uprobes: Teach copy_insn() to support tmpfs
[sfrench/cifs-2.6.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 struct return_instance {
90         struct uprobe           *uprobe;
91         unsigned long           func;
92         unsigned long           orig_ret_vaddr; /* original return address */
93         bool                    chained;        /* true, if instance is nested */
94
95         struct return_instance  *next;          /* keep as stack */
96 };
97
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108         wait_queue_head_t       wq;             /* if all slots are busy */
109         atomic_t                slot_count;     /* number of in-use slots */
110         unsigned long           *bitmap;        /* 0 = free slot */
111         struct page             *page;
112
113         /*
114          * We keep the vma's vm_start rather than a pointer to the vma
115          * itself.  The probed process or a naughty kernel module could make
116          * the vma go away, and we must handle that reasonably gracefully.
117          */
118         unsigned long           vaddr;          /* Page(s) of instruction slots */
119 };
120
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *      - is_register: indicates if we are in register context.
126  *      - Return 1 if the specified virtual address is in an
127  *        executable vma.
128  */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132
133         if (is_register)
134                 flags |= VM_WRITE;
135
136         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161                                 struct page *page, struct page *kpage)
162 {
163         struct mm_struct *mm = vma->vm_mm;
164         spinlock_t *ptl;
165         pte_t *ptep;
166         int err;
167         /* For mmu_notifiers */
168         const unsigned long mmun_start = addr;
169         const unsigned long mmun_end   = addr + PAGE_SIZE;
170
171         /* For try_to_free_swap() and munlock_vma_page() below */
172         lock_page(page);
173
174         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
175         err = -EAGAIN;
176         ptep = page_check_address(page, mm, addr, &ptl, 0);
177         if (!ptep)
178                 goto unlock;
179
180         get_page(kpage);
181         page_add_new_anon_rmap(kpage, vma, addr);
182
183         if (!PageAnon(page)) {
184                 dec_mm_counter(mm, MM_FILEPAGES);
185                 inc_mm_counter(mm, MM_ANONPAGES);
186         }
187
188         flush_cache_page(vma, addr, pte_pfn(*ptep));
189         ptep_clear_flush(vma, addr, ptep);
190         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191
192         page_remove_rmap(page);
193         if (!page_mapped(page))
194                 try_to_free_swap(page);
195         pte_unmap_unlock(ptep, ptl);
196
197         if (vma->vm_flags & VM_LOCKED)
198                 munlock_vma_page(page);
199         put_page(page);
200
201         err = 0;
202  unlock:
203         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204         unlock_page(page);
205         return err;
206 }
207
208 /**
209  * is_swbp_insn - check if instruction is breakpoint instruction.
210  * @insn: instruction to be checked.
211  * Default implementation of is_swbp_insn
212  * Returns true if @insn is a breakpoint instruction.
213  */
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215 {
216         return *insn == UPROBE_SWBP_INSN;
217 }
218
219 /**
220  * is_trap_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_trap_insn
223  * Returns true if @insn is a breakpoint instruction.
224  *
225  * This function is needed for the case where an architecture has multiple
226  * trap instructions (like powerpc).
227  */
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
229 {
230         return is_swbp_insn(insn);
231 }
232
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234 {
235         void *kaddr = kmap_atomic(page);
236         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237         kunmap_atomic(kaddr);
238 }
239
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241 {
242         void *kaddr = kmap_atomic(page);
243         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244         kunmap_atomic(kaddr);
245 }
246
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248 {
249         uprobe_opcode_t old_opcode;
250         bool is_swbp;
251
252         /*
253          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254          * We do not check if it is any other 'trap variant' which could
255          * be conditional trap instruction such as the one powerpc supports.
256          *
257          * The logic is that we do not care if the underlying instruction
258          * is a trap variant; uprobes always wins over any other (gdb)
259          * breakpoint.
260          */
261         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262         is_swbp = is_swbp_insn(&old_opcode);
263
264         if (is_swbp_insn(new_opcode)) {
265                 if (is_swbp)            /* register: already installed? */
266                         return 0;
267         } else {
268                 if (!is_swbp)           /* unregister: was it changed by us? */
269                         return 0;
270         }
271
272         return 1;
273 }
274
275 /*
276  * NOTE:
277  * Expect the breakpoint instruction to be the smallest size instruction for
278  * the architecture. If an arch has variable length instruction and the
279  * breakpoint instruction is not of the smallest length instruction
280  * supported by that architecture then we need to modify is_trap_at_addr and
281  * uprobe_write_opcode accordingly. This would never be a problem for archs
282  * that have fixed length instructions.
283  *
284  * uprobe_write_opcode - write the opcode at a given virtual address.
285  * @mm: the probed process address space.
286  * @vaddr: the virtual address to store the opcode.
287  * @opcode: opcode to be written at @vaddr.
288  *
289  * Called with mm->mmap_sem held for write.
290  * Return 0 (success) or a negative errno.
291  */
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293                         uprobe_opcode_t opcode)
294 {
295         struct page *old_page, *new_page;
296         struct vm_area_struct *vma;
297         int ret;
298
299 retry:
300         /* Read the page with vaddr into memory */
301         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302         if (ret <= 0)
303                 return ret;
304
305         ret = verify_opcode(old_page, vaddr, &opcode);
306         if (ret <= 0)
307                 goto put_old;
308
309         ret = anon_vma_prepare(vma);
310         if (ret)
311                 goto put_old;
312
313         ret = -ENOMEM;
314         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315         if (!new_page)
316                 goto put_old;
317
318         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
319                 goto put_new;
320
321         __SetPageUptodate(new_page);
322         copy_highpage(new_page, old_page);
323         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325         ret = __replace_page(vma, vaddr, old_page, new_page);
326         if (ret)
327                 mem_cgroup_uncharge_page(new_page);
328
329 put_new:
330         page_cache_release(new_page);
331 put_old:
332         put_page(old_page);
333
334         if (unlikely(ret == -EAGAIN))
335                 goto retry;
336         return ret;
337 }
338
339 /**
340  * set_swbp - store breakpoint at a given address.
341  * @auprobe: arch specific probepoint information.
342  * @mm: the probed process address space.
343  * @vaddr: the virtual address to insert the opcode.
344  *
345  * For mm @mm, store the breakpoint instruction at @vaddr.
346  * Return 0 (success) or a negative errno.
347  */
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
349 {
350         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
351 }
352
353 /**
354  * set_orig_insn - Restore the original instruction.
