Merge tag 'fbdev-v4.14' of git://github.com/bzolnier/linux
[sfrench/cifs-2.6.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = rb_entry(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         blk_status_t            error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = BLK_STS_OK;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio->bi_io_vec[0].bv_page;
242
243         if (bio->bi_status) {
244                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245                                 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246                                 (unsigned long long)bio->bi_iter.bi_sector);
247         }
248
249         if (bio_data_dir(bio) == WRITE)
250                 put_page(page);
251         else if (clean_pages_on_read)
252                 flush_icache_range((unsigned long)page_address(page),
253                                    (unsigned long)page_address(page) + PAGE_SIZE);
254
255         if (bio->bi_status && !hb->error)
256                 hb->error = bio->bi_status;
257         if (atomic_dec_and_test(&hb->count))
258                 wake_up(&hb->wait);
259
260         bio_put(bio);
261 }
262
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264                 struct hib_bio_batch *hb)
265 {
266         struct page *page = virt_to_page(addr);
267         struct bio *bio;
268         int error = 0;
269
270         bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
271         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272         bio_set_dev(bio, hib_resume_bdev);
273         bio_set_op_attrs(bio, op, op_flags);
274
275         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276                 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
277                         (unsigned long long)bio->bi_iter.bi_sector);
278                 bio_put(bio);
279                 return -EFAULT;
280         }
281
282         if (hb) {
283                 bio->bi_end_io = hib_end_io;
284                 bio->bi_private = hb;
285                 atomic_inc(&hb->count);
286                 submit_bio(bio);
287         } else {
288                 error = submit_bio_wait(bio);
289                 bio_put(bio);
290         }
291
292         return error;
293 }
294
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297         wait_event(hb->wait, atomic_read(&hb->count) == 0);
298         return blk_status_to_errno(hb->error);
299 }
300
301 /*
302  * Saving part
303  */
304
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307         int error;
308
309         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310                       swsusp_header, NULL);
311         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315                 swsusp_header->image = handle->first_sector;
316                 swsusp_header->flags = flags;
317                 if (flags & SF_CRC32_MODE)
318                         swsusp_header->crc32 = handle->crc32;
319                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320                                       swsusp_resume_block, swsusp_header, NULL);
321         } else {
322                 printk(KERN_ERR "PM: Swap header not found!\n");
323                 error = -ENODEV;
324         }
325         return error;
326 }
327
328 /**
329  *      swsusp_swap_check - check if the resume device is a swap device
330  *      and get its index (if so)
331  *
332  *      This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336         int res;
337
338         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339                         &hib_resume_bdev);
340         if (res < 0)
341                 return res;
342
343         root_swap = res;
344         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345         if (res)
346                 return res;
347
348         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349         if (res < 0)
350                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
351
352         /*
353          * Update the resume device to the one actually used,
354          * so the test_resume mode can use it in case it is
355          * invoked from hibernate() to test the snapshot.
356          */
357         swsusp_resume_device = hib_resume_bdev->bd_dev;
358         return res;
359 }
360
361 /**
362  *      write_page - Write one page to given swap location.
363  *      @buf:           Address we're writing.
364  *      @offset:        Offset of the swap page we're writing to.
365  *      @hb:            bio completion batch
366  */
367
368 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
369 {
370         void *src;
371         int ret;
372
373         if (!offset)
374                 return -ENOSPC;
375
376         if (hb) {
377                 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
378                                               __GFP_NORETRY);
379                 if (src) {
380                         copy_page(src, buf);
381                 } else {
382                         ret = hib_wait_io(hb); /* Free pages */
383                         if (ret)
384                                 return ret;
385                         src = (void *)__get_free_page(__GFP_RECLAIM |
386                                                       __GFP_NOWARN |
387                                                       __GFP_NORETRY);
388                         if (src) {
389                                 copy_page(src, buf);
390                         } else {
391                                 WARN_ON_ONCE(1);
392                                 hb = NULL;      /* Go synchronous */
393                                 src = buf;
394                         }
395                 }
396         } else {
397                 src = buf;
398         }
399         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
400 }
401
402 static void release_swap_writer(struct swap_map_handle *handle)
403 {
404         if (handle->cur)
405                 free_page((unsigned long)handle->cur);
406         handle->cur = NULL;
407 }
408
409 static int get_swap_writer(struct swap_map_handle *handle)
410 {
411         int ret;
412
413         ret = swsusp_swap_check();
414         if (ret) {
415                 if (ret != -ENOSPC)
416                         printk(KERN_ERR "PM: Cannot find swap device, try "
417                                         "swapon -a.\n");
418                 return ret;
419         }
420         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
421         if (!handle->cur) {
422                 ret = -ENOMEM;
423                 goto err_close;
424         }
425         handle->cur_swap = alloc_swapdev_block(root_swap);
426         if (!handle->cur_swap) {
427                 ret = -ENOSPC;
428                 goto err_rel;
429         }
430         handle->k = 0;
431         handle->reqd_free_pages = reqd_free_pages();
432         handle->first_sector = handle->cur_swap;
433         return 0;
434 err_rel:
435         release_swap_writer(handle);
436 err_close:
437         swsusp_close(FMODE_WRITE);
438         return ret;
439 }
440
441 static int swap_write_page(struct swap_map_handle *handle, void *buf,
442                 struct hib_bio_batch *hb)
443 {
444         int error = 0;
445         sector_t offset;
446
447         if (!handle->cur)
448                 return -EINVAL;
449         offset = alloc_swapdev_block(root_swap);
450         error = write_page(buf, offset, hb);
451         if (error)
452                 return error;
453         handle->cur->entries[handle->k++] = offset;
454         if (handle->k >= MAP_PAGE_ENTRIES) {
455                 offset = alloc_swapdev_block(root_swap);
456                 if (!offset)
457                         return -ENOSPC;
458                 handle->cur->next_swap = offset;
459                 error = write_page(handle->cur, handle->cur_swap, hb);
460                 if (error)
461                         goto out;
462                 clear_page(handle->cur);
463                 handle->cur_swap = offset;
464                 handle->k = 0;
465
466                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
467                         error = hib_wait_io(hb);
468                         if (error)
469                                 goto out;
470                         /*
471                          * Recalculate the number of required free pages, to
472                          * make sure we never take more than half.
