Merge tag 'upstream-4.16-rc1' of git://git.infradead.org/linux-ubifs
[sfrench/cifs-2.6.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728         if (cgrp_out)
729                 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734         struct perf_cgroup *cgrp;
735
736         /*
737          * ensure we access cgroup data only when needed and
738          * when we know the cgroup is pinned (css_get)
739          */
740         if (!is_cgroup_event(event))
741                 return;
742
743         cgrp = perf_cgroup_from_task(current, event->ctx);
744         /*
745          * Do not update time when cgroup is not active
746          */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748                 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753                           struct perf_event_context *ctx)
754 {
755         struct perf_cgroup *cgrp;
756         struct perf_cgroup_info *info;
757
758         /*
759          * ctx->lock held by caller
760          * ensure we do not access cgroup data
761          * unless we have the cgroup pinned (css_get)
762          */
763         if (!task || !ctx->nr_cgroups)
764                 return;
765
766         cgrp = perf_cgroup_from_task(task, ctx);
767         info = this_cpu_ptr(cgrp->info);
768         info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
775
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784         struct perf_cpu_context *cpuctx;
785         struct list_head *list;
786         unsigned long flags;
787
788         /*
789          * Disable interrupts and preemption to avoid this CPU's
790          * cgrp_cpuctx_entry to change under us.
791          */
792         local_irq_save(flags);
793
794         list = this_cpu_ptr(&cgrp_cpuctx_list);
795         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799                 perf_pmu_disable(cpuctx->ctx.pmu);
800
801                 if (mode & PERF_CGROUP_SWOUT) {
802                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803                         /*
804                          * must not be done before ctxswout due
805                          * to event_filter_match() in event_sched_out()
806                          */
807                         cpuctx->cgrp = NULL;
808                 }
809
810                 if (mode & PERF_CGROUP_SWIN) {
811                         WARN_ON_ONCE(cpuctx->cgrp);
812                         /*
813                          * set cgrp before ctxsw in to allow
814                          * event_filter_match() to not have to pass
815                          * task around
816                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
817                          * because cgorup events are only per-cpu
818                          */
819                         cpuctx->cgrp = perf_cgroup_from_task(task,
820                                                              &cpuctx->ctx);
821                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822                 }
823                 perf_pmu_enable(cpuctx->ctx.pmu);
824                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825         }
826
827         local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831                                          struct task_struct *next)
832 {
833         struct perf_cgroup *cgrp1;
834         struct perf_cgroup *cgrp2 = NULL;
835
836         rcu_read_lock();
837         /*
838          * we come here when we know perf_cgroup_events > 0
839          * we do not need to pass the ctx here because we know
840          * we are holding the rcu lock
841          */
842         cgrp1 = perf_cgroup_from_task(task, NULL);
843         cgrp2 = perf_cgroup_from_task(next, NULL);
844
845         /*
846          * only schedule out current cgroup events if we know
847          * that we are switching to a different cgroup. Otherwise,
848          * do no touch the cgroup events.
849          */
850         if (cgrp1 != cgrp2)
851                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853         rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857                                         struct task_struct *task)
858 {
859         struct perf_cgroup *cgrp1;
860         struct perf_cgroup *cgrp2 = NULL;
861
862         rcu_read_lock();
863         /*
864          * we come here when we know perf_cgroup_events > 0
865          * we do not need to pass the ctx here because we know
866          * we are holding the rcu lock
867          */
868         cgrp1 = perf_cgroup_from_task(task, NULL);
869         cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871         /*
872          * only need to schedule in cgroup events if we are changing
873          * cgroup during ctxsw. Cgroup events were not scheduled
874          * out of ctxsw out if that was not the case.
875          */
876         if (cgrp1 != cgrp2)
877                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879         rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883                                       struct perf_event_attr *attr,
884                                       struct perf_event *group_leader)
885 {
886         struct perf_cgroup *cgrp;
887         struct cgroup_subsys_state *css;
888         struct fd f = fdget(fd);
889         int ret = 0;
890
891         if (!f.file)
892                 return -EBADF;
893
894         css = css_tryget_online_from_dir(f.file->f_path.dentry,
895                                          &perf_event_cgrp_subsys);
896         if (IS_ERR(css)) {
897                 ret = PTR_ERR(css);
898                 goto out;
899         }
900
901         cgrp = container_of(css, struct perf_cgroup, css);
902         event->cgrp = cgrp;
903
904         /*
905          * all events in a group must monitor
906          * the same cgroup because a task belongs
907          * to only one perf cgroup at a time
908          */
909         if (group_leader && group_leader->cgrp != cgrp) {
910                 perf_detach_cgroup(event);
911                 ret = -EINVAL;
912         }
913 out:
914         fdput(f);
915         return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921         struct perf_cgroup_info *t;
922         t = per_cpu_ptr(event->cgrp->info, event->cpu);
923         event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932                          struct perf_event_context *ctx, bool add)
933 {
934         struct perf_cpu_context *cpuctx;
935         struct list_head *cpuctx_entry;
936
937         if (!is_cgroup_event(event))
938                 return;
939
940         if (add && ctx->nr_cgroups++)
941                 return;
942         else if (!add && --ctx->nr_cgroups)
943                 return;
944         /*
945          * Because cgroup events are always per-cpu events,
946          * this will always be called from the right CPU.
947          */
948         cpuctx = __get_cpu_context(ctx);
949         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951         if (add) {
952                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956                         cpuctx->cgrp = cgrp;
957         } else {
958                 list_del(cpuctx_entry);
959                 cpuctx->cgrp = NULL;
960         }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968         return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976         return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988                                          struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993                                         struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998                                       struct perf_event_attr *attr,
999                                       struct perf_event *group_leader)
1000 {
1001         return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006                           struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022         return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027                          struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043         struct perf_cpu_context *cpuctx;
1044         int rotations = 0;
1045
1046         lockdep_assert_irqs_disabled();
1047
1048         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049         rotations = perf_rotate_context(cpuctx);
1050
1051         raw_spin_lock(&cpuctx->hrtimer_lock);
1052         if (rotations)
1053                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054         else
1055                 cpuctx->hrtimer_active = 0;
1056         raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063         struct hrtimer *timer = &cpuctx->hrtimer;
1064         struct pmu *pmu = cpuctx->ctx.pmu;
1065         u64 interval;
1066
1067         /* no multiplexing needed for SW PMU */
1068         if (pmu->task_ctx_nr == perf_sw_context)
1069                 return;
1070
1071         /*
1072          * check default is sane, if not set then force to
1073          * default interval (1/tick)
1074          */
1075         interval = pmu->hrtimer_interval_ms;
1076         if (interval < 1)
1077                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083         timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088         struct hrtimer *timer = &cpuctx->hrtimer;
1089         struct pmu *pmu = cpuctx->ctx.pmu;
1090         unsigned long flags;
1091
1092         /* not for SW PMU */
1093         if (pmu->task_ctx_nr == perf_sw_context)
1094                 return 0;
1095
1096         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097         if (!cpuctx->hrtimer_active) {
1098                 cpuctx->hrtimer_active = 1;
1099                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101         }
1102         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104         return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110         if (!(*count)++)
1111                 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117         if (!--(*count))
1118                 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137         list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142         lockdep_assert_irqs_disabled();
1143
1144         WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146         list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156         struct perf_event_context *ctx;
1157
1158         ctx = container_of(head, struct perf_event_context, rcu_head);
1159         kfree(ctx->task_ctx_data);
1160         kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165         if (atomic_dec_and_test(&ctx->refcount)) {
1166                 if (ctx->parent_ctx)
1167                         put_ctx(ctx->parent_ctx);
1168                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169                         put_task_struct(ctx->task);
1170                 call_rcu(&ctx->rcu_head, free_ctx);
1171         }
1172 }
1173
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()    [ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()                   [ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()         [ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event() [ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *      task_struct::perf_event_mutex
1229  *        perf_event_context::mutex
1230  *          perf_event::child_mutex;
1231  *            perf_event_context::lock
1232  *          perf_event::mmap_mutex
1233  *          mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *        cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242         struct perf_event_context *ctx;
1243
1244 again:
1245         rcu_read_lock();
1246         ctx = READ_ONCE(event->ctx);
1247         if (!atomic_inc_not_zero(&ctx->refcount)) {
1248                 rcu_read_unlock();
1249                 goto again;
1250         }
1251         rcu_read_unlock();
1252
1253         mutex_lock_nested(&ctx->mutex, nesting);
1254         if (event->ctx != ctx) {
1255                 mutex_unlock(&ctx->mutex);
1256                 put_ctx(ctx);
1257                 goto again;
1258         }
1259
1260         return ctx;
1261 }
1262
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266         return perf_event_ctx_lock_nested(event, 0);
1267 }
1268
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270                                   struct perf_event_context *ctx)
1271 {
1272         mutex_unlock(&ctx->mutex);
1273         put_ctx(ctx);
1274 }
1275
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286         lockdep_assert_held(&ctx->lock);
1287
1288         if (parent_ctx)
1289                 ctx->parent_ctx = NULL;
1290         ctx->generation++;
1291
1292         return parent_ctx;
1293 }
1294
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296                                 enum pid_type type)
1297 {
1298         u32 nr;
1299         /*
1300          * only top level events have the pid namespace they were created in
1301          */
1302         if (event->parent)
1303                 event = event->parent;
1304
1305         nr = __task_pid_nr_ns(p, type, event->ns);
1306         /* avoid -1 if it is idle thread or runs in another ns */
1307         if (!nr && !pid_alive(p))
1308                 nr = -1;
1309         return nr;
1310 }
1311
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319         return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328         u64 id = event->id;
1329
1330         if (event->parent)
1331                 id = event->parent->id;
1332
1333         return id;
1334 }
1335
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 retry:
1348         /*
1349          * One of the few rules of preemptible RCU is that one cannot do
1350          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351          * part of the read side critical section was irqs-enabled -- see
1352          * rcu_read_unlock_special().
1353          *
1354          * Since ctx->lock nests under rq->lock we must ensure the entire read
1355          * side critical section has interrupts disabled.
1356          */
1357         local_irq_save(*flags);
1358         rcu_read_lock();
1359         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360         if (ctx) {
1361                 /*
1362                  * If this context is a clone of another, it might
1363                  * get swapped for another underneath us by
1364                  * perf_event_task_sched_out, though the
1365                  * rcu_read_lock() protects us from any context
1366                  * getting freed.  Lock the context and check if it
1367                  * got swapped before we could get the lock, and retry
1368                  * if so.  If we locked the right context, then it
1369                  * can't get swapped on us any more.
1370                  */
1371                 raw_spin_lock(&ctx->lock);
1372                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373                         raw_spin_unlock(&ctx->lock);
1374                         rcu_read_unlock();
1375                         local_irq_restore(*flags);
1376                         goto retry;
1377                 }
1378
1379                 if (ctx->task == TASK_TOMBSTONE ||
1380                     !atomic_inc_not_zero(&ctx->refcount)) {
1381                         raw_spin_unlock(&ctx->lock);
1382                         ctx = NULL;
1383                 } else {
1384                         WARN_ON_ONCE(ctx->task != task);
1385                 }
1386         }
1387         rcu_read_unlock();
1388         if (!ctx)
1389                 local_irq_restore(*flags);
1390         return ctx;
1391 }
1392
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401         struct perf_event_context *ctx;
1402         unsigned long flags;
1403
1404         ctx = perf_lock_task_context(task, ctxn, &flags);
1405         if (ctx) {
1406                 ++ctx->pin_count;
1407                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408         }
1409         return ctx;
1410 }
1411
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414         unsigned long flags;
1415
1416         raw_spin_lock_irqsave(&ctx->lock, flags);
1417         --ctx->pin_count;
1418         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426         u64 now = perf_clock();
1427
1428         ctx->time += now - ctx->timestamp;
1429         ctx->timestamp = now;
1430 }
1431
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434         struct perf_event_context *ctx = event->ctx;
1435
1436         if (is_cgroup_event(event))
1437                 return perf_cgroup_event_time(event);
1438
1439         return ctx ? ctx->time : 0;
1440 }
1441
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444         struct perf_event_context *ctx = event->ctx;
1445         enum event_type_t event_type;
1446
1447         lockdep_assert_held(&ctx->lock);
1448
1449         /*
1450          * It's 'group type', really, because if our group leader is
1451          * pinned, so are we.
1452          */
1453         if (event->group_leader != event)
1454                 event = event->group_leader;
1455
1456         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457         if (!ctx->task)
1458                 event_type |= EVENT_CPU;
1459
1460         return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466         if (event->attr.pinned)
1467                 return &ctx->pinned_groups;
1468         else
1469                 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479         lockdep_assert_held(&ctx->lock);
1480
1481         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482         event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484         event->tstamp = perf_event_time(event);
1485
1486         /*
1487          * If we're a stand alone event or group leader, we go to the context
1488          * list, group events are kept attached to the group so that
1489          * perf_group_detach can, at all times, locate all siblings.
1490          */
1491         if (event->group_leader == event) {
1492                 struct list_head *list;
1493
1494                 event->group_caps = event->event_caps;
1495
1496                 list = ctx_group_list(event, ctx);
1497                 list_add_tail(&event->group_entry, list);
1498         }
1499
1500         list_update_cgroup_event(event, ctx, true);
1501
1502         list_add_rcu(&event->event_entry, &ctx->event_list);
1503         ctx->nr_events++;
1504         if (event->attr.inherit_stat)
1505                 ctx->nr_stat++;
1506
1507         ctx->generation++;
1508 }
1509
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516                                               PERF_EVENT_STATE_INACTIVE;
1517 }
1518
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521         int entry = sizeof(u64); /* value */
1522         int size = 0;
1523         int nr = 1;
1524
1525         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526                 size += sizeof(u64);
1527
1528         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529                 size += sizeof(u64);
1530
1531         if (event->attr.read_format & PERF_FORMAT_ID)
1532                 entry += sizeof(u64);
1533
1534         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535                 nr += nr_siblings;
1536                 size += sizeof(u64);
1537         }
1538
1539         size += entry * nr;
1540         event->read_size = size;
1541 }
1542
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545         struct perf_sample_data *data;
1546         u16 size = 0;
1547
1548         if (sample_type & PERF_SAMPLE_IP)
1549                 size += sizeof(data->ip);
1550
1551         if (sample_type & PERF_SAMPLE_ADDR)
1552                 size += sizeof(data->addr);
1553
1554         if (sample_type & PERF_SAMPLE_PERIOD)
1555                 size += sizeof(data->period);
1556
1557         if (sample_type & PERF_SAMPLE_WEIGHT)
1558                 size += sizeof(data->weight);
1559
1560         if (sample_type & PERF_SAMPLE_READ)
1561                 size += event->read_size;
1562
1563         if (sample_type & PERF_SAMPLE_DATA_SRC)
1564                 size += sizeof(data->data_src.val);
1565
1566         if (sample_type & PERF_SAMPLE_TRANSACTION)
1567                 size += sizeof(data->txn);
1568
1569         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570                 size += sizeof(data->phys_addr);
1571
1572         event->header_size = size;
1573 }
1574
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581         __perf_event_read_size(event,
1582                                event->group_leader->nr_siblings);
1583         __perf_event_header_size(event, event->attr.sample_type);
1584 }
1585
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588         struct perf_sample_data *data;
1589         u64 sample_type = event->attr.sample_type;
1590         u16 size = 0;
1591
1592         if (sample_type & PERF_SAMPLE_TID)
1593                 size += sizeof(data->tid_entry);
1594
1595         if (sample_type & PERF_SAMPLE_TIME)
1596                 size += sizeof(data->time);
1597
1598         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599                 size += sizeof(data->id);
1600
1601         if (sample_type & PERF_SAMPLE_ID)
1602                 size += sizeof(data->id);
1603
1604         if (sample_type & PERF_SAMPLE_STREAM_ID)
1605                 size += sizeof(data->stream_id);
1606
1607         if (sample_type & PERF_SAMPLE_CPU)
1608                 size += sizeof(data->cpu_entry);
1609
1610         event->id_header_size = size;
1611 }
1612
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615         /*
1616          * The values computed here will be over-written when we actually
1617          * attach the event.
