = rt_mutex_top_waiter(lock);
274         spin_unlock(&lock->wait_lock);
275
276         if (!detect_deadlock && waiter != top_waiter)
277                 goto out_put_task;
278
279         goto again;
280
281  out_unlock_pi:
282         spin_unlock_irqrestore(&task->pi_lock, flags);
283  out_put_task:
284         put_task_struct(task);
285         return ret;
286 }
287
288 /*
289  * Optimization: check if we can steal the lock from the
290  * assigned pending owner [which might not have taken the
291  * lock yet]:
292  */
293 static inline int try_to_steal_lock(struct rt_mutex *lock)
294 {
295         struct task_struct *pendowner = rt_mutex_owner(lock);
296         struct rt_mutex_waiter *next;
297         unsigned long flags;
298
299         if (!rt_mutex_owner_pending(lock))
300                 return 0;
301
302         if (pendowner == current)
303                 return 1;
304
305         spin_lock_irqsave(&pendowner->pi_lock, flags);
306         if (current->prio >= pendowner->prio) {
307                 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
308                 return 0;
309         }
310
311         /*
312          * Check if a waiter is enqueued on the pending owners
313          * pi_waiters list. Remove it and readjust pending owners
314          * priority.
315          */
316         if (likely(!rt_mutex_has_waiters(lock))) {
317                 spin_unlock_irqrestore(&pendowner->pi_lock, flags);
318                 return 1;
319         }
320
321         /* No chain handling, pending owner is not blocked on anything: */
322         next = rt_mutex_top_waiter(lock);
323         plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
324         __rt_mutex_adjust_prio(pendowner);
325         spin_unlock_irqrestore(&pendowner->pi_lock, flags);
326
327         /*
328          * We are going to steal the lock and a waiter was
329          * enqueued on the pending owners pi_waiters queue. So
330          * we have to enqueue this waiter into
331          * current->pi_waiters list. This covers the case,
332          * where current is boosted because it holds another
333          * lock and gets unboosted because the booster is
334          * interrupted, so we would delay a waiter with higher
335          * priority as current->normal_prio.
336          *
337          * Note: in the rare case of a SCHED_OTHER task changing
338          * its priority and thus stealing the lock, next->task
339          * might be current:
340          */
341         if (likely(next->task != current)) {
342                 spin_lock_irqsave(&current->pi_lock, flags);
343                 plist_add(&next->pi_list_entry, &current->pi_waiters);
344                 __rt_mutex_adjust_prio(current);
345                 spin_unlock_irqrestore(&current->pi_lock, flags);
346         }
347         return 1;
348 }
349
350 /*
351  * Try to take an rt-mutex
352  *
353  * This fails
354  * - when the lock has a real owner
355  * - when a different pending owner exists and has higher priority than current
356  *
357  * Must be called with lock->wait_lock held.
358  */
359 static int try_to_take_rt_mutex(struct rt_mutex *lock)
360 {
361         /*
362          * We have to be careful here if the atomic speedups are
363          * enabled, such that, when
364          *  - no other waiter is on the lock
365          *  - the lock has been released since we did the cmpxchg
366          * the lock can be released or taken while we are doing the
367          * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
368          *
369          * The atomic acquire/release aware variant of
370          * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
371          * the WAITERS bit, the atomic release / acquire can not
372          * happen anymore and lock->wait_lock protects us from the
373          * non-atomic case.
374          *
375          * Note, that this might set lock->owner =
376          * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
377          * any more. This is fixed up when we take the ownership.
378          * This is the transitional state explained at the top of this file.
379          */
380         mark_rt_mutex_waiters(lock);
381
382         if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
383                 return 0;
384
385         /* We got the lock. */
386         debug_rt_mutex_lock(lock);
387
388         rt_mutex_set_owner(lock, current, 0);
389
390         rt_mutex_deadlock_account_lock(lock, current);
391
392         return 1;
393 }
394
395 /*
396  * Task blocks on lock.
397  *
398  * Prepare waiter and propagate pi chain
399  *
400  * This must be called with lock->wait_lock held.