473                          */
474                         handle->reqd_free_pages = reqd_free_pages();
475                 }
476         }
477  out:
478         return error;
479 }
480
481 static int flush_swap_writer(struct swap_map_handle *handle)
482 {
483         if (handle->cur && handle->cur_swap)
484                 return write_page(handle->cur, handle->cur_swap, NULL);
485         else
486                 return -EINVAL;
487 }
488
489 static int swap_writer_finish(struct swap_map_handle *handle,
490                 unsigned int flags, int error)
491 {
492         if (!error) {
493                 flush_swap_writer(handle);
494                 printk(KERN_INFO "PM: S");
495                 error = mark_swapfiles(handle, flags);
496                 printk("|\n");
497         }
498
499         if (error)
500                 free_all_swap_pages(root_swap);
501         release_swap_writer(handle);
502         swsusp_close(FMODE_WRITE);
503
504         return error;
505 }
506
507 /* We need to remember how much compressed data we need to read. */
508 #define LZO_HEADER      sizeof(size_t)
509
510 /* Number of pages/bytes we'll compress at one time. */
511 #define LZO_UNC_PAGES   32
512 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
513
514 /* Number of pages/bytes we need for compressed data (worst case). */
515 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
516                                      LZO_HEADER, PAGE_SIZE)
517 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
518
519 /* Maximum number of threads for compression/decompression. */
520 #define LZO_THREADS     3
521
522 /* Minimum/maximum number of pages for read buffering. */
523 #define LZO_MIN_RD_PAGES        1024
524 #define LZO_MAX_RD_PAGES        8192
525
526
527 /**
528  *      save_image - save the suspend image data
529  */
530
531 static int save_image(struct swap_map_handle *handle,
532                       struct snapshot_handle *snapshot,
533                       unsigned int nr_to_write)
534 {
535         unsigned int m;
536         int ret;
537         int nr_pages;
538         int err2;
539         struct hib_bio_batch hb;
540         ktime_t start;
541         ktime_t stop;
542
543         hib_init_batch(&hb);
544
545         printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
546                 nr_to_write);
547         m = nr_to_write / 10;
548         if (!m)
549                 m = 1;
550         nr_pages = 0;
551         start = ktime_get();
552         while (1) {
553                 ret = snapshot_read_next(snapshot);
554                 if (ret <= 0)
555                         break;
556                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
557                 if (ret)
558                         break;
559                 if (!(nr_pages % m))
560                         printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
561                                nr_pages / m * 10);
562                 nr_pages++;
563         }
564         err2 = hib_wait_io(&hb);
565         stop = ktime_get();
566         if (!ret)
567                 ret = err2;
568         if (!ret)
569                 printk(KERN_INFO "PM: Image saving done.\n");
570         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
571         return ret;
572 }
573
574 /**
575  * Structure used for CRC32.
576  */
577 struct crc_data {
578         struct task_struct *thr;                  /* thread */
579         atomic_t ready;                           /* ready to start flag */
580         atomic_t stop;                            /* ready to stop flag */
581         unsigned run_threads;                     /* nr current threads */
582         wait_queue_head_t go;                     /* start crc update */
583         wait_queue_head_t done;                   /* crc update done */
584         u32 *crc32;                               /* points to handle's crc32 */
585         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
586         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
587 };
588
589 /**
590  * CRC32 update function that runs in its own thread.
591  */
592 static int crc32_threadfn(void *data)
593 {
594         struct crc_data *d = data;
595         unsigned i;
596
597         while (1) {
598                 wait_event(d->go, atomic_read(&d->ready) ||
599                                   kthread_should_stop());
600                 if (kthread_should_stop()) {
601                         d->thr = NULL;
602                         atomic_set(&d->stop, 1);
603                         wake_up(&d->done);
604                         break;
605                 }
606                 atomic_set(&d->ready, 0);
607
608                 for (i = 0; i < d->run_threads; i++)
609                         *d->crc32 = crc32_le(*d->crc32,
610                                              d->unc[i], *d->unc_len[i]);
611                 atomic_set(&d->stop, 1);
612                 wake_up(&d->done);
613         }
614         return 0;
615 }
616 /**
617  * Structure used for LZO data compression.