355  * @mm: the probed process address space.
356  * @auprobe: arch specific probepoint information.
357  * @vaddr: the virtual address to insert the opcode.
358  *
359  * For mm @mm, restore the original opcode (opcode) at @vaddr.
360  * Return 0 (success) or a negative errno.
361  */
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
364 {
365         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
366 }
367
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370         if (l->inode < r->inode)
371                 return -1;
372
373         if (l->inode > r->inode)
374                 return 1;
375
376         if (l->offset < r->offset)
377                 return -1;
378
379         if (l->offset > r->offset)
380                 return 1;
381
382         return 0;
383 }
384
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387         struct uprobe u = { .inode = inode, .offset = offset };
388         struct rb_node *n = uprobes_tree.rb_node;
389         struct uprobe *uprobe;
390         int match;
391
392         while (n) {
393                 uprobe = rb_entry(n, struct uprobe, rb_node);
394                 match = match_uprobe(&u, uprobe);
395                 if (!match) {
396                         atomic_inc(&uprobe->ref);
397                         return uprobe;
398                 }
399
400                 if (match < 0)
401                         n = n->rb_left;
402                 else
403                         n = n->rb_right;
404         }
405         return NULL;
406 }
407
408 /*
409  * Find a uprobe corresponding to a given inode:offset
410  * Acquires uprobes_treelock
411  */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414         struct uprobe *uprobe;
415
416         spin_lock(&uprobes_treelock);
417         uprobe = __find_uprobe(inode, offset);
418         spin_unlock(&uprobes_treelock);
419
420         return uprobe;
421 }
422
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425         struct rb_node **p = &uprobes_tree.rb_node;
426         struct rb_node *parent = NULL;
427         struct uprobe *u;
428         int match;
429
430         while (*p) {
431                 parent = *p;
432                 u = rb_entry(parent, struct uprobe, rb_node);
433                 match = match_uprobe(uprobe, u);
434                 if (!match) {
435                         atomic_inc(&u->ref);
436                         return u;
437                 }
438
439                 if (match < 0)
440                         p = &parent->rb_left;
441                 else
442                         p = &parent->rb_right;
443
444         }
445
446         u = NULL;
447         rb_link_node(&uprobe->rb_node, parent, p);
448         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449         /* get access + creation ref */
450         atomic_set(&uprobe->ref, 2);
451
452         return u;
453 }
454
455 /*
456  * Acquire uprobes_treelock.
457  * Matching uprobe already exists in rbtree;
458  *      increment (access refcount) and return the matching uprobe.
459  *
460  * No matching uprobe; insert the uprobe in rb_tree;
461  *      get a double refcount (access + creation) and return NULL.
462  */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465         struct uprobe *u;
466
467         spin_lock(&uprobes_treelock);
468         u = __insert_uprobe(uprobe);
469         spin_unlock(&uprobes_treelock);
470
471         return u;
472 }
473
474 static void put_uprobe(struct uprobe *uprobe)
475 {
476         if (atomic_dec_and_test(&uprobe->ref))
477                 kfree(uprobe);
478 }
479
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
481 {
482         struct uprobe *uprobe, *cur_uprobe;
483
484         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485         if (!uprobe)
486                 return NULL;
487
488         uprobe->inode = igrab(inode);
489         uprobe->offset = offset;
490         init_rwsem(&uprobe->register_rwsem);
491         init_rwsem(&uprobe->consumer_rwsem);
492
493         /* add to uprobes_tree, sorted on inode:offset */
494         cur_uprobe = insert_uprobe(uprobe);
495         /* a uprobe exists for this inode:offset combination */
496         if (cur_uprobe) {
497                 kfree(uprobe);
498                 uprobe = cur_uprobe;
499                 iput(inode);
500         }
501
502         return uprobe;
503 }
504
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
506 {
507         down_write(&uprobe->consumer_rwsem);
508         uc->next = uprobe->consumers;
509         uprobe->consumers = uc;
510         up_write(&uprobe->consumer_rwsem);
511 }
512
513 /*
514  * For uprobe @uprobe, delete the consumer @uc.
515  * Return true if the @uc is deleted successfully
516  * or return false.
517  */
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
519 {
520         struct uprobe_consumer **con;
521         bool ret = false;
522
523         down_write(&uprobe->consumer_rwsem);
524         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525                 if (*con == uc) {
526                         *con = uc->next;
527                         ret = true;
528                         break;
529                 }
530         }
531         up_write(&uprobe->consumer_rwsem);
532
533         return ret;
534 }
535
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537                         void *insn, int nbytes, loff_t offset)
538 {
539         struct page *page;
540         /*
541          * Ensure that the page that has the original instruction is populated
542          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
543          * see uprobe_register().
544          */
545         if (mapping->a_ops->readpage)
546                 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
547         else
548                 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
549         if (IS_ERR(page))
550                 return PTR_ERR(page);
551
552         copy_from_page(page, offset, insn, nbytes);
553         page_cache_release(page);
554
555         return 0;
556 }
557
558 static int copy_insn(struct uprobe *uprobe, struct file *filp)
559 {
560         struct address_space *mapping = uprobe->inode->i_mapping;
561         loff_t offs = uprobe->offset;
562         void *insn = &uprobe->arch.insn;
563         int size = sizeof(uprobe->arch.insn);
564         int len, err = -EIO;
565
566         /* Copy only available bytes, -EIO if nothing was read */
567         do {
568                 if (offs >= i_size_read(uprobe->inode))
569                         break;
570
571                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
572                 err = __copy_insn(mapping, filp, insn, len, offs);
573                 if (err)
574                         break;
575
576                 insn += len;
577                 offs += len;
578                 size -= len;
579         } while (size);
580
581         return err;
582 }
583
584 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
585                                 struct mm_struct *mm, unsigned long vaddr)
586 {
587         int ret = 0;
588
589         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590                 return ret;
591
592         /* TODO: move this into _register, until then we abuse this sem. */
593         down_write(&uprobe->consumer_rwsem);
594         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
595                 goto out;
596
597         ret = copy_insn(uprobe, file);
598         if (ret)
599                 goto out;
600
601         ret = -ENOTSUPP;
602         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
603                 goto out;
604
605         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
606         if (ret)
607                 goto out;
608
609         /* uprobe_write_opcode() assumes we don't cross page boundary */
610         BUG_ON((uprobe->offset & ~PAGE_MASK) +
611                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
612
613         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
614         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
615
616  out:
617         up_write(&uprobe->consumer_rwsem);
618
619         return ret;
620 }
621
622 static inline bool consumer_filter(struct uprobe_consumer *uc,
623                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
624 {
625         return !uc->filter || uc->filter(uc, ctx, mm);
626 }
627
628 static bool filter_chain(struct uprobe *uprobe,
629                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631         struct uprobe_consumer *uc;
632         bool ret = false;
633
634         down_read(&uprobe->consumer_rwsem);
635         for (uc = uprobe->consumers; uc; uc = uc->next) {
636                 ret = consumer_filter(uc, ctx, mm);
637                 if (ret)
638                         break;
639         }
640         up_read(&uprobe->consumer_rwsem);
641
642         return ret;
643 }
644
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647                         struct vm_area_struct *vma, unsigned long vaddr)
648 {
649         bool first_uprobe;
650         int ret;
651
652         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
653         if (ret)
654                 return ret;
655
656         /*
657          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
658          * the task can hit this breakpoint right after __replace_page().