1618          */
1619         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621         perf_event__id_header_size(event);
1622
1623         /*
1624          * Sum the lot; should not exceed the 64k limit we have on records.
1625          * Conservative limit to allow for callchains and other variable fields.
1626          */
1627         if (event->read_size + event->header_size +
1628             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629                 return false;
1630
1631         return true;
1632 }
1633
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636         struct perf_event *group_leader = event->group_leader, *pos;
1637
1638         lockdep_assert_held(&event->ctx->lock);
1639
1640         /*
1641          * We can have double attach due to group movement in perf_event_open.
1642          */
1643         if (event->attach_state & PERF_ATTACH_GROUP)
1644                 return;
1645
1646         event->attach_state |= PERF_ATTACH_GROUP;
1647
1648         if (group_leader == event)
1649                 return;
1650
1651         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
1653         group_leader->group_caps &= event->event_caps;
1654
1655         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656         group_leader->nr_siblings++;
1657
1658         perf_event__header_size(group_leader);
1659
1660         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661                 perf_event__header_size(pos);
1662 }
1663
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671         WARN_ON_ONCE(event->ctx != ctx);
1672         lockdep_assert_held(&ctx->lock);
1673
1674         /*
1675          * We can have double detach due to exit/hot-unplug + close.
1676          */
1677         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678                 return;
1679
1680         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
1682         list_update_cgroup_event(event, ctx, false);
1683
1684         ctx->nr_events--;
1685         if (event->attr.inherit_stat)
1686                 ctx->nr_stat--;
1687
1688         list_del_rcu(&event->event_entry);
1689
1690         if (event->group_leader == event)
1691                 list_del_init(&event->group_entry);
1692
1693         /*
1694          * If event was in error state, then keep it
1695          * that way, otherwise bogus counts will be
1696          * returned on read(). The only way to get out
1697          * of error state is by explicit re-enabling
1698          * of the event
1699          */
1700         if (event->state > PERF_EVENT_STATE_OFF)
1701                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702
1703         ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708         struct perf_event *sibling, *tmp;
1709         struct list_head *list = NULL;
1710
1711         lockdep_assert_held(&event->ctx->lock);
1712
1713         /*
1714          * We can have double detach due to exit/hot-unplug + close.
1715          */
1716         if (!(event->attach_state & PERF_ATTACH_GROUP))
1717                 return;
1718
1719         event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721         /*
1722          * If this is a sibling, remove it from its group.
1723          */
1724         if (event->group_leader != event) {
1725                 list_del_init(&event->group_entry);
1726                 event->group_leader->nr_siblings--;
1727                 goto out;
1728         }
1729
1730         if (!list_empty(&event->group_entry))
1731                 list = &event->group_entry;
1732
1733         /*
1734          * If this was a group event with sibling events then
1735          * upgrade the siblings to singleton events by adding them
1736          * to whatever list we are on.
1737          */
1738         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739                 if (list)
1740                         list_move_tail(&sibling->group_entry, list);
1741                 sibling->group_leader = sibling;
1742
1743                 /* Inherit group flags from the previous leader */
1744                 sibling->group_caps = event->group_caps;
1745
1746                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747         }
1748
1749 out:
1750         perf_event__header_size(event->group_leader);
1751
1752         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753                 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758         return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763         struct pmu *pmu = event->pmu;
1764         return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775         struct perf_event *child;
1776
1777         if (!__pmu_filter_match(event))
1778                 return 0;
1779
1780         list_for_each_entry(child, &event->sibling_list, group_entry) {
1781                 if (!__pmu_filter_match(child))
1782                         return 0;
1783         }
1784
1785         return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792                perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797                   struct perf_cpu_context *cpuctx,
1798                   struct perf_event_context *ctx)
1799 {
1800         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801
1802         WARN_ON_ONCE(event->ctx != ctx);
1803         lockdep_assert_held(&ctx->lock);
1804
1805         if (event->state != PERF_EVENT_STATE_ACTIVE)
1806                 return;
1807
1808         perf_pmu_disable(event->pmu);
1809
1810         event->pmu->del(event, 0);
1811         event->oncpu = -1;
1812
1813         if (event->pending_disable) {
1814                 event->pending_disable = 0;
1815                 state = PERF_EVENT_STATE_OFF;
1816         }
1817         perf_event_set_state(event, state);
1818
1819         if (!is_software_event(event))
1820                 cpuctx->active_oncpu--;
1821         if (!--ctx->nr_active)
1822                 perf_event_ctx_deactivate(ctx);
1823         if (event->attr.freq && event->attr.sample_freq)
1824                 ctx->nr_freq--;
1825         if (event->attr.exclusive || !cpuctx->active_oncpu)
1826                 cpuctx->exclusive = 0;
1827
1828         perf_pmu_enable(event->pmu);
1829 }
1830
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833                 struct perf_cpu_context *cpuctx,
1834                 struct perf_event_context *ctx)
1835 {
1836         struct perf_event *event;
1837
1838         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839                 return;
1840
1841         perf_pmu_disable(ctx->pmu);
1842
1843         event_sched_out(group_event, cpuctx, ctx);
1844
1845         /*
1846          * Schedule out siblings (if any):
1847          */
1848         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849                 event_sched_out(event, cpuctx, ctx);
1850
1851         perf_pmu_enable(ctx->pmu);
1852
1853         if (group_event->attr.exclusive)
1854                 cpuctx->exclusive = 0;
1855 }
1856
1857 #define DETACH_GROUP    0x01UL
1858
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867                            struct perf_cpu_context *cpuctx,
1868                            struct perf_event_context *ctx,
1869                            void *info)
1870 {
1871         unsigned long flags = (unsigned long)info;
1872
1873         if (ctx->is_active & EVENT_TIME) {
1874                 update_context_time(ctx);
1875                 update_cgrp_time_from_cpuctx(cpuctx);
1876         }
1877
1878         event_sched_out(event, cpuctx, ctx);
1879         if (flags & DETACH_GROUP)
1880                 perf_group_detach(event);
1881         list_del_event(event, ctx);
1882
1883         if (!ctx->nr_events && ctx->is_active) {
1884                 ctx->is_active = 0;
1885                 if (ctx->task) {
1886                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887                         cpuctx->task_ctx = NULL;
1888                 }
1889         }
1890 }
1891
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904         struct perf_event_context *ctx = event->ctx;
1905
1906         lockdep_assert_held(&ctx->mutex);
1907
1908         event_function_call(event, __perf_remove_from_context, (void *)flags);
1909
1910         /*
1911          * The above event_function_call() can NO-OP when it hits
1912          * TASK_TOMBSTONE. In that case we must already have been detached
1913          * from the context (by perf_event_exit_event()) but the grouping
1914          * might still be in-tact.
1915          */
1916         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917         if ((flags & DETACH_GROUP) &&
1918             (event->attach_state & PERF_ATTACH_GROUP)) {
1919                 /*
1920                  * Since in that case we cannot possibly be scheduled, simply
1921                  * detach now.
1922                  */
1923                 raw_spin_lock_irq(&ctx->lock);
1924                 perf_group_detach(event);
1925                 raw_spin_unlock_irq(&ctx->lock);
1926         }
1927 }
1928
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933                                  struct perf_cpu_context *cpuctx,
1934                                  struct perf_event_context *ctx,
1935                                  void *info)
1936 {
1937         if (event->state < PERF_EVENT_STATE_INACTIVE)
1938                 return;
1939
1940         if (ctx->is_active & EVENT_TIME) {
1941                 update_context_time(ctx);
1942                 update_cgrp_time_from_event(event);
1943         }
1944
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949
1950         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969         struct perf_event_context *ctx = event->ctx;
1970
1971         raw_spin_lock_irq(&ctx->lock);
1972         if (event->state <= PERF_EVENT_STATE_OFF) {
1973                 raw_spin_unlock_irq(&ctx->lock);
1974                 return;
1975         }
1976         raw_spin_unlock_irq(&ctx->lock);
1977
1978         event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983         event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992         struct perf_event_context *ctx;
1993
1994         ctx = perf_event_ctx_lock(event);
1995         _perf_event_disable(event);
1996         perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002         event->pending_disable = 1;
2003         irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007                                  struct perf_event_context *ctx)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, event->tstamp);
2036         else
2037                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         int ret = 0;
2051
2052         lockdep_assert_held(&ctx->lock);
2053
2054         if (event->state <= PERF_EVENT_STATE_OFF)
2055                 return 0;
2056
2057         WRITE_ONCE(event->oncpu, smp_processor_id());
2058         /*
2059          * Order event::oncpu write to happen before the ACTIVE state is
2060          * visible. This allows perf_event_{stop,read}() to observe the correct
2061          * ->oncpu if it sees ACTIVE.
2062          */
2063         smp_wmb();
2064         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         perf_pmu_disable(event->pmu);
2077
2078         perf_set_shadow_time(event, ctx);
2079
2080         perf_log_itrace_start(event);
2081
2082         if (event->pmu->add(event, PERF_EF_START)) {
2083                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084                 event->oncpu = -1;
2085                 ret = -EAGAIN;
2086                 goto out;
2087         }
2088
2089         if (!is_software_event(event))
2090                 cpuctx->active_oncpu++;
2091         if (!ctx->nr_active++)
2092                 perf_event_ctx_activate(ctx);
2093         if (event->attr.freq && event->attr.sample_freq)
2094                 ctx->nr_freq++;
2095
2096         if (event->attr.exclusive)
2097                 cpuctx->exclusive = 1;
2098
2099 out:
2100         perf_pmu_enable(event->pmu);
2101
2102         return ret;
2103 }
2104
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107                struct perf_cpu_context *cpuctx,
2108                struct perf_event_context *ctx)
2109 {
2110         struct perf_event *event, *partial_group = NULL;
2111         struct pmu *pmu = ctx->pmu;
2112
2113         if (group_event->state == PERF_EVENT_STATE_OFF)
2114                 return 0;
2115
2116         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117
2118         if (event_sched_in(group_event, cpuctx, ctx)) {
2119                 pmu->cancel_txn(pmu);
2120                 perf_mux_hrtimer_restart(cpuctx);
2121                 return -EAGAIN;
2122         }
2123
2124         /*
2125          * Schedule in siblings as one group (if any):
2126          */
2127         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128                 if (event_sched_in(event, cpuctx, ctx)) {
2129                         partial_group = event;
2130                         goto group_error;
2131                 }
2132         }
2133
2134         if (!pmu->commit_txn(pmu))
2135                 return 0;
2136
2137 group_error:
2138         /*
2139          * Groups can be scheduled in as one unit only, so undo any
2140          * partial group before returning:
2141          * The events up to the failed event are scheduled out normally.
2142          */
2143         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144                 if (event == partial_group)
2145                         break;
2146
2147                 event_sched_out(event, cpuctx, ctx);
2148         }
2149         event_sched_out(group_event, cpuctx, ctx);
2150
2151         pmu->cancel_txn(pmu);
2152
2153         perf_mux_hrtimer_restart(cpuctx);
2154
2155         return -EAGAIN;
2156 }
2157
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162                            struct perf_cpu_context *cpuctx,
2163                            int can_add_hw)
2164 {
2165         /*
2166          * Groups consisting entirely of software events can always go on.
2167          */
2168         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169                 return 1;
2170         /*
2171          * If an exclusive group is already on, no other hardware
2172          * events can go on.
2173          */
2174         if (cpuctx->exclusive)
2175                 return 0;
2176         /*
2177          * If this group is exclusive and there are already
2178          * events on the CPU, it can't go on.
2179          */
2180         if (event->attr.exclusive && cpuctx->active_oncpu)
2181                 return 0;
2182         /*
2183          * Otherwise, try to add it if all previous groups were able
2184          * to go on.
2185          */
2186         return can_add_hw;
2187 }
2188
2189 static void add_event_to_ctx(struct perf_event *event,
2190                                struct perf_event_context *ctx)
2191 {
2192         list_add_event(event, ctx);
2193         perf_group_attach(event);
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197                           struct perf_cpu_context *cpuctx,
2198                           enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201              struct perf_cpu_context *cpuctx,
2202              enum event_type_t event_type,
2203              struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                                struct perf_event_context *ctx,
2207                                enum event_type_t event_type)
2208 {
2209         if (!cpuctx->task_ctx)
2210                 return;
2211
2212         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213                 return;
2214
2215         ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219                                 struct perf_event_context *ctx,
2220                                 struct task_struct *task)
2221 {
2222         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223         if (ctx)
2224                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226         if (ctx)
2227                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246                         struct perf_event_context *task_ctx,
2247                         enum event_type_t event_type)
2248 {
2249         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250         bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252         /*
2253          * If pinned groups are involved, flexible groups also need to be
2254          * scheduled out.
2255          */
2256         if (event_type & EVENT_PINNED)
2257                 event_type |= EVENT_FLEXIBLE;
2258
2259         perf_pmu_disable(cpuctx->ctx.pmu);
2260         if (task_ctx)
2261                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262
2263         /*
2264          * Decide which cpu ctx groups to schedule out based on the types
2265          * of events that caused rescheduling:
2266          *  - EVENT_CPU: schedule out corresponding groups;
2267          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268          *  - otherwise, do nothing more.
2269          */
2270         if (cpu_event)
2271                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272         else if (ctx_event_type & EVENT_PINNED)
2273                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274
2275         perf_event_sched_in(cpuctx, task_ctx, current);
2276         perf_pmu_enable(cpuctx->ctx.pmu);
2277 }
2278
2279 /*
2280  * Cross CPU call to install and enable a performance event
2281  *
2282  * Very similar to remote_function() + event_function() but cannot assume that
2283  * things like ctx->is_active and cpuctx->task_ctx are set.
2284  */
2285 static int  __perf_install_in_context(void *info)
2286 {
2287         struct perf_event *event = info;
2288         struct perf_event_context *ctx = event->ctx;
2289         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291         bool reprogram = true;
2292         int ret = 0;
2293
2294         raw_spin_lock(&cpuctx->ctx.lock);
2295         if (ctx->task) {
2296                 raw_spin_lock(&ctx->lock);
2297                 task_ctx = ctx;
2298
2299                 reprogram = (ctx->task == current);
2300
2301                 /*
2302                  * If the task is running, it must be running on this CPU,
2303                  * otherwise we cannot reprogram things.
2304                  *
2305                  * If its not running, we don't care, ctx->lock will
2306                  * serialize against it becoming runnable.
2307                  */
2308                 if (task_curr(ctx->task) && !reprogram) {
2309                         ret = -ESRCH;
2310                         goto unlock;
2311                 }
2312
2313                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314         } else if (task_ctx) {
2315                 raw_spin_lock(&task_ctx->lock);
2316         }
2317
2318         if (reprogram) {
2319                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320                 add_event_to_ctx(event, ctx);
2321                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322         } else {
2323                 add_event_to_ctx(event, ctx);
2324         }
2325
2326 unlock:
2327         perf_ctx_unlock(cpuctx, task_ctx);
2328
2329         return ret;
2330 }
2331
2332 /*
2333  * Attach a performance event to a context.
2334  *
2335  * Very similar to event_function_call, see comment there.
2336  */
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339                         struct perf_event *event,
2340                         int cpu)
2341 {
2342         struct task_struct *task = READ_ONCE(ctx->task);
2343
2344         lockdep_assert_held(&ctx->mutex);
2345
2346         if (event->cpu != -1)
2347                 event->cpu = cpu;
2348
2349         /*
2350          * Ensures that if we can observe event->ctx, both the event and ctx
2351          * will be 'complete'. See perf_iterate_sb_cpu().
