b03ff1a33c7f68d1a1107ff8bde61c3b8286e69d
[sfrench/cifs-2.6.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33
34 #include "power.h"
35
36 #define HIBERNATE_SIG   "S1SUSPEND"
37
38 u32 swsusp_hardware_signature;
39
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47
48 /*
49  *      The swap map is a data structure used for keeping track of each page
50  *      written to a swap partition.  It consists of many swap_map_page
51  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *      These structures are stored on the swap and linked together with the
53  *      help of the .next_swap member.
54  *
55  *      The swap map is created during suspend.  The swap map pages are
56  *      allocated and populated one at a time, so we only need one memory
57  *      page to set up the entire structure.
58  *
59  *      During resume we pick up all swap_map_page structures into a list.
60  */
61
62 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
63
64 /*
65  * Number of free pages that are not high.
66  */
67 static inline unsigned long low_free_pages(void)
68 {
69         return nr_free_pages() - nr_free_highpages();
70 }
71
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
76 static inline unsigned long reqd_free_pages(void)
77 {
78         return low_free_pages() / 2;
79 }
80
81 struct swap_map_page {
82         sector_t entries[MAP_PAGE_ENTRIES];
83         sector_t next_swap;
84 };
85
86 struct swap_map_page_list {
87         struct swap_map_page *map;
88         struct swap_map_page_list *next;
89 };
90
91 /*
92  *      The swap_map_handle structure is used for handling swap in
93  *      a file-alike way
94  */
95
96 struct swap_map_handle {
97         struct swap_map_page *cur;
98         struct swap_map_page_list *maps;
99         sector_t cur_swap;
100         sector_t first_sector;
101         unsigned int k;
102         unsigned long reqd_free_pages;
103         u32 crc32;
104 };
105
106 struct swsusp_header {
107         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108                       sizeof(u32) - sizeof(u32)];
109         u32     hw_sig;
110         u32     crc32;
111         sector_t image;
112         unsigned int flags;     /* Flags to pass to the "boot" kernel */
113         char    orig_sig[10];
114         char    sig[10];
115 } __packed;
116
117 static struct swsusp_header *swsusp_header;
118
119 /*
120  *      The following functions are used for tracing the allocated
121  *      swap pages, so that they can be freed in case of an error.
122  */
123
124 struct swsusp_extent {
125         struct rb_node node;
126         unsigned long start;
127         unsigned long end;
128 };
129
130 static struct rb_root swsusp_extents = RB_ROOT;
131
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134         struct rb_node **new = &(swsusp_extents.rb_node);
135         struct rb_node *parent = NULL;
136         struct swsusp_extent *ext;
137
138         /* Figure out where to put the new node */
139         while (*new) {
140                 ext = rb_entry(*new, struct swsusp_extent, node);
141                 parent = *new;
142                 if (swap_offset < ext->start) {
143                         /* Try to merge */
144                         if (swap_offset == ext->start - 1) {
145                                 ext->start--;
146                                 return 0;
147                         }
148                         new = &((*new)->rb_left);
149                 } else if (swap_offset > ext->end) {
150                         /* Try to merge */
151                         if (swap_offset == ext->end + 1) {
152                                 ext->end++;
153                                 return 0;
154                         }
155                         new = &((*new)->rb_right);
156                 } else {
157                         /* It already is in the tree */
158                         return -EINVAL;
159                 }
160         }
161         /* Add the new node and rebalance the tree. */
162         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163         if (!ext)
164                 return -ENOMEM;
165
166         ext->start = swap_offset;
167         ext->end = swap_offset;
168         rb_link_node(&ext->node, parent, new);
169         rb_insert_color(&ext->node, &swsusp_extents);
170         return 0;
171 }
172
173 /*
174  *      alloc_swapdev_block - allocate a swap page and register that it has
175  *      been allocated, so that it can be freed in case of an error.
176  */
177
178 sector_t alloc_swapdev_block(int swap)
179 {
180         unsigned long offset;
181
182         offset = swp_offset(get_swap_page_of_type(swap));
183         if (offset) {
184                 if (swsusp_extents_insert(offset))
185                         swap_free(swp_entry(swap, offset));
186                 else
187                         return swapdev_block(swap, offset);
188         }
189         return 0;
190 }
191
192 /*
193  *      free_all_swap_pages - free swap pages allocated for saving image data.
194  *      It also frees the extents used to register which swap entries had been
195  *      allocated.
196  */
197
198 void free_all_swap_pages(int swap)
199 {
200         struct rb_node *node;
201
202         while ((node = swsusp_extents.rb_node)) {
203                 struct swsusp_extent *ext;
204                 unsigned long offset;
205
206                 ext = rb_entry(node, struct swsusp_extent, node);
207                 rb_erase(node, &swsusp_extents);
208                 for (offset = ext->start; offset <= ext->end; offset++)
209                         swap_free(swp_entry(swap, offset));
210
211                 kfree(ext);
212         }
213 }
214
215 int swsusp_swap_in_use(void)
216 {
217         return (swsusp_extents.rb_node != NULL);
218 }
219
220 /*
221  * General things
222  */
223
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226
227 struct hib_bio_batch {
228         atomic_t                count;
229         wait_queue_head_t       wait;
230         blk_status_t            error;
231         struct blk_plug         plug;
232 };
233
234 static void hib_init_batch(struct hib_bio_batch *hb)
235 {
236         atomic_set(&hb->count, 0);
237         init_waitqueue_head(&hb->wait);
238         hb->error = BLK_STS_OK;
239         blk_start_plug(&hb->plug);
240 }
241
242 static void hib_finish_batch(struct hib_bio_batch *hb)
243 {
244         blk_finish_plug(&hb->plug);
245 }
246
247 static void hib_end_io(struct bio *bio)
248 {
249         struct hib_bio_batch *hb = bio->bi_private;
250         struct page *page = bio_first_page_all(bio);
251
252         if (bio->bi_status) {
253                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255                          (unsigned long long)bio->bi_iter.bi_sector);
256         }
257
258         if (bio_data_dir(bio) == WRITE)
259                 put_page(page);
260         else if (clean_pages_on_read)
261                 flush_icache_range((unsigned long)page_address(page),
262                                    (unsigned long)page_address(page) + PAGE_SIZE);
263
264         if (bio->bi_status && !hb->error)
265                 hb->error = bio->bi_status;
266         if (atomic_dec_and_test(&hb->count))
267                 wake_up(&hb->wait);
268
269         bio_put(bio);
270 }
271
272 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
273                          struct hib_bio_batch *hb)
274 {
275         struct page *page = virt_to_page(addr);
276         struct bio *bio;
277         int error = 0;
278
279         bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH);
280         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281
282         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283                 pr_err("Adding page to bio failed at %llu\n",
284                        (unsigned long long)bio->bi_iter.bi_sector);
285                 bio_put(bio);
286                 return -EFAULT;
287         }
288
289         if (hb) {
290                 bio->bi_end_io = hib_end_io;
291                 bio->bi_private = hb;
292                 atomic_inc(&hb->count);
293                 submit_bio(bio);
294         } else {
295                 error = submit_bio_wait(bio);
296                 bio_put(bio);
297         }
298
299         return error;
300 }
301
302 static int hib_wait_io(struct hib_bio_batch *hb)
303 {
304         /*
305          * We are relying on the behavior of blk_plug that a thread with
306          * a plug will flush the plug list before sleeping.
