kexec_file, x86: move re-factored code to generic side
[sfrench/cifs-2.6.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/elf.h>
26 #include <linux/elfcore.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/slab.h>
30 #include <linux/syscalls.h>
31 #include <linux/vmalloc.h>
32 #include "kexec_internal.h"
33
34 static int kexec_calculate_store_digests(struct kimage *image);
35
36 /*
37  * Currently this is the only default function that is exported as some
38  * architectures need it to do additional handlings.
39  * In the future, other default functions may be exported too if required.
40  */
41 int kexec_image_probe_default(struct kimage *image, void *buf,
42                               unsigned long buf_len)
43 {
44         const struct kexec_file_ops * const *fops;
45         int ret = -ENOEXEC;
46
47         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
48                 ret = (*fops)->probe(buf, buf_len);
49                 if (!ret) {
50                         image->fops = *fops;
51                         return ret;
52                 }
53         }
54
55         return ret;
56 }
57
58 /* Architectures can provide this probe function */
59 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
60                                          unsigned long buf_len)
61 {
62         return kexec_image_probe_default(image, buf, buf_len);
63 }
64
65 static void *kexec_image_load_default(struct kimage *image)
66 {
67         if (!image->fops || !image->fops->load)
68                 return ERR_PTR(-ENOEXEC);
69
70         return image->fops->load(image, image->kernel_buf,
71                                  image->kernel_buf_len, image->initrd_buf,
72                                  image->initrd_buf_len, image->cmdline_buf,
73                                  image->cmdline_buf_len);
74 }
75
76 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
77 {
78         return kexec_image_load_default(image);
79 }
80
81 static int kexec_image_post_load_cleanup_default(struct kimage *image)
82 {
83         if (!image->fops || !image->fops->cleanup)
84                 return 0;
85
86         return image->fops->cleanup(image->image_loader_data);
87 }
88
89 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
90 {
91         return kexec_image_post_load_cleanup_default(image);
92 }
93
94 #ifdef CONFIG_KEXEC_VERIFY_SIG
95 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
96                                           unsigned long buf_len)
97 {
98         if (!image->fops || !image->fops->verify_sig) {
99                 pr_debug("kernel loader does not support signature verification.\n");
100                 return -EKEYREJECTED;
101         }
102
103         return image->fops->verify_sig(buf, buf_len);
104 }
105
106 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
107                                         unsigned long buf_len)
108 {
109         return kexec_image_verify_sig_default(image, buf, buf_len);
110 }
111 #endif
112
113 /* Apply relocations of type RELA */
114 int __weak
115 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
116                                  unsigned int relsec)
117 {
118         pr_err("RELA relocation unsupported.\n");
119         return -ENOEXEC;
120 }
121
122 /* Apply relocations of type REL */
123 int __weak
124 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
125                              unsigned int relsec)
126 {
127         pr_err("REL relocation unsupported.\n");
128         return -ENOEXEC;
129 }
130
131 /*
132  * Free up memory used by kernel, initrd, and command line. This is temporary
133  * memory allocation which is not needed any more after these buffers have
134  * been loaded into separate segments and have been copied elsewhere.
135  */
136 void kimage_file_post_load_cleanup(struct kimage *image)
137 {
138         struct purgatory_info *pi = &image->purgatory_info;
139
140         vfree(image->kernel_buf);
141         image->kernel_buf = NULL;
142
143         vfree(image->initrd_buf);
144         image->initrd_buf = NULL;
145
146         kfree(image->cmdline_buf);
147         image->cmdline_buf = NULL;
148
149         vfree(pi->purgatory_buf);
150         pi->purgatory_buf = NULL;
151
152         vfree(pi->sechdrs);
153         pi->sechdrs = NULL;
154
155         /* See if architecture has anything to cleanup post load */
156         arch_kimage_file_post_load_cleanup(image);
157
158         /*
159          * Above call should have called into bootloader to free up
160          * any data stored in kimage->image_loader_data. It should
161          * be ok now to free it up.