2352          */
2353         smp_store_release(&event->ctx, ctx);
2354
2355         if (!task) {
2356                 cpu_function_call(cpu, __perf_install_in_context, event);
2357                 return;
2358         }
2359
2360         /*
2361          * Should not happen, we validate the ctx is still alive before calling.
2362          */
2363         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364                 return;
2365
2366         /*
2367          * Installing events is tricky because we cannot rely on ctx->is_active
2368          * to be set in case this is the nr_events 0 -> 1 transition.
2369          *
2370          * Instead we use task_curr(), which tells us if the task is running.
2371          * However, since we use task_curr() outside of rq::lock, we can race
2372          * against the actual state. This means the result can be wrong.
2373          *
2374          * If we get a false positive, we retry, this is harmless.
2375          *
2376          * If we get a false negative, things are complicated. If we are after
2377          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378          * value must be correct. If we're before, it doesn't matter since
2379          * perf_event_context_sched_in() will program the counter.
2380          *
2381          * However, this hinges on the remote context switch having observed
2382          * our task->perf_event_ctxp[] store, such that it will in fact take
2383          * ctx::lock in perf_event_context_sched_in().
2384          *
2385          * We do this by task_function_call(), if the IPI fails to hit the task
2386          * we know any future context switch of task must see the
2387          * perf_event_ctpx[] store.
2388          */
2389
2390         /*
2391          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392          * task_cpu() load, such that if the IPI then does not find the task
2393          * running, a future context switch of that task must observe the
2394          * store.
2395          */
2396         smp_mb();
2397 again:
2398         if (!task_function_call(task, __perf_install_in_context, event))
2399                 return;
2400
2401         raw_spin_lock_irq(&ctx->lock);
2402         task = ctx->task;
2403         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404                 /*
2405                  * Cannot happen because we already checked above (which also
2406                  * cannot happen), and we hold ctx->mutex, which serializes us
2407                  * against perf_event_exit_task_context().
2408                  */
2409                 raw_spin_unlock_irq(&ctx->lock);
2410                 return;
2411         }
2412         /*
2413          * If the task is not running, ctx->lock will avoid it becoming so,
2414          * thus we can safely install the event.
2415          */
2416         if (task_curr(task)) {
2417                 raw_spin_unlock_irq(&ctx->lock);
2418                 goto again;
2419         }
2420         add_event_to_ctx(event, ctx);
2421         raw_spin_unlock_irq(&ctx->lock);
2422 }
2423
2424 /*
2425  * Cross CPU call to enable a performance event
2426  */
2427 static void __perf_event_enable(struct perf_event *event,
2428                                 struct perf_cpu_context *cpuctx,
2429                                 struct perf_event_context *ctx,
2430                                 void *info)
2431 {
2432         struct perf_event *leader = event->group_leader;
2433         struct perf_event_context *task_ctx;
2434
2435         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436             event->state <= PERF_EVENT_STATE_ERROR)
2437                 return;
2438
2439         if (ctx->is_active)
2440                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441
2442         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443
2444         if (!ctx->is_active)
2445                 return;
2446
2447         if (!event_filter_match(event)) {
2448                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449                 return;
2450         }
2451
2452         /*
2453          * If the event is in a group and isn't the group leader,
2454          * then don't put it on unless the group is on.
2455          */
2456         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458                 return;
2459         }
2460
2461         task_ctx = cpuctx->task_ctx;
2462         if (ctx->task)
2463                 WARN_ON_ONCE(task_ctx != ctx);
2464
2465         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 }
2467
2468 /*
2469  * Enable a event.
2470  *
2471  * If event->ctx is a cloned context, callers must make sure that
2472  * every task struct that event->ctx->task could possibly point to
2473  * remains valid.  This condition is satisfied when called through
2474  * perf_event_for_each_child or perf_event_for_each as described
2475  * for perf_event_disable.
2476  */
2477 static void _perf_event_enable(struct perf_event *event)
2478 {
2479         struct perf_event_context *ctx = event->ctx;
2480
2481         raw_spin_lock_irq(&ctx->lock);
2482         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483             event->state <  PERF_EVENT_STATE_ERROR) {
2484                 raw_spin_unlock_irq(&ctx->lock);
2485                 return;
2486         }
2487
2488         /*
2489          * If the event is in error state, clear that first.
2490          *
2491          * That way, if we see the event in error state below, we know that it
2492          * has gone back into error state, as distinct from the task having
2493          * been scheduled away before the cross-call arrived.
2494          */
2495         if (event->state == PERF_EVENT_STATE_ERROR)
2496                 event->state = PERF_EVENT_STATE_OFF;
2497         raw_spin_unlock_irq(&ctx->lock);
2498
2499         event_function_call(event, __perf_event_enable, NULL);
2500 }
2501
2502 /*
2503  * See perf_event_disable();
2504  */
2505 void perf_event_enable(struct perf_event *event)
2506 {
2507         struct perf_event_context *ctx;
2508
2509         ctx = perf_event_ctx_lock(event);
2510         _perf_event_enable(event);
2511         perf_event_ctx_unlock(event, ctx);
2512 }
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2514
2515 struct stop_event_data {
2516         struct perf_event       *event;
2517         unsigned int            restart;
2518 };
2519
2520 static int __perf_event_stop(void *info)
2521 {
2522         struct stop_event_data *sd = info;
2523         struct perf_event *event = sd->event;
2524
2525         /* if it's already INACTIVE, do nothing */
2526         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527                 return 0;
2528
2529         /* matches smp_wmb() in event_sched_in() */
2530         smp_rmb();
2531
2532         /*
2533          * There is a window with interrupts enabled before we get here,
2534          * so we need to check again lest we try to stop another CPU's event.
2535          */
2536         if (READ_ONCE(event->oncpu) != smp_processor_id())
2537                 return -EAGAIN;
2538
2539         event->pmu->stop(event, PERF_EF_UPDATE);
2540
2541         /*
2542          * May race with the actual stop (through perf_pmu_output_stop()),
2543          * but it is only used for events with AUX ring buffer, and such
2544          * events will refuse to restart because of rb::aux_mmap_count==0,
2545          * see comments in perf_aux_output_begin().
2546          *
2547          * Since this is happening on a event-local CPU, no trace is lost
2548          * while restarting.
2549          */
2550         if (sd->restart)
2551                 event->pmu->start(event, 0);
2552
2553         return 0;
2554 }
2555
2556 static int perf_event_stop(struct perf_event *event, int restart)
2557 {
2558         struct stop_event_data sd = {
2559                 .event          = event,
2560                 .restart        = restart,
2561         };
2562         int ret = 0;
2563
2564         do {
2565                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566                         return 0;
2567
2568                 /* matches smp_wmb() in event_sched_in() */
2569                 smp_rmb();
2570
2571                 /*
2572                  * We only want to restart ACTIVE events, so if the event goes
2573                  * inactive here (event->oncpu==-1), there's nothing more to do;
2574                  * fall through with ret==-ENXIO.
2575                  */
2576                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577                                         __perf_event_stop, &sd);
2578         } while (ret == -EAGAIN);
2579
2580         return ret;
2581 }
2582
2583 /*
2584  * In order to contain the amount of racy and tricky in the address filter
2585  * configuration management, it is a two part process:
2586  *
2587  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588  *      we update the addresses of corresponding vmas in
2589  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2590  * (p2) when an event is scheduled in (pmu::add), it calls
2591  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592  *      if the generation has changed since the previous call.
2593  *
2594  * If (p1) happens while the event is active, we restart it to force (p2).
2595  *
2596  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2598  *     ioctl;
2599  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2601  *     for reading;
2602  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603  *     of exec.
2604  */
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2606 {
2607         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608
2609         if (!has_addr_filter(event))
2610                 return;
2611
2612         raw_spin_lock(&ifh->lock);
2613         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614                 event->pmu->addr_filters_sync(event);
2615                 event->hw.addr_filters_gen = event->addr_filters_gen;
2616         }
2617         raw_spin_unlock(&ifh->lock);
2618 }
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2622 {
2623         /*
2624          * not supported on inherited events
2625          */
2626         if (event->attr.inherit || !is_sampling_event(event))
2627                 return -EINVAL;
2628
2629         atomic_add(refresh, &event->event_limit);
2630         _perf_event_enable(event);
2631
2632         return 0;
2633 }
2634
2635 /*
2636  * See perf_event_disable()
2637  */
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2639 {
2640         struct perf_event_context *ctx;
2641         int ret;
2642
2643         ctx = perf_event_ctx_lock(event);
2644         ret = _perf_event_refresh(event, refresh);
2645         perf_event_ctx_unlock(event, ctx);
2646
2647         return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2650
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652                           struct perf_cpu_context *cpuctx,
2653                           enum event_type_t event_type)
2654 {
2655         int is_active = ctx->is_active;
2656         struct perf_event *event;
2657
2658         lockdep_assert_held(&ctx->lock);
2659
2660         if (likely(!ctx->nr_events)) {
2661                 /*
2662                  * See __perf_remove_from_context().
2663                  */
2664                 WARN_ON_ONCE(ctx->is_active);
2665                 if (ctx->task)
2666                         WARN_ON_ONCE(cpuctx->task_ctx);
2667                 return;
2668         }
2669
2670         ctx->is_active &= ~event_type;
2671         if (!(ctx->is_active & EVENT_ALL))
2672                 ctx->is_active = 0;
2673
2674         if (ctx->task) {
2675                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676                 if (!ctx->is_active)
2677                         cpuctx->task_ctx = NULL;
2678         }
2679
2680         /*
2681          * Always update time if it was set; not only when it changes.
2682          * Otherwise we can 'forget' to update time for any but the last
2683          * context we sched out. For example:
2684          *
2685          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686          *   ctx_sched_out(.event_type = EVENT_PINNED)
2687          *
2688          * would only update time for the pinned events.
2689          */
2690         if (is_active & EVENT_TIME) {
2691                 /* update (and stop) ctx time */
2692                 update_context_time(ctx);
2693                 update_cgrp_time_from_cpuctx(cpuctx);
2694         }
2695
2696         is_active ^= ctx->is_active; /* changed bits */
2697
2698         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699                 return;
2700
2701         perf_pmu_disable(ctx->pmu);
2702         if (is_active & EVENT_PINNED) {
2703                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704                         group_sched_out(event, cpuctx, ctx);
2705         }
2706
2707         if (is_active & EVENT_FLEXIBLE) {
2708                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709                         group_sched_out(event, cpuctx, ctx);
2710         }
2711         perf_pmu_enable(ctx->pmu);
2712 }
2713
2714 /*
2715  * Test whether two contexts are equivalent, i.e. whether they have both been
2716  * cloned from the same version of the same context.
2717  *
2718  * Equivalence is measured using a generation number in the context that is
2719  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720  * and list_del_event().
2721  */
2722 static int context_equiv(struct perf_event_context *ctx1,
2723                          struct perf_event_context *ctx2)
2724 {
2725         lockdep_assert_held(&ctx1->lock);
2726         lockdep_assert_held(&ctx2->lock);
2727
2728         /* Pinning disables the swap optimization */
2729         if (ctx1->pin_count || ctx2->pin_count)
2730                 return 0;
2731
2732         /* If ctx1 is the parent of ctx2 */
2733         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734                 return 1;
2735
2736         /* If ctx2 is the parent of ctx1 */
2737         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738                 return 1;
2739
2740         /*
2741          * If ctx1 and ctx2 have the same parent; we flatten the parent
2742          * hierarchy, see perf_event_init_context().
2743          */
2744         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745                         ctx1->parent_gen == ctx2->parent_gen)
2746                 return 1;
2747
2748         /* Unmatched */
2749         return 0;
2750 }
2751
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753                                      struct perf_event *next_event)
2754 {
2755         u64 value;
2756
2757         if (!event->attr.inherit_stat)
2758                 return;
2759
2760         /*
2761          * Update the event value, we cannot use perf_event_read()
2762          * because we're in the middle of a context switch and have IRQs
2763          * disabled, which upsets smp_call_function_single(), however
2764          * we know the event must be on the current CPU, therefore we
2765          * don't need to use it.
2766          */
2767         if (event->state == PERF_EVENT_STATE_ACTIVE)
2768                 event->pmu->read(event);
2769
2770         perf_event_update_time(event);
2771
2772         /*
2773          * In order to keep per-task stats reliable we need to flip the event
2774          * values when we flip the contexts.
2775          */
2776         value = local64_read(&next_event->count);
2777         value = local64_xchg(&event->count, value);
2778         local64_set(&next_event->count, value);
2779
2780         swap(event->total_time_enabled, next_event->total_time_enabled);
2781         swap(event->total_time_running, next_event->total_time_running);
2782
2783         /*
2784          * Since we swizzled the values, update the user visible data too.
2785          */
2786         perf_event_update_userpage(event);
2787         perf_event_update_userpage(next_event);
2788 }
2789
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791                                    struct perf_event_context *next_ctx)
2792 {
2793         struct perf_event *event, *next_event;
2794
2795         if (!ctx->nr_stat)
2796                 return;
2797
2798         update_context_time(ctx);
2799
2800         event = list_first_entry(&ctx->event_list,
2801                                    struct perf_event, event_entry);
2802
2803         next_event = list_first_entry(&next_ctx->event_list,
2804                                         struct perf_event, event_entry);
2805
2806         while (&event->event_entry != &ctx->event_list &&
2807                &next_event->event_entry != &next_ctx->event_list) {
2808
2809                 __perf_event_sync_stat(event, next_event);
2810
2811                 event = list_next_entry(event, event_entry);
2812                 next_event = list_next_entry(next_event, event_entry);
2813         }
2814 }
2815
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817                                          struct task_struct *next)
2818 {
2819         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820         struct perf_event_context *next_ctx;
2821         struct perf_event_context *parent, *next_parent;
2822         struct perf_cpu_context *cpuctx;
2823         int do_switch = 1;
2824
2825         if (likely(!ctx))
2826                 return;
2827
2828         cpuctx = __get_cpu_context(ctx);
2829         if (!cpuctx->task_ctx)
2830                 return;
2831
2832         rcu_read_lock();
2833         next_ctx = next->perf_event_ctxp[ctxn];
2834         if (!next_ctx)
2835                 goto unlock;
2836
2837         parent = rcu_dereference(ctx->parent_ctx);
2838         next_parent = rcu_dereference(next_ctx->parent_ctx);
2839
2840         /* If neither context have a parent context; they cannot be clones. */
2841         if (!parent && !next_parent)
2842                 goto unlock;
2843
2844         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845                 /*
2846                  * Looks like the two contexts are clones, so we might be
2847                  * able to optimize the context switch.  We lock both
2848                  * contexts and check that they are clones under the
2849                  * lock (including re-checking that neither has been
2850                  * uncloned in the meantime).  It doesn't matter which
2851                  * order we take the locks because no other cpu could
2852                  * be trying to lock both of these tasks.
2853                  */
2854                 raw_spin_lock(&ctx->lock);
2855                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856                 if (context_equiv(ctx, next_ctx)) {
2857                         WRITE_ONCE(ctx->task, next);
2858                         WRITE_ONCE(next_ctx->task, task);
2859
2860                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861
2862                         /*
2863                          * RCU_INIT_POINTER here is safe because we've not
2864                          * modified the ctx and the above modification of
2865                          * ctx->task and ctx->task_ctx_data are immaterial
2866                          * since those values are always verified under
2867                          * ctx->lock which we're now holding.