307          */
308         wait_event(hb->wait, atomic_read(&hb->count) == 0);
309         return blk_status_to_errno(hb->error);
310 }
311
312 /*
313  * Saving part
314  */
315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
316 {
317         int error;
318
319         hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
320         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
321             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
322                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
323                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
324                 swsusp_header->image = handle->first_sector;
325                 if (swsusp_hardware_signature) {
326                         swsusp_header->hw_sig = swsusp_hardware_signature;
327                         flags |= SF_HW_SIG;
328                 }
329                 swsusp_header->flags = flags;
330                 if (flags & SF_CRC32_MODE)
331                         swsusp_header->crc32 = handle->crc32;
332                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
333                                       swsusp_resume_block, swsusp_header, NULL);
334         } else {
335                 pr_err("Swap header not found!\n");
336                 error = -ENODEV;
337         }
338         return error;
339 }
340
341 /**
342  *      swsusp_swap_check - check if the resume device is a swap device
343  *      and get its index (if so)
344  *
345  *      This is called before saving image
346  */
347 static int swsusp_swap_check(void)
348 {
349         int res;
350
351         if (swsusp_resume_device)
352                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
353         else
354                 res = find_first_swap(&swsusp_resume_device);
355         if (res < 0)
356                 return res;
357         root_swap = res;
358
359         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
360                         NULL, NULL);
361         if (IS_ERR(hib_resume_bdev))
362                 return PTR_ERR(hib_resume_bdev);
363
364         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
365         if (res < 0)
366                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
367
368         return res;
369 }
370
371 /**
372  *      write_page - Write one page to given swap location.
373  *      @buf:           Address we're writing.
374  *      @offset:        Offset of the swap page we're writing to.
375  *      @hb:            bio completion batch
376  */
377
378 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
379 {
380         void *src;
381         int ret;
382
383         if (!offset)
384                 return -ENOSPC;
385
386         if (hb) {
387                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
388                                               __GFP_NORETRY);
389                 if (src) {
390                         copy_page(src, buf);
391                 } else {
392                         ret = hib_wait_io(hb); /* Free pages */
393                         if (ret)
394                                 return ret;
395                         src = (void *)__get_free_page(GFP_NOIO |
396                                                       __GFP_NOWARN |
397                                                       __GFP_NORETRY);
398                         if (src) {
399                                 copy_page(src, buf);
400                         } else {
401                                 WARN_ON_ONCE(1);
402                                 hb = NULL;      /* Go synchronous */
403                                 src = buf;
404                         }
405                 }
406         } else {
407                 src = buf;
408         }
409         return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
410 }
411
412 static void release_swap_writer(struct swap_map_handle *handle)
413 {
414         if (handle->cur)
415                 free_page((unsigned long)handle->cur);
416         handle->cur = NULL;
417 }
418
419 static int get_swap_writer(struct swap_map_handle *handle)
420 {
421         int ret;
422
423         ret = swsusp_swap_check();
424         if (ret) {
425                 if (ret != -ENOSPC)
426                         pr_err("Cannot find swap device, try swapon -a\n");
427                 return ret;
428         }
429         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
430         if (!handle->cur) {
431                 ret = -ENOMEM;
432                 goto err_close;
433         }
434         handle->cur_swap = alloc_swapdev_block(root_swap);
435         if (!handle->cur_swap) {
436                 ret = -ENOSPC;
437                 goto err_rel;
438         }
439         handle->k = 0;
440         handle->reqd_free_pages = reqd_free_pages();
441         handle->first_sector = handle->cur_swap;
442         return 0;
443 err_rel:
444         release_swap_writer(handle);
445 err_close:
446         swsusp_close(FMODE_WRITE);
447         return ret;
448 }
449
450 static int swap_write_page(struct swap_map_handle *handle, void *buf,
451                 struct hib_bio_batch *hb)
452 {
453         int error = 0;
454         sector_t offset;
455
456         if (!handle->cur)
457                 return -EINVAL;
458         offset = alloc_swapdev_block(root_swap);
459         error = write_page(buf, offset, hb);
460         if (error)
461                 return error;
462         handle->cur->entries[handle->k++] = offset;
463         if (handle->k >= MAP_PAGE_ENTRIES) {
464                 offset = alloc_swapdev_block(root_swap);
465                 if (!offset)
466                         return -ENOSPC;
467                 handle->cur->next_swap = offset;
468                 error = write_page(handle->cur, handle->cur_swap, hb);
469                 if (error)
470                         goto out;
471                 clear_page(handle->cur);
472                 handle->cur_swap = offset;
473                 handle->k = 0;
474
475                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
476                         error = hib_wait_io(hb);
477                         if (error)
478                                 goto out;
479                         /*
480                          * Recalculate the number of required free pages, to
481                          * make sure we never take more than half.