618  */
619 struct cmp_data {
620         struct task_struct *thr;                  /* thread */
621         atomic_t ready;                           /* ready to start flag */
622         atomic_t stop;                            /* ready to stop flag */
623         int ret;                                  /* return code */
624         wait_queue_head_t go;                     /* start compression */
625         wait_queue_head_t done;                   /* compression done */
626         size_t unc_len;                           /* uncompressed length */
627         size_t cmp_len;                           /* compressed length */
628         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
629         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
630         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
631 };
632
633 /**
634  * Compression function that runs in its own thread.
635  */
636 static int lzo_compress_threadfn(void *data)
637 {
638         struct cmp_data *d = data;
639
640         while (1) {
641                 wait_event(d->go, atomic_read(&d->ready) ||
642                                   kthread_should_stop());
643                 if (kthread_should_stop()) {
644                         d->thr = NULL;
645                         d->ret = -1;
646                         atomic_set(&d->stop, 1);
647                         wake_up(&d->done);
648                         break;
649                 }
650                 atomic_set(&d->ready, 0);
651
652                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
653                                           d->cmp + LZO_HEADER, &d->cmp_len,
654                                           d->wrk);
655                 atomic_set(&d->stop, 1);
656                 wake_up(&d->done);
657         }
658         return 0;
659 }
660
661 /**
662  * save_image_lzo - Save the suspend image data compressed with LZO.
663  * @handle: Swap map handle to use for saving the image.
664  * @snapshot: Image to read data from.
665  * @nr_to_write: Number of pages to save.
666  */
667 static int save_image_lzo(struct swap_map_handle *handle,
668                           struct snapshot_handle *snapshot,
669                           unsigned int nr_to_write)
670 {
671         unsigned int m;
672         int ret = 0;
673         int nr_pages;
674         int err2;
675         struct hib_bio_batch hb;
676         ktime_t start;
677         ktime_t stop;
678         size_t off;
679         unsigned thr, run_threads, nr_threads;
680         unsigned char *page = NULL;
681         struct cmp_data *data = NULL;
682         struct crc_data *crc = NULL;
683
684         hib_init_batch(&hb);
685
686         /*
687          * We'll limit the number of threads for compression to limit memory
688          * footprint.
689          */
690         nr_threads = num_online_cpus() - 1;
691         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
692
693         page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
694         if (!page) {
695                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
696                 ret = -ENOMEM;
697                 goto out_clean;
698         }
699
700         data = vmalloc(sizeof(*data) * nr_threads);
701         if (!data) {
702                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
703                 ret = -ENOMEM;
704                 goto out_clean;
705         }
706         for (thr = 0; thr < nr_threads; thr++)
707                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
708
709         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
710         if (!crc) {
711                 printk(KERN_ERR "PM: Failed to allocate crc\n");
712                 ret = -ENOMEM;
713                 goto out_clean;
714         }
715         memset(crc, 0, offsetof(struct crc_data, go));
716
717         /*
718          * Start the compression threads.
719          */
720         for (thr = 0; thr < nr_threads; thr++) {
721                 init_waitqueue_head(&data[thr].go);
722                 init_waitqueue_head(&data[thr].done);
723
724                 data[thr].thr = kthread_run(lzo_compress_threadfn,
725                                             &data[thr],
726                                             "image_compress/%u", thr);
727                 if (IS_ERR(data[thr].thr)) {
728                         data[thr].thr = NULL;
729                         printk(KERN_ERR
730                                "PM: Cannot start compression threads\n");
731                         ret = -ENOMEM;
732                         goto out_clean;
733                 }
734         }
735
736         /*
737          * Start the CRC32 thread.
738          */
739         init_waitqueue_head(&crc->go);
740         init_waitqueue_head(&crc->done);
741
742         handle->crc32 = 0;
743         crc->crc32 = &handle->crc32;
744         for (thr = 0; thr < nr_threads; thr++) {
745                 crc->unc[thr] = data[thr].unc;
746                 crc->unc_len[thr] = &data[thr].unc_len;
747         }
748
749         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750         if (IS_ERR(crc->thr)) {
751                 crc->thr = NULL;
752                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
753                 ret = -ENOMEM;
754                 goto out_clean;
755         }
756
757         /*
758          * Adjust the number of required free pages after all allocations have
759          * been done. We don't want to run out of pages when writing.