659          */
660         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
661         if (first_uprobe)
662                 set_bit(MMF_HAS_UPROBES, &mm->flags);
663
664         ret = set_swbp(&uprobe->arch, mm, vaddr);
665         if (!ret)
666                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
667         else if (first_uprobe)
668                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
669
670         return ret;
671 }
672
673 static int
674 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
675 {
676         set_bit(MMF_RECALC_UPROBES, &mm->flags);
677         return set_orig_insn(&uprobe->arch, mm, vaddr);
678 }
679
680 static inline bool uprobe_is_active(struct uprobe *uprobe)
681 {
682         return !RB_EMPTY_NODE(&uprobe->rb_node);
683 }
684 /*
685  * There could be threads that have already hit the breakpoint. They
686  * will recheck the current insn and restart if find_uprobe() fails.
687  * See find_active_uprobe().
688  */
689 static void delete_uprobe(struct uprobe *uprobe)
690 {
691         if (WARN_ON(!uprobe_is_active(uprobe)))
692                 return;
693
694         spin_lock(&uprobes_treelock);
695         rb_erase(&uprobe->rb_node, &uprobes_tree);
696         spin_unlock(&uprobes_treelock);
697         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
698         iput(uprobe->inode);
699         put_uprobe(uprobe);
700 }
701
702 struct map_info {
703         struct map_info *next;
704         struct mm_struct *mm;
705         unsigned long vaddr;
706 };
707
708 static inline struct map_info *free_map_info(struct map_info *info)
709 {
710         struct map_info *next = info->next;
711         kfree(info);
712         return next;
713 }
714
715 static struct map_info *
716 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
717 {
718         unsigned long pgoff = offset >> PAGE_SHIFT;
719         struct vm_area_struct *vma;
720         struct map_info *curr = NULL;
721         struct map_info *prev = NULL;
722         struct map_info *info;
723         int more = 0;
724
725  again:
726         mutex_lock(&mapping->i_mmap_mutex);
727         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
728                 if (!valid_vma(vma, is_register))
729                         continue;
730
731                 if (!prev && !more) {
732                         /*
733                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
734                          * reclaim. This is optimistic, no harm done if it fails.
735                          */
736                         prev = kmalloc(sizeof(struct map_info),
737                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
738                         if (prev)
739                                 prev->next = NULL;
740                 }
741                 if (!prev) {
742                         more++;
743                         continue;
744                 }
745
746                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
747                         continue;
748
749                 info = prev;
750                 prev = prev->next;
751                 info->next = curr;
752                 curr = info;
753
754                 info->mm = vma->vm_mm;
755                 info->vaddr = offset_to_vaddr(vma, offset);
756         }
757         mutex_unlock(&mapping->i_mmap_mutex);
758
759         if (!more)
760                 goto out;
761
762         prev = curr;
763         while (curr) {
764                 mmput(curr->mm);
765                 curr = curr->next;
766         }
767
768         do {
769                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
770                 if (!info) {
771                         curr = ERR_PTR(-ENOMEM);
772                         goto out;
773                 }
774                 info->next = prev;
775                 prev = info;
776         } while (--more);
777
778         goto again;
779  out:
780         while (prev)
781                 prev = free_map_info(prev);
782         return curr;
783 }
784
785 static int
786 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
787 {
788         bool is_register = !!new;
789         struct map_info *info;
790         int err = 0;
791
792         percpu_down_write(&dup_mmap_sem);
793         info = build_map_info(uprobe->inode->i_mapping,
794                                         uprobe->offset, is_register);
795         if (IS_ERR(info)) {
796                 err = PTR_ERR(info);
797                 goto out;
798         }
799
800         while (info) {
801                 struct mm_struct *mm = info->mm;
802                 struct vm_area_struct *vma;
803
804                 if (err && is_register)
805                         goto free;
806
807                 down_write(&mm->mmap_sem);
808                 vma = find_vma(mm, info->vaddr);
809                 if (!vma || !valid_vma(vma, is_register) ||
810                     file_inode(vma->vm_file) != uprobe->inode)
811                         goto unlock;
812
813                 if (vma->vm_start > info->vaddr ||
814                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
815                         goto unlock;
816
817                 if (is_register) {
818                         /* consult only the "caller", new consumer. */
819                         if (consumer_filter(new,
820                                         UPROBE_FILTER_REGISTER, mm))
821                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
822                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
823                         if (!filter_chain(uprobe,
824                                         UPROBE_FILTER_UNREGISTER, mm))
825                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
826                 }
827
828  unlock:
829                 up_write(&mm->mmap_sem);
830  free:
831                 mmput(mm);
832                 info = free_map_info(info);
833         }
834  out:
835         percpu_up_write(&dup_mmap_sem);
836         return err;
837 }
838
839 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
840 {
841         consumer_add(uprobe, uc);
842         return register_for_each_vma(uprobe, uc);
843 }
844
845 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847         int err;
848
849         if (!consumer_del(uprobe, uc))  /* WARN? */
850                 return;
851
852         err = register_for_each_vma(uprobe, NULL);
853         /* TODO : cant unregister? schedule a worker thread */
854         if (!uprobe->consumers && !err)
855                 delete_uprobe(uprobe);
856 }
857
858 /*
859  * uprobe_register - register a probe
860  * @inode: the file in which the probe has to be placed.
861  * @offset: offset from the start of the file.