162          */
163         kfree(image->image_loader_data);
164         image->image_loader_data = NULL;
165 }
166
167 /*
168  * In file mode list of segments is prepared by kernel. Copy relevant
169  * data from user space, do error checking, prepare segment list
170  */
171 static int
172 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
173                              const char __user *cmdline_ptr,
174                              unsigned long cmdline_len, unsigned flags)
175 {
176         int ret = 0;
177         void *ldata;
178         loff_t size;
179
180         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
181                                        &size, INT_MAX, READING_KEXEC_IMAGE);
182         if (ret)
183                 return ret;
184         image->kernel_buf_len = size;
185
186         /* IMA needs to pass the measurement list to the next kernel. */
187         ima_add_kexec_buffer(image);
188
189         /* Call arch image probe handlers */
190         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
191                                             image->kernel_buf_len);
192         if (ret)
193                 goto out;
194
195 #ifdef CONFIG_KEXEC_VERIFY_SIG
196         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
197                                            image->kernel_buf_len);
198         if (ret) {
199                 pr_debug("kernel signature verification failed.\n");
200                 goto out;
201         }
202         pr_debug("kernel signature verification successful.\n");
203 #endif
204         /* It is possible that there no initramfs is being loaded */
205         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
206                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
207                                                &size, INT_MAX,
208                                                READING_KEXEC_INITRAMFS);
209                 if (ret)
210                         goto out;
211                 image->initrd_buf_len = size;
212         }
213
214         if (cmdline_len) {
215                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
216                 if (IS_ERR(image->cmdline_buf)) {
217                         ret = PTR_ERR(image->cmdline_buf);
218                         image->cmdline_buf = NULL;
219                         goto out;
220                 }
221
222                 image->cmdline_buf_len = cmdline_len;
223
224                 /* command line should be a string with last byte null */
225                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
226                         ret = -EINVAL;
227                         goto out;
228                 }
229         }
230
231         /* Call arch image load handlers */
232         ldata = arch_kexec_kernel_image_load(image);
233
234         if (IS_ERR(ldata)) {
235                 ret = PTR_ERR(ldata);
236                 goto out;
237         }
238
239         image->image_loader_data = ldata;
240 out:
241         /* In case of error, free up all allocated memory in this function */
242         if (ret)
243                 kimage_file_post_load_cleanup(image);
244         return ret;
245 }
246
247 static int
248 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
249                        int initrd_fd, const char __user *cmdline_ptr,
250                        unsigned long cmdline_len, unsigned long flags)
251 {
252         int ret;
253         struct kimage *image;
254         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
255
256         image = do_kimage_alloc_init();
257         if (!image)
258                 return -ENOMEM;
259
260         image->file_mode = 1;
261
262         if (kexec_on_panic) {
263                 /* Enable special crash kernel control page alloc policy. */
264                 image->control_page = crashk_res.start;
265                 image->type = KEXEC_TYPE_CRASH;
266         }
267
268         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
269                                            cmdline_ptr, cmdline_len, flags);
270         if (ret)
271                 goto out_free_image;
272
273         ret = sanity_check_segment_list(image);
274         if (ret)
275                 goto out_free_post_load_bufs;
276
277         ret = -ENOMEM;
278         image->control_code_page = kimage_alloc_control_pages(image,
279                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
280         if (!image->control_code_page) {
281                 pr_err("Could not allocate control_code_buffer\n");
282                 goto out_free_post_load_bufs;
283         }
284
285         if (!kexec_on_panic) {
286                 image->swap_page = kimage_alloc_control_pages(image, 0);
287                 if (!image->swap_page) {
288                         pr_err("Could not allocate swap buffer\n");
289                         goto out_free_control_pages;
290                 }
291         }
292
293         *rimage = image;
294         return 0;
295 out_free_control_pages:
296         kimage_free_page_list(&image->control_pages);
297 out_free_post_load_bufs:
298         kimage_file_post_load_cleanup(image);
299 out_free_image:
300         kfree(image);
301         return ret;
302 }
303
304 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
305                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
306                 unsigned long, flags)
307 {
308         int ret = 0, i;
309         struct kimage **dest_image, *image;
310
311         /* We only trust the superuser with rebooting the system. */
312         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
313                 return -EPERM;
314
315         /* Make sure we have a legal set of flags */
316         if (flags != (flags & KEXEC_FILE_FLAGS))
317                 return -EINVAL;
318
319         image = NULL;
320
321         if (!mutex_trylock(&kexec_mutex))
322                 return -EBUSY;
323
324         dest_image = &kexec_image;
325         if (flags & KEXEC_FILE_ON_CRASH) {
326                 dest_image = &kexec_crash_image;
327                 if (kexec_crash_image)
328                         arch_kexec_unprotect_crashkres();
329         }
330
331         if (flags & KEXEC_FILE_UNLOAD)
332                 goto exchange;
333
334         /*
335          * In case of crash, new kernel gets loaded in reserved region. It is
336          * same memory where old crash kernel might be loaded. Free any
337          * current crash dump kernel before we corrupt it.