760          */
761         handle->reqd_free_pages = reqd_free_pages();
762
763         printk(KERN_INFO
764                 "PM: Using %u thread(s) for compression.\n"
765                 "PM: Compressing and saving image data (%u pages)...\n",
766                 nr_threads, nr_to_write);
767         m = nr_to_write / 10;
768         if (!m)
769                 m = 1;
770         nr_pages = 0;
771         start = ktime_get();
772         for (;;) {
773                 for (thr = 0; thr < nr_threads; thr++) {
774                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
775                                 ret = snapshot_read_next(snapshot);
776                                 if (ret < 0)
777                                         goto out_finish;
778
779                                 if (!ret)
780                                         break;
781
782                                 memcpy(data[thr].unc + off,
783                                        data_of(*snapshot), PAGE_SIZE);
784
785                                 if (!(nr_pages % m))
786                                         printk(KERN_INFO
787                                                "PM: Image saving progress: "
788                                                "%3d%%\n",
789                                                nr_pages / m * 10);
790                                 nr_pages++;
791                         }
792                         if (!off)
793                                 break;
794
795                         data[thr].unc_len = off;
796
797                         atomic_set(&data[thr].ready, 1);
798                         wake_up(&data[thr].go);
799                 }
800
801                 if (!thr)
802                         break;
803
804                 crc->run_threads = thr;
805                 atomic_set(&crc->ready, 1);
806                 wake_up(&crc->go);
807
808                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
809                         wait_event(data[thr].done,
810                                    atomic_read(&data[thr].stop));
811                         atomic_set(&data[thr].stop, 0);
812
813                         ret = data[thr].ret;
814
815                         if (ret < 0) {
816                                 printk(KERN_ERR "PM: LZO compression failed\n");
817                                 goto out_finish;
818                         }
819
820                         if (unlikely(!data[thr].cmp_len ||
821                                      data[thr].cmp_len >
822                                      lzo1x_worst_compress(data[thr].unc_len))) {
823                                 printk(KERN_ERR
824                                        "PM: Invalid LZO compressed length\n");
825                                 ret = -1;
826                                 goto out_finish;
827                         }
828
829                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
830
831                         /*
832                          * Given we are writing one page at a time to disk, we
833                          * copy that much from the buffer, although the last
834                          * bit will likely be smaller than full page. This is
835                          * OK - we saved the length of the compressed data, so
836                          * any garbage at the end will be discarded when we
837                          * read it.
838                          */
839                         for (off = 0;
840                              off < LZO_HEADER + data[thr].cmp_len;
841                              off += PAGE_SIZE) {
842                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
843
844                                 ret = swap_write_page(handle, page, &hb);
845                                 if (ret)
846                                         goto out_finish;
847                         }
848                 }
849
850                 wait_event(crc->done, atomic_read(&crc->stop));
851                 atomic_set(&crc->stop, 0);
852         }
853
854 out_finish:
855         err2 = hib_wait_io(&hb);
856         stop = ktime_get();
857         if (!ret)
858                 ret = err2;
859         if (!ret)
860                 printk(KERN_INFO "PM: Image saving done.\n");
861         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
862 out_clean:
863         if (crc) {
864                 if (crc->thr)
865                         kthread_stop(crc->thr);
866                 kfree(crc);
867         }
868         if (data) {
869                 for (thr = 0; thr < nr_threads; thr++)
870                         if (data[thr].thr)
871                                 kthread_stop(data[thr].thr);
872                 vfree(data);
873         }
874         if (page) free_page((unsigned long)page);
875
876         return ret;
877 }
878
879 /**
880  *      enough_swap - Make sure we have enough swap to save the image.
881  *
882  *      Returns TRUE or FALSE after checking the total amount of swap
883  *      space avaiable from the resume partition.
884  */
885
886 static int enough_swap(unsigned int nr_pages, unsigned int flags)
887 {
888         unsigned int free_swap = count_swap_pages(root_swap, 1);
889         unsigned int required;
890
891         pr_debug("PM: Free swap pages: %u\n", free_swap);
892
893         required = PAGES_FOR_IO + nr_pages;
894         return free_swap > required;
895 }
896
897 /**
898  *      swsusp_write - Write entire image and metadata.
899  *      @flags: flags to pass to the "boot" kernel in the image header
900  *
901  *      It is important _NOT_ to umount filesystems at this point. We want
902  *      them synced (in case something goes wrong) but we DO not want to mark
903  *      filesystem clean: it is not. (And it does not matter, if we resume
904  *      correctly, we'll mark system clean, anyway.)
905  */
906
907 int swsusp_write(unsigned int flags)
908 {
909         struct swap_map_handle handle;
910         struct snapshot_handle snapshot;
911         struct swsusp_info *header;
912         unsigned long pages;
913         int error;
914
915         pages = snapshot_get_image_size();
916         error = get_swap_writer(&handle);
917         if (error) {
918                 printk(KERN_ERR "PM: Cannot get swap writer\n");
919                 return error;
920         }
921         if (flags & SF_NOCOMPRESS_MODE) {
922                 if (!enough_swap(pages, flags)) {
923                         printk(KERN_ERR "PM: Not enough free swap\n");
924                         error = -ENOSPC;
925                         goto out_finish;
926                 }
927         }
928         memset(&snapshot, 0, sizeof(struct snapshot_handle));
929         error = snapshot_read_next(&snapshot);
930         if (error < PAGE_SIZE) {
931                 if (error >= 0)
932                         error = -EFAULT;
933
934                 goto out_finish;
935         }
936         header = (struct swsusp_info *)data_of(snapshot);
937         error = swap_write_page(&handle, header, NULL);
938         if (!error) {
939                 error = (flags & SF_NOCOMPRESS_MODE) ?