862  * @uc: information on howto handle the probe..
863  *
864  * Apart from the access refcount, uprobe_register() takes a creation
865  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
866  * inserted into the rbtree (i.e first consumer for a @inode:@offset
867  * tuple).  Creation refcount stops uprobe_unregister from freeing the
868  * @uprobe even before the register operation is complete. Creation
869  * refcount is released when the last @uc for the @uprobe
870  * unregisters.
871  *
872  * Return errno if it cannot successully install probes
873  * else return 0 (success)
874  */
875 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
876 {
877         struct uprobe *uprobe;
878         int ret;
879
880         /* Uprobe must have at least one set consumer */
881         if (!uc->handler && !uc->ret_handler)
882                 return -EINVAL;
883
884         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
885         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
886                 return -EIO;
887         /* Racy, just to catch the obvious mistakes */
888         if (offset > i_size_read(inode))
889                 return -EINVAL;
890
891  retry:
892         uprobe = alloc_uprobe(inode, offset);
893         if (!uprobe)
894                 return -ENOMEM;
895         /*
896          * We can race with uprobe_unregister()->delete_uprobe().
897          * Check uprobe_is_active() and retry if it is false.
898          */
899         down_write(&uprobe->register_rwsem);
900         ret = -EAGAIN;
901         if (likely(uprobe_is_active(uprobe))) {
902                 ret = __uprobe_register(uprobe, uc);
903                 if (ret)
904                         __uprobe_unregister(uprobe, uc);
905         }
906         up_write(&uprobe->register_rwsem);
907         put_uprobe(uprobe);
908
909         if (unlikely(ret == -EAGAIN))
910                 goto retry;
911         return ret;
912 }
913 EXPORT_SYMBOL_GPL(uprobe_register);
914
915 /*
916  * uprobe_apply - unregister a already registered probe.
917  * @inode: the file in which the probe has to be removed.
918  * @offset: offset from the start of the file.
919  * @uc: consumer which wants to add more or remove some breakpoints
920  * @add: add or remove the breakpoints
921  */
922 int uprobe_apply(struct inode *inode, loff_t offset,
923                         struct uprobe_consumer *uc, bool add)
924 {
925         struct uprobe *uprobe;
926         struct uprobe_consumer *con;
927         int ret = -ENOENT;
928
929         uprobe = find_uprobe(inode, offset);
930         if (!uprobe)
931                 return ret;
932
933         down_write(&uprobe->register_rwsem);
934         for (con = uprobe->consumers; con && con != uc ; con = con->next)
935                 ;
936         if (con)
937                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
938         up_write(&uprobe->register_rwsem);
939         put_uprobe(uprobe);
940
941         return ret;
942 }
943
944 /*
945  * uprobe_unregister - unregister a already registered probe.
946  * @inode: the file in which the probe has to be removed.
947  * @offset: offset from the start of the file.
948  * @uc: identify which probe if multiple probes are colocated.
949  */
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
951 {
952         struct uprobe *uprobe;
953
954         uprobe = find_uprobe(inode, offset);
955         if (!uprobe)
956                 return;
957
958         down_write(&uprobe->register_rwsem);
959         __uprobe_unregister(uprobe, uc);
960         up_write(&uprobe->register_rwsem);
961         put_uprobe(uprobe);
962 }
963 EXPORT_SYMBOL_GPL(uprobe_unregister);
964
965 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
966 {
967         struct vm_area_struct *vma;
968         int err = 0;
969
970         down_read(&mm->mmap_sem);
971         for (vma = mm->mmap; vma; vma = vma->vm_next) {
972                 unsigned long vaddr;
973                 loff_t offset;
974
975                 if (!valid_vma(vma, false) ||
976                     file_inode(vma->vm_file) != uprobe->inode)
977                         continue;
978
979                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
980                 if (uprobe->offset <  offset ||
981                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
982                         continue;
983
984                 vaddr = offset_to_vaddr(vma, uprobe->offset);
985                 err |= remove_breakpoint(uprobe, mm, vaddr);
986         }
987         up_read(&mm->mmap_sem);
988
989         return err;
990 }
991
992 static struct rb_node *
993 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
994 {
995         struct rb_node *n = uprobes_tree.rb_node;
996
997         while (n) {
998                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
999
1000                 if (inode < u->inode) {
1001                         n = n->rb_left;
1002                 } else if (inode > u->inode) {
1003                         n = n->rb_right;
1004                 } else {
1005                         if (max < u->offset)
1006                                 n = n->rb_left;
1007                         else if (min > u->offset)
1008                                 n = n->rb_right;
1009                         else
1010                                 break;
1011                 }
1012         }
1013
1014         return n;
1015 }
1016
1017 /*
1018  * For a given range in vma, build a list of probes that need to be inserted.
1019  */
1020 static void build_probe_list(struct inode *inode,
1021                                 struct vm_area_struct *vma,
1022                                 unsigned long start, unsigned long end,
1023                                 struct list_head *head)
1024 {
1025         loff_t min, max;
1026         struct rb_node *n, *t;
1027         struct uprobe *u;
1028
1029         INIT_LIST_HEAD(head);
1030         min = vaddr_to_offset(vma, start);
1031         max = min + (end - start) - 1;
1032
1033         spin_lock(&uprobes_treelock);
1034         n = find_node_in_range(inode, min, max);
1035         if (n) {
1036                 for (t = n; t; t = rb_prev(t)) {
1037                         u = rb_entry(t, struct uprobe, rb_node);
1038                         if (u->inode != inode || u->offset < min)
1039                                 break;
1040                         list_add(&u->pending_list, head);
1041                         atomic_inc(&u->ref);
1042                 }
1043                 for (t = n; (t = rb_next(t)); ) {
1044                         u = rb_entry(t, struct uprobe, rb_node);
1045                         if (u->inode != inode || u->offset > max)
1046                                 break;
1047                         list_add(&u->pending_list, head);
1048                         atomic_inc(&u->ref);
1049                 }
1050         }
1051         spin_unlock(&uprobes_treelock);
1052 }
1053
1054 /*
1055  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1056  *
1057  * Currently we ignore all errors and always return 0, the callers
1058  * can't handle the failure anyway.