338          */
339         if (flags & KEXEC_FILE_ON_CRASH)
340                 kimage_free(xchg(&kexec_crash_image, NULL));
341
342         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
343                                      cmdline_len, flags);
344         if (ret)
345                 goto out;
346
347         ret = machine_kexec_prepare(image);
348         if (ret)
349                 goto out;
350
351         /*
352          * Some architecture(like S390) may touch the crash memory before
353          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
354          */
355         ret = kimage_crash_copy_vmcoreinfo(image);
356         if (ret)
357                 goto out;
358
359         ret = kexec_calculate_store_digests(image);
360         if (ret)
361                 goto out;
362
363         for (i = 0; i < image->nr_segments; i++) {
364                 struct kexec_segment *ksegment;
365
366                 ksegment = &image->segment[i];
367                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
368                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
369                          ksegment->memsz);
370
371                 ret = kimage_load_segment(image, &image->segment[i]);
372                 if (ret)
373                         goto out;
374         }
375
376         kimage_terminate(image);
377
378         /*
379          * Free up any temporary buffers allocated which are not needed
380          * after image has been loaded
381          */
382         kimage_file_post_load_cleanup(image);
383 exchange:
384         image = xchg(dest_image, image);
385 out:
386         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
387                 arch_kexec_protect_crashkres();
388
389         mutex_unlock(&kexec_mutex);
390         kimage_free(image);
391         return ret;
392 }
393
394 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
395                                     struct kexec_buf *kbuf)
396 {
397         struct kimage *image = kbuf->image;
398         unsigned long temp_start, temp_end;
399
400         temp_end = min(end, kbuf->buf_max);
401         temp_start = temp_end - kbuf->memsz;
402
403         do {
404                 /* align down start */
405                 temp_start = temp_start & (~(kbuf->buf_align - 1));
406
407                 if (temp_start < start || temp_start < kbuf->buf_min)
408                         return 0;
409
410                 temp_end = temp_start + kbuf->memsz - 1;
411
412                 /*
413                  * Make sure this does not conflict with any of existing
414                  * segments
415                  */
416                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
417                         temp_start = temp_start - PAGE_SIZE;
418                         continue;
419                 }
420
421                 /* We found a suitable memory range */
422                 break;
423         } while (1);
424
425         /* If we are here, we found a suitable memory range */
426         kbuf->mem = temp_start;
427
428         /* Success, stop navigating through remaining System RAM ranges */
429         return 1;
430 }
431
432 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
433                                      struct kexec_buf *kbuf)
434 {
435         struct kimage *image = kbuf->image;
436         unsigned long temp_start, temp_end;
437
438         temp_start = max(start, kbuf->buf_min);
439
440         do {
441                 temp_start = ALIGN(temp_start, kbuf->buf_align);
442                 temp_end = temp_start + kbuf->memsz - 1;
443
444                 if (temp_end > end || temp_end > kbuf->buf_max)
445                         return 0;
446                 /*
447                  * Make sure this does not conflict with any of existing
448                  * segments
449                  */
450                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
451                         temp_start = temp_start + PAGE_SIZE;
452                         continue;
453                 }
454
455                 /* We found a suitable memory range */
456                 break;
457         } while (1);
458
459         /* If we are here, we found a suitable memory range */
460         kbuf->mem = temp_start;
461
462         /* Success, stop navigating through remaining System RAM ranges */
463         return 1;
464 }
465
466 static int locate_mem_hole_callback(struct resource *res, void *arg)
467 {
468         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
469         u64 start = res->start, end = res->end;
470         unsigned long sz = end - start + 1;
471
472         /* Returning 0 will take to next memory range */
473         if (sz < kbuf->memsz)
474                 return 0;
475
476         if (end < kbuf->buf_min || start > kbuf->buf_max)
477                 return 0;
478
479         /*
480          * Allocate memory top down with-in ram range. Otherwise bottom up
481          * allocation.
482          */
483         if (kbuf->top_down)
484                 return locate_mem_hole_top_down(start, end, kbuf);
485         return locate_mem_hole_bottom_up(start, end, kbuf);
486 }
487
488 /**
489  * arch_kexec_walk_mem - call func(data) on free memory regions
490  * @kbuf:       Context info for the search. Also passed to @func.
491  * @func:       Function to call for each memory region.
492  *
493  * Return: The memory walk will stop when func returns a non-zero value
494  * and that value will be returned. If all free regions are visited without
495  * func returning non-zero, then zero will be returned.
496  */
497 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
498                                int (*func)(struct resource *, void *))
499 {
500         if (kbuf->image->type == KEXEC_TYPE_CRASH)
501                 return walk_iomem_res_desc(crashk_res.desc,
502                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
503                                            crashk_res.start, crashk_res.end,
504                                            kbuf, func);
505         else
506                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
507 }
508
509 /**
510  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
511  * @kbuf:       Parameters for the memory search.