2868                          */
2869                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871
2872                         do_switch = 0;
2873
2874                         perf_event_sync_stat(ctx, next_ctx);
2875                 }
2876                 raw_spin_unlock(&next_ctx->lock);
2877                 raw_spin_unlock(&ctx->lock);
2878         }
2879 unlock:
2880         rcu_read_unlock();
2881
2882         if (do_switch) {
2883                 raw_spin_lock(&ctx->lock);
2884                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885                 raw_spin_unlock(&ctx->lock);
2886         }
2887 }
2888
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890
2891 void perf_sched_cb_dec(struct pmu *pmu)
2892 {
2893         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894
2895         this_cpu_dec(perf_sched_cb_usages);
2896
2897         if (!--cpuctx->sched_cb_usage)
2898                 list_del(&cpuctx->sched_cb_entry);
2899 }
2900
2901
2902 void perf_sched_cb_inc(struct pmu *pmu)
2903 {
2904         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905
2906         if (!cpuctx->sched_cb_usage++)
2907                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908
2909         this_cpu_inc(perf_sched_cb_usages);
2910 }
2911
2912 /*
2913  * This function provides the context switch callback to the lower code
2914  * layer. It is invoked ONLY when the context switch callback is enabled.
2915  *
2916  * This callback is relevant even to per-cpu events; for example multi event
2917  * PEBS requires this to provide PID/TID information. This requires we flush
2918  * all queued PEBS records before we context switch to a new task.
2919  */
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921                                 struct task_struct *next,
2922                                 bool sched_in)
2923 {
2924         struct perf_cpu_context *cpuctx;
2925         struct pmu *pmu;
2926
2927         if (prev == next)
2928                 return;
2929
2930         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932
2933                 if (WARN_ON_ONCE(!pmu->sched_task))
2934                         continue;
2935
2936                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937                 perf_pmu_disable(pmu);
2938
2939                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2940
2941                 perf_pmu_enable(pmu);
2942                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943         }
2944 }
2945
2946 static void perf_event_switch(struct task_struct *task,
2947                               struct task_struct *next_prev, bool sched_in);
2948
2949 #define for_each_task_context_nr(ctxn)                                  \
2950         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951
2952 /*
2953  * Called from scheduler to remove the events of the current task,
2954  * with interrupts disabled.
2955  *
2956  * We stop each event and update the event value in event->count.
2957  *
2958  * This does not protect us against NMI, but disable()
2959  * sets the disabled bit in the control field of event _before_
2960  * accessing the event control register. If a NMI hits, then it will
2961  * not restart the event.
2962  */
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964                                  struct task_struct *next)
2965 {
2966         int ctxn;
2967
2968         if (__this_cpu_read(perf_sched_cb_usages))
2969                 perf_pmu_sched_task(task, next, false);
2970
2971         if (atomic_read(&nr_switch_events))
2972                 perf_event_switch(task, next, false);
2973
2974         for_each_task_context_nr(ctxn)
2975                 perf_event_context_sched_out(task, ctxn, next);
2976
2977         /*
2978          * if cgroup events exist on this CPU, then we need
2979          * to check if we have to switch out PMU state.
2980          * cgroup event are system-wide mode only
2981          */
2982         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983                 perf_cgroup_sched_out(task, next);
2984 }
2985
2986 /*
2987  * Called with IRQs disabled
2988  */
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990                               enum event_type_t event_type)
2991 {
2992         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 }
2994
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997                     struct perf_cpu_context *cpuctx)
2998 {
2999         struct perf_event *event;
3000
3001         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002                 if (event->state <= PERF_EVENT_STATE_OFF)
3003                         continue;
3004                 if (!event_filter_match(event))
3005                         continue;
3006
3007                 if (group_can_go_on(event, cpuctx, 1))
3008                         group_sched_in(event, cpuctx, ctx);
3009
3010                 /*
3011                  * If this pinned group hasn't been scheduled,
3012                  * put it in error state.
3013                  */
3014                 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016         }
3017 }
3018
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021                       struct perf_cpu_context *cpuctx)
3022 {
3023         struct perf_event *event;
3024         int can_add_hw = 1;
3025
3026         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027                 /* Ignore events in OFF or ERROR state */
3028                 if (event->state <= PERF_EVENT_STATE_OFF)
3029                         continue;
3030                 /*
3031                  * Listen to the 'cpu' scheduling filter constraint
3032                  * of events:
3033                  */
3034                 if (!event_filter_match(event))
3035                         continue;
3036
3037                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038                         if (group_sched_in(event, cpuctx, ctx))
3039                                 can_add_hw = 0;
3040                 }
3041         }
3042 }
3043
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046              struct perf_cpu_context *cpuctx,
3047              enum event_type_t event_type,
3048              struct task_struct *task)
3049 {
3050         int is_active = ctx->is_active;
3051         u64 now;
3052
3053         lockdep_assert_held(&ctx->lock);
3054
3055         if (likely(!ctx->nr_events))
3056                 return;
3057
3058         ctx->is_active |= (event_type | EVENT_TIME);
3059         if (ctx->task) {
3060                 if (!is_active)
3061                         cpuctx->task_ctx = ctx;
3062                 else
3063                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064         }
3065
3066         is_active ^= ctx->is_active; /* changed bits */
3067
3068         if (is_active & EVENT_TIME) {
3069                 /* start ctx time */
3070                 now = perf_clock();
3071                 ctx->timestamp = now;
3072                 perf_cgroup_set_timestamp(task, ctx);
3073         }
3074
3075         /*
3076          * First go through the list and put on any pinned groups
3077          * in order to give them the best chance of going on.
3078          */
3079         if (is_active & EVENT_PINNED)
3080                 ctx_pinned_sched_in(ctx, cpuctx);
3081
3082         /* Then walk through the lower prio flexible groups */
3083         if (is_active & EVENT_FLEXIBLE)
3084                 ctx_flexible_sched_in(ctx, cpuctx);
3085 }
3086
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088                              enum event_type_t event_type,
3089                              struct task_struct *task)
3090 {
3091         struct perf_event_context *ctx = &cpuctx->ctx;
3092
3093         ctx_sched_in(ctx, cpuctx, event_type, task);
3094 }
3095
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097                                         struct task_struct *task)
3098 {
3099         struct perf_cpu_context *cpuctx;
3100
3101         cpuctx = __get_cpu_context(ctx);
3102         if (cpuctx->task_ctx == ctx)
3103                 return;
3104
3105         perf_ctx_lock(cpuctx, ctx);
3106         /*
3107          * We must check ctx->nr_events while holding ctx->lock, such
3108          * that we serialize against perf_install_in_context().
3109          */
3110         if (!ctx->nr_events)
3111                 goto unlock;
3112
3113         perf_pmu_disable(ctx->pmu);
3114         /*
3115          * We want to keep the following priority order:
3116          * cpu pinned (that don't need to move), task pinned,
3117          * cpu flexible, task flexible.
3118          *
3119          * However, if task's ctx is not carrying any pinned
3120          * events, no need to flip the cpuctx's events around.
3121          */
3122         if (!list_empty(&ctx->pinned_groups))
3123                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124         perf_event_sched_in(cpuctx, ctx, task);
3125         perf_pmu_enable(ctx->pmu);
3126
3127 unlock:
3128         perf_ctx_unlock(cpuctx, ctx);
3129 }
3130
3131 /*
3132  * Called from scheduler to add the events of the current task
3133  * with interrupts disabled.
3134  *
3135  * We restore the event value and then enable it.
3136  *
3137  * This does not protect us against NMI, but enable()
3138  * sets the enabled bit in the control field of event _before_
3139  * accessing the event control register. If a NMI hits, then it will
3140  * keep the event running.
3141  */
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143                                 struct task_struct *task)
3144 {
3145         struct perf_event_context *ctx;
3146         int ctxn;
3147
3148         /*
3149          * If cgroup events exist on this CPU, then we need to check if we have
3150          * to switch in PMU state; cgroup event are system-wide mode only.
3151          *
3152          * Since cgroup events are CPU events, we must schedule these in before
3153          * we schedule in the task events.
3154          */
3155         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156                 perf_cgroup_sched_in(prev, task);
3157
3158         for_each_task_context_nr(ctxn) {
3159                 ctx = task->perf_event_ctxp[ctxn];
3160                 if (likely(!ctx))
3161                         continue;
3162
3163                 perf_event_context_sched_in(ctx, task);
3164         }
3165
3166         if (atomic_read(&nr_switch_events))
3167                 perf_event_switch(task, prev, true);
3168
3169         if (__this_cpu_read(perf_sched_cb_usages))
3170                 perf_pmu_sched_task(prev, task, true);
3171 }
3172
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174 {
3175         u64 frequency = event->attr.sample_freq;
3176         u64 sec = NSEC_PER_SEC;
3177         u64 divisor, dividend;
3178
3179         int count_fls, nsec_fls, frequency_fls, sec_fls;
3180
3181         count_fls = fls64(count);
3182         nsec_fls = fls64(nsec);
3183         frequency_fls = fls64(frequency);
3184         sec_fls = 30;
3185
3186         /*
3187          * We got @count in @nsec, with a target of sample_freq HZ
3188          * the target period becomes:
3189          *
3190          *             @count * 10^9
3191          * period = -------------------
3192          *          @nsec * sample_freq
3193          *
3194          */
3195
3196         /*
3197          * Reduce accuracy by one bit such that @a and @b converge
3198          * to a similar magnitude.
3199          */
3200 #define REDUCE_FLS(a, b)                \
3201 do {                                    \
3202         if (a##_fls > b##_fls) {        \
3203                 a >>= 1;                \
3204                 a##_fls--;              \
3205         } else {                        \
3206                 b >>= 1;                \
3207                 b##_fls--;              \
3208         }                               \
3209 } while (0)
3210
3211         /*
3212          * Reduce accuracy until either term fits in a u64, then proceed with
3213          * the other, so that finally we can do a u64/u64 division.
3214          */
3215         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216                 REDUCE_FLS(nsec, frequency);
3217                 REDUCE_FLS(sec, count);
3218         }
3219
3220         if (count_fls + sec_fls > 64) {
3221                 divisor = nsec * frequency;
3222
3223                 while (count_fls + sec_fls > 64) {
3224                         REDUCE_FLS(count, sec);
3225                         divisor >>= 1;
3226                 }
3227
3228                 dividend = count * sec;
3229         } else {
3230                 dividend = count * sec;
3231
3232                 while (nsec_fls + frequency_fls > 64) {
3233                         REDUCE_FLS(nsec, frequency);
3234                         dividend >>= 1;
3235                 }
3236
3237                 divisor = nsec * frequency;
3238         }
3239
3240         if (!divisor)
3241                 return dividend;
3242
3243         return div64_u64(dividend, divisor);
3244 }
3245
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250 {
3251         struct hw_perf_event *hwc = &event->hw;
3252         s64 period, sample_period;
3253         s64 delta;
3254
3255         period = perf_calculate_period(event, nsec, count);
3256
3257         delta = (s64)(period - hwc->sample_period);
3258         delta = (delta + 7) / 8; /* low pass filter */
3259
3260         sample_period = hwc->sample_period + delta;
3261
3262         if (!sample_period)
3263                 sample_period = 1;
3264
3265         hwc->sample_period = sample_period;
3266
3267         if (local64_read(&hwc->period_left) > 8*sample_period) {
3268                 if (disable)
3269                         event->pmu->stop(event, PERF_EF_UPDATE);
3270
3271                 local64_set(&hwc->period_left, 0);
3272
3273                 if (disable)
3274                         event->pmu->start(event, PERF_EF_RELOAD);
3275         }
3276 }
3277
3278 /*
3279  * combine freq adjustment with unthrottling to avoid two passes over the
3280  * events. At the same time, make sure, having freq events does not change
3281  * the rate of unthrottling as that would introduce bias.
3282  */
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284                                            int needs_unthr)
3285 {
3286         struct perf_event *event;
3287         struct hw_perf_event *hwc;
3288         u64 now, period = TICK_NSEC;
3289         s64 delta;
3290
3291         /*
3292          * only need to iterate over all events iff:
3293          * - context have events in frequency mode (needs freq adjust)
3294          * - there are events to unthrottle on this cpu
3295          */
3296         if (!(ctx->nr_freq || needs_unthr))
3297                 return;
3298
3299         raw_spin_lock(&ctx->lock);
3300         perf_pmu_disable(ctx->pmu);
3301
3302         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3304                         continue;
3305
3306                 if (!event_filter_match(event))
3307                         continue;
3308
3309                 perf_pmu_disable(event->pmu);
3310
3311                 hwc = &event->hw;
3312
3313                 if (hwc->interrupts == MAX_INTERRUPTS) {
3314                         hwc->interrupts = 0;
3315                         perf_log_throttle(event, 1);
3316                         event->pmu->start(event, 0);
3317                 }
3318
3319                 if (!event->attr.freq || !event->attr.sample_freq)
3320                         goto next;
3321
3322                 /*
3323                  * stop the event and update event->count
3324                  */
3325                 event->pmu->stop(event, PERF_EF_UPDATE);
3326
3327                 now = local64_read(&event->count);
3328                 delta = now - hwc->freq_count_stamp;
3329                 hwc->freq_count_stamp = now;
3330
3331                 /*
3332                  * restart the event
3333                  * reload only if value has changed
3334                  * we have stopped the event so tell that
3335                  * to perf_adjust_period() to avoid stopping it
3336                  * twice.
3337                  */
3338                 if (delta > 0)
3339                         perf_adjust_period(event, period, delta, false);
3340
3341                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342         next:
3343                 perf_pmu_enable(event->pmu);
3344         }
3345
3346         perf_pmu_enable(ctx->pmu);
3347         raw_spin_unlock(&ctx->lock);
3348 }
3349
3350 /*
3351  * Round-robin a context's events:
3352  */
3353 static void rotate_ctx(struct perf_event_context *ctx)
3354 {
3355         /*
3356          * Rotate the first entry last of non-pinned groups. Rotation might be
3357          * disabled by the inheritance code.
3358          */
3359         if (!ctx->rotate_disable)
3360                 list_rotate_left(&ctx->flexible_groups);
3361 }
3362
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364 {
3365         struct perf_event_context *ctx = NULL;
3366         int rotate = 0;
3367
3368         if (cpuctx->ctx.nr_events) {
3369                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370                         rotate = 1;
3371         }
3372
3373         ctx = cpuctx->task_ctx;
3374         if (ctx && ctx->nr_events) {
3375                 if (ctx->nr_events != ctx->nr_active)
3376                         rotate = 1;
3377         }
3378
3379         if (!rotate)
3380                 goto done;
3381
3382         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383         perf_pmu_disable(cpuctx->ctx.pmu);
3384
3385         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386         if (ctx)
3387                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3388
3389         rotate_ctx(&cpuctx->ctx);
3390         if (ctx)
3391                 rotate_ctx(ctx);
3392
3393         perf_event_sched_in(cpuctx, ctx, current);
3394
3395         perf_pmu_enable(cpuctx->ctx.pmu);
3396         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3398
3399         return rotate;
3400 }
3401
3402 void perf_event_task_tick(void)
3403 {
3404         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405         struct perf_event_context *ctx, *tmp;
3406         int throttled;
3407
3408         lockdep_assert_irqs_disabled();
3409
3410         __this_cpu_inc(perf_throttled_seq);
3411         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413
3414         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415                 perf_adjust_freq_unthr_context(ctx, throttled);
3416 }
3417
3418 static int event_enable_on_exec(struct perf_event *event,
3419                                 struct perf_event_context *ctx)
3420 {
3421         if (!event->attr.enable_on_exec)
3422                 return 0;
3423
3424         event->attr.enable_on_exec = 0;
3425         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426                 return 0;
3427
3428         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429
3430         return 1;
3431 }
3432
3433 /*
3434  * Enable all of a task's events that have been marked enable-on-exec.
3435  * This expects task == current.