401  */
402 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
403                                    struct rt_mutex_waiter *waiter,
404                                    int detect_deadlock)
405 {
406         struct rt_mutex_waiter *top_waiter = waiter;
407         task_t *owner = rt_mutex_owner(lock);
408         int boost = 0, res;
409         unsigned long flags;
410
411         spin_lock_irqsave(&current->pi_lock, flags);
412         __rt_mutex_adjust_prio(current);
413         waiter->task = current;
414         waiter->lock = lock;
415         plist_node_init(&waiter->list_entry, current->prio);
416         plist_node_init(&waiter->pi_list_entry, current->prio);
417
418         /* Get the top priority waiter on the lock */
419         if (rt_mutex_has_waiters(lock))
420                 top_waiter = rt_mutex_top_waiter(lock);
421         plist_add(&waiter->list_entry, &lock->wait_list);
422
423         current->pi_blocked_on = waiter;
424
425         spin_unlock_irqrestore(&current->pi_lock, flags);
426
427         if (waiter == rt_mutex_top_waiter(lock)) {
428                 spin_lock_irqsave(&owner->pi_lock, flags);
429                 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
430                 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
431
432                 __rt_mutex_adjust_prio(owner);
433                 if (owner->pi_blocked_on) {
434                         boost = 1;
435                         /* gets dropped in rt_mutex_adjust_prio_chain()! */
436                         get_task_struct(owner);
437                 }
438                 spin_unlock_irqrestore(&owner->pi_lock, flags);
439         }
440         else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
441                 spin_lock_irqsave(&owner->pi_lock, flags);
442                 if (owner->pi_blocked_on) {
443                         boost = 1;
444                         /* gets dropped in rt_mutex_adjust_prio_chain()! */
445                         get_task_struct(owner);
446                 }
447                 spin_unlock_irqrestore(&owner->pi_lock, flags);
448         }
449         if (!boost)
450                 return 0;
451
452         spin_unlock(&lock->wait_lock);
453
454         res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
455                                          current);
456
457         spin_lock(&lock->wait_lock);
458
459         return res;
460 }
461
462 /*
463  * Wake up the next waiter on the lock.
464  *
465  * Remove the top waiter from the current tasks waiter list and from
466  * the lock waiter list. Set it as pending owner. Then wake it up.
467  *
468  * Called with lock->wait_lock held.
469  */
470 static void wakeup_next_waiter(struct rt_mutex *lock)
471 {
472         struct rt_mutex_waiter *waiter;
473         struct task_struct *pendowner;
474         unsigned long flags;
475
476         spin_lock_irqsave(&current->pi_lock, flags);
477
478         waiter = rt_mutex_top_waiter(lock);
479         plist_del(&waiter->list_entry, &lock->wait_list);
480
481         /*
482          * Remove it from current->pi_waiters. We do not adjust a
483          * possible priority boost right now. We execute wakeup in the
484          * boosted mode and go back to normal after releasing
485          * lock->wait_lock.
486          */
487         plist_del(&waiter->pi_list_entry, &current->pi_waiters);
488         pendowner = waiter->task;
489         waiter->task = NULL;
490
491         rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
492
493         spin_unlock_irqrestore(&current->pi_lock, flags);
494
495         /*
496          * Clear the pi_blocked_on variable and enqueue a possible
497          * waiter into the pi_waiters list of the pending owner. This
498          * prevents that in case the pending owner gets unboosted a
499          * waiter with higher priority than pending-owner->normal_prio
500          * is blocked on the unboosted (pending) owner.