512  *
513  * On success, kbuf->mem will have the start address of the memory region found.
514  *
515  * Return: 0 on success, negative errno on error.
516  */
517 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
518 {
519         int ret;
520
521         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
522
523         return ret == 1 ? 0 : -EADDRNOTAVAIL;
524 }
525
526 /**
527  * kexec_add_buffer - place a buffer in a kexec segment
528  * @kbuf:       Buffer contents and memory parameters.
529  *
530  * This function assumes that kexec_mutex is held.
531  * On successful return, @kbuf->mem will have the physical address of
532  * the buffer in memory.
533  *
534  * Return: 0 on success, negative errno on error.
535  */
536 int kexec_add_buffer(struct kexec_buf *kbuf)
537 {
538
539         struct kexec_segment *ksegment;
540         int ret;
541
542         /* Currently adding segment this way is allowed only in file mode */
543         if (!kbuf->image->file_mode)
544                 return -EINVAL;
545
546         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
547                 return -EINVAL;
548
549         /*
550          * Make sure we are not trying to add buffer after allocating
551          * control pages. All segments need to be placed first before
552          * any control pages are allocated. As control page allocation
553          * logic goes through list of segments to make sure there are
554          * no destination overlaps.
555          */
556         if (!list_empty(&kbuf->image->control_pages)) {
557                 WARN_ON(1);
558                 return -EINVAL;
559         }
560
561         /* Ensure minimum alignment needed for segments. */
562         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
563         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
564
565         /* Walk the RAM ranges and allocate a suitable range for the buffer */
566         ret = kexec_locate_mem_hole(kbuf);
567         if (ret)
568                 return ret;
569
570         /* Found a suitable memory range */
571         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
572         ksegment->kbuf = kbuf->buffer;
573         ksegment->bufsz = kbuf->bufsz;
574         ksegment->mem = kbuf->mem;
575         ksegment->memsz = kbuf->memsz;
576         kbuf->image->nr_segments++;
577         return 0;
578 }
579
580 /* Calculate and store the digest of segments */
581 static int kexec_calculate_store_digests(struct kimage *image)
582 {
583         struct crypto_shash *tfm;
584         struct shash_desc *desc;
585         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
586         size_t desc_size, nullsz;
587         char *digest;
588         void *zero_buf;
589         struct kexec_sha_region *sha_regions;
590         struct purgatory_info *pi = &image->purgatory_info;
591
592         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
593                 return 0;
594
595         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
596         zero_buf_sz = PAGE_SIZE;
597
598         tfm = crypto_alloc_shash("sha256", 0, 0);
599         if (IS_ERR(tfm)) {
600                 ret = PTR_ERR(tfm);
601                 goto out;
602         }
603
604         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
605         desc = kzalloc(desc_size, GFP_KERNEL);
606         if (!desc) {
607                 ret = -ENOMEM;
608                 goto out_free_tfm;
609         }
610
611         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
612         sha_regions = vzalloc(sha_region_sz);
613         if (!sha_regions)
614                 goto out_free_desc;
615
616         desc->tfm   = tfm;
617         desc->flags = 0;
618
619         ret = crypto_shash_init(desc);
620         if (ret < 0)
621                 goto out_free_sha_regions;
622
623         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
624         if (!digest) {
625                 ret = -ENOMEM;
626                 goto out_free_sha_regions;
627         }
628
629         for (j = i = 0; i < image->nr_segments; i++) {
630                 struct kexec_segment *ksegment;
631
632                 ksegment = &image->segment[i];
633                 /*
634                  * Skip purgatory as it will be modified once we put digest
635                  * info in purgatory.
636                  */
637                 if (ksegment->kbuf == pi->purgatory_buf)
638                         continue;
639
640                 ret = crypto_shash_update(desc, ksegment->kbuf,
641                                           ksegment->bufsz);
642                 if (ret)
643                         break;
644
645                 /*
646                  * Assume rest of the buffer is filled with zero and
647                  * update digest accordingly.