3436  */
3437 static void perf_event_enable_on_exec(int ctxn)
3438 {
3439         struct perf_event_context *ctx, *clone_ctx = NULL;
3440         enum event_type_t event_type = 0;
3441         struct perf_cpu_context *cpuctx;
3442         struct perf_event *event;
3443         unsigned long flags;
3444         int enabled = 0;
3445
3446         local_irq_save(flags);
3447         ctx = current->perf_event_ctxp[ctxn];
3448         if (!ctx || !ctx->nr_events)
3449                 goto out;
3450
3451         cpuctx = __get_cpu_context(ctx);
3452         perf_ctx_lock(cpuctx, ctx);
3453         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454         list_for_each_entry(event, &ctx->event_list, event_entry) {
3455                 enabled |= event_enable_on_exec(event, ctx);
3456                 event_type |= get_event_type(event);
3457         }
3458
3459         /*
3460          * Unclone and reschedule this context if we enabled any event.
3461          */
3462         if (enabled) {
3463                 clone_ctx = unclone_ctx(ctx);
3464                 ctx_resched(cpuctx, ctx, event_type);
3465         } else {
3466                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467         }
3468         perf_ctx_unlock(cpuctx, ctx);
3469
3470 out:
3471         local_irq_restore(flags);
3472
3473         if (clone_ctx)
3474                 put_ctx(clone_ctx);
3475 }
3476
3477 struct perf_read_data {
3478         struct perf_event *event;
3479         bool group;
3480         int ret;
3481 };
3482
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 {
3485         u16 local_pkg, event_pkg;
3486
3487         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488                 int local_cpu = smp_processor_id();
3489
3490                 event_pkg = topology_physical_package_id(event_cpu);
3491                 local_pkg = topology_physical_package_id(local_cpu);
3492
3493                 if (event_pkg == local_pkg)
3494                         return local_cpu;
3495         }
3496
3497         return event_cpu;
3498 }
3499
3500 /*
3501  * Cross CPU call to read the hardware event
3502  */
3503 static void __perf_event_read(void *info)
3504 {
3505         struct perf_read_data *data = info;
3506         struct perf_event *sub, *event = data->event;
3507         struct perf_event_context *ctx = event->ctx;
3508         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509         struct pmu *pmu = event->pmu;
3510
3511         /*
3512          * If this is a task context, we need to check whether it is
3513          * the current task context of this cpu.  If not it has been
3514          * scheduled out before the smp call arrived.  In that case
3515          * event->count would have been updated to a recent sample
3516          * when the event was scheduled out.
3517          */
3518         if (ctx->task && cpuctx->task_ctx != ctx)
3519                 return;
3520
3521         raw_spin_lock(&ctx->lock);
3522         if (ctx->is_active & EVENT_TIME) {
3523                 update_context_time(ctx);
3524                 update_cgrp_time_from_event(event);
3525         }
3526
3527         perf_event_update_time(event);
3528         if (data->group)
3529                 perf_event_update_sibling_time(event);
3530
3531         if (event->state != PERF_EVENT_STATE_ACTIVE)
3532                 goto unlock;
3533
3534         if (!data->group) {
3535                 pmu->read(event);
3536                 data->ret = 0;
3537                 goto unlock;
3538         }
3539
3540         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541
3542         pmu->read(event);
3543
3544         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546                         /*
3547                          * Use sibling's PMU rather than @event's since
3548                          * sibling could be on different (eg: software) PMU.
3549                          */
3550                         sub->pmu->read(sub);
3551                 }
3552         }
3553
3554         data->ret = pmu->commit_txn(pmu);
3555
3556 unlock:
3557         raw_spin_unlock(&ctx->lock);
3558 }
3559
3560 static inline u64 perf_event_count(struct perf_event *event)
3561 {
3562         return local64_read(&event->count) + atomic64_read(&event->child_count);
3563 }
3564
3565 /*
3566  * NMI-safe method to read a local event, that is an event that
3567  * is:
3568  *   - either for the current task, or for this CPU
3569  *   - does not have inherit set, for inherited task events
3570  *     will not be local and we cannot read them atomically
3571  *   - must not have a pmu::count method
3572  */
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574                           u64 *enabled, u64 *running)
3575 {
3576         unsigned long flags;
3577         int ret = 0;
3578
3579         /*
3580          * Disabling interrupts avoids all counter scheduling (context
3581          * switches, timer based rotation and IPIs).
3582          */
3583         local_irq_save(flags);
3584
3585         /*
3586          * It must not be an event with inherit set, we cannot read
3587          * all child counters from atomic context.
3588          */
3589         if (event->attr.inherit) {
3590                 ret = -EOPNOTSUPP;
3591                 goto out;
3592         }
3593
3594         /* If this is a per-task event, it must be for current */
3595         if ((event->attach_state & PERF_ATTACH_TASK) &&
3596             event->hw.target != current) {
3597                 ret = -EINVAL;
3598                 goto out;
3599         }
3600
3601         /* If this is a per-CPU event, it must be for this CPU */
3602         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603             event->cpu != smp_processor_id()) {
3604                 ret = -EINVAL;
3605                 goto out;
3606         }
3607
3608         /*
3609          * If the event is currently on this CPU, its either a per-task event,
3610          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611          * oncpu == -1).
3612          */
3613         if (event->oncpu == smp_processor_id())
3614                 event->pmu->read(event);
3615
3616         *value = local64_read(&event->count);
3617         if (enabled || running) {
3618                 u64 now = event->shadow_ctx_time + perf_clock();
3619                 u64 __enabled, __running;
3620
3621                 __perf_update_times(event, now, &__enabled, &__running);
3622                 if (enabled)
3623                         *enabled = __enabled;
3624                 if (running)
3625                         *running = __running;
3626         }
3627 out:
3628         local_irq_restore(flags);
3629
3630         return ret;
3631 }
3632
3633 static int perf_event_read(struct perf_event *event, bool group)
3634 {
3635         enum perf_event_state state = READ_ONCE(event->state);
3636         int event_cpu, ret = 0;
3637
3638         /*
3639          * If event is enabled and currently active on a CPU, update the
3640          * value in the event structure:
3641          */
3642 again:
3643         if (state == PERF_EVENT_STATE_ACTIVE) {
3644                 struct perf_read_data data;
3645
3646                 /*
3647                  * Orders the ->state and ->oncpu loads such that if we see
3648                  * ACTIVE we must also see the right ->oncpu.
3649                  *
3650                  * Matches the smp_wmb() from event_sched_in().
3651                  */
3652                 smp_rmb();
3653
3654                 event_cpu = READ_ONCE(event->oncpu);
3655                 if ((unsigned)event_cpu >= nr_cpu_ids)
3656                         return 0;
3657
3658                 data = (struct perf_read_data){
3659                         .event = event,
3660                         .group = group,
3661                         .ret = 0,
3662                 };
3663
3664                 preempt_disable();
3665                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3666
3667                 /*
3668                  * Purposely ignore the smp_call_function_single() return
3669                  * value.
3670                  *
3671                  * If event_cpu isn't a valid CPU it means the event got
3672                  * scheduled out and that will have updated the event count.
3673                  *
3674                  * Therefore, either way, we'll have an up-to-date event count
3675                  * after this.
3676                  */
3677                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678                 preempt_enable();
3679                 ret = data.ret;
3680
3681         } else if (state == PERF_EVENT_STATE_INACTIVE) {
3682                 struct perf_event_context *ctx = event->ctx;
3683                 unsigned long flags;
3684
3685                 raw_spin_lock_irqsave(&ctx->lock, flags);
3686                 state = event->state;
3687                 if (state != PERF_EVENT_STATE_INACTIVE) {
3688                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689                         goto again;
3690                 }
3691
3692                 /*
3693                  * May read while context is not active (e.g., thread is
3694                  * blocked), in that case we cannot update context time
3695                  */
3696                 if (ctx->is_active & EVENT_TIME) {
3697                         update_context_time(ctx);
3698                         update_cgrp_time_from_event(event);
3699                 }
3700
3701                 perf_event_update_time(event);
3702                 if (group)
3703                         perf_event_update_sibling_time(event);
3704                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3705         }
3706
3707         return ret;
3708 }
3709
3710 /*
3711  * Initialize the perf_event context in a task_struct:
3712  */
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3714 {
3715         raw_spin_lock_init(&ctx->lock);
3716         mutex_init(&ctx->mutex);
3717         INIT_LIST_HEAD(&ctx->active_ctx_list);
3718         INIT_LIST_HEAD(&ctx->pinned_groups);
3719         INIT_LIST_HEAD(&ctx->flexible_groups);
3720         INIT_LIST_HEAD(&ctx->event_list);
3721         atomic_set(&ctx->refcount, 1);
3722 }
3723
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726 {
3727         struct perf_event_context *ctx;
3728
3729         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730         if (!ctx)
3731                 return NULL;
3732
3733         __perf_event_init_context(ctx);
3734         if (task) {
3735                 ctx->task = task;
3736                 get_task_struct(task);
3737         }
3738         ctx->pmu = pmu;
3739
3740         return ctx;
3741 }
3742
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3745 {
3746         struct task_struct *task;
3747
3748         rcu_read_lock();
3749         if (!vpid)
3750                 task = current;
3751         else
3752                 task = find_task_by_vpid(vpid);
3753         if (task)
3754                 get_task_struct(task);
3755         rcu_read_unlock();
3756
3757         if (!task)
3758                 return ERR_PTR(-ESRCH);
3759
3760         return task;
3761 }
3762
3763 /*
3764  * Returns a matching context with refcount and pincount.
3765  */
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768                 struct perf_event *event)
3769 {
3770         struct perf_event_context *ctx, *clone_ctx = NULL;
3771         struct perf_cpu_context *cpuctx;
3772         void *task_ctx_data = NULL;
3773         unsigned long flags;
3774         int ctxn, err;
3775         int cpu = event->cpu;
3776
3777         if (!task) {
3778                 /* Must be root to operate on a CPU event: */
3779                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780                         return ERR_PTR(-EACCES);
3781
3782                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783                 ctx = &cpuctx->ctx;
3784                 get_ctx(ctx);
3785                 ++ctx->pin_count;
3786
3787                 return ctx;
3788         }
3789
3790         err = -EINVAL;
3791         ctxn = pmu->task_ctx_nr;
3792         if (ctxn < 0)
3793                 goto errout;
3794
3795         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797                 if (!task_ctx_data) {
3798                         err = -ENOMEM;
3799                         goto errout;
3800                 }
3801         }
3802
3803 retry:
3804         ctx = perf_lock_task_context(task, ctxn, &flags);
3805         if (ctx) {
3806                 clone_ctx = unclone_ctx(ctx);
3807                 ++ctx->pin_count;
3808
3809                 if (task_ctx_data && !ctx->task_ctx_data) {
3810                         ctx->task_ctx_data = task_ctx_data;
3811                         task_ctx_data = NULL;
3812                 }
3813                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814
3815                 if (clone_ctx)
3816                         put_ctx(clone_ctx);
3817         } else {
3818                 ctx = alloc_perf_context(pmu, task);
3819                 err = -ENOMEM;
3820                 if (!ctx)
3821                         goto errout;
3822
3823                 if (task_ctx_data) {
3824                         ctx->task_ctx_data = task_ctx_data;
3825                         task_ctx_data = NULL;
3826                 }
3827
3828                 err = 0;
3829                 mutex_lock(&task->perf_event_mutex);
3830                 /*
3831                  * If it has already passed perf_event_exit_task().
3832                  * we must see PF_EXITING, it takes this mutex too.
3833                  */
3834                 if (task->flags & PF_EXITING)
3835                         err = -ESRCH;
3836                 else if (task->perf_event_ctxp[ctxn])
3837                         err = -EAGAIN;
3838                 else {
3839                         get_ctx(ctx);
3840                         ++ctx->pin_count;
3841                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842                 }
3843                 mutex_unlock(&task->perf_event_mutex);
3844
3845                 if (unlikely(err)) {
3846                         put_ctx(ctx);
3847
3848                         if (err == -EAGAIN)
3849                                 goto retry;
3850                         goto errout;
3851                 }
3852         }
3853
3854         kfree(task_ctx_data);
3855         return ctx;
3856
3857 errout:
3858         kfree(task_ctx_data);
3859         return ERR_PTR(err);
3860 }
3861
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3864
3865 static void free_event_rcu(struct rcu_head *head)
3866 {
3867         struct perf_event *event;
3868
3869         event = container_of(head, struct perf_event, rcu_head);
3870         if (event->ns)
3871                 put_pid_ns(event->ns);
3872         perf_event_free_filter(event);
3873         kfree(event);
3874 }
3875
3876 static void ring_buffer_attach(struct perf_event *event,
3877                                struct ring_buffer *rb);
3878
3879 static void detach_sb_event(struct perf_event *event)
3880 {
3881         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882
3883         raw_spin_lock(&pel->lock);
3884         list_del_rcu(&event->sb_list);
3885         raw_spin_unlock(&pel->lock);
3886 }
3887
3888 static bool is_sb_event(struct perf_event *event)
3889 {
3890         struct perf_event_attr *attr = &event->attr;
3891
3892         if (event->parent)
3893                 return false;
3894
3895         if (event->attach_state & PERF_ATTACH_TASK)
3896                 return false;
3897
3898         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899             attr->comm || attr->comm_exec ||
3900             attr->task ||
3901             attr->context_switch)
3902                 return true;
3903         return false;
3904 }
3905
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3907 {
3908         if (is_sb_event(event))
3909                 detach_sb_event(event);
3910 }
3911
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913 {
3914         if (event->parent)
3915                 return;
3916
3917         if (is_cgroup_event(event))
3918                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919 }
3920
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3924
3925 static void unaccount_freq_event_nohz(void)
3926 {
3927 #ifdef CONFIG_NO_HZ_FULL
3928         spin_lock(&nr_freq_lock);
3929         if (atomic_dec_and_test(&nr_freq_events))
3930                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931         spin_unlock(&nr_freq_lock);
3932 #endif
3933 }
3934
3935 static void unaccount_freq_event(void)
3936 {
3937         if (tick_nohz_full_enabled())
3938                 unaccount_freq_event_nohz();
3939         else
3940                 atomic_dec(&nr_freq_events);
3941 }
3942
3943 static void unaccount_event(struct perf_event *event)
3944 {
3945         bool dec = false;
3946
3947         if (event->parent)
3948                 return;
3949
3950         if (event->attach_state & PERF_ATTACH_TASK)
3951                 dec = true;
3952         if (event->attr.mmap || event->attr.mmap_data)
3953                 atomic_dec(&nr_mmap_events);
3954         if (event->attr.comm)
3955                 atomic_dec(&nr_comm_events);
3956         if (event->attr.namespaces)
3957                 atomic_dec(&nr_namespaces_events);
3958         if (event->attr.task)
3959                 atomic_dec(&nr_task_events);
3960         if (event->attr.freq)
3961                 unaccount_freq_event();
3962         if (event->attr.context_switch) {
3963                 dec = true;
3964                 atomic_dec(&nr_switch_events);
3965         }
3966         if (is_cgroup_event(event))
3967                 dec = true;
3968         if (has_branch_stack(event))
3969                 dec = true;
3970
3971         if (dec) {
3972                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973                         schedule_delayed_work(&perf_sched_work, HZ);
3974         }
3975
3976         unaccount_event_cpu(event, event->cpu);
3977
3978         unaccount_pmu_sb_event(event);
3979 }
3980
3981 static void perf_sched_delayed(struct work_struct *work)
3982 {
3983         mutex_lock(&perf_sched_mutex);
3984         if (atomic_dec_and_test(&perf_sched_count))
3985                 static_branch_disable(&perf_sched_events);
3986         mutex_unlock(&perf_sched_mutex);
3987 }
3988
3989 /*
3990  * The following implement mutual exclusion of events on "exclusive" pmus
3991  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992  * at a time, so we disallow creating events that might conflict, namely:
3993  *
3994  *  1) cpu-wide events in the presence of per-task events,
3995  *  2) per-task events in the presence of cpu-wide events,
3996  *  3) two matching events on the same context.