482                          */
483                         handle->reqd_free_pages = reqd_free_pages();
484                 }
485         }
486  out:
487         return error;
488 }
489
490 static int flush_swap_writer(struct swap_map_handle *handle)
491 {
492         if (handle->cur && handle->cur_swap)
493                 return write_page(handle->cur, handle->cur_swap, NULL);
494         else
495                 return -EINVAL;
496 }
497
498 static int swap_writer_finish(struct swap_map_handle *handle,
499                 unsigned int flags, int error)
500 {
501         if (!error) {
502                 pr_info("S");
503                 error = mark_swapfiles(handle, flags);
504                 pr_cont("|\n");
505                 flush_swap_writer(handle);
506         }
507
508         if (error)
509                 free_all_swap_pages(root_swap);
510         release_swap_writer(handle);
511         swsusp_close(FMODE_WRITE);
512
513         return error;
514 }
515
516 /* We need to remember how much compressed data we need to read. */
517 #define LZO_HEADER      sizeof(size_t)
518
519 /* Number of pages/bytes we'll compress at one time. */
520 #define LZO_UNC_PAGES   32
521 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
522
523 /* Number of pages/bytes we need for compressed data (worst case). */
524 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
525                                      LZO_HEADER, PAGE_SIZE)
526 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
527
528 /* Maximum number of threads for compression/decompression. */
529 #define LZO_THREADS     3
530
531 /* Minimum/maximum number of pages for read buffering. */
532 #define LZO_MIN_RD_PAGES        1024
533 #define LZO_MAX_RD_PAGES        8192
534
535
536 /**
537  *      save_image - save the suspend image data
538  */
539
540 static int save_image(struct swap_map_handle *handle,
541                       struct snapshot_handle *snapshot,
542                       unsigned int nr_to_write)
543 {
544         unsigned int m;
545         int ret;
546         int nr_pages;
547         int err2;
548         struct hib_bio_batch hb;
549         ktime_t start;
550         ktime_t stop;
551
552         hib_init_batch(&hb);
553
554         pr_info("Saving image data pages (%u pages)...\n",
555                 nr_to_write);
556         m = nr_to_write / 10;
557         if (!m)
558                 m = 1;
559         nr_pages = 0;
560         start = ktime_get();
561         while (1) {
562                 ret = snapshot_read_next(snapshot);
563                 if (ret <= 0)
564                         break;
565                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
566                 if (ret)
567                         break;
568                 if (!(nr_pages % m))
569                         pr_info("Image saving progress: %3d%%\n",
570                                 nr_pages / m * 10);
571                 nr_pages++;
572         }
573         err2 = hib_wait_io(&hb);
574         hib_finish_batch(&hb);
575         stop = ktime_get();
576         if (!ret)
577                 ret = err2;
578         if (!ret)
579                 pr_info("Image saving done\n");
580         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
581         return ret;
582 }
583
584 /*
585  * Structure used for CRC32.
586  */
587 struct crc_data {
588         struct task_struct *thr;                  /* thread */
589         atomic_t ready;                           /* ready to start flag */
590         atomic_t stop;                            /* ready to stop flag */
591         unsigned run_threads;                     /* nr current threads */
592         wait_queue_head_t go;                     /* start crc update */
593         wait_queue_head_t done;                   /* crc update done */
594         u32 *crc32;                               /* points to handle's crc32 */
595         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
596         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
597 };
598
599 /*
600  * CRC32 update function that runs in its own thread.
601  */
602 static int crc32_threadfn(void *data)
603 {
604         struct crc_data *d = data;
605         unsigned i;
606
607         while (1) {
608                 wait_event(d->go, atomic_read(&d->ready) ||
609                                   kthread_should_stop());
610                 if (kthread_should_stop()) {
611                         d->thr = NULL;
612                         atomic_set(&d->stop, 1);
613                         wake_up(&d->done);
614                         break;
615                 }
616                 atomic_set(&d->ready, 0);
617
618                 for (i = 0; i < d->run_threads; i++)
619                         *d->crc32 = crc32_le(*d->crc32,
620                                              d->unc[i], *d->unc_len[i]);
621                 atomic_set(&d->stop, 1);
622                 wake_up(&d->done);
623         }
624         return 0;
625 }
626 /*
627  * Structure used for LZO data compression.
628  */
629 struct cmp_data {
630         struct task_struct *thr;                  /* thread */
631         atomic_t ready;                           /* ready to start flag */
632         atomic_t stop;                            /* ready to stop flag */
633         int ret;                                  /* return code */
634         wait_queue_head_t go;                     /* start compression */
635         wait_queue_head_t done;                   /* compression done */
636         size_t unc_len;                           /* uncompressed length */
637         size_t cmp_len;                           /* compressed length */
638         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
639         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
640         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
641 };
642
643 /*
644  * Compression function that runs in its own thread.
645  */
646 static int lzo_compress_threadfn(void *data)
647 {
648         struct cmp_data *d = data;
649
650         while (1) {
651                 wait_event(d->go, atomic_read(&d->ready) ||
652                                   kthread_should_stop());
653                 if (kthread_should_stop()) {
654                         d->thr = NULL;
655                         d->ret = -1;
656                         atomic_set(&d->stop, 1);
657                         wake_up(&d->done);
658                         break;
659                 }
660                 atomic_set(&d->ready, 0);
661
662                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
663                                           d->cmp + LZO_HEADER, &d->cmp_len,
664                                           d->wrk);
665                 atomic_set(&d->stop, 1);
666                 wake_up(&d->done);
667         }
668         return 0;
669 }
670
671 /**
672  * save_image_lzo - Save the suspend image data compressed with LZO.