648                  */
649                 nullsz = ksegment->memsz - ksegment->bufsz;
650                 while (nullsz) {
651                         unsigned long bytes = nullsz;
652
653                         if (bytes > zero_buf_sz)
654                                 bytes = zero_buf_sz;
655                         ret = crypto_shash_update(desc, zero_buf, bytes);
656                         if (ret)
657                                 break;
658                         nullsz -= bytes;
659                 }
660
661                 if (ret)
662                         break;
663
664                 sha_regions[j].start = ksegment->mem;
665                 sha_regions[j].len = ksegment->memsz;
666                 j++;
667         }
668
669         if (!ret) {
670                 ret = crypto_shash_final(desc, digest);
671                 if (ret)
672                         goto out_free_digest;
673                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
674                                                      sha_regions, sha_region_sz, 0);
675                 if (ret)
676                         goto out_free_digest;
677
678                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
679                                                      digest, SHA256_DIGEST_SIZE, 0);
680                 if (ret)
681                         goto out_free_digest;
682         }
683
684 out_free_digest:
685         kfree(digest);
686 out_free_sha_regions:
687         vfree(sha_regions);
688 out_free_desc:
689         kfree(desc);
690 out_free_tfm:
691         kfree(tfm);
692 out:
693         return ret;
694 }
695
696 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
697 /* Actually load purgatory. Lot of code taken from kexec-tools */
698 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
699                                   unsigned long max, int top_down)
700 {
701         struct purgatory_info *pi = &image->purgatory_info;
702         unsigned long align, bss_align, bss_sz, bss_pad;
703         unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
704         unsigned char *buf_addr, *src;
705         int i, ret = 0, entry_sidx = -1;
706         const Elf_Shdr *sechdrs_c;
707         Elf_Shdr *sechdrs = NULL;
708         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
709                                   .buf_min = min, .buf_max = max,
710                                   .top_down = top_down };
711
712         /*
713          * sechdrs_c points to section headers in purgatory and are read
714          * only. No modifications allowed.
715          */
716         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
717
718         /*
719          * We can not modify sechdrs_c[] and its fields. It is read only.
720          * Copy it over to a local copy where one can store some temporary
721          * data and free it at the end. We need to modify ->sh_addr and
722          * ->sh_offset fields to keep track of permanent and temporary
723          * locations of sections.
724          */
725         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
726         if (!sechdrs)
727                 return -ENOMEM;
728
729         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
730
731         /*
732          * We seem to have multiple copies of sections. First copy is which
733          * is embedded in kernel in read only section. Some of these sections
734          * will be copied to a temporary buffer and relocated. And these
735          * sections will finally be copied to their final destination at
736          * segment load time.
737          *
738          * Use ->sh_offset to reflect section address in memory. It will
739          * point to original read only copy if section is not allocatable.
740          * Otherwise it will point to temporary copy which will be relocated.
741          *
742          * Use ->sh_addr to contain final address of the section where it
743          * will go during execution time.
744          */
745         for (i = 0; i < pi->ehdr->e_shnum; i++) {
746                 if (sechdrs[i].sh_type == SHT_NOBITS)
747                         continue;
748
749                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
750                                                 sechdrs[i].sh_offset;
751         }
752
753         /*
754          * Identify entry point section and make entry relative to section
755          * start.
756          */
757         entry = pi->ehdr->e_entry;
758         for (i = 0; i < pi->ehdr->e_shnum; i++) {
759                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
760                         continue;
761
762                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
763                         continue;
764
765                 /* Make entry section relative */
766                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
767                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
768                      pi->ehdr->e_entry)) {
769                         entry_sidx = i;
770                         entry -= sechdrs[i].sh_addr;
771                         break;
772                 }
773         }
774
775         /* Determine how much memory is needed to load relocatable object. */
776         bss_align = 1;
777         bss_sz = 0;
778
779         for (i = 0; i < pi->ehdr->e_shnum; i++) {
780                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
781                         continue;
782
783                 align = sechdrs[i].sh_addralign;
784                 if (sechdrs[i].sh_type != SHT_NOBITS) {
785                         if (kbuf.buf_align < align)
786                                 kbuf.buf_align = align;
787                         kbuf.bufsz = ALIGN(kbuf.bufsz, align);
788                         kbuf.bufsz += sechdrs[i].sh_size;
789                 } else {
790                         /* bss section */
791                         if (bss_align < align)
792                                 bss_align = align;
793                         bss_sz = ALIGN(bss_sz, align);
794                         bss_sz += sechdrs[i].sh_size;
795                 }
796         }
797
798         /* Determine the bss padding required to align bss properly */
799         bss_pad = 0;
800         if (kbuf.bufsz & (bss_align - 1))
801                 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
802
803         kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
804
805         /* Allocate buffer for purgatory */
806         kbuf.buffer = vzalloc(kbuf.bufsz);
807         if (!kbuf.buffer) {
808                 ret = -ENOMEM;
809                 goto out;
810         }
811
812         if (kbuf.buf_align < bss_align)
813                 kbuf.buf_align = bss_align;
814
815         /* Add buffer to segment list */
816         ret = kexec_add_buffer(&kbuf);
817         if (ret)
818                 goto out;
819         pi->purgatory_load_addr = kbuf.mem;
820
821         /* Load SHF_ALLOC sections */
822         buf_addr = kbuf.buffer;
823         load_addr = curr_load_addr = pi->purgatory_load_addr;
824         bss_addr = load_addr + kbuf.bufsz + bss_pad;
825
826         for (i = 0; i < pi->ehdr->e_shnum; i++) {
827                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
828                         continue;
829
830                 align = sechdrs[i].sh_addralign;
831                 if (sechdrs[i].sh_type != SHT_NOBITS) {
832                         curr_load_addr = ALIGN(curr_load_addr, align);
833                         offset = curr_load_addr - load_addr;
834                         /* We already modifed ->sh_offset to keep src addr */
835                         src = (char *) sechdrs[i].sh_offset;
836                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
837
838                         /* Store load address and source address of section */
839                         sechdrs[i].sh_addr = curr_load_addr;
840
841                         /*
842                          * This section got copied to temporary buffer. Update
843                          * ->sh_offset accordingly.