3997  *
3998  * The former two cases are handled in the allocation path (perf_event_alloc(),
3999  * _free_event()), the latter -- before the first perf_install_in_context().
4000  */
4001 static int exclusive_event_init(struct perf_event *event)
4002 {
4003         struct pmu *pmu = event->pmu;
4004
4005         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006                 return 0;
4007
4008         /*
4009          * Prevent co-existence of per-task and cpu-wide events on the
4010          * same exclusive pmu.
4011          *
4012          * Negative pmu::exclusive_cnt means there are cpu-wide
4013          * events on this "exclusive" pmu, positive means there are
4014          * per-task events.
4015          *
4016          * Since this is called in perf_event_alloc() path, event::ctx
4017          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018          * to mean "per-task event", because unlike other attach states it
4019          * never gets cleared.
4020          */
4021         if (event->attach_state & PERF_ATTACH_TASK) {
4022                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023                         return -EBUSY;
4024         } else {
4025                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026                         return -EBUSY;
4027         }
4028
4029         return 0;
4030 }
4031
4032 static void exclusive_event_destroy(struct perf_event *event)
4033 {
4034         struct pmu *pmu = event->pmu;
4035
4036         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037                 return;
4038
4039         /* see comment in exclusive_event_init() */
4040         if (event->attach_state & PERF_ATTACH_TASK)
4041                 atomic_dec(&pmu->exclusive_cnt);
4042         else
4043                 atomic_inc(&pmu->exclusive_cnt);
4044 }
4045
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047 {
4048         if ((e1->pmu == e2->pmu) &&
4049             (e1->cpu == e2->cpu ||
4050              e1->cpu == -1 ||
4051              e2->cpu == -1))
4052                 return true;
4053         return false;
4054 }
4055
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058                                         struct perf_event_context *ctx)
4059 {
4060         struct perf_event *iter_event;
4061         struct pmu *pmu = event->pmu;
4062
4063         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064                 return true;
4065
4066         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067                 if (exclusive_event_match(iter_event, event))
4068                         return false;
4069         }
4070
4071         return true;
4072 }
4073
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075                                        struct list_head *head);
4076
4077 static void _free_event(struct perf_event *event)
4078 {
4079         irq_work_sync(&event->pending);
4080
4081         unaccount_event(event);
4082
4083         if (event->rb) {
4084                 /*
4085                  * Can happen when we close an event with re-directed output.
4086                  *
4087                  * Since we have a 0 refcount, perf_mmap_close() will skip
4088                  * over us; possibly making our ring_buffer_put() the last.
4089                  */
4090                 mutex_lock(&event->mmap_mutex);
4091                 ring_buffer_attach(event, NULL);
4092                 mutex_unlock(&event->mmap_mutex);
4093         }
4094
4095         if (is_cgroup_event(event))
4096                 perf_detach_cgroup(event);
4097
4098         if (!event->parent) {
4099                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100                         put_callchain_buffers();
4101         }
4102
4103         perf_event_free_bpf_prog(event);
4104         perf_addr_filters_splice(event, NULL);
4105         kfree(event->addr_filters_offs);
4106
4107         if (event->destroy)
4108                 event->destroy(event);
4109
4110         if (event->ctx)
4111                 put_ctx(event->ctx);
4112
4113         exclusive_event_destroy(event);
4114         module_put(event->pmu->module);
4115
4116         call_rcu(&event->rcu_head, free_event_rcu);
4117 }
4118
4119 /*
4120  * Used to free events which have a known refcount of 1, such as in error paths
4121  * where the event isn't exposed yet and inherited events.
4122  */
4123 static void free_event(struct perf_event *event)
4124 {
4125         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126                                 "unexpected event refcount: %ld; ptr=%p\n",
4127                                 atomic_long_read(&event->refcount), event)) {
4128                 /* leak to avoid use-after-free */
4129                 return;
4130         }
4131
4132         _free_event(event);
4133 }
4134
4135 /*
4136  * Remove user event from the owner task.
4137  */
4138 static void perf_remove_from_owner(struct perf_event *event)
4139 {
4140         struct task_struct *owner;
4141
4142         rcu_read_lock();
4143         /*
4144          * Matches the smp_store_release() in perf_event_exit_task(). If we
4145          * observe !owner it means the list deletion is complete and we can
4146          * indeed free this event, otherwise we need to serialize on
4147          * owner->perf_event_mutex.
4148          */
4149         owner = READ_ONCE(event->owner);
4150         if (owner) {
4151                 /*
4152                  * Since delayed_put_task_struct() also drops the last
4153                  * task reference we can safely take a new reference
4154                  * while holding the rcu_read_lock().
4155                  */
4156                 get_task_struct(owner);
4157         }
4158         rcu_read_unlock();
4159
4160         if (owner) {
4161                 /*
4162                  * If we're here through perf_event_exit_task() we're already
4163                  * holding ctx->mutex which would be an inversion wrt. the
4164                  * normal lock order.
4165                  *
4166                  * However we can safely take this lock because its the child
4167                  * ctx->mutex.
4168                  */
4169                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170
4171                 /*
4172                  * We have to re-check the event->owner field, if it is cleared
4173                  * we raced with perf_event_exit_task(), acquiring the mutex
4174                  * ensured they're done, and we can proceed with freeing the
4175                  * event.
4176                  */
4177                 if (event->owner) {
4178                         list_del_init(&event->owner_entry);
4179                         smp_store_release(&event->owner, NULL);
4180                 }
4181                 mutex_unlock(&owner->perf_event_mutex);
4182                 put_task_struct(owner);
4183         }
4184 }
4185
4186 static void put_event(struct perf_event *event)
4187 {
4188         if (!atomic_long_dec_and_test(&event->refcount))
4189                 return;
4190
4191         _free_event(event);
4192 }
4193
4194 /*
4195  * Kill an event dead; while event:refcount will preserve the event
4196  * object, it will not preserve its functionality. Once the last 'user'
4197  * gives up the object, we'll destroy the thing.
4198  */
4199 int perf_event_release_kernel(struct perf_event *event)
4200 {
4201         struct perf_event_context *ctx = event->ctx;
4202         struct perf_event *child, *tmp;
4203         LIST_HEAD(free_list);
4204
4205         /*
4206          * If we got here through err_file: fput(event_file); we will not have
4207          * attached to a context yet.
4208          */
4209         if (!ctx) {
4210                 WARN_ON_ONCE(event->attach_state &
4211                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212                 goto no_ctx;
4213         }
4214
4215         if (!is_kernel_event(event))
4216                 perf_remove_from_owner(event);
4217
4218         ctx = perf_event_ctx_lock(event);
4219         WARN_ON_ONCE(ctx->parent_ctx);
4220         perf_remove_from_context(event, DETACH_GROUP);
4221
4222         raw_spin_lock_irq(&ctx->lock);
4223         /*
4224          * Mark this event as STATE_DEAD, there is no external reference to it
4225          * anymore.
4226          *
4227          * Anybody acquiring event->child_mutex after the below loop _must_
4228          * also see this, most importantly inherit_event() which will avoid
4229          * placing more children on the list.
4230          *
4231          * Thus this guarantees that we will in fact observe and kill _ALL_
4232          * child events.
4233          */
4234         event->state = PERF_EVENT_STATE_DEAD;
4235         raw_spin_unlock_irq(&ctx->lock);
4236
4237         perf_event_ctx_unlock(event, ctx);
4238
4239 again:
4240         mutex_lock(&event->child_mutex);
4241         list_for_each_entry(child, &event->child_list, child_list) {
4242
4243                 /*
4244                  * Cannot change, child events are not migrated, see the
4245                  * comment with perf_event_ctx_lock_nested().
4246                  */
4247                 ctx = READ_ONCE(child->ctx);
4248                 /*
4249                  * Since child_mutex nests inside ctx::mutex, we must jump
4250                  * through hoops. We start by grabbing a reference on the ctx.
4251                  *
4252                  * Since the event cannot get freed while we hold the
4253                  * child_mutex, the context must also exist and have a !0
4254                  * reference count.
4255                  */
4256                 get_ctx(ctx);
4257
4258                 /*
4259                  * Now that we have a ctx ref, we can drop child_mutex, and
4260                  * acquire ctx::mutex without fear of it going away. Then we
4261                  * can re-acquire child_mutex.
4262                  */
4263                 mutex_unlock(&event->child_mutex);
4264                 mutex_lock(&ctx->mutex);
4265                 mutex_lock(&event->child_mutex);
4266
4267                 /*
4268                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4269                  * state, if child is still the first entry, it didn't get freed
4270                  * and we can continue doing so.
4271                  */
4272                 tmp = list_first_entry_or_null(&event->child_list,
4273                                                struct perf_event, child_list);
4274                 if (tmp == child) {
4275                         perf_remove_from_context(child, DETACH_GROUP);
4276                         list_move(&child->child_list, &free_list);
4277                         /*
4278                          * This matches the refcount bump in inherit_event();
4279                          * this can't be the last reference.
4280                          */
4281                         put_event(event);
4282                 }
4283
4284                 mutex_unlock(&event->child_mutex);
4285                 mutex_unlock(&ctx->mutex);
4286                 put_ctx(ctx);
4287                 goto again;
4288         }
4289         mutex_unlock(&event->child_mutex);
4290
4291         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292                 list_del(&child->child_list);
4293                 free_event(child);
4294         }
4295
4296 no_ctx:
4297         put_event(event); /* Must be the 'last' reference */
4298         return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301
4302 /*
4303  * Called when the last reference to the file is gone.
4304  */
4305 static int perf_release(struct inode *inode, struct file *file)
4306 {
4307         perf_event_release_kernel(file->private_data);
4308         return 0;
4309 }
4310
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312 {
4313         struct perf_event *child;
4314         u64 total = 0;
4315
4316         *enabled = 0;
4317         *running = 0;
4318
4319         mutex_lock(&event->child_mutex);
4320
4321         (void)perf_event_read(event, false);
4322         total += perf_event_count(event);
4323
4324         *enabled += event->total_time_enabled +
4325                         atomic64_read(&event->child_total_time_enabled);
4326         *running += event->total_time_running +
4327                         atomic64_read(&event->child_total_time_running);
4328
4329         list_for_each_entry(child, &event->child_list, child_list) {
4330                 (void)perf_event_read(child, false);
4331                 total += perf_event_count(child);
4332                 *enabled += child->total_time_enabled;
4333                 *running += child->total_time_running;
4334         }
4335         mutex_unlock(&event->child_mutex);
4336
4337         return total;
4338 }
4339
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341 {
4342         struct perf_event_context *ctx;
4343         u64 count;
4344
4345         ctx = perf_event_ctx_lock(event);
4346         count = __perf_event_read_value(event, enabled, running);
4347         perf_event_ctx_unlock(event, ctx);
4348
4349         return count;
4350 }
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4352
4353 static int __perf_read_group_add(struct perf_event *leader,
4354                                         u64 read_format, u64 *values)
4355 {
4356         struct perf_event_context *ctx = leader->ctx;
4357         struct perf_event *sub;
4358         unsigned long flags;
4359         int n = 1; /* skip @nr */
4360         int ret;
4361
4362         ret = perf_event_read(leader, true);
4363         if (ret)
4364                 return ret;
4365
4366         raw_spin_lock_irqsave(&ctx->lock, flags);
4367
4368         /*
4369          * Since we co-schedule groups, {enabled,running} times of siblings
4370          * will be identical to those of the leader, so we only publish one
4371          * set.
4372          */
4373         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374                 values[n++] += leader->total_time_enabled +
4375                         atomic64_read(&leader->child_total_time_enabled);
4376         }
4377
4378         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379                 values[n++] += leader->total_time_running +
4380                         atomic64_read(&leader->child_total_time_running);
4381         }
4382
4383         /*
4384          * Write {count,id} tuples for every sibling.
4385          */
4386         values[n++] += perf_event_count(leader);
4387         if (read_format & PERF_FORMAT_ID)
4388                 values[n++] = primary_event_id(leader);
4389
4390         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391                 values[n++] += perf_event_count(sub);
4392                 if (read_format & PERF_FORMAT_ID)
4393                         values[n++] = primary_event_id(sub);
4394         }
4395
4396         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397         return 0;
4398 }
4399
4400 static int perf_read_group(struct perf_event *event,
4401                                    u64 read_format, char __user *buf)
4402 {
4403         struct perf_event *leader = event->group_leader, *child;
4404         struct perf_event_context *ctx = leader->ctx;
4405         int ret;
4406         u64 *values;
4407
4408         lockdep_assert_held(&ctx->mutex);
4409
4410         values = kzalloc(event->read_size, GFP_KERNEL);
4411         if (!values)
4412                 return -ENOMEM;
4413
4414         values[0] = 1 + leader->nr_siblings;
4415
4416         /*
4417          * By locking the child_mutex of the leader we effectively
4418          * lock the child list of all siblings.. XXX explain how.
4419          */
4420         mutex_lock(&leader->child_mutex);
4421
4422         ret = __perf_read_group_add(leader, read_format, values);
4423         if (ret)
4424                 goto unlock;
4425
4426         list_for_each_entry(child, &leader->child_list, child_list) {
4427                 ret = __perf_read_group_add(child, read_format, values);
4428                 if (ret)
4429                         goto unlock;
4430         }
4431
4432         mutex_unlock(&leader->child_mutex);
4433
4434         ret = event->read_size;
4435         if (copy_to_user(buf, values, event->read_size))
4436                 ret = -EFAULT;
4437         goto out;
4438
4439 unlock:
4440         mutex_unlock(&leader->child_mutex);
4441 out:
4442         kfree(values);
4443         return ret;
4444 }
4445
4446 static int perf_read_one(struct perf_event *event,
4447                                  u64 read_format, char __user *buf)
4448 {
4449         u64 enabled, running;
4450         u64 values[4];
4451         int n = 0;
4452
4453         values[n++] = __perf_event_read_value(event, &enabled, &running);
4454         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455                 values[n++] = enabled;
4456         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457                 values[n++] = running;
4458         if (read_format & PERF_FORMAT_ID)
4459                 values[n++] = primary_event_id(event);
4460
4461         if (copy_to_user(buf, values, n * sizeof(u64)))
4462                 return -EFAULT;
4463
4464         return n * sizeof(u64);
4465 }
4466
4467 static bool is_event_hup(struct perf_event *event)
4468 {
4469         bool no_children;
4470
4471         if (event->state > PERF_EVENT_STATE_EXIT)
4472                 return false;
4473
4474         mutex_lock(&event->child_mutex);
4475         no_children = list_empty(&event->child_list);
4476         mutex_unlock(&event->child_mutex);
4477         return no_children;
4478 }
4479
4480 /*
4481  * Read the performance event - simple non blocking version for now
4482  */
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4485 {
4486         u64 read_format = event->attr.read_format;
4487         int ret;
4488
4489         /*
4490          * Return end-of-file for a read on a event that is in
4491          * error state (i.e. because it was pinned but it couldn't be
4492          * scheduled on to the CPU at some point).