673  * @handle: Swap map handle to use for saving the image.
674  * @snapshot: Image to read data from.
675  * @nr_to_write: Number of pages to save.
676  */
677 static int save_image_lzo(struct swap_map_handle *handle,
678                           struct snapshot_handle *snapshot,
679                           unsigned int nr_to_write)
680 {
681         unsigned int m;
682         int ret = 0;
683         int nr_pages;
684         int err2;
685         struct hib_bio_batch hb;
686         ktime_t start;
687         ktime_t stop;
688         size_t off;
689         unsigned thr, run_threads, nr_threads;
690         unsigned char *page = NULL;
691         struct cmp_data *data = NULL;
692         struct crc_data *crc = NULL;
693
694         hib_init_batch(&hb);
695
696         /*
697          * We'll limit the number of threads for compression to limit memory
698          * footprint.
699          */
700         nr_threads = num_online_cpus() - 1;
701         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
702
703         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
704         if (!page) {
705                 pr_err("Failed to allocate LZO page\n");
706                 ret = -ENOMEM;
707                 goto out_clean;
708         }
709
710         data = vzalloc(array_size(nr_threads, sizeof(*data)));
711         if (!data) {
712                 pr_err("Failed to allocate LZO data\n");
713                 ret = -ENOMEM;
714                 goto out_clean;
715         }
716
717         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
718         if (!crc) {
719                 pr_err("Failed to allocate crc\n");
720                 ret = -ENOMEM;
721                 goto out_clean;
722         }
723
724         /*
725          * Start the compression threads.
726          */
727         for (thr = 0; thr < nr_threads; thr++) {
728                 init_waitqueue_head(&data[thr].go);
729                 init_waitqueue_head(&data[thr].done);
730
731                 data[thr].thr = kthread_run(lzo_compress_threadfn,
732                                             &data[thr],
733                                             "image_compress/%u", thr);
734                 if (IS_ERR(data[thr].thr)) {
735                         data[thr].thr = NULL;
736                         pr_err("Cannot start compression threads\n");
737                         ret = -ENOMEM;
738                         goto out_clean;
739                 }
740         }
741
742         /*
743          * Start the CRC32 thread.
744          */
745         init_waitqueue_head(&crc->go);
746         init_waitqueue_head(&crc->done);
747
748         handle->crc32 = 0;
749         crc->crc32 = &handle->crc32;
750         for (thr = 0; thr < nr_threads; thr++) {
751                 crc->unc[thr] = data[thr].unc;
752                 crc->unc_len[thr] = &data[thr].unc_len;
753         }
754
755         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
756         if (IS_ERR(crc->thr)) {
757                 crc->thr = NULL;
758                 pr_err("Cannot start CRC32 thread\n");
759                 ret = -ENOMEM;
760                 goto out_clean;
761         }
762
763         /*
764          * Adjust the number of required free pages after all allocations have
765          * been done. We don't want to run out of pages when writing.
766          */
767         handle->reqd_free_pages = reqd_free_pages();
768
769         pr_info("Using %u thread(s) for compression\n", nr_threads);
770         pr_info("Compressing and saving image data (%u pages)...\n",
771                 nr_to_write);
772         m = nr_to_write / 10;
773         if (!m)
774                 m = 1;
775         nr_pages = 0;
776         start = ktime_get();
777         for (;;) {
778                 for (thr = 0; thr < nr_threads; thr++) {
779                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
780                                 ret = snapshot_read_next(snapshot);
781                                 if (ret < 0)
782                                         goto out_finish;
783
784                                 if (!ret)
785                                         break;
786
787                                 memcpy(data[thr].unc + off,
788                                        data_of(*snapshot), PAGE_SIZE);
789
790                                 if (!(nr_pages % m))
791                                         pr_info("Image saving progress: %3d%%\n",
792                                                 nr_pages / m * 10);
793                                 nr_pages++;
794                         }
795                         if (!off)
796                                 break;
797
798                         data[thr].unc_len = off;
799
800                         atomic_set(&data[thr].ready, 1);
801                         wake_up(&data[thr].go);
802                 }
803
804                 if (!thr)
805                         break;
806
807                 crc->run_threads = thr;
808                 atomic_set(&crc->ready, 1);
809                 wake_up(&crc->go);
810
811                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
812                         wait_event(data[thr].done,
813                                    atomic_read(&data[thr].stop));
814                         atomic_set(&data[thr].stop, 0);
815
816                         ret = data[thr].ret;
817
818                         if (ret < 0) {
819                                 pr_err("LZO compression failed\n");
820                                 goto out_finish;
821                         }
822
823                         if (unlikely(!data[thr].cmp_len ||
824                                      data[thr].cmp_len >
825                                      lzo1x_worst_compress(data[thr].unc_len))) {
826                                 pr_err("Invalid LZO compressed length\n");
827                                 ret = -1;
828                                 goto out_finish;
829                         }
830
831                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
832
833                         /*
834                          * Given we are writing one page at a time to disk, we
835                          * copy that much from the buffer, although the last
836                          * bit will likely be smaller than full page. This is
837                          * OK - we saved the length of the compressed data, so
838                          * any garbage at the end will be discarded when we
839                          * read it.
840                          */
841                         for (off = 0;
842                              off < LZO_HEADER + data[thr].cmp_len;
843                              off += PAGE_SIZE) {
844                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
845
846                                 ret = swap_write_page(handle, page, &hb);
847                                 if (ret)
848                                         goto out_finish;
849                         }
850                 }
851
852                 wait_event(crc->done, atomic_read(&crc->stop));
853                 atomic_set(&crc->stop, 0);
854         }
855
856 out_finish:
857         err2 = hib_wait_io(&hb);
858         stop = ktime_get();
859         if (!ret)
860                 ret = err2;
861         if (!ret)
862                 pr_info("Image saving done\n");
863         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
864 out_clean:
865         hib_finish_batch(&hb);
866         if (crc) {
867                 if (crc->thr)
868                         kthread_stop(crc->thr);
869                 kfree(crc);
870         }
871         if (data) {
872                 for (thr = 0; thr < nr_threads; thr++)
873                         if (data[thr].thr)
874                                 kthread_stop(data[thr].thr);
875                 vfree(data);
876         }
877         if (page) free_page((unsigned long)page);
878
879         return ret;
880 }
881
882 /**
883  *      enough_swap - Make sure we have enough swap to save the image.