940                         save_image(&handle, &snapshot, pages - 1) :
941                         save_image_lzo(&handle, &snapshot, pages - 1);
942         }
943 out_finish:
944         error = swap_writer_finish(&handle, flags, error);
945         return error;
946 }
947
948 /**
949  *      The following functions allow us to read data using a swap map
950  *      in a file-alike way
951  */
952
953 static void release_swap_reader(struct swap_map_handle *handle)
954 {
955         struct swap_map_page_list *tmp;
956
957         while (handle->maps) {
958                 if (handle->maps->map)
959                         free_page((unsigned long)handle->maps->map);
960                 tmp = handle->maps;
961                 handle->maps = handle->maps->next;
962                 kfree(tmp);
963         }
964         handle->cur = NULL;
965 }
966
967 static int get_swap_reader(struct swap_map_handle *handle,
968                 unsigned int *flags_p)
969 {
970         int error;
971         struct swap_map_page_list *tmp, *last;
972         sector_t offset;
973
974         *flags_p = swsusp_header->flags;
975
976         if (!swsusp_header->image) /* how can this happen? */
977                 return -EINVAL;
978
979         handle->cur = NULL;
980         last = handle->maps = NULL;
981         offset = swsusp_header->image;
982         while (offset) {
983                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
984                 if (!tmp) {
985                         release_swap_reader(handle);
986                         return -ENOMEM;
987                 }
988                 memset(tmp, 0, sizeof(*tmp));
989                 if (!handle->maps)
990                         handle->maps = tmp;
991                 if (last)
992                         last->next = tmp;
993                 last = tmp;
994
995                 tmp->map = (struct swap_map_page *)
996                            __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
997                 if (!tmp->map) {
998                         release_swap_reader(handle);
999                         return -ENOMEM;
1000                 }
1001
1002                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1003                 if (error) {
1004                         release_swap_reader(handle);
1005                         return error;
1006                 }
1007                 offset = tmp->map->next_swap;
1008         }
1009         handle->k = 0;
1010         handle->cur = handle->maps->map;
1011         return 0;
1012 }
1013
1014 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1015                 struct hib_bio_batch *hb)
1016 {
1017         sector_t offset;
1018         int error;
1019         struct swap_map_page_list *tmp;
1020
1021         if (!handle->cur)
1022                 return -EINVAL;
1023         offset = handle->cur->entries[handle->k];
1024         if (!offset)
1025                 return -EFAULT;
1026         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1027         if (error)
1028                 return error;
1029         if (++handle->k >= MAP_PAGE_ENTRIES) {
1030                 handle->k = 0;
1031                 free_page((unsigned long)handle->maps->map);
1032                 tmp = handle->maps;
1033                 handle->maps = handle->maps->next;
1034                 kfree(tmp);
1035                 if (!handle->maps)
1036                         release_swap_reader(handle);
1037                 else
1038                         handle->cur = handle->maps->map;
1039         }
1040         return error;
1041 }
1042
1043 static int swap_reader_finish(struct swap_map_handle *handle)
1044 {
1045         release_swap_reader(handle);
1046
1047         return 0;
1048 }
1049
1050 /**
1051  *      load_image - load the image using the swap map handle
1052  *      @handle and the snapshot handle @snapshot
1053  *      (assume there are @nr_pages pages to load)
1054  */
1055
1056 static int load_image(struct swap_map_handle *handle,
1057                       struct snapshot_handle *snapshot,
1058                       unsigned int nr_to_read)
1059 {
1060         unsigned int m;
1061         int ret = 0;
1062         ktime_t start;
1063         ktime_t stop;
1064         struct hib_bio_batch hb;
1065         int err2;
1066         unsigned nr_pages;
1067
1068         hib_init_batch(&hb);
1069
1070         clean_pages_on_read = true;
1071         printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1072                 nr_to_read);
1073         m = nr_to_read / 10;
1074         if (!m)
1075                 m = 1;
1076         nr_pages = 0;
1077         start = ktime_get();
1078         for ( ; ; ) {
1079                 ret = snapshot_write_next(snapshot);
1080                 if (ret <= 0)
1081                         break;
1082                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1083                 if (ret)
1084                         break;
1085                 if (snapshot->sync_read)
1086                         ret = hib_wait_io(&hb);
1087                 if (ret)
1088                         break;
1089                 if (!(nr_pages % m))
1090                         printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1091                                nr_pages / m * 10);
1092                 nr_pages++;
1093         }
1094         err2 = hib_wait_io(&hb);
1095         stop = ktime_get();
1096         if (!ret)
1097                 ret = err2;
1098         if (!ret) {
1099                 printk(KERN_INFO "PM: Image loading done.\n");
1100                 snapshot_write_finalize(snapshot);
1101                 if (!snapshot_image_loaded(snapshot))
1102                         ret = -ENODATA;
1103         }
1104         swsusp_show_speed(start, stop, nr_to_read, "Read");
1105         return ret;
1106 }
1107
1108 /**
1109  * Structure used for LZO data decompression.
1110  */
1111 struct dec_data {
1112         struct task_struct *thr;                  /* thread */
1113         atomic_t ready;                           /* ready to start flag */
1114         atomic_t stop;                            /* ready to stop flag */
1115         int ret;                                  /* return code */
1116         wait_queue_head_t go;                     /* start decompression */
1117         wait_queue_head_t done;                   /* decompression done */
1118         size_t unc_len;                           /* uncompressed length */
1119         size_t cmp_len;                           /* compressed length */
1120         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1121         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1122 };
1123
1124 /**
1125  * Deompression function that runs in its own thread.