4493          */
4494         if (event->state == PERF_EVENT_STATE_ERROR)
4495                 return 0;
4496
4497         if (count < event->read_size)
4498                 return -ENOSPC;
4499
4500         WARN_ON_ONCE(event->ctx->parent_ctx);
4501         if (read_format & PERF_FORMAT_GROUP)
4502                 ret = perf_read_group(event, read_format, buf);
4503         else
4504                 ret = perf_read_one(event, read_format, buf);
4505
4506         return ret;
4507 }
4508
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511 {
4512         struct perf_event *event = file->private_data;
4513         struct perf_event_context *ctx;
4514         int ret;
4515
4516         ctx = perf_event_ctx_lock(event);
4517         ret = __perf_read(event, buf, count);
4518         perf_event_ctx_unlock(event, ctx);
4519
4520         return ret;
4521 }
4522
4523 static unsigned int perf_poll(struct file *file, poll_table *wait)
4524 {
4525         struct perf_event *event = file->private_data;
4526         struct ring_buffer *rb;
4527         unsigned int events = POLLHUP;
4528
4529         poll_wait(file, &event->waitq, wait);
4530
4531         if (is_event_hup(event))
4532                 return events;
4533
4534         /*
4535          * Pin the event->rb by taking event->mmap_mutex; otherwise
4536          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537          */
4538         mutex_lock(&event->mmap_mutex);
4539         rb = event->rb;
4540         if (rb)
4541                 events = atomic_xchg(&rb->poll, 0);
4542         mutex_unlock(&event->mmap_mutex);
4543         return events;
4544 }
4545
4546 static void _perf_event_reset(struct perf_event *event)
4547 {
4548         (void)perf_event_read(event, false);
4549         local64_set(&event->count, 0);
4550         perf_event_update_userpage(event);
4551 }
4552
4553 /*
4554  * Holding the top-level event's child_mutex means that any
4555  * descendant process that has inherited this event will block
4556  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557  * task existence requirements of perf_event_enable/disable.
4558  */
4559 static void perf_event_for_each_child(struct perf_event *event,
4560                                         void (*func)(struct perf_event *))
4561 {
4562         struct perf_event *child;
4563
4564         WARN_ON_ONCE(event->ctx->parent_ctx);
4565
4566         mutex_lock(&event->child_mutex);
4567         func(event);
4568         list_for_each_entry(child, &event->child_list, child_list)
4569                 func(child);
4570         mutex_unlock(&event->child_mutex);
4571 }
4572
4573 static void perf_event_for_each(struct perf_event *event,
4574                                   void (*func)(struct perf_event *))
4575 {
4576         struct perf_event_context *ctx = event->ctx;
4577         struct perf_event *sibling;
4578
4579         lockdep_assert_held(&ctx->mutex);
4580
4581         event = event->group_leader;
4582
4583         perf_event_for_each_child(event, func);
4584         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585                 perf_event_for_each_child(sibling, func);
4586 }
4587
4588 static void __perf_event_period(struct perf_event *event,
4589                                 struct perf_cpu_context *cpuctx,
4590                                 struct perf_event_context *ctx,
4591                                 void *info)
4592 {
4593         u64 value = *((u64 *)info);
4594         bool active;
4595
4596         if (event->attr.freq) {
4597                 event->attr.sample_freq = value;
4598         } else {
4599                 event->attr.sample_period = value;
4600                 event->hw.sample_period = value;
4601         }
4602
4603         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604         if (active) {
4605                 perf_pmu_disable(ctx->pmu);
4606                 /*
4607                  * We could be throttled; unthrottle now to avoid the tick
4608                  * trying to unthrottle while we already re-started the event.
4609                  */
4610                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611                         event->hw.interrupts = 0;
4612                         perf_log_throttle(event, 1);
4613                 }
4614                 event->pmu->stop(event, PERF_EF_UPDATE);
4615         }
4616
4617         local64_set(&event->hw.period_left, 0);
4618
4619         if (active) {
4620                 event->pmu->start(event, PERF_EF_RELOAD);
4621                 perf_pmu_enable(ctx->pmu);
4622         }
4623 }
4624
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626 {
4627         u64 value;
4628
4629         if (!is_sampling_event(event))
4630                 return -EINVAL;
4631
4632         if (copy_from_user(&value, arg, sizeof(value)))
4633                 return -EFAULT;
4634
4635         if (!value)
4636                 return -EINVAL;
4637
4638         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639                 return -EINVAL;
4640
4641         event_function_call(event, __perf_event_period, &value);
4642
4643         return 0;
4644 }
4645
4646 static const struct file_operations perf_fops;
4647
4648 static inline int perf_fget_light(int fd, struct fd *p)
4649 {
4650         struct fd f = fdget(fd);
4651         if (!f.file)
4652                 return -EBADF;
4653
4654         if (f.file->f_op != &perf_fops) {
4655                 fdput(f);
4656                 return -EBADF;
4657         }
4658         *p = f;
4659         return 0;
4660 }
4661
4662 static int perf_event_set_output(struct perf_event *event,
4663                                  struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668 {
4669         void (*func)(struct perf_event *);
4670         u32 flags = arg;
4671
4672         switch (cmd) {
4673         case PERF_EVENT_IOC_ENABLE:
4674                 func = _perf_event_enable;
4675                 break;
4676         case PERF_EVENT_IOC_DISABLE:
4677                 func = _perf_event_disable;
4678                 break;
4679         case PERF_EVENT_IOC_RESET:
4680                 func = _perf_event_reset;
4681                 break;
4682
4683         case PERF_EVENT_IOC_REFRESH:
4684                 return _perf_event_refresh(event, arg);
4685
4686         case PERF_EVENT_IOC_PERIOD:
4687                 return perf_event_period(event, (u64 __user *)arg);
4688
4689         case PERF_EVENT_IOC_ID:
4690         {
4691                 u64 id = primary_event_id(event);
4692
4693                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694                         return -EFAULT;
4695                 return 0;
4696         }
4697
4698         case PERF_EVENT_IOC_SET_OUTPUT:
4699         {
4700                 int ret;
4701                 if (arg != -1) {
4702                         struct perf_event *output_event;
4703                         struct fd output;
4704                         ret = perf_fget_light(arg, &output);
4705                         if (ret)
4706                                 return ret;
4707                         output_event = output.file->private_data;
4708                         ret = perf_event_set_output(event, output_event);
4709                         fdput(output);
4710                 } else {
4711                         ret = perf_event_set_output(event, NULL);
4712                 }
4713                 return ret;
4714         }
4715
4716         case PERF_EVENT_IOC_SET_FILTER:
4717                 return perf_event_set_filter(event, (void __user *)arg);
4718
4719         case PERF_EVENT_IOC_SET_BPF:
4720                 return perf_event_set_bpf_prog(event, arg);
4721
4722         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723                 struct ring_buffer *rb;
4724
4725                 rcu_read_lock();
4726                 rb = rcu_dereference(event->rb);
4727                 if (!rb || !rb->nr_pages) {
4728                         rcu_read_unlock();
4729                         return -EINVAL;
4730                 }
4731                 rb_toggle_paused(rb, !!arg);
4732                 rcu_read_unlock();
4733                 return 0;
4734         }
4735         default:
4736                 return -ENOTTY;
4737         }
4738
4739         if (flags & PERF_IOC_FLAG_GROUP)
4740                 perf_event_for_each(event, func);
4741         else
4742                 perf_event_for_each_child(event, func);
4743
4744         return 0;
4745 }
4746
4747 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4748 {
4749         struct perf_event *event = file->private_data;
4750         struct perf_event_context *ctx;
4751         long ret;
4752
4753         ctx = perf_event_ctx_lock(event);
4754         ret = _perf_ioctl(event, cmd, arg);
4755         perf_event_ctx_unlock(event, ctx);
4756
4757         return ret;
4758 }
4759
4760 #ifdef CONFIG_COMPAT
4761 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4762                                 unsigned long arg)
4763 {
4764         switch (_IOC_NR(cmd)) {
4765         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4766         case _IOC_NR(PERF_EVENT_IOC_ID):
4767                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4768                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4769                         cmd &= ~IOCSIZE_MASK;
4770                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4771                 }
4772                 break;
4773         }
4774         return perf_ioctl(file, cmd, arg);
4775 }
4776 #else
4777 # define perf_compat_ioctl NULL
4778 #endif
4779
4780 int perf_event_task_enable(void)
4781 {
4782         struct perf_event_context *ctx;
4783         struct perf_event *event;
4784
4785         mutex_lock(&current->perf_event_mutex);
4786         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4787                 ctx = perf_event_ctx_lock(event);
4788                 perf_event_for_each_child(event, _perf_event_enable);
4789                 perf_event_ctx_unlock(event, ctx);
4790         }
4791         mutex_unlock(&current->perf_event_mutex);
4792
4793         return 0;
4794 }
4795
4796 int perf_event_task_disable(void)
4797 {
4798         struct perf_event_context *ctx;
4799         struct perf_event *event;
4800
4801         mutex_lock(&current->perf_event_mutex);
4802         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803                 ctx = perf_event_ctx_lock(event);
4804                 perf_event_for_each_child(event, _perf_event_disable);
4805                 perf_event_ctx_unlock(event, ctx);
4806         }
4807         mutex_unlock(&current->perf_event_mutex);
4808
4809         return 0;
4810 }
4811
4812 static int perf_event_index(struct perf_event *event)
4813 {
4814         if (event->hw.state & PERF_HES_STOPPED)
4815                 return 0;
4816
4817         if (event->state != PERF_EVENT_STATE_ACTIVE)
4818                 return 0;
4819
4820         return event->pmu->event_idx(event);
4821 }
4822
4823 static void calc_timer_values(struct perf_event *event,
4824                                 u64 *now,
4825                                 u64 *enabled,
4826                                 u64 *running)
4827 {
4828         u64 ctx_time;
4829
4830         *now = perf_clock();
4831         ctx_time = event->shadow_ctx_time + *now;
4832         __perf_update_times(event, ctx_time, enabled, running);
4833 }
4834
4835 static void perf_event_init_userpage(struct perf_event *event)
4836 {
4837         struct perf_event_mmap_page *userpg;
4838         struct ring_buffer *rb;
4839
4840         rcu_read_lock();
4841         rb = rcu_dereference(event->rb);
4842         if (!rb)
4843                 goto unlock;
4844
4845         userpg = rb->user_page;
4846
4847         /* Allow new userspace to detect that bit 0 is deprecated */
4848         userpg->cap_bit0_is_deprecated = 1;
4849         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4850         userpg->data_offset = PAGE_SIZE;
4851         userpg->data_size = perf_data_size(rb);
4852
4853 unlock:
4854         rcu_read_unlock();
4855 }
4856
4857 void __weak arch_perf_update_userpage(
4858         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4859 {
4860 }
4861
4862 /*
4863  * Callers need to ensure there can be no nesting of this function, otherwise
4864  * the seqlock logic goes bad. We can not serialize this because the arch
4865  * code calls this from NMI context.
4866  */
4867 void perf_event_update_userpage(struct perf_event *event)
4868 {
4869         struct perf_event_mmap_page *userpg;
4870         struct ring_buffer *rb;
4871         u64 enabled, running, now;
4872
4873         rcu_read_lock();
4874         rb = rcu_dereference(event->rb);
4875         if (!rb)
4876                 goto unlock;
4877
4878         /*
4879          * compute total_time_enabled, total_time_running
4880          * based on snapshot values taken when the event
4881          * was last scheduled in.
4882          *
4883          * we cannot simply called update_context_time()
4884          * because of locking issue as we can be called in
4885          * NMI context
4886          */
4887         calc_timer_values(event, &now, &enabled, &running);
4888
4889         userpg = rb->user_page;
4890         /*
4891          * Disable preemption so as to not let the corresponding user-space
4892          * spin too long if we get preempted.
4893          */
4894         preempt_disable();
4895         ++userpg->lock;
4896         barrier();
4897         userpg->index = perf_event_index(event);
4898         userpg->offset = perf_event_count(event);
4899         if (userpg->index)
4900                 userpg->offset -= local64_read(&event->hw.prev_count);
4901
4902         userpg->time_enabled = enabled +
4903                         atomic64_read(&event->child_total_time_enabled);
4904
4905         userpg->time_running = running +
4906                         atomic64_read(&event->child_total_time_running);
4907
4908         arch_perf_update_userpage(event, userpg, now);
4909
4910         barrier();
4911         ++userpg->lock;
4912         preempt_enable();
4913 unlock:
4914         rcu_read_unlock();
4915 }
4916
4917 static int perf_mmap_fault(struct vm_fault *vmf)
4918 {
4919         struct perf_event *event = vmf->vma->vm_file->private_data;
4920         struct ring_buffer *rb;
4921         int ret = VM_FAULT_SIGBUS;
4922
4923         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4924                 if (vmf->pgoff == 0)
4925                         ret = 0;
4926                 return ret;
4927         }
4928
4929         rcu_read_lock();
4930         rb = rcu_dereference(event->rb);
4931         if (!rb)
4932                 goto unlock;
4933
4934         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4935                 goto unlock;
4936
4937         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4938         if (!vmf->page)
4939                 goto unlock;
4940
4941         get_page(vmf->page);
4942         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4943         vmf->page->index   = vmf->pgoff;
4944
4945         ret = 0;
4946 unlock:
4947         rcu_read_unlock();
4948
4949         return ret;
4950 }
4951
4952 static void ring_buffer_attach(struct perf_event *event,
4953                                struct ring_buffer *rb)
4954 {
4955         struct ring_buffer *old_rb = NULL;
4956         unsigned long flags;
4957
4958         if (event->rb) {
4959                 /*
4960                  * Should be impossible, we set this when removing
4961                  * event->rb_entry and wait/clear when adding event->rb_entry.
4962                  */
4963                 WARN_ON_ONCE(event->rcu_pending);
4964
4965                 old_rb = event->rb;
4966                 spin_lock_irqsave(&old_rb->event_lock, flags);
4967                 list_del_rcu(&event->rb_entry);
4968                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4969
4970                 event->rcu_batches = get_state_synchronize_rcu();
4971                 event->rcu_pending = 1;
4972         }
4973
4974         if (rb) {
4975                 if (event->rcu_pending) {
4976                         cond_synchronize_rcu(event->rcu_batches);
4977                         event->rcu_pending = 0;
4978                 }
4979
4980                 spin_lock_irqsave(&rb->event_lock, flags);
4981                 list_add_rcu(&event->rb_entry, &rb->event_list);
4982                 spin_unlock_irqrestore(&rb->event_lock, flags);
4983         }
4984
4985         /*
4986          * Avoid racing with perf_mmap_close(AUX): stop the event
4987          * before swizzling the event::rb pointer; if it's getting
4988          * unmapped, its aux_mmap_count will be 0 and it won't
4989          * restart. See the comment in __perf_pmu_output_stop().
4990          *
4991          * Data will inevitably be lost when set_output is done in
4992          * mid-air, but then again, whoever does it like this is
4993          * not in for the data anyway.
4994          */
4995         if (has_aux(event))
4996                 perf_event_stop(event, 0);
4997
4998         rcu_assign_pointer(event->rb, rb);
4999
5000         if (old_rb) {
5001                 ring_buffer_put(old_rb);
5002                 /*
5003                  * Since we detached before setting the new rb, so that we
5004                  * could attach the new rb, we could have missed a wakeup.
5005                  * Provide it now.