884  *
885  *      Returns TRUE or FALSE after checking the total amount of swap
886  *      space available from the resume partition.
887  */
888
889 static int enough_swap(unsigned int nr_pages)
890 {
891         unsigned int free_swap = count_swap_pages(root_swap, 1);
892         unsigned int required;
893
894         pr_debug("Free swap pages: %u\n", free_swap);
895
896         required = PAGES_FOR_IO + nr_pages;
897         return free_swap > required;
898 }
899
900 /**
901  *      swsusp_write - Write entire image and metadata.
902  *      @flags: flags to pass to the "boot" kernel in the image header
903  *
904  *      It is important _NOT_ to umount filesystems at this point. We want
905  *      them synced (in case something goes wrong) but we DO not want to mark
906  *      filesystem clean: it is not. (And it does not matter, if we resume
907  *      correctly, we'll mark system clean, anyway.)
908  */
909
910 int swsusp_write(unsigned int flags)
911 {
912         struct swap_map_handle handle;
913         struct snapshot_handle snapshot;
914         struct swsusp_info *header;
915         unsigned long pages;
916         int error;
917
918         pages = snapshot_get_image_size();
919         error = get_swap_writer(&handle);
920         if (error) {
921                 pr_err("Cannot get swap writer\n");
922                 return error;
923         }
924         if (flags & SF_NOCOMPRESS_MODE) {
925                 if (!enough_swap(pages)) {
926                         pr_err("Not enough free swap\n");
927                         error = -ENOSPC;
928                         goto out_finish;
929                 }
930         }
931         memset(&snapshot, 0, sizeof(struct snapshot_handle));
932         error = snapshot_read_next(&snapshot);
933         if (error < (int)PAGE_SIZE) {
934                 if (error >= 0)
935                         error = -EFAULT;
936
937                 goto out_finish;
938         }
939         header = (struct swsusp_info *)data_of(snapshot);
940         error = swap_write_page(&handle, header, NULL);
941         if (!error) {
942                 error = (flags & SF_NOCOMPRESS_MODE) ?
943                         save_image(&handle, &snapshot, pages - 1) :
944                         save_image_lzo(&handle, &snapshot, pages - 1);
945         }
946 out_finish:
947         error = swap_writer_finish(&handle, flags, error);
948         return error;
949 }
950
951 /*
952  *      The following functions allow us to read data using a swap map
953  *      in a file-like way.
954  */
955
956 static void release_swap_reader(struct swap_map_handle *handle)
957 {
958         struct swap_map_page_list *tmp;
959
960         while (handle->maps) {
961                 if (handle->maps->map)
962                         free_page((unsigned long)handle->maps->map);
963                 tmp = handle->maps;
964                 handle->maps = handle->maps->next;
965                 kfree(tmp);
966         }
967         handle->cur = NULL;
968 }
969
970 static int get_swap_reader(struct swap_map_handle *handle,
971                 unsigned int *flags_p)
972 {
973         int error;
974         struct swap_map_page_list *tmp, *last;
975         sector_t offset;
976
977         *flags_p = swsusp_header->flags;
978
979         if (!swsusp_header->image) /* how can this happen? */
980                 return -EINVAL;
981
982         handle->cur = NULL;
983         last = handle->maps = NULL;
984         offset = swsusp_header->image;
985         while (offset) {
986                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
987                 if (!tmp) {
988                         release_swap_reader(handle);
989                         return -ENOMEM;
990                 }
991                 if (!handle->maps)
992                         handle->maps = tmp;
993                 if (last)
994                         last->next = tmp;
995                 last = tmp;
996
997                 tmp->map = (struct swap_map_page *)
998                            __get_free_page(GFP_NOIO | __GFP_HIGH);
999                 if (!tmp->map) {
1000                         release_swap_reader(handle);
1001                         return -ENOMEM;
1002                 }
1003
1004                 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1005                 if (error) {
1006                         release_swap_reader(handle);
1007                         return error;
1008                 }
1009                 offset = tmp->map->next_swap;
1010         }
1011         handle->k = 0;
1012         handle->cur = handle->maps->map;
1013         return 0;
1014 }
1015
1016 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017                 struct hib_bio_batch *hb)
1018 {
1019         sector_t offset;
1020         int error;
1021         struct swap_map_page_list *tmp;
1022
1023         if (!handle->cur)
1024                 return -EINVAL;
1025         offset = handle->cur->entries[handle->k];
1026         if (!offset)
1027                 return -EFAULT;
1028         error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1029         if (error)
1030                 return error;
1031         if (++handle->k >= MAP_PAGE_ENTRIES) {
1032                 handle->k = 0;
1033                 free_page((unsigned long)handle->maps->map);
1034                 tmp = handle->maps;
1035                 handle->maps = handle->maps->next;
1036                 kfree(tmp);
1037                 if (!handle->maps)
1038                         release_swap_reader(handle);
1039                 else
1040                         handle->cur = handle->maps->map;
1041         }
1042         return error;
1043 }
1044
1045 static int swap_reader_finish(struct swap_map_handle *handle)
1046 {
1047         release_swap_reader(handle);
1048
1049         return 0;
1050 }
1051
1052 /**
1053  *      load_image - load the image using the swap map handle
1054  *      @handle and the snapshot handle @snapshot
1055  *      (assume there are @nr_pages pages to load)
1056  */
1057
1058 static int load_image(struct swap_map_handle *handle,
1059                       struct snapshot_handle *snapshot,
1060                       unsigned int nr_to_read)
1061 {
1062         unsigned int m;
1063         int ret = 0;
1064         ktime_t start;
1065         ktime_t stop;
1066         struct hib_bio_batch hb;
1067         int err2;
1068         unsigned nr_pages;
1069
1070         hib_init_batch(&hb);
1071
1072         clean_pages_on_read = true;
1073         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1074         m = nr_to_read / 10;
1075         if (!m)
1076                 m = 1;
1077         nr_pages = 0;
1078         start = ktime_get();
1079         for ( ; ; ) {
1080                 ret = snapshot_write_next(snapshot);
1081                 if (ret <= 0)
1082                         break;
1083                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1084                 if (ret)
1085                         break;
1086                 if (snapshot->sync_read)
1087                         ret = hib_wait_io(&hb);
1088                 if (ret)
1089                         break;
1090                 if (!(nr_pages % m))
1091                         pr_info("Image loading progress: %3d%%\n",
1092                                 nr_pages / m * 10);
1093                 nr_pages++;
1094         }
1095         err2 = hib_wait_io(&hb);
1096         hib_finish_batch(&hb);
1097         stop = ktime_get();
1098         if (!ret)
1099                 ret = err2;
1100         if (!ret) {
1101                 pr_info("Image loading done\n");
1102                 snapshot_write_finalize(snapshot);
1103                 if (!snapshot_image_loaded(snapshot))
1104                         ret = -ENODATA;
1105         }
1106         swsusp_show_speed(start, stop, nr_to_read, "Read");
1107         return ret;
1108 }
1109
1110 /*
1111  * Structure used for LZO data decompression.