1059  */
1060 int uprobe_mmap(struct vm_area_struct *vma)
1061 {
1062         struct list_head tmp_list;
1063         struct uprobe *uprobe, *u;
1064         struct inode *inode;
1065
1066         if (no_uprobe_events() || !valid_vma(vma, true))
1067                 return 0;
1068
1069         inode = file_inode(vma->vm_file);
1070         if (!inode)
1071                 return 0;
1072
1073         mutex_lock(uprobes_mmap_hash(inode));
1074         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1075         /*
1076          * We can race with uprobe_unregister(), this uprobe can be already
1077          * removed. But in this case filter_chain() must return false, all
1078          * consumers have gone away.
1079          */
1080         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1081                 if (!fatal_signal_pending(current) &&
1082                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1083                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1084                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1085                 }
1086                 put_uprobe(uprobe);
1087         }
1088         mutex_unlock(uprobes_mmap_hash(inode));
1089
1090         return 0;
1091 }
1092
1093 static bool
1094 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1095 {
1096         loff_t min, max;
1097         struct inode *inode;
1098         struct rb_node *n;
1099
1100         inode = file_inode(vma->vm_file);
1101
1102         min = vaddr_to_offset(vma, start);
1103         max = min + (end - start) - 1;
1104
1105         spin_lock(&uprobes_treelock);
1106         n = find_node_in_range(inode, min, max);
1107         spin_unlock(&uprobes_treelock);
1108
1109         return !!n;
1110 }
1111
1112 /*
1113  * Called in context of a munmap of a vma.
1114  */
1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1116 {
1117         if (no_uprobe_events() || !valid_vma(vma, false))
1118                 return;
1119
1120         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1121                 return;
1122
1123         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1124              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1125                 return;
1126
1127         if (vma_has_uprobes(vma, start, end))
1128                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1129 }
1130
1131 /* Slot allocation for XOL */
1132 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1133 {
1134         int ret = -EALREADY;
1135
1136         down_write(&mm->mmap_sem);
1137         if (mm->uprobes_state.xol_area)
1138                 goto fail;
1139
1140         if (!area->vaddr) {
1141                 /* Try to map as high as possible, this is only a hint. */
1142                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1143                                                 PAGE_SIZE, 0, 0);
1144                 if (area->vaddr & ~PAGE_MASK) {
1145                         ret = area->vaddr;
1146                         goto fail;
1147                 }
1148         }
1149
1150         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1151                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1152         if (ret)
1153                 goto fail;
1154
1155         smp_wmb();      /* pairs with get_xol_area() */
1156         mm->uprobes_state.xol_area = area;
1157  fail:
1158         up_write(&mm->mmap_sem);
1159
1160         return ret;
1161 }
1162
1163 static struct xol_area *__create_xol_area(unsigned long vaddr)
1164 {
1165         struct mm_struct *mm = current->mm;
1166         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1167         struct xol_area *area;
1168
1169         area = kmalloc(sizeof(*area), GFP_KERNEL);
1170         if (unlikely(!area))
1171                 goto out;
1172
1173         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1174         if (!area->bitmap)
1175                 goto free_area;
1176
1177         area->page = alloc_page(GFP_HIGHUSER);
1178         if (!area->page)
1179                 goto free_bitmap;
1180
1181         area->vaddr = vaddr;
1182         init_waitqueue_head(&area->wq);
1183         /* Reserve the 1st slot for get_trampoline_vaddr() */
1184         set_bit(0, area->bitmap);
1185         atomic_set(&area->slot_count, 1);
1186         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1187
1188         if (!xol_add_vma(mm, area))
1189                 return area;
1190
1191         __free_page(area->page);
1192  free_bitmap:
1193         kfree(area->bitmap);
1194  free_area:
1195         kfree(area);
1196  out:
1197         return NULL;
1198 }
1199
1200 /*
1201  * get_xol_area - Allocate process's xol_area if necessary.
1202  * This area will be used for storing instructions for execution out of line.
1203  *
1204  * Returns the allocated area or NULL.
1205  */
1206 static struct xol_area *get_xol_area(void)
1207 {
1208         struct mm_struct *mm = current->mm;
1209         struct xol_area *area;
1210
1211         if (!mm->uprobes_state.xol_area)
1212                 __create_xol_area(0);
1213
1214         area = mm->uprobes_state.xol_area;
1215         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1216         return area;
1217 }
1218
1219 /*
1220  * uprobe_clear_state - Free the area allocated for slots.
1221  */
1222 void uprobe_clear_state(struct mm_struct *mm)
1223 {
1224         struct xol_area *area = mm->uprobes_state.xol_area;
1225
1226         if (!area)
1227                 return;
1228
1229         put_page(area->page);
1230         kfree(area->bitmap);
1231         kfree(area);
1232 }
1233
1234 void uprobe_start_dup_mmap(void)
1235 {
1236         percpu_down_read(&dup_mmap_sem);
1237 }
1238
1239 void uprobe_end_dup_mmap(void)
1240 {
1241         percpu_up_read(&dup_mmap_sem);
1242 }
1243
1244 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1245 {
1246         newmm->uprobes_state.xol_area = NULL;
1247
1248         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1249                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1250                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1251                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1252         }
1253 }
1254
1255 /*
1256  *  - search for a free slot.
1257  */
1258 static unsigned long xol_take_insn_slot(struct xol_area *area)
1259 {
1260         unsigned long slot_addr;
1261         int slot_nr;
1262
1263         do {
1264                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1265                 if (slot_nr < UINSNS_PER_PAGE) {
1266                         if (!test_and_set_bit(slot_nr, area->bitmap))
1267                                 break;
1268
1269                         slot_nr = UINSNS_PER_PAGE;
1270                         continue;
1271                 }
1272                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1273         } while (slot_nr >= UINSNS_PER_PAGE);
1274
1275         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1276         atomic_inc(&area->slot_count);
1277
1278         return slot_addr;
1279 }
1280
1281 /*
1282  * xol_get_insn_slot - allocate a slot for xol.
1283  * Returns the allocated slot address or 0.
1284  */
1285 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1286 {
1287         struct xol_area *area;
1288         unsigned long xol_vaddr;
1289
1290         area = get_xol_area();
1291         if (!area)
1292                 return 0;
1293
1294         xol_vaddr = xol_take_insn_slot(area);
1295         if (unlikely(!xol_vaddr))
1296                 return 0;
1297
1298         /* Initialize the slot */
1299         copy_to_page(area->page, xol_vaddr,
1300                         &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1301         /*
1302          * We probably need flush_icache_user_range() but it needs vma.
1303          * This should work on supported architectures too.