844                          */
845                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
846
847                         /* Advance to the next address */
848                         curr_load_addr += sechdrs[i].sh_size;
849                 } else {
850                         bss_addr = ALIGN(bss_addr, align);
851                         sechdrs[i].sh_addr = bss_addr;
852                         bss_addr += sechdrs[i].sh_size;
853                 }
854         }
855
856         /* Update entry point based on load address of text section */
857         if (entry_sidx >= 0)
858                 entry += sechdrs[entry_sidx].sh_addr;
859
860         /* Make kernel jump to purgatory after shutdown */
861         image->start = entry;
862
863         /* Used later to get/set symbol values */
864         pi->sechdrs = sechdrs;
865
866         /*
867          * Used later to identify which section is purgatory and skip it
868          * from checksumming.
869          */
870         pi->purgatory_buf = kbuf.buffer;
871         return ret;
872 out:
873         vfree(sechdrs);
874         vfree(kbuf.buffer);
875         return ret;
876 }
877
878 static int kexec_apply_relocations(struct kimage *image)
879 {
880         int i, ret;
881         struct purgatory_info *pi = &image->purgatory_info;
882         Elf_Shdr *sechdrs = pi->sechdrs;
883
884         /* Apply relocations */
885         for (i = 0; i < pi->ehdr->e_shnum; i++) {
886                 Elf_Shdr *section, *symtab;
887
888                 if (sechdrs[i].sh_type != SHT_RELA &&
889                     sechdrs[i].sh_type != SHT_REL)
890                         continue;
891
892                 /*
893                  * For section of type SHT_RELA/SHT_REL,
894                  * ->sh_link contains section header index of associated
895                  * symbol table. And ->sh_info contains section header
896                  * index of section to which relocations apply.
897                  */
898                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
899                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
900                         return -ENOEXEC;
901
902                 section = &sechdrs[sechdrs[i].sh_info];
903                 symtab = &sechdrs[sechdrs[i].sh_link];
904
905                 if (!(section->sh_flags & SHF_ALLOC))
906                         continue;
907
908                 /*
909                  * symtab->sh_link contain section header index of associated
910                  * string table.
911                  */
912                 if (symtab->sh_link >= pi->ehdr->e_shnum)
913                         /* Invalid section number? */
914                         continue;
915
916                 /*
917                  * Respective architecture needs to provide support for applying
918                  * relocations of type SHT_RELA/SHT_REL.