1112  */
1113 struct dec_data {
1114         struct task_struct *thr;                  /* thread */
1115         atomic_t ready;                           /* ready to start flag */
1116         atomic_t stop;                            /* ready to stop flag */
1117         int ret;                                  /* return code */
1118         wait_queue_head_t go;                     /* start decompression */
1119         wait_queue_head_t done;                   /* decompression done */
1120         size_t unc_len;                           /* uncompressed length */
1121         size_t cmp_len;                           /* compressed length */
1122         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124 };
1125
1126 /*
1127  * Decompression function that runs in its own thread.
1128  */
1129 static int lzo_decompress_threadfn(void *data)
1130 {
1131         struct dec_data *d = data;
1132
1133         while (1) {
1134                 wait_event(d->go, atomic_read(&d->ready) ||
1135                                   kthread_should_stop());
1136                 if (kthread_should_stop()) {
1137                         d->thr = NULL;
1138                         d->ret = -1;
1139                         atomic_set(&d->stop, 1);
1140                         wake_up(&d->done);
1141                         break;
1142                 }
1143                 atomic_set(&d->ready, 0);
1144
1145                 d->unc_len = LZO_UNC_SIZE;
1146                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147                                                d->unc, &d->unc_len);
1148                 if (clean_pages_on_decompress)
1149                         flush_icache_range((unsigned long)d->unc,
1150                                            (unsigned long)d->unc + d->unc_len);
1151
1152                 atomic_set(&d->stop, 1);
1153                 wake_up(&d->done);
1154         }
1155         return 0;
1156 }
1157
1158 /**
1159  * load_image_lzo - Load compressed image data and decompress them with LZO.
1160  * @handle: Swap map handle to use for loading data.
1161  * @snapshot: Image to copy uncompressed data into.
1162  * @nr_to_read: Number of pages to load.
1163  */
1164 static int load_image_lzo(struct swap_map_handle *handle,
1165                           struct snapshot_handle *snapshot,
1166                           unsigned int nr_to_read)
1167 {
1168         unsigned int m;
1169         int ret = 0;
1170         int eof = 0;
1171         struct hib_bio_batch hb;
1172         ktime_t start;
1173         ktime_t stop;
1174         unsigned nr_pages;
1175         size_t off;
1176         unsigned i, thr, run_threads, nr_threads;
1177         unsigned ring = 0, pg = 0, ring_size = 0,
1178                  have = 0, want, need, asked = 0;
1179         unsigned long read_pages = 0;
1180         unsigned char **page = NULL;
1181         struct dec_data *data = NULL;
1182         struct crc_data *crc = NULL;
1183
1184         hib_init_batch(&hb);
1185
1186         /*
1187          * We'll limit the number of threads for decompression to limit memory
1188          * footprint.
1189          */
1190         nr_threads = num_online_cpus() - 1;
1191         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1194         if (!page) {
1195                 pr_err("Failed to allocate LZO page\n");
1196                 ret = -ENOMEM;
1197                 goto out_clean;
1198         }
1199
1200         data = vzalloc(array_size(nr_threads, sizeof(*data)));
1201         if (!data) {
1202                 pr_err("Failed to allocate LZO data\n");
1203                 ret = -ENOMEM;
1204                 goto out_clean;
1205         }
1206
1207         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1208         if (!crc) {
1209                 pr_err("Failed to allocate crc\n");
1210                 ret = -ENOMEM;
1211                 goto out_clean;
1212         }
1213
1214         clean_pages_on_decompress = true;
1215
1216         /*
1217          * Start the decompression threads.
1218          */
1219         for (thr = 0; thr < nr_threads; thr++) {
1220                 init_waitqueue_head(&data[thr].go);
1221                 init_waitqueue_head(&data[thr].done);
1222
1223                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1224                                             &data[thr],
1225                                             "image_decompress/%u", thr);
1226                 if (IS_ERR(data[thr].thr)) {
1227                         data[thr].thr = NULL;
1228                         pr_err("Cannot start decompression threads\n");
1229                         ret = -ENOMEM;
1230                         goto out_clean;
1231                 }
1232         }
1233
1234         /*
1235          * Start the CRC32 thread.