501          */
502         spin_lock_irqsave(&pendowner->pi_lock, flags);
503
504         WARN_ON(!pendowner->pi_blocked_on);
505         WARN_ON(pendowner->pi_blocked_on != waiter);
506         WARN_ON(pendowner->pi_blocked_on->lock != lock);
507
508         pendowner->pi_blocked_on = NULL;
509
510         if (rt_mutex_has_waiters(lock)) {
511                 struct rt_mutex_waiter *next;
512
513                 next = rt_mutex_top_waiter(lock);
514                 plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
515         }
516         spin_unlock_irqrestore(&pendowner->pi_lock, flags);
517
518         wake_up_process(pendowner);
519 }
520
521 /*
522  * Remove a waiter from a lock
523  *
524  * Must be called with lock->wait_lock held
525  */
526 static void remove_waiter(struct rt_mutex *lock,
527                           struct rt_mutex_waiter *waiter)
528 {
529         int first = (waiter == rt_mutex_top_waiter(lock));
530         int boost = 0;
531         task_t *owner = rt_mutex_owner(lock);
532         unsigned long flags;
533
534         spin_lock_irqsave(&current->pi_lock, flags);
535         plist_del(&waiter->list_entry, &lock->wait_list);
536         waiter->task = NULL;
537         current->pi_blocked_on = NULL;
538         spin_unlock_irqrestore(&current->pi_lock, flags);
539
540         if (first && owner != current) {
541
542                 spin_lock_irqsave(&owner->pi_lock, flags);
543
544                 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
545
546                 if (rt_mutex_has_waiters(lock)) {
547                         struct rt_mutex_waiter *next;
548
549                         next = rt_mutex_top_waiter(lock);
550                         plist_add(&next->pi_list_entry, &owner->pi_waiters);
551                 }
552                 __rt_mutex_adjust_prio(owner);
553
554                 if (owner->pi_blocked_on) {
555                         boost = 1;
556                         /* gets dropped in rt_mutex_adjust_prio_chain()! */
557                         get_task_struct(owner);
558                 }
559                 spin_unlock_irqrestore(&owner->pi_lock, flags);
560         }
561
562         WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
563
564         if (!boost)
565                 return;
566
567         spin_unlock(&lock->wait_lock);
568
569         rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
570
571         spin_lock(&lock->wait_lock);
572 }
573
574 /*
575  * Recheck the pi chain, in case we got a priority setting
576  *
577  * Called from sched_setscheduler
578  */
579 void rt_mutex_adjust_pi(struct task_struct *task)
580 {
581         struct rt_mutex_waiter *waiter;
582         unsigned long flags;
583
584         spin_lock_irqsave(&task->pi_lock, flags);
585
586         waiter = task->pi_blocked_on;
587         if (!waiter || waiter->list_entry.prio == task->prio) {
588                 spin_unlock_irqrestore(&task->pi_lock, flags);
589                 return;
590         }
591
592         /* gets dropped in rt_mutex_adjust_prio_chain()! */
593         get_task_struct(task);
594         spin_unlock_irqrestore(&task->pi_lock, flags);
595
596         rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
597 }
598
599 /*
600  * Slow path lock function:
601  */
602 static int __sched
603 rt_mutex_slowlock(struct rt_mutex *lock, int state,
604                   struct hrtimer_sleeper *timeout,
605                   int detect_deadlock)
606 {
607         struct rt_mutex_waiter waiter;
608         int ret = 0;
609
610         debug_rt_mutex_init_waiter(&waiter);
611         waiter.task = NULL;
612
613         spin_lock(&lock->wait_lock);
614
615         /* Try to acquire the lock again: */
616         if (try_to_take_rt_mutex(lock)) {
617                 spin_unlock(&lock->wait_lock);
618                 return 0;
619         }
620
621         set_current_state(state);
622
623         /* Setup the timer, when timeout != NULL */
624         if (unlikely(timeout))
625                 hrtimer_start(&timeout->timer, timeout->timer.expires,
626                               HRTIMER_ABS);
627
628         for (;;) {
629                 /* Try to acquire the lock: */
630                 if (try_to_take_rt_mutex(lock))
631                         break;
632
633                 /*
634                  * TASK_INTERRUPTIBLE checks for signals and
635                  * timeout. Ignored otherwise.
636                  */
637                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
638                         /* Signal pending? */
639                         if (signal_pending(current))
640                                 ret = -EINTR;
641                         if (timeout && !timeout->task)
642                                 ret = -ETIMEDOUT;
643                         if (ret)
644                                 break;
645                 }
646
647                 /*
648                  * waiter.task is NULL the first time we come here and
649                  * when we have been woken up by the previous owner
650                  * but the lock got stolen by a higher prio task.
651                  */
652                 if (!waiter.task) {
653                         ret = task_blocks_on_rt_mutex(lock, &waiter,
654                                                       detect_deadlock);
655                         /*
656                          * If we got woken up by the owner then start loop
657                          * all over without going into schedule to try
658                          * to get the lock now:
659                          */
660                         if (unlikely(!waiter.task))
661                                 continue;
662
663                         if (unlikely(ret))
664                                 break;
665                 }
666
667                 spin_unlock(&lock->wait_lock);
668
669                 debug_rt_mutex_print_deadlock(&waiter);
670
671                 if (waiter.task)
672                         schedule_rt_mutex(lock);
673
674                 spin_lock(&lock->wait_lock);
675                 set_current_state(state);
676         }
677
678         set_current_state(TASK_RUNNING);
679
680         if (unlikely(waiter.task))
681                 remove_waiter(lock, &waiter);
682
683         /*
684          * try_to_take_rt_mutex() sets the waiter bit
685          * unconditionally. We might have to fix that up.