919                  */
920                 if (sechdrs[i].sh_type == SHT_RELA)
921                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
922                                                                sechdrs, i);
923                 else if (sechdrs[i].sh_type == SHT_REL)
924                         ret = arch_kexec_apply_relocations(pi->ehdr,
925                                                            sechdrs, i);
926                 if (ret)
927                         return ret;
928         }
929
930         return 0;
931 }
932
933 /* Load relocatable purgatory object and relocate it appropriately */
934 int kexec_load_purgatory(struct kimage *image, unsigned long min,
935                          unsigned long max, int top_down,
936                          unsigned long *load_addr)
937 {
938         struct purgatory_info *pi = &image->purgatory_info;
939         int ret;
940
941         if (kexec_purgatory_size <= 0)
942                 return -EINVAL;
943
944         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
945                 return -ENOEXEC;
946
947         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
948
949         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
950             || pi->ehdr->e_type != ET_REL
951             || !elf_check_arch(pi->ehdr)
952             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
953                 return -ENOEXEC;
954
955         if (pi->ehdr->e_shoff >= kexec_purgatory_size
956             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
957             kexec_purgatory_size - pi->ehdr->e_shoff))
958                 return -ENOEXEC;
959
960         ret = __kexec_load_purgatory(image, min, max, top_down);
961         if (ret)
962                 return ret;
963
964         ret = kexec_apply_relocations(image);
965         if (ret)
966                 goto out;
967
968         *load_addr = pi->purgatory_load_addr;
969         return 0;
970 out:
971         vfree(pi->sechdrs);
972         pi->sechdrs = NULL;
973
974         vfree(pi->purgatory_buf);
975         pi->purgatory_buf = NULL;
976         return ret;
977 }
978
979 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
980                                             const char *name)
981 {
982         Elf_Sym *syms;
983         Elf_Shdr *sechdrs;
984         Elf_Ehdr *ehdr;
985         int i, k;
986         const char *strtab;
987
988         if (!pi->sechdrs || !pi->ehdr)
989                 return NULL;
990
991         sechdrs = pi->sechdrs;
992         ehdr = pi->ehdr;
993
994         for (i = 0; i < ehdr->e_shnum; i++) {
995                 if (sechdrs[i].sh_type != SHT_SYMTAB)
996                         continue;
997
998                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
999                         /* Invalid strtab section number */
1000                         continue;
1001                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
1002                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
1003
1004                 /* Go through symbols for a match */
1005                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1006                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1007                                 continue;
1008
1009                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1010                                 continue;
1011
1012                         if (syms[k].st_shndx == SHN_UNDEF ||
1013                             syms[k].st_shndx >= ehdr->e_shnum) {
1014                                 pr_debug("Symbol: %s has bad section index %d.\n",
1015                                                 name, syms[k].st_shndx);
1016                                 return NULL;
1017                         }
1018
1019                         /* Found the symbol we are looking for */
1020                         return &syms[k];
1021                 }
1022         }
1023
1024         return NULL;
1025 }
1026
1027 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1028 {
1029         struct purgatory_info *pi = &image->purgatory_info;
1030         Elf_Sym *sym;
1031         Elf_Shdr *sechdr;
1032
1033         sym = kexec_purgatory_find_symbol(pi, name);
1034         if (!sym)
1035                 return ERR_PTR(-EINVAL);
1036
1037         sechdr = &pi->sechdrs[sym->st_shndx];
1038
1039         /*
1040          * Returns the address where symbol will finally be loaded after
1041          * kexec_load_segment()
1042          */
1043         return (void *)(sechdr->sh_addr + sym->st_value);
1044 }
1045
1046 /*
1047  * Get or set value of a symbol. If "get_value" is true, symbol value is
1048  * returned in buf otherwise symbol value is set based on value in buf.
1049  */
1050 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1051                                    void *buf, unsigned int size, bool get_value)
1052 {
1053         Elf_Sym *sym;
1054         Elf_Shdr *sechdrs;
1055         struct purgatory_info *pi = &image->purgatory_info;
1056         char *sym_buf;
1057
1058         sym = kexec_purgatory_find_symbol(pi, name);
1059         if (!sym)
1060                 return -EINVAL;
1061
1062         if (sym->st_size != size) {
1063                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1064                        name, (unsigned long)sym->st_size, size);
1065                 return -EINVAL;
1066         }
1067
1068         sechdrs = pi->sechdrs;
1069
1070         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1071                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1072                        get_value ? "get" : "set");
1073                 return -EINVAL;
1074         }
1075
1076         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1077                                         sym->st_value;
1078
1079         if (get_value)
1080                 memcpy((void *)buf, sym_buf, size);
1081         else
1082                 memcpy((void *)sym_buf, buf, size);
1083
1084         return 0;
1085 }
1086 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1087
1088 int crash_exclude_mem_range(struct crash_mem *mem,
1089                             unsigned long long mstart, unsigned long long mend)
1090 {
1091         int i, j;
1092         unsigned long long start, end;
1093         struct crash_mem_range temp_range = {0, 0};
1094
1095         for (i = 0; i < mem->nr_ranges; i++) {
1096                 start = mem->ranges[i].start;
1097                 end = mem->ranges[i].end;
1098
1099                 if (mstart > end || mend < start)
1100                         continue;
1101