1236          */
1237         init_waitqueue_head(&crc->go);
1238         init_waitqueue_head(&crc->done);
1239
1240         handle->crc32 = 0;
1241         crc->crc32 = &handle->crc32;
1242         for (thr = 0; thr < nr_threads; thr++) {
1243                 crc->unc[thr] = data[thr].unc;
1244                 crc->unc_len[thr] = &data[thr].unc_len;
1245         }
1246
1247         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1248         if (IS_ERR(crc->thr)) {
1249                 crc->thr = NULL;
1250                 pr_err("Cannot start CRC32 thread\n");
1251                 ret = -ENOMEM;
1252                 goto out_clean;
1253         }
1254
1255         /*
1256          * Set the number of pages for read buffering.
1257          * This is complete guesswork, because we'll only know the real
1258          * picture once prepare_image() is called, which is much later on
1259          * during the image load phase. We'll assume the worst case and
1260          * say that none of the image pages are from high memory.
1261          */
1262         if (low_free_pages() > snapshot_get_image_size())
1263                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1264         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1265
1266         for (i = 0; i < read_pages; i++) {
1267                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1268                                                   GFP_NOIO | __GFP_HIGH :
1269                                                   GFP_NOIO | __GFP_NOWARN |
1270                                                   __GFP_NORETRY);
1271
1272                 if (!page[i]) {
1273                         if (i < LZO_CMP_PAGES) {
1274                                 ring_size = i;
1275                                 pr_err("Failed to allocate LZO pages\n");
1276                                 ret = -ENOMEM;
1277                                 goto out_clean;
1278                         } else {
1279                                 break;
1280                         }
1281                 }
1282         }
1283         want = ring_size = i;
1284
1285         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1286         pr_info("Loading and decompressing image data (%u pages)...\n",
1287                 nr_to_read);
1288         m = nr_to_read / 10;
1289         if (!m)
1290                 m = 1;
1291         nr_pages = 0;
1292         start = ktime_get();
1293
1294         ret = snapshot_write_next(snapshot);
1295         if (ret <= 0)
1296                 goto out_finish;
1297
1298         for(;;) {
1299                 for (i = 0; !eof && i < want; i++) {
1300                         ret = swap_read_page(handle, page[ring], &hb);
1301                         if (ret) {
1302                                 /*
1303                                  * On real read error, finish. On end of data,
1304                                  * set EOF flag and just exit the read loop.
1305                                  */
1306                                 if (handle->cur &&
1307                                     handle->cur->entries[handle->k]) {
1308                                         goto out_finish;
1309                                 } else {
1310                                         eof = 1;
1311                                         break;
1312                                 }
1313                         }
1314                         if (++ring >= ring_size)
1315                                 ring = 0;
1316                 }
1317                 asked += i;
1318                 want -= i;
1319
1320                 /*
1321                  * We are out of data, wait for some more.
1322                  */
1323                 if (!have) {
1324                         if (!asked)
1325                                 break;
1326
1327                         ret = hib_wait_io(&hb);
1328                         if (ret)
1329                                 goto out_finish;
1330                         have += asked;
1331                         asked = 0;
1332                         if (eof)
1333                                 eof = 2;
1334                 }
1335
1336                 if (crc->run_threads) {
1337                         wait_event(crc->done, atomic_read(&crc->stop));
1338                         atomic_set(&crc->stop, 0);
1339                         crc->run_threads = 0;
1340                 }
1341
1342                 for (thr = 0; have && thr < nr_threads; thr++) {
1343                         data[thr].cmp_len = *(size_t *)page[pg];
1344                         if (unlikely(!data[thr].cmp_len ||
1345                                      data[thr].cmp_len >
1346                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1347                                 pr_err("Invalid LZO compressed length\n");
1348                                 ret = -1;
1349                                 goto out_finish;
1350                         }
1351
1352                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1353                                             PAGE_SIZE);
1354                         if (need > have) {
1355                                 if (eof > 1) {
1356                                         ret = -1;
1357                                         goto out_finish;
1358                                 }
1359                                 break;
1360                         }
1361
1362                         for (off = 0;
1363                              off < LZO_HEADER + data[thr].cmp_len;
1364                              off += PAGE_SIZE) {
1365                                 memcpy(data[thr].cmp + off,
1366                                        page[pg], PAGE_SIZE);
1367                                 have--;
1368                                 want++;
1369                                 if (++pg >= ring_size)
1370                                         pg = 0;
1371                         }
1372
1373                         atomic_set(&data[thr].ready, 1);
1374                         wake_up(&data[thr].go);
1375                 }
1376
1377                 /*
1378                  * Wait for more data while we are decompressing.