1304          */
1305         flush_dcache_page(area->page);
1306
1307         return xol_vaddr;
1308 }
1309
1310 /*
1311  * xol_free_insn_slot - If slot was earlier allocated by
1312  * @xol_get_insn_slot(), make the slot available for
1313  * subsequent requests.
1314  */
1315 static void xol_free_insn_slot(struct task_struct *tsk)
1316 {
1317         struct xol_area *area;
1318         unsigned long vma_end;
1319         unsigned long slot_addr;
1320
1321         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1322                 return;
1323
1324         slot_addr = tsk->utask->xol_vaddr;
1325         if (unlikely(!slot_addr))
1326                 return;
1327
1328         area = tsk->mm->uprobes_state.xol_area;
1329         vma_end = area->vaddr + PAGE_SIZE;
1330         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1331                 unsigned long offset;
1332                 int slot_nr;
1333
1334                 offset = slot_addr - area->vaddr;
1335                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1336                 if (slot_nr >= UINSNS_PER_PAGE)
1337                         return;
1338
1339                 clear_bit(slot_nr, area->bitmap);
1340                 atomic_dec(&area->slot_count);
1341                 if (waitqueue_active(&area->wq))
1342                         wake_up(&area->wq);
1343
1344                 tsk->utask->xol_vaddr = 0;
1345         }
1346 }
1347
1348 /**
1349  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1350  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1351  * instruction.
1352  * Return the address of the breakpoint instruction.
1353  */
1354 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1355 {
1356         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1357 }
1358
1359 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1360 {
1361         struct uprobe_task *utask = current->utask;
1362
1363         if (unlikely(utask && utask->active_uprobe))
1364                 return utask->vaddr;
1365
1366         return instruction_pointer(regs);
1367 }
1368
1369 /*
1370  * Called with no locks held.
1371  * Called in context of a exiting or a exec-ing thread.
1372  */
1373 void uprobe_free_utask(struct task_struct *t)
1374 {
1375         struct uprobe_task *utask = t->utask;
1376         struct return_instance *ri, *tmp;
1377
1378         if (!utask)
1379                 return;
1380
1381         if (utask->active_uprobe)
1382                 put_uprobe(utask->active_uprobe);
1383
1384         ri = utask->return_instances;
1385         while (ri) {
1386                 tmp = ri;
1387                 ri = ri->next;
1388
1389                 put_uprobe(tmp->uprobe);
1390                 kfree(tmp);
1391         }
1392
1393         xol_free_insn_slot(t);
1394         kfree(utask);
1395         t->utask = NULL;
1396 }
1397
1398 /*
1399  * Allocate a uprobe_task object for the task if if necessary.
1400  * Called when the thread hits a breakpoint.
1401  *
1402  * Returns:
1403  * - pointer to new uprobe_task on success
1404  * - NULL otherwise
1405  */
1406 static struct uprobe_task *get_utask(void)
1407 {
1408         if (!current->utask)
1409                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1410         return current->utask;
1411 }
1412
1413 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1414 {
1415         struct uprobe_task *n_utask;
1416         struct return_instance **p, *o, *n;
1417
1418         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1419         if (!n_utask)
1420                 return -ENOMEM;
1421         t->utask = n_utask;
1422
1423         p = &n_utask->return_instances;
1424         for (o = o_utask->return_instances; o; o = o->next) {
1425                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1426                 if (!n)
1427                         return -ENOMEM;
1428
1429                 *n = *o;
1430                 atomic_inc(&n->uprobe->ref);
1431                 n->next = NULL;
1432
1433                 *p = n;
1434                 p = &n->next;
1435                 n_utask->depth++;
1436         }
1437
1438         return 0;
1439 }
1440
1441 static void uprobe_warn(struct task_struct *t, const char *msg)
1442 {
1443         pr_warn("uprobe: %s:%d failed to %s\n",
1444                         current->comm, current->pid, msg);
1445 }
1446
1447 static void dup_xol_work(struct callback_head *work)
1448 {
1449         if (current->flags & PF_EXITING)
1450                 return;
1451
1452         if (!__create_xol_area(current->utask->dup_xol_addr))
1453                 uprobe_warn(current, "dup xol area");
1454 }
1455
1456 /*
1457  * Called in context of a new clone/fork from copy_process.
1458  */
1459 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1460 {
1461         struct uprobe_task *utask = current->utask;
1462         struct mm_struct *mm = current->mm;
1463         struct xol_area *area;
1464
1465         t->utask = NULL;
1466
1467         if (!utask || !utask->return_instances)
1468                 return;
1469
1470         if (mm == t->mm && !(flags & CLONE_VFORK))
1471                 return;
1472
1473         if (dup_utask(t, utask))
1474                 return uprobe_warn(t, "dup ret instances");
1475
1476         /* The task can fork() after dup_xol_work() fails */
1477         area = mm->uprobes_state.xol_area;
1478         if (!area)
1479                 return uprobe_warn(t, "dup xol area");
1480
1481         if (mm == t->mm)
1482                 return;
1483
1484         t->utask->dup_xol_addr = area->vaddr;
1485         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1486         task_work_add(t, &t->utask->dup_xol_work, true);
1487 }
1488
1489 /*
1490  * Current area->vaddr notion assume the trampoline address is always
1491  * equal area->vaddr.
1492  *
1493  * Returns -1 in case the xol_area is not allocated.
1494  */
1495 static unsigned long get_trampoline_vaddr(void)
1496 {
1497         struct xol_area *area;
1498         unsigned long trampoline_vaddr = -1;
1499
1500         area = current->mm->uprobes_state.xol_area;
1501         smp_read_barrier_depends();
1502         if (area)
1503                 trampoline_vaddr = area->vaddr;
1504
1505         return trampoline_vaddr;
1506 }
1507
1508 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1509 {
1510         struct return_instance *ri;
1511         struct uprobe_task *utask;
1512         unsigned long orig_ret_vaddr, trampoline_vaddr;
1513         bool chained = false;
1514
1515         if (!get_xol_area())
1516                 return;
1517
1518         utask = get_utask();
1519         if (!utask)
1520                 return;
1521
1522         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1523                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1524                                 " nestedness limit pid/tgid=%d/%d\n",
1525                                 current->pid, current->tgid);
1526                 return;
1527         }
1528
1529         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1530         if (!ri)
1531                 goto fail;
1532
1533         trampoline_vaddr = get_trampoline_vaddr();
1534         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1535         if (orig_ret_vaddr == -1)
1536                 goto fail;
1537
1538         /*
1539          * We don't want to keep trampoline address in stack, rather keep the
1540          * original return address of first caller thru all the consequent
1541          * instances. This also makes breakpoint unwrapping easier.