1126  */
1127 static int lzo_decompress_threadfn(void *data)
1128 {
1129         struct dec_data *d = data;
1130
1131         while (1) {
1132                 wait_event(d->go, atomic_read(&d->ready) ||
1133                                   kthread_should_stop());
1134                 if (kthread_should_stop()) {
1135                         d->thr = NULL;
1136                         d->ret = -1;
1137                         atomic_set(&d->stop, 1);
1138                         wake_up(&d->done);
1139                         break;
1140                 }
1141                 atomic_set(&d->ready, 0);
1142
1143                 d->unc_len = LZO_UNC_SIZE;
1144                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1145                                                d->unc, &d->unc_len);
1146                 if (clean_pages_on_decompress)
1147                         flush_icache_range((unsigned long)d->unc,
1148                                            (unsigned long)d->unc + d->unc_len);
1149
1150                 atomic_set(&d->stop, 1);
1151                 wake_up(&d->done);
1152         }
1153         return 0;
1154 }
1155
1156 /**
1157  * load_image_lzo - Load compressed image data and decompress them with LZO.
1158  * @handle: Swap map handle to use for loading data.
1159  * @snapshot: Image to copy uncompressed data into.
1160  * @nr_to_read: Number of pages to load.
1161  */
1162 static int load_image_lzo(struct swap_map_handle *handle,
1163                           struct snapshot_handle *snapshot,
1164                           unsigned int nr_to_read)
1165 {
1166         unsigned int m;
1167         int ret = 0;
1168         int eof = 0;
1169         struct hib_bio_batch hb;
1170         ktime_t start;
1171         ktime_t stop;
1172         unsigned nr_pages;
1173         size_t off;
1174         unsigned i, thr, run_threads, nr_threads;
1175         unsigned ring = 0, pg = 0, ring_size = 0,
1176                  have = 0, want, need, asked = 0;
1177         unsigned long read_pages = 0;
1178         unsigned char **page = NULL;
1179         struct dec_data *data = NULL;
1180         struct crc_data *crc = NULL;
1181
1182         hib_init_batch(&hb);
1183
1184         /*
1185          * We'll limit the number of threads for decompression to limit memory
1186          * footprint.
1187          */
1188         nr_threads = num_online_cpus() - 1;
1189         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1190
1191         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1192         if (!page) {
1193                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1194                 ret = -ENOMEM;
1195                 goto out_clean;
1196         }
1197
1198         data = vmalloc(sizeof(*data) * nr_threads);
1199         if (!data) {
1200                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1201                 ret = -ENOMEM;
1202                 goto out_clean;
1203         }
1204         for (thr = 0; thr < nr_threads; thr++)
1205                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1206
1207         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1208         if (!crc) {
1209                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1210                 ret = -ENOMEM;
1211                 goto out_clean;
1212         }
1213         memset(crc, 0, offsetof(struct crc_data, go));
1214
1215         clean_pages_on_decompress = true;
1216
1217         /*
1218          * Start the decompression threads.
1219          */
1220         for (thr = 0; thr < nr_threads; thr++) {
1221                 init_waitqueue_head(&data[thr].go);
1222                 init_waitqueue_head(&data[thr].done);
1223
1224                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225                                             &data[thr],
1226                                             "image_decompress/%u", thr);
1227                 if (IS_ERR(data[thr].thr)) {
1228                         data[thr].thr = NULL;
1229                         printk(KERN_ERR
1230                                "PM: Cannot start decompression threads\n");
1231                         ret = -ENOMEM;
1232                         goto out_clean;
1233                 }
1234         }
1235
1236         /*
1237          * Start the CRC32 thread.
1238          */
1239         init_waitqueue_head(&crc->go);
1240         init_waitqueue_head(&crc->done);
1241
1242         handle->crc32 = 0;
1243         crc->crc32 = &handle->crc32;
1244         for (thr = 0; thr < nr_threads; thr++) {
1245                 crc->unc[thr] = data[thr].unc;
1246                 crc->unc_len[thr] = &data[thr].unc_len;
1247         }
1248
1249         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1250         if (IS_ERR(crc->thr)) {
1251                 crc->thr = NULL;
1252                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1253                 ret = -ENOMEM;
1254                 goto out_clean;
1255         }
1256
1257         /*
1258          * Set the number of pages for read buffering.
1259          * This is complete guesswork, because we'll only know the real
1260          * picture once prepare_image() is called, which is much later on
1261          * during the image load phase. We'll assume the worst case and
1262          * say that none of the image pages are from high memory.