686          */
687         fixup_rt_mutex_waiters(lock);
688
689         spin_unlock(&lock->wait_lock);
690
691         /* Remove pending timer: */
692         if (unlikely(timeout))
693                 hrtimer_cancel(&timeout->timer);
694
695         /*
696          * Readjust priority, when we did not get the lock. We might
697          * have been the pending owner and boosted. Since we did not
698          * take the lock, the PI boost has to go.
699          */
700         if (unlikely(ret))
701                 rt_mutex_adjust_prio(current);
702
703         debug_rt_mutex_free_waiter(&waiter);
704
705         return ret;
706 }
707
708 /*
709  * Slow path try-lock function:
710  */
711 static inline int
712 rt_mutex_slowtrylock(struct rt_mutex *lock)
713 {
714         int ret = 0;
715
716         spin_lock(&lock->wait_lock);
717
718         if (likely(rt_mutex_owner(lock) != current)) {
719
720                 ret = try_to_take_rt_mutex(lock);
721                 /*
722                  * try_to_take_rt_mutex() sets the lock waiters
723                  * bit unconditionally. Clean this up.
724                  */
725                 fixup_rt_mutex_waiters(lock);
726         }
727
728         spin_unlock(&lock->wait_lock);
729
730         return ret;
731 }
732
733 /*
734  * Slow path to release a rt-mutex:
735  */
736 static void __sched
737 rt_mutex_slowunlock(struct rt_mutex *lock)
738 {
739         spin_lock(&lock->wait_lock);
740
741         debug_rt_mutex_unlock(lock);
742
743         rt_mutex_deadlock_account_unlock(current);
744
745         if (!rt_mutex_has_waiters(lock)) {
746                 lock->owner = NULL;
747                 spin_unlock(&lock->wait_lock);
748                 return;
749         }
750
751         wakeup_next_waiter(lock);
752
753         spin_unlock(&lock->wait_lock);
754
755         /* Undo pi boosting if necessary: */
756         rt_mutex_adjust_prio(current);
757 }
758
759 /*
760  * debug aware fast / slowpath lock,trylock,unlock
761  *
762  * The atomic acquire/release ops are compiled away, when either the
763  * architecture does not support cmpxchg or when debugging is enabled.
764  */
765 static inline int
766 rt_mutex_fastlock(struct rt_mutex *lock, int state,
767                   int detect_deadlock,
768                   int (*slowfn)(struct rt_mutex *lock, int state,
769                                 struct hrtimer_sleeper *timeout,
770                                 int detect_deadlock))
771 {
772         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
773                 rt_mutex_deadlock_account_lock(lock, current);
774                 return 0;
775         } else
776                 return slowfn(lock, state, NULL, detect_deadlock);
777 }
778
779 static inline int
780 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
781                         struct hrtimer_sleeper *timeout, int detect_deadlock,
782                         int (*slowfn)(struct rt_mutex *lock, int state,
783                                       struct hrtimer_sleeper *timeout,
784                                       int detect_deadlock))
785 {
786         if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
787                 rt_mutex_deadlock_account_lock(lock, current);
788                 return 0;
789         } else
790                 return slowfn(lock, state, timeout, detect_deadlock);
791 }
792
793 static inline int
794 rt_mutex_fasttrylock(struct rt_mutex *lock,
795                      int (*slowfn)(struct rt_mutex *lock))
796 {
797         if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
798                 rt_mutex_deadlock_account_lock(lock, current);
799                 return 1;
800         }
801         return slowfn(lock);
802 }
803
804 static inline void
805 rt_mutex_fastunlock(struct rt_mutex *lock,
806                     void (*slowfn)(struct rt_mutex *lock))
807 {
808         if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
809                 rt_mutex_deadlock_account_unlock(current);
810         else
811                 slowfn(lock);
812 }
813
814 /**
815  * rt_mutex_lock - lock a rt_mutex
816  *
817  * @lock: the rt_mutex to be locked
818  */
819 void __sched rt_mutex_lock(struct rt_mutex *lock)
820 {
821         might_sleep();
822
823         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
824 }
825 EXPORT_SYMBOL_GPL(rt_mutex_lock);
826
827 /**
828  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
829  *
830  * @lock:               the rt_mutex to be locked
831  * @detect_deadlock:    deadlock detection on/off
832  *
833  * Returns:
834  *  0           on success
835  * -EINTR       when interrupted by a signal
836  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
837  */
838 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