1542          */
1543         if (orig_ret_vaddr == trampoline_vaddr) {
1544                 if (!utask->return_instances) {
1545                         /*
1546                          * This situation is not possible. Likely we have an
1547                          * attack from user-space.
1548                          */
1549                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1550                                                 current->pid, current->tgid);
1551                         goto fail;
1552                 }
1553
1554                 chained = true;
1555                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1556         }
1557
1558         atomic_inc(&uprobe->ref);
1559         ri->uprobe = uprobe;
1560         ri->func = instruction_pointer(regs);
1561         ri->orig_ret_vaddr = orig_ret_vaddr;
1562         ri->chained = chained;
1563
1564         utask->depth++;
1565
1566         /* add instance to the stack */
1567         ri->next = utask->return_instances;
1568         utask->return_instances = ri;
1569
1570         return;
1571
1572  fail:
1573         kfree(ri);
1574 }
1575
1576 /* Prepare to single-step probed instruction out of line. */
1577 static int
1578 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1579 {
1580         struct uprobe_task *utask;
1581         unsigned long xol_vaddr;
1582         int err;
1583
1584         utask = get_utask();
1585         if (!utask)
1586                 return -ENOMEM;
1587
1588         xol_vaddr = xol_get_insn_slot(uprobe);
1589         if (!xol_vaddr)
1590                 return -ENOMEM;
1591
1592         utask->xol_vaddr = xol_vaddr;
1593         utask->vaddr = bp_vaddr;
1594
1595         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1596         if (unlikely(err)) {
1597                 xol_free_insn_slot(current);
1598                 return err;
1599         }
1600
1601         utask->active_uprobe = uprobe;
1602         utask->state = UTASK_SSTEP;
1603         return 0;
1604 }
1605
1606 /*
1607  * If we are singlestepping, then ensure this thread is not connected to
1608  * non-fatal signals until completion of singlestep.  When xol insn itself
1609  * triggers the signal,  restart the original insn even if the task is
1610  * already SIGKILL'ed (since coredump should report the correct ip).  This
1611  * is even more important if the task has a handler for SIGSEGV/etc, The
1612  * _same_ instruction should be repeated again after return from the signal
1613  * handler, and SSTEP can never finish in this case.
1614  */
1615 bool uprobe_deny_signal(void)
1616 {
1617         struct task_struct *t = current;
1618         struct uprobe_task *utask = t->utask;
1619
1620         if (likely(!utask || !utask->active_uprobe))
1621                 return false;
1622
1623         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1624
1625         if (signal_pending(t)) {
1626                 spin_lock_irq(&t->sighand->siglock);
1627                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1628                 spin_unlock_irq(&t->sighand->siglock);
1629
1630                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1631                         utask->state = UTASK_SSTEP_TRAPPED;
1632                         set_tsk_thread_flag(t, TIF_UPROBE);
1633                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1634                 }
1635         }
1636
1637         return true;
1638 }
1639
1640 static void mmf_recalc_uprobes(struct mm_struct *mm)
1641 {
1642         struct vm_area_struct *vma;
1643
1644         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1645                 if (!valid_vma(vma, false))
1646                         continue;
1647                 /*
1648                  * This is not strictly accurate, we can race with
1649                  * uprobe_unregister() and see the already removed
1650                  * uprobe if delete_uprobe() was not yet called.
1651                  * Or this uprobe can be filtered out.
1652                  */
1653                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1654                         return;
1655         }
1656
1657         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1658 }
1659
1660 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1661 {
1662         struct page *page;
1663         uprobe_opcode_t opcode;
1664         int result;
1665
1666         pagefault_disable();
1667         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1668                                                         sizeof(opcode));
1669         pagefault_enable();
1670
1671         if (likely(result == 0))
1672                 goto out;
1673
1674         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1675         if (result < 0)
1676                 return result;
1677
1678         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1679         put_page(page);
1680  out:
1681         /* This needs to return true for any variant of the trap insn */
1682         return is_trap_insn(&opcode);
1683 }
1684
1685 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1686 {
1687         struct mm_struct *mm = current->mm;
1688         struct uprobe *uprobe = NULL;
1689         struct vm_area_struct *vma;
1690
1691         down_read(&mm->mmap_sem);
1692         vma = find_vma(mm, bp_vaddr);
1693         if (vma && vma->vm_start <= bp_vaddr) {
1694                 if (valid_vma(vma, false)) {
1695                         struct inode *inode = file_inode(vma->vm_file);
1696                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1697
1698                         uprobe = find_uprobe(inode, offset);
1699                 }
1700
1701                 if (!uprobe)
1702                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1703         } else {
1704                 *is_swbp = -EFAULT;
1705         }
1706
1707         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1708                 mmf_recalc_uprobes(mm);
1709         up_read(&mm->mmap_sem);
1710
1711         return uprobe;
1712 }
1713
1714 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1715 {
1716         struct uprobe_consumer *uc;
1717         int remove = UPROBE_HANDLER_REMOVE;
1718         bool need_prep = false; /* prepare return uprobe, when needed */
1719
1720         down_read(&uprobe->register_rwsem);
1721         for (uc = uprobe->consumers; uc; uc = uc->next) {
1722                 int rc = 0;
1723
1724                 if (uc->handler) {
1725                         rc = uc->handler(uc, regs);
1726                         WARN(rc & ~UPROBE_HANDLER_MASK,
1727                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1728                 }
1729
1730                 if (uc->ret_handler)
1731                         need_prep = true;
1732
1733                 remove &= rc;
1734         }
1735
1736         if (need_prep && !remove)
1737                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1738
1739         if (remove && uprobe->consumers) {
1740                 WARN_ON(!uprobe_is_active(uprobe));
1741                 unapply_uprobe(uprobe, current->mm);
1742         }
1743         up_read(&uprobe->register_rwsem);
1744 }
1745
1746 static void
1747 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1748 {
1749         struct uprobe *uprobe = ri->uprobe;
1750         struct uprobe_consumer *uc;
1751
1752         down_read(&uprobe->register_rwsem);
1753         for (uc = uprobe->consumers; uc; uc = uc->next) {
1754                 if (uc->ret_handler)
1755                         uc->ret_handler(uc, ri->func, regs);
1756         }
1757         up_read(&uprobe->register_rwsem);
1758 }
1759
1760 static bool handle_trampoline(struct pt_regs *regs)
1761 {
1762         struct uprobe_task *utask;
1763         struct return_instance *ri, *tmp;
1764         bool chained;
1765
1766         utask = current->utask;
1767         if (!utask)
1768                 return false;
1769
1770         ri = utask->return_instances;
1771         if (!ri)
1772                 return false;
1773
1774         /*
1775          * TODO: we should throw out return_instance's invalidated by
1776          * longjmp(), currently we assume that the probed function always
1777          * returns.