1263          */
1264         if (low_free_pages() > snapshot_get_image_size())
1265                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1266         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1267
1268         for (i = 0; i < read_pages; i++) {
1269                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1270                                                   __GFP_RECLAIM | __GFP_HIGH :
1271                                                   __GFP_RECLAIM | __GFP_NOWARN |
1272                                                   __GFP_NORETRY);
1273
1274                 if (!page[i]) {
1275                         if (i < LZO_CMP_PAGES) {
1276                                 ring_size = i;
1277                                 printk(KERN_ERR
1278                                        "PM: Failed to allocate LZO pages\n");
1279                                 ret = -ENOMEM;
1280                                 goto out_clean;
1281                         } else {
1282                                 break;
1283                         }
1284                 }
1285         }
1286         want = ring_size = i;
1287
1288         printk(KERN_INFO
1289                 "PM: Using %u thread(s) for decompression.\n"
1290                 "PM: Loading and decompressing image data (%u pages)...\n",
1291                 nr_threads, nr_to_read);
1292         m = nr_to_read / 10;
1293         if (!m)
1294                 m = 1;
1295         nr_pages = 0;
1296         start = ktime_get();
1297
1298         ret = snapshot_write_next(snapshot);
1299         if (ret <= 0)
1300                 goto out_finish;
1301
1302         for(;;) {
1303                 for (i = 0; !eof && i < want; i++) {
1304                         ret = swap_read_page(handle, page[ring], &hb);
1305                         if (ret) {
1306                                 /*
1307                                  * On real read error, finish. On end of data,
1308                                  * set EOF flag and just exit the read loop.
1309                                  */
1310                                 if (handle->cur &&
1311                                     handle->cur->entries[handle->k]) {
1312                                         goto out_finish;
1313                                 } else {
1314                                         eof = 1;
1315                                         break;
1316                                 }
1317                         }
1318                         if (++ring >= ring_size)
1319                                 ring = 0;
1320                 }
1321                 asked += i;
1322                 want -= i;
1323
1324                 /*
1325                  * We are out of data, wait for some more.
1326                  */
1327                 if (!have) {
1328                         if (!asked)
1329                                 break;
1330
1331                         ret = hib_wait_io(&hb);
1332                         if (ret)
1333                                 goto out_finish;
1334                         have += asked;
1335                         asked = 0;
1336                         if (eof)
1337                                 eof = 2;
1338                 }
1339
1340                 if (crc->run_threads) {
1341                         wait_event(crc->done, atomic_read(&crc->stop));
1342                         atomic_set(&crc->stop, 0);
1343                         crc->run_threads = 0;
1344                 }
1345
1346                 for (thr = 0; have && thr < nr_threads; thr++) {
1347                         data[thr].cmp_len = *(size_t *)page[pg];
1348                         if (unlikely(!data[thr].cmp_len ||
1349                                      data[thr].cmp_len >
1350                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1351                                 printk(KERN_ERR
1352                                        "PM: Invalid LZO compressed length\n");
1353                                 ret = -1;
1354                                 goto out_finish;
1355                         }
1356
1357                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1358                                             PAGE_SIZE);
1359                         if (need > have) {
1360                                 if (eof > 1) {
1361                                         ret = -1;
1362                                         goto out_finish;
1363                                 }
1364                                 break;
1365                         }
1366
1367                         for (off = 0;
1368                              off < LZO_HEADER + data[thr].cmp_len;
1369                              off += PAGE_SIZE) {
1370                                 memcpy(data[thr].cmp + off,
1371                                        page[pg], PAGE_SIZE);
1372                                 have--;
1373                                 want++;
1374                                 if (++pg >= ring_size)
1375                                         pg = 0;
1376                         }
1377
1378                         atomic_set(&data[thr].ready, 1);
1379                         wake_up(&data[thr].go);
1380                 }
1381
1382                 /*
1383                  * Wait for more data while we are decompressing.
1384                  */
1385                 if (have < LZO_CMP_PAGES && asked) {
1386                         ret = hib_wait_io(&hb);
1387                         if (ret)
1388                                 goto out_finish;
1389                         have += asked;
1390                         asked = 0;
1391                         if (eof)
1392                                 eof = 2;
1393                 }
1394
1395                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1396                         wait_event(data[thr].done,
1397                                    atomic_read(&data[thr].stop));
1398                         atomic_set(&data[thr].stop, 0);
1399
1400                         ret = data[thr].ret;
1401
1402                         if (ret < 0) {
1403                                 printk(KERN_ERR
1404                                        "PM: LZO decompression failed\n");
1405                                 goto out_finish;
1406                         }
1407
1408                         if (unlikely(!data[thr].unc_len ||
1409                                      data[thr].unc_len > LZO_UNC_SIZE ||
1410                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1411                                 printk(KERN_ERR
1412                                        "PM: Invalid LZO uncompressed length\n");
1413                                 ret = -1;
1414                                 goto out_finish;
1415                         }
1416
1417                         for (off = 0;
1418                              off < data[thr].unc_len; off += PAGE_SIZE) {
1419                                 memcpy(data_of(*snapshot),
1420                                        data[thr].unc + off, PAGE_SIZE);
1421
1422                                 if (!(nr_pages % m))
1423                                         printk(KERN_INFO