1102                 /* Truncate any area outside of range */
1103                 if (mstart < start)
1104                         mstart = start;
1105                 if (mend > end)
1106                         mend = end;
1107
1108                 /* Found completely overlapping range */
1109                 if (mstart == start && mend == end) {
1110                         mem->ranges[i].start = 0;
1111                         mem->ranges[i].end = 0;
1112                         if (i < mem->nr_ranges - 1) {
1113                                 /* Shift rest of the ranges to left */
1114                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1115                                         mem->ranges[j].start =
1116                                                 mem->ranges[j+1].start;
1117                                         mem->ranges[j].end =
1118                                                         mem->ranges[j+1].end;
1119                                 }
1120                         }
1121                         mem->nr_ranges--;
1122                         return 0;
1123                 }
1124
1125                 if (mstart > start && mend < end) {
1126                         /* Split original range */
1127                         mem->ranges[i].end = mstart - 1;
1128                         temp_range.start = mend + 1;
1129                         temp_range.end = end;
1130                 } else if (mstart != start)
1131                         mem->ranges[i].end = mstart - 1;
1132                 else
1133                         mem->ranges[i].start = mend + 1;
1134                 break;
1135         }
1136
1137         /* If a split happened, add the split to array */
1138         if (!temp_range.end)
1139                 return 0;
1140
1141         /* Split happened */
1142         if (i == mem->max_nr_ranges - 1)
1143                 return -ENOMEM;
1144
1145         /* Location where new range should go */
1146         j = i + 1;
1147         if (j < mem->nr_ranges) {
1148                 /* Move over all ranges one slot towards the end */
1149                 for (i = mem->nr_ranges - 1; i >= j; i--)
1150                         mem->ranges[i + 1] = mem->ranges[i];
1151         }
1152
1153         mem->ranges[j].start = temp_range.start;
1154         mem->ranges[j].end = temp_range.end;
1155         mem->nr_ranges++;
1156         return 0;
1157 }
1158
1159 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1160                           void **addr, unsigned long *sz)
1161 {
1162         Elf64_Ehdr *ehdr;
1163         Elf64_Phdr *phdr;
1164         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1165         unsigned char *buf;
1166         unsigned int cpu, i;
1167         unsigned long long notes_addr;
1168         unsigned long mstart, mend;
1169
1170         /* extra phdr for vmcoreinfo elf note */
1171         nr_phdr = nr_cpus + 1;
1172         nr_phdr += mem->nr_ranges;
1173
1174         /*
1175          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1176          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1177          * I think this is required by tools like gdb. So same physical
1178          * memory will be mapped in two elf headers. One will contain kernel
1179          * text virtual addresses and other will have __va(physical) addresses.
1180          */
1181
1182         nr_phdr++;
1183         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1184         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1185
1186         buf = vzalloc(elf_sz);
1187         if (!buf)
1188                 return -ENOMEM;
1189
1190         ehdr = (Elf64_Ehdr *)buf;
1191         phdr = (Elf64_Phdr *)(ehdr + 1);
1192         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1193         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1194         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1195         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1196         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1197         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1198         ehdr->e_type = ET_CORE;
1199         ehdr->e_machine = ELF_ARCH;
1200         ehdr->e_version = EV_CURRENT;
1201         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1202         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1203         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1204
1205         /* Prepare one phdr of type PT_NOTE for each present cpu */
1206         for_each_present_cpu(cpu) {
1207                 phdr->p_type = PT_NOTE;
1208                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1209                 phdr->p_offset = phdr->p_paddr = notes_addr;
1210                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1211                 (ehdr->e_phnum)++;
1212                 phdr++;
1213         }
1214
1215         /* Prepare one PT_NOTE header for vmcoreinfo */
1216         phdr->p_type = PT_NOTE;
1217         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1218         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1219         (ehdr->e_phnum)++;
1220         phdr++;
1221
1222         /* Prepare PT_LOAD type program header for kernel text region */
1223         if (kernel_map) {
1224                 phdr->p_type = PT_LOAD;
1225                 phdr->p_flags = PF_R|PF_W|PF_X;
1226                 phdr->p_vaddr = (Elf64_Addr)_text;
1227                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1228                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1229                 ehdr->e_phnum++;
1230                 phdr++;
1231         }
1232
1233         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1234         for (i = 0; i < mem->nr_ranges; i++) {
1235                 mstart = mem->ranges[i].start;
1236                 mend = mem->ranges[i].end;
1237
1238                 phdr->p_type = PT_LOAD;
1239                 phdr->p_flags = PF_R|PF_W|PF_X;
1240                 phdr->p_offset  = mstart;
1241
1242                 phdr->p_paddr = mstart;
1243                 phdr->p_vaddr = (unsigned long long) __va(mstart);
1244                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1245                 phdr->p_align = 0;
1246                 ehdr->e_phnum++;
1247                 phdr++;
1248                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1249                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1250                         ehdr->e_phnum, phdr->p_offset);
1251         }
1252
1253         *addr = buf;
1254         *sz = elf_sz;
1255         return 0;
1256 }