1778          */
1779         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1780
1781         for (;;) {
1782                 handle_uretprobe_chain(ri, regs);
1783
1784                 chained = ri->chained;
1785                 put_uprobe(ri->uprobe);
1786
1787                 tmp = ri;
1788                 ri = ri->next;
1789                 kfree(tmp);
1790                 utask->depth--;
1791
1792                 if (!chained)
1793                         break;
1794                 BUG_ON(!ri);
1795         }
1796
1797         utask->return_instances = ri;
1798
1799         return true;
1800 }
1801
1802 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1803 {
1804         return false;
1805 }
1806
1807 /*
1808  * Run handler and ask thread to singlestep.
1809  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1810  */
1811 static void handle_swbp(struct pt_regs *regs)
1812 {
1813         struct uprobe *uprobe;
1814         unsigned long bp_vaddr;
1815         int uninitialized_var(is_swbp);
1816
1817         bp_vaddr = uprobe_get_swbp_addr(regs);
1818         if (bp_vaddr == get_trampoline_vaddr()) {
1819                 if (handle_trampoline(regs))
1820                         return;
1821
1822                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1823                                                 current->pid, current->tgid);
1824         }
1825
1826         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1827         if (!uprobe) {
1828                 if (is_swbp > 0) {
1829                         /* No matching uprobe; signal SIGTRAP. */
1830                         send_sig(SIGTRAP, current, 0);
1831                 } else {
1832                         /*
1833                          * Either we raced with uprobe_unregister() or we can't
1834                          * access this memory. The latter is only possible if
1835                          * another thread plays with our ->mm. In both cases
1836                          * we can simply restart. If this vma was unmapped we
1837                          * can pretend this insn was not executed yet and get
1838                          * the (correct) SIGSEGV after restart.
1839                          */
1840                         instruction_pointer_set(regs, bp_vaddr);
1841                 }
1842                 return;
1843         }
1844
1845         /* change it in advance for ->handler() and restart */
1846         instruction_pointer_set(regs, bp_vaddr);
1847
1848         /*
1849          * TODO: move copy_insn/etc into _register and remove this hack.
1850          * After we hit the bp, _unregister + _register can install the
1851          * new and not-yet-analyzed uprobe at the same address, restart.
1852          */
1853         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1854         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1855                 goto out;
1856
1857         /* Tracing handlers use ->utask to communicate with fetch methods */
1858         if (!get_utask())
1859                 goto out;
1860
1861         if (arch_uprobe_ignore(&uprobe->arch, regs))
1862                 goto out;
1863
1864         handler_chain(uprobe, regs);
1865
1866         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1867                 goto out;
1868
1869         if (!pre_ssout(uprobe, regs, bp_vaddr))
1870                 return;
1871
1872         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1873 out:
1874         put_uprobe(uprobe);
1875 }
1876
1877 /*
1878  * Perform required fix-ups and disable singlestep.
1879  * Allow pending signals to take effect.
1880  */
1881 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1882 {
1883         struct uprobe *uprobe;
1884         int err = 0;
1885
1886         uprobe = utask->active_uprobe;
1887         if (utask->state == UTASK_SSTEP_ACK)
1888                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1889         else if (utask->state == UTASK_SSTEP_TRAPPED)
1890                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1891         else
1892                 WARN_ON_ONCE(1);
1893
1894         put_uprobe(uprobe);
1895         utask->active_uprobe = NULL;
1896         utask->state = UTASK_RUNNING;
1897         xol_free_insn_slot(current);
1898
1899         spin_lock_irq(&current->sighand->siglock);
1900         recalc_sigpending(); /* see uprobe_deny_signal() */
1901         spin_unlock_irq(&current->sighand->siglock);
1902
1903         if (unlikely(err)) {
1904                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1905                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1906         }
1907 }
1908
1909 /*
1910  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1911  * allows the thread to return from interrupt. After that handle_swbp()
1912  * sets utask->active_uprobe.
1913  *
1914  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1915  * and allows the thread to return from interrupt.
1916  *
1917  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1918  * uprobe_notify_resume().
1919  */
1920 void uprobe_notify_resume(struct pt_regs *regs)
1921 {
1922         struct uprobe_task *utask;
1923
1924         clear_thread_flag(TIF_UPROBE);
1925
1926         utask = current->utask;
1927         if (utask && utask->active_uprobe)
1928                 handle_singlestep(utask, regs);
1929         else
1930                 handle_swbp(regs);
1931 }
1932
1933 /*
1934  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1935  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1936  */
1937 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1938 {
1939         if (!current->mm)
1940                 return 0;
1941
1942         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1943             (!current->utask || !current->utask->return_instances))
1944                 return 0;
1945
1946         set_thread_flag(TIF_UPROBE);
1947         return 1;
1948 }
1949
1950 /*
1951  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1952  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1953  */
1954 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1955 {
1956         struct uprobe_task *utask = current->utask;
1957
1958         if (!current->mm || !utask || !utask->active_uprobe)
1959                 /* task is currently not uprobed */
1960                 return 0;
1961
1962         utask->state = UTASK_SSTEP_ACK;
1963         set_thread_flag(TIF_UPROBE);
1964         return 1;
1965 }
1966
1967 static struct notifier_block uprobe_exception_nb = {
1968         .notifier_call          = arch_uprobe_exception_notify,
1969         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1970 };
1971
1972 static int __init init_uprobes(void)
1973 {
1974         int i;
1975
1976         for (i = 0; i < UPROBES_HASH_SZ; i++)
1977                 mutex_init(&uprobes_mmap_mutex[i]);
1978
1979         if (percpu_init_rwsem(&dup_mmap_sem))
1980                 return -ENOMEM;
1981
1982         return register_die_notifier(&uprobe_exception_nb);
1983 }
1984 __initcall(init_uprobes);