1424                                                "PM: Image loading progress: "
1425                                                "%3d%%\n",
1426                                                nr_pages / m * 10);
1427                                 nr_pages++;
1428
1429                                 ret = snapshot_write_next(snapshot);
1430                                 if (ret <= 0) {
1431                                         crc->run_threads = thr + 1;
1432                                         atomic_set(&crc->ready, 1);
1433                                         wake_up(&crc->go);
1434                                         goto out_finish;
1435                                 }
1436                         }
1437                 }
1438
1439                 crc->run_threads = thr;
1440                 atomic_set(&crc->ready, 1);
1441                 wake_up(&crc->go);
1442         }
1443
1444 out_finish:
1445         if (crc->run_threads) {
1446                 wait_event(crc->done, atomic_read(&crc->stop));
1447                 atomic_set(&crc->stop, 0);
1448         }
1449         stop = ktime_get();
1450         if (!ret) {
1451                 printk(KERN_INFO "PM: Image loading done.\n");
1452                 snapshot_write_finalize(snapshot);
1453                 if (!snapshot_image_loaded(snapshot))
1454                         ret = -ENODATA;
1455                 if (!ret) {
1456                         if (swsusp_header->flags & SF_CRC32_MODE) {
1457                                 if(handle->crc32 != swsusp_header->crc32) {
1458                                         printk(KERN_ERR
1459                                                "PM: Invalid image CRC32!\n");
1460                                         ret = -ENODATA;
1461                                 }
1462                         }
1463                 }
1464         }
1465         swsusp_show_speed(start, stop, nr_to_read, "Read");
1466 out_clean:
1467         for (i = 0; i < ring_size; i++)
1468                 free_page((unsigned long)page[i]);
1469         if (crc) {
1470                 if (crc->thr)
1471                         kthread_stop(crc->thr);
1472                 kfree(crc);
1473         }
1474         if (data) {
1475                 for (thr = 0; thr < nr_threads; thr++)
1476                         if (data[thr].thr)
1477                                 kthread_stop(data[thr].thr);
1478                 vfree(data);
1479         }
1480         vfree(page);
1481
1482         return ret;
1483 }
1484
1485 /**
1486  *      swsusp_read - read the hibernation image.
1487  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1488  *                be written into this memory location
1489  */
1490
1491 int swsusp_read(unsigned int *flags_p)
1492 {
1493         int error;
1494         struct swap_map_handle handle;
1495         struct snapshot_handle snapshot;
1496         struct swsusp_info *header;
1497
1498         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1499         error = snapshot_write_next(&snapshot);
1500         if (error < PAGE_SIZE)
1501                 return error < 0 ? error : -EFAULT;
1502         header = (struct swsusp_info *)data_of(snapshot);
1503         error = get_swap_reader(&handle, flags_p);
1504         if (error)
1505                 goto end;
1506         if (!error)
1507                 error = swap_read_page(&handle, header, NULL);
1508         if (!error) {
1509                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1510                         load_image(&handle, &snapshot, header->pages - 1) :
1511                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1512         }
1513         swap_reader_finish(&handle);
1514 end:
1515         if (!error)
1516                 pr_debug("PM: Image successfully loaded\n");
1517         else
1518                 pr_debug("PM: Error %d resuming\n", error);
1519         return error;
1520 }
1521
1522 /**
1523  *      swsusp_check - Check for swsusp signature in the resume device
1524  */
1525
1526 int swsusp_check(void)
1527 {
1528         int error;
1529
1530         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1531                                             FMODE_READ, NULL);
1532         if (!IS_ERR(hib_resume_bdev)) {
1533                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1534                 clear_page(swsusp_header);
1535                 error = hib_submit_io(REQ_OP_READ, 0,
1536                                         swsusp_resume_block,
1537                                         swsusp_header, NULL);
1538                 if (error)
1539                         goto put;
1540
1541                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1542                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1543                         /* Reset swap signature now */
1544                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1545                                                 swsusp_resume_block,
1546                                                 swsusp_header, NULL);
1547                 } else {
1548                         error = -EINVAL;
1549                 }
1550
1551 put:
1552                 if (error)
1553                         blkdev_put(hib_resume_bdev, FMODE_READ);
1554                 else
1555                         pr_debug("PM: Image signature found, resuming\n");
1556         } else {
1557                 error = PTR_ERR(hib_resume_bdev);
1558         }
1559
1560         if (error)
1561                 pr_debug("PM: Image not found (code %d)\n", error);
1562
1563         return error;
1564 }
1565
1566 /**
1567  *      swsusp_close - close swap device.
1568  */
1569
1570 void swsusp_close(fmode_t mode)
1571 {
1572         if (IS_ERR(hib_resume_bdev)) {
1573                 pr_debug("PM: Image device not initialised\n");
1574                 return;
1575         }
1576
1577         blkdev_put(hib_resume_bdev, mode);
1578 }
1579
1580 /**
1581  *      swsusp_unmark - Unmark swsusp signature in the resume device
1582  */
1583
1584 #ifdef CONFIG_SUSPEND
1585 int swsusp_unmark(void)
1586 {
1587         int error;
1588
1589         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1590                       swsusp_header, NULL);
1591         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1592                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1593                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1594                                         swsusp_resume_block,
1595                                         swsusp_header, NULL);
1596         } else {
1597                 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1598                 error = -ENODEV;
1599         }
1600
1601         /*
1602          * We just returned from suspend, we don't need the image any more.
1603          */
1604         free_all_swap_pages(root_swap);
1605
1606         return error;
1607 }
1608 #endif
1609
1610 static int swsusp_header_init(void)
1611 {
1612         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1613         if (!swsusp_header)
1614                 panic("Could not allocate memory for swsusp_header\n");
1615         return 0;
1616 }
1617
1618 core_initcall(swsusp_header_init);