839                                                  int detect_deadlock)
840 {
841         might_sleep();
842
843         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
844                                  detect_deadlock, rt_mutex_slowlock);
845 }
846 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
847
848 /**
849  * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
850  *                                     the timeout structure is provided
851  *                                     by the caller
852  *
853  * @lock:               the rt_mutex to be locked
854  * @timeout:            timeout structure or NULL (no timeout)
855  * @detect_deadlock:    deadlock detection on/off
856  *
857  * Returns:
858  *  0           on success
859  * -EINTR       when interrupted by a signal
860  * -ETIMEOUT    when the timeout expired
861  * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
862  */
863 int
864 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
865                     int detect_deadlock)
866 {
867         might_sleep();
868
869         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
870                                        detect_deadlock, rt_mutex_slowlock);
871 }
872 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
873
874 /**
875  * rt_mutex_trylock - try to lock a rt_mutex
876  *
877  * @lock:       the rt_mutex to be locked
878  *
879  * Returns 1 on success and 0 on contention
880  */
881 int __sched rt_mutex_trylock(struct rt_mutex *lock)
882 {
883         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
884 }
885 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
886
887 /**
888  * rt_mutex_unlock - unlock a rt_mutex
889  *
890  * @lock: the rt_mutex to be unlocked
891  */
892 void __sched rt_mutex_unlock(struct rt_mutex *lock)
893 {
894         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
895 }
896 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
897
898 /***
899  * rt_mutex_destroy - mark a mutex unusable
900  * @lock: the mutex to be destroyed
901  *
902  * This function marks the mutex uninitialized, and any subsequent
903  * use of the mutex is forbidden. The mutex must not be locked when
904  * this function is called.
905  */
906 void rt_mutex_destroy(struct rt_mutex *lock)
907 {
908         WARN_ON(rt_mutex_is_locked(lock));
909 #ifdef CONFIG_DEBUG_RT_MUTEXES
910         lock->magic = NULL;
911 #endif
912 }
913
914 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
915
916 /**
917  * __rt_mutex_init - initialize the rt lock
918  *
919  * @lock: the rt lock to be initialized
920  *
921  * Initialize the rt lock to unlocked state.
922  *
923  * Initializing of a locked rt lock is not allowed
924  */
925 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
926 {
927         lock->owner = NULL;
928         spin_lock_init(&lock->wait_lock);
929         plist_head_init(&lock->wait_list, &lock->wait_lock);
930
931         debug_rt_mutex_init(lock, name);
932 }
933 EXPORT_SYMBOL_GPL(__rt_mutex_init);
934
935 /**
936  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
937  *                              proxy owner
938  *
939  * @lock:       the rt_mutex to be locked
940  * @proxy_owner:the task to set as owner
941  *
942  * No locking. Caller has to do serializing itself
943  * Special API call for PI-futex support
944  */
945 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
946                                 struct task_struct *proxy_owner)
947 {
948         __rt_mutex_init(lock, NULL);
949         debug_rt_mutex_proxy_lock(lock, proxy_owner);
950         rt_mutex_set_owner(lock, proxy_owner, 0);
951         rt_mutex_deadlock_account_lock(lock, proxy_owner);
952 }
953
954 /**
955  * rt_mutex_proxy_unlock - release a lock on behalf of owner
956  *
957  * @lock:       the rt_mutex to be locked
958  *
959  * No locking. Caller has to do serializing itself
960  * Special API call for PI-futex support
961  */
962 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
963                            struct task_struct *proxy_owner)
964 {
965         debug_rt_mutex_proxy_unlock(lock);
966         rt_mutex_set_owner(lock, NULL, 0);
967         rt_mutex_deadlock_account_unlock(proxy_owner);
968 }
969
970 /**
971  * rt_mutex_next_owner - return the next owner of the lock
972  *
973  * @lock: the rt lock query
974  *
975  * Returns the next owner of the lock or NULL
976  *
977  * Caller has to serialize against other accessors to the lock
978  * itself.
979  *
980  * Special API call for PI-futex support
981  */
982 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
983 {
984         if (!rt_mutex_has_waiters(lock))
985                 return NULL;
986
987         return rt_mutex_top_waiter(lock)->task;
988 }