1379                  */
1380                 if (have < LZO_CMP_PAGES && asked) {
1381                         ret = hib_wait_io(&hb);
1382                         if (ret)
1383                                 goto out_finish;
1384                         have += asked;
1385                         asked = 0;
1386                         if (eof)
1387                                 eof = 2;
1388                 }
1389
1390                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1391                         wait_event(data[thr].done,
1392                                    atomic_read(&data[thr].stop));
1393                         atomic_set(&data[thr].stop, 0);
1394
1395                         ret = data[thr].ret;
1396
1397                         if (ret < 0) {
1398                                 pr_err("LZO decompression failed\n");
1399                                 goto out_finish;
1400                         }
1401
1402                         if (unlikely(!data[thr].unc_len ||
1403                                      data[thr].unc_len > LZO_UNC_SIZE ||
1404                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1405                                 pr_err("Invalid LZO uncompressed length\n");
1406                                 ret = -1;
1407                                 goto out_finish;
1408                         }
1409
1410                         for (off = 0;
1411                              off < data[thr].unc_len; off += PAGE_SIZE) {
1412                                 memcpy(data_of(*snapshot),
1413                                        data[thr].unc + off, PAGE_SIZE);
1414
1415                                 if (!(nr_pages % m))
1416                                         pr_info("Image loading progress: %3d%%\n",
1417                                                 nr_pages / m * 10);
1418                                 nr_pages++;
1419
1420                                 ret = snapshot_write_next(snapshot);
1421                                 if (ret <= 0) {
1422                                         crc->run_threads = thr + 1;
1423                                         atomic_set(&crc->ready, 1);
1424                                         wake_up(&crc->go);
1425                                         goto out_finish;
1426                                 }
1427                         }
1428                 }
1429
1430                 crc->run_threads = thr;
1431                 atomic_set(&crc->ready, 1);
1432                 wake_up(&crc->go);
1433         }
1434
1435 out_finish:
1436         if (crc->run_threads) {
1437                 wait_event(crc->done, atomic_read(&crc->stop));
1438                 atomic_set(&crc->stop, 0);
1439         }
1440         stop = ktime_get();
1441         if (!ret) {
1442                 pr_info("Image loading done\n");
1443                 snapshot_write_finalize(snapshot);
1444                 if (!snapshot_image_loaded(snapshot))
1445                         ret = -ENODATA;
1446                 if (!ret) {
1447                         if (swsusp_header->flags & SF_CRC32_MODE) {
1448                                 if(handle->crc32 != swsusp_header->crc32) {
1449                                         pr_err("Invalid image CRC32!\n");
1450                                         ret = -ENODATA;
1451                                 }
1452                         }
1453                 }
1454         }
1455         swsusp_show_speed(start, stop, nr_to_read, "Read");
1456 out_clean:
1457         hib_finish_batch(&hb);
1458         for (i = 0; i < ring_size; i++)
1459                 free_page((unsigned long)page[i]);
1460         if (crc) {
1461                 if (crc->thr)
1462                         kthread_stop(crc->thr);
1463                 kfree(crc);
1464         }
1465         if (data) {
1466                 for (thr = 0; thr < nr_threads; thr++)
1467                         if (data[thr].thr)
1468                                 kthread_stop(data[thr].thr);
1469                 vfree(data);
1470         }
1471         vfree(page);
1472
1473         return ret;
1474 }
1475
1476 /**
1477  *      swsusp_read - read the hibernation image.
1478  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1479  *                be written into this memory location
1480  */
1481
1482 int swsusp_read(unsigned int *flags_p)
1483 {
1484         int error;
1485         struct swap_map_handle handle;
1486         struct snapshot_handle snapshot;
1487         struct swsusp_info *header;
1488
1489         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1490         error = snapshot_write_next(&snapshot);
1491         if (error < (int)PAGE_SIZE)
1492                 return error < 0 ? error : -EFAULT;
1493         header = (struct swsusp_info *)data_of(snapshot);
1494         error = get_swap_reader(&handle, flags_p);
1495         if (error)
1496                 goto end;
1497         if (!error)
1498                 error = swap_read_page(&handle, header, NULL);
1499         if (!error) {
1500                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1501                         load_image(&handle, &snapshot, header->pages - 1) :
1502                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1503         }
1504         swap_reader_finish(&handle);
1505 end:
1506         if (!error)
1507                 pr_debug("Image successfully loaded\n");
1508         else
1509                 pr_debug("Error %d resuming\n", error);
1510         return error;
1511 }
1512
1513 static void *swsusp_holder;
1514
1515 /**
1516  *      swsusp_check - Check for swsusp signature in the resume device
1517  */
1518
1519 int swsusp_check(bool snapshot_test)
1520 {
1521         int error;
1522         fmode_t mode = FMODE_READ;
1523
1524         if (snapshot_test)
1525                 mode |= FMODE_EXCL;
1526
1527         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1528                                             mode, &swsusp_holder, NULL);
1529         if (!IS_ERR(hib_resume_bdev)) {
1530                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1531                 clear_page(swsusp_header);
1532                 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1533                                         swsusp_header, NULL);
1534                 if (error)
1535                         goto put;
1536
1537                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1538                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1539                         /* Reset swap signature now */
1540                         error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1541                                                 swsusp_resume_block,
1542                                                 swsusp_header, NULL);
1543                 } else {
1544                         error = -EINVAL;
1545                 }
1546                 if (!error && swsusp_header->flags & SF_HW_SIG &&
1547                     swsusp_header->hw_sig != swsusp_hardware_signature) {
1548                         pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1549                                 swsusp_header->hw_sig, swsusp_hardware_signature);
1550                         error = -EINVAL;
1551                 }
1552
1553 put:
1554                 if (error)
1555                         blkdev_put(hib_resume_bdev, mode);
1556                 else
1557                         pr_debug("Image signature found, resuming\n");
1558         } else {
1559                 error = PTR_ERR(hib_resume_bdev);
1560         }
1561
1562         if (error)
1563                 pr_debug("Image not found (code %d)\n", error);
1564
1565         return error;
1566 }
1567
1568 /**
1569  *      swsusp_close - close swap device.
1570  */
1571
1572 void swsusp_close(fmode_t mode)
1573 {
1574         if (IS_ERR(hib_resume_bdev)) {
1575                 pr_debug("Image device not initialised\n");
1576                 return;
1577         }
1578
1579         blkdev_put(hib_resume_bdev, mode);
1580 }
1581
1582 /**
1583  *      swsusp_unmark - Unmark swsusp signature in the resume device
1584  */
1585
1586 #ifdef CONFIG_SUSPEND
1587 int swsusp_unmark(void)
1588 {
1589         int error;
1590
1591         hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1592                         swsusp_header, NULL);
1593         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1594                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1595                 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1596                                         swsusp_resume_block,
1597                                         swsusp_header, NULL);
1598         } else {
1599                 pr_err("Cannot find swsusp signature!\n");
1600                 error = -ENODEV;
1601         }
1602
1603         /*
1604          * We just returned from suspend, we don't need the image any more.
1605          */
1606         free_all_swap_pages(root_swap);
1607
1608         return error;
1609 }
1610 #endif
1611
1612 static int __init swsusp_header_init(void)
1613 {
1614         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1615         if (!swsusp_header)
1616                 panic("Could not allocate memory for swsusp_header\n");
1617         return 0;
1618 }
1619
1620 core_initcall(swsusp_header_init);