5006                  */
5007                 wake_up_all(&event->waitq);
5008         }
5009 }
5010
5011 static void ring_buffer_wakeup(struct perf_event *event)
5012 {
5013         struct ring_buffer *rb;
5014
5015         rcu_read_lock();
5016         rb = rcu_dereference(event->rb);
5017         if (rb) {
5018                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5019                         wake_up_all(&event->waitq);
5020         }
5021         rcu_read_unlock();
5022 }
5023
5024 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5025 {
5026         struct ring_buffer *rb;
5027
5028         rcu_read_lock();
5029         rb = rcu_dereference(event->rb);
5030         if (rb) {
5031                 if (!atomic_inc_not_zero(&rb->refcount))
5032                         rb = NULL;
5033         }
5034         rcu_read_unlock();
5035
5036         return rb;
5037 }
5038
5039 void ring_buffer_put(struct ring_buffer *rb)
5040 {
5041         if (!atomic_dec_and_test(&rb->refcount))
5042                 return;
5043
5044         WARN_ON_ONCE(!list_empty(&rb->event_list));
5045
5046         call_rcu(&rb->rcu_head, rb_free_rcu);
5047 }
5048
5049 static void perf_mmap_open(struct vm_area_struct *vma)
5050 {
5051         struct perf_event *event = vma->vm_file->private_data;
5052
5053         atomic_inc(&event->mmap_count);
5054         atomic_inc(&event->rb->mmap_count);
5055
5056         if (vma->vm_pgoff)
5057                 atomic_inc(&event->rb->aux_mmap_count);
5058
5059         if (event->pmu->event_mapped)
5060                 event->pmu->event_mapped(event, vma->vm_mm);
5061 }
5062
5063 static void perf_pmu_output_stop(struct perf_event *event);
5064
5065 /*
5066  * A buffer can be mmap()ed multiple times; either directly through the same
5067  * event, or through other events by use of perf_event_set_output().
5068  *
5069  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5070  * the buffer here, where we still have a VM context. This means we need
5071  * to detach all events redirecting to us.
5072  */
5073 static void perf_mmap_close(struct vm_area_struct *vma)
5074 {
5075         struct perf_event *event = vma->vm_file->private_data;
5076
5077         struct ring_buffer *rb = ring_buffer_get(event);
5078         struct user_struct *mmap_user = rb->mmap_user;
5079         int mmap_locked = rb->mmap_locked;
5080         unsigned long size = perf_data_size(rb);
5081
5082         if (event->pmu->event_unmapped)
5083                 event->pmu->event_unmapped(event, vma->vm_mm);
5084
5085         /*
5086          * rb->aux_mmap_count will always drop before rb->mmap_count and
5087          * event->mmap_count, so it is ok to use event->mmap_mutex to
5088          * serialize with perf_mmap here.
5089          */
5090         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5091             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5092                 /*
5093                  * Stop all AUX events that are writing to this buffer,
5094                  * so that we can free its AUX pages and corresponding PMU
5095                  * data. Note that after rb::aux_mmap_count dropped to zero,
5096                  * they won't start any more (see perf_aux_output_begin()).
5097                  */
5098                 perf_pmu_output_stop(event);
5099
5100                 /* now it's safe to free the pages */
5101                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5102                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5103
5104                 /* this has to be the last one */
5105                 rb_free_aux(rb);
5106                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5107
5108                 mutex_unlock(&event->mmap_mutex);
5109         }
5110
5111         atomic_dec(&rb->mmap_count);
5112
5113         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5114                 goto out_put;
5115
5116         ring_buffer_attach(event, NULL);
5117         mutex_unlock(&event->mmap_mutex);
5118
5119         /* If there's still other mmap()s of this buffer, we're done. */
5120         if (atomic_read(&rb->mmap_count))
5121                 goto out_put;
5122
5123         /*
5124          * No other mmap()s, detach from all other events that might redirect
5125          * into the now unreachable buffer. Somewhat complicated by the
5126          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5127          */
5128 again:
5129         rcu_read_lock();
5130         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5131                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5132                         /*
5133                          * This event is en-route to free_event() which will
5134                          * detach it and remove it from the list.
5135                          */
5136                         continue;
5137                 }
5138                 rcu_read_unlock();
5139
5140                 mutex_lock(&event->mmap_mutex);
5141                 /*
5142                  * Check we didn't race with perf_event_set_output() which can
5143                  * swizzle the rb from under us while we were waiting to
5144                  * acquire mmap_mutex.
5145                  *
5146                  * If we find a different rb; ignore this event, a next
5147                  * iteration will no longer find it on the list. We have to
5148                  * still restart the iteration to make sure we're not now
5149                  * iterating the wrong list.
5150                  */
5151                 if (event->rb == rb)
5152                         ring_buffer_attach(event, NULL);
5153
5154                 mutex_unlock(&event->mmap_mutex);
5155                 put_event(event);
5156
5157                 /*
5158                  * Restart the iteration; either we're on the wrong list or
5159                  * destroyed its integrity by doing a deletion.
5160                  */
5161                 goto again;
5162         }
5163         rcu_read_unlock();
5164
5165         /*
5166          * It could be there's still a few 0-ref events on the list; they'll
5167          * get cleaned up by free_event() -- they'll also still have their
5168          * ref on the rb and will free it whenever they are done with it.
5169          *
5170          * Aside from that, this buffer is 'fully' detached and unmapped,
5171          * undo the VM accounting.
5172          */
5173
5174         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5175         vma->vm_mm->pinned_vm -= mmap_locked;
5176         free_uid(mmap_user);
5177
5178 out_put:
5179         ring_buffer_put(rb); /* could be last */
5180 }
5181
5182 static const struct vm_operations_struct perf_mmap_vmops = {
5183         .open           = perf_mmap_open,
5184         .close          = perf_mmap_close, /* non mergable */
5185         .fault          = perf_mmap_fault,
5186         .page_mkwrite   = perf_mmap_fault,
5187 };
5188
5189 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5190 {
5191         struct perf_event *event = file->private_data;
5192         unsigned long user_locked, user_lock_limit;
5193         struct user_struct *user = current_user();
5194         unsigned long locked, lock_limit;
5195         struct ring_buffer *rb = NULL;
5196         unsigned long vma_size;
5197         unsigned long nr_pages;
5198         long user_extra = 0, extra = 0;
5199         int ret = 0, flags = 0;
5200
5201         /*
5202          * Don't allow mmap() of inherited per-task counters. This would
5203          * create a performance issue due to all children writing to the
5204          * same rb.
5205          */
5206         if (event->cpu == -1 && event->attr.inherit)
5207                 return -EINVAL;
5208
5209         if (!(vma->vm_flags & VM_SHARED))
5210                 return -EINVAL;
5211
5212         vma_size = vma->vm_end - vma->vm_start;
5213
5214         if (vma->vm_pgoff == 0) {
5215                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5216         } else {
5217                 /*
5218                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5219                  * mapped, all subsequent mappings should have the same size
5220                  * and offset. Must be above the normal perf buffer.
5221                  */
5222                 u64 aux_offset, aux_size;
5223
5224                 if (!event->rb)
5225                         return -EINVAL;
5226
5227                 nr_pages = vma_size / PAGE_SIZE;
5228
5229                 mutex_lock(&event->mmap_mutex);
5230                 ret = -EINVAL;
5231
5232                 rb = event->rb;
5233                 if (!rb)
5234                         goto aux_unlock;
5235
5236                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5237                 aux_size = READ_ONCE(rb->user_page->aux_size);
5238
5239                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5240                         goto aux_unlock;
5241
5242                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5243                         goto aux_unlock;
5244
5245                 /* already mapped with a different offset */
5246                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5247                         goto aux_unlock;
5248
5249                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5250                         goto aux_unlock;
5251
5252                 /* already mapped with a different size */
5253                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5254                         goto aux_unlock;
5255
5256                 if (!is_power_of_2(nr_pages))
5257                         goto aux_unlock;
5258
5259                 if (!atomic_inc_not_zero(&rb->mmap_count))
5260                         goto aux_unlock;
5261
5262                 if (rb_has_aux(rb)) {
5263                         atomic_inc(&rb->aux_mmap_count);
5264                         ret = 0;
5265                         goto unlock;
5266                 }
5267
5268                 atomic_set(&rb->aux_mmap_count, 1);
5269                 user_extra = nr_pages;
5270
5271                 goto accounting;
5272         }
5273
5274         /*
5275          * If we have rb pages ensure they're a power-of-two number, so we
5276          * can do bitmasks instead of modulo.
5277          */
5278         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5279                 return -EINVAL;
5280
5281         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5282                 return -EINVAL;
5283
5284         WARN_ON_ONCE(event->ctx->parent_ctx);
5285 again:
5286         mutex_lock(&event->mmap_mutex);
5287         if (event->rb) {
5288                 if (event->rb->nr_pages != nr_pages) {
5289                         ret = -EINVAL;
5290                         goto unlock;
5291                 }
5292
5293                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5294                         /*
5295                          * Raced against perf_mmap_close() through
5296                          * perf_event_set_output(). Try again, hope for better
5297                          * luck.
5298                          */
5299                         mutex_unlock(&event->mmap_mutex);
5300                         goto again;
5301                 }
5302
5303                 goto unlock;
5304         }
5305
5306         user_extra = nr_pages + 1;
5307
5308 accounting:
5309         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5310
5311         /*
5312          * Increase the limit linearly with more CPUs:
5313          */
5314         user_lock_limit *= num_online_cpus();
5315
5316         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5317
5318         if (user_locked > user_lock_limit)
5319                 extra = user_locked - user_lock_limit;
5320
5321         lock_limit = rlimit(RLIMIT_MEMLOCK);
5322         lock_limit >>= PAGE_SHIFT;
5323         locked = vma->vm_mm->pinned_vm + extra;
5324
5325         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5326                 !capable(CAP_IPC_LOCK)) {
5327                 ret = -EPERM;
5328                 goto unlock;
5329         }
5330
5331         WARN_ON(!rb && event->rb);
5332
5333         if (vma->vm_flags & VM_WRITE)
5334                 flags |= RING_BUFFER_WRITABLE;
5335
5336         if (!rb) {
5337                 rb = rb_alloc(nr_pages,
5338                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5339                               event->cpu, flags);
5340
5341                 if (!rb) {
5342                         ret = -ENOMEM;
5343                         goto unlock;
5344                 }
5345
5346                 atomic_set(&rb->mmap_count, 1);
5347                 rb->mmap_user = get_current_user();
5348                 rb->mmap_locked = extra;
5349
5350                 ring_buffer_attach(event, rb);
5351
5352                 perf_event_init_userpage(event);
5353                 perf_event_update_userpage(event);
5354         } else {
5355                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5356                                    event->attr.aux_watermark, flags);
5357                 if (!ret)
5358                         rb->aux_mmap_locked = extra;
5359         }
5360
5361 unlock:
5362         if (!ret) {
5363                 atomic_long_add(user_extra, &user->locked_vm);
5364                 vma->vm_mm->pinned_vm += extra;
5365
5366                 atomic_inc(&event->mmap_count);
5367         } else if (rb) {
5368                 atomic_dec(&rb->mmap_count);
5369         }
5370 aux_unlock:
5371         mutex_unlock(&event->mmap_mutex);
5372
5373         /*
5374          * Since pinned accounting is per vm we cannot allow fork() to copy our
5375          * vma.
5376          */
5377         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5378         vma->vm_ops = &perf_mmap_vmops;
5379
5380         if (event->pmu->event_mapped)
5381                 event->pmu->event_mapped(event, vma->vm_mm);
5382
5383         return ret;
5384 }
5385
5386 static int perf_fasync(int fd, struct file *filp, int on)
5387 {
5388         struct inode *inode = file_inode(filp);
5389         struct perf_event *event = filp->private_data;
5390         int retval;
5391
5392         inode_lock(inode);
5393         retval = fasync_helper(fd, filp, on, &event->fasync);
5394         inode_unlock(inode);
5395
5396         if (retval < 0)
5397                 return retval;
5398
5399         return 0;
5400 }
5401
5402 static const struct file_operations perf_fops = {
5403         .llseek                 = no_llseek,
5404         .release                = perf_release,
5405         .read                   = perf_read,
5406         .poll                   = perf_poll,
5407         .unlocked_ioctl         = perf_ioctl,
5408         .compat_ioctl           = perf_compat_ioctl,
5409         .mmap                   = perf_mmap,
5410         .fasync                 = perf_fasync,
5411 };
5412
5413 /*
5414  * Perf event wakeup
5415  *
5416  * If there's data, ensure we set the poll() state and publish everything
5417  * to user-space before waking everybody up.
5418  */
5419
5420 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5421 {
5422         /* only the parent has fasync state */
5423         if (event->parent)
5424                 event = event->parent;
5425         return &event->fasync;
5426 }
5427
5428 void perf_event_wakeup(struct perf_event *event)
5429 {
5430         ring_buffer_wakeup(event);
5431
5432         if (event->pending_kill) {
5433                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5434                 event->pending_kill = 0;
5435         }
5436 }
5437
5438 static void perf_pending_event(struct irq_work *entry)
5439 {
5440         struct perf_event *event = container_of(entry,
5441                         struct perf_event, pending);
5442         int rctx;
5443
5444         rctx = perf_swevent_get_recursion_context();
5445         /*
5446          * If we 'fail' here, that's OK, it means recursion is already disabled
5447          * and we won't recurse 'further'.
5448          */
5449
5450         if (event->pending_disable) {
5451                 event->pending_disable = 0;
5452                 perf_event_disable_local(event);
5453         }
5454
5455         if (event->pending_wakeup) {
5456                 event->pending_wakeup = 0;
5457                 perf_event_wakeup(event);
5458         }
5459
5460         if (rctx >= 0)
5461                 perf_swevent_put_recursion_context(rctx);
5462 }
5463
5464 /*
5465  * We assume there is only KVM supporting the callbacks.
5466  * Later on, we might change it to a list if there is
5467  * another virtualization implementation supporting the callbacks.
5468  */
5469 struct perf_guest_info_callbacks *perf_guest_cbs;
5470
5471 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5472 {
5473         perf_guest_cbs = cbs;
5474         return 0;
5475 }
5476 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5477
5478 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5479 {
5480         perf_guest_cbs = NULL;
5481         return 0;
5482 }
5483 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5484
5485 static void
5486 perf_output_sample_regs(struct perf_output_handle *handle,
5487                         struct pt_regs *regs, u64 mask)
5488 {
5489         int bit;
5490         DECLARE_BITMAP(_mask, 64);
5491
5492         bitmap_from_u64(_mask, mask);
5493         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5494                 u64 val;
5495
5496                 val = perf_reg_value(regs, bit);
5497                 perf_output_put(handle, val);
5498         }
5499 }
5500
5501 static void perf_sample_regs_user(struct perf_regs *regs_user,
5502                                   struct pt_regs *regs,
5503                                   struct pt_regs *regs_user_copy)
5504 {
5505         if (user_mode(regs)) {
5506                 regs_user->abi = perf_reg_abi(current);
5507                 regs_user->regs = regs;
5508         } else if (current->mm) {
5509                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5510         } else {
5511                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5512                 regs_user->regs = NULL;
5513         }
5514 }
5515
5516 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5517                                   struct pt_regs *regs)
5518 {
5519         regs_intr->regs = regs;
5520         regs_intr->abi  = perf_reg_abi(current);
5521 }
5522
5523
5524 /*
5525  * Get remaining task size from user stack pointer.
5526  *
5527  * It'd be better to take stack vma map and limit this more
5528  * precisly, but there's no way to get it safely under interrupt,
5529  * so using TASK_SIZE as limit.
5530  */
5531 static u64 perf_ustack_task_size(struct pt_regs *regs)
5532 {
5533         unsigned long addr = perf_user_stack_pointer(regs);
5534
5535         if (!addr || addr >= TASK_SIZE)
5536                 return 0;
5537
5538         return TASK_SIZE - addr;
5539 }
5540
5541 static u16
5542 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5543                         struct pt_regs *regs)
5544 {
5545         u64 task_size;
5546
5547         /* No regs, no stack pointer, no dump. */
5548         if (!regs)
5549                 return 0;
5550
5551         /*
5552          * Check if we fit in with the requested stack size into the:
5553          * - TASK_SIZE
5554          *   If we don't, we limit the size to the TASK_SIZE.
5555          *
5556          * - remaining sample size
5557          *   If we don't, we customize the stack size to
5558          *   fit in to the remaining sample size.
5559          */
5560
5561         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5562         stack_size = min(stack_size, (u16) task_size);
5563
5564         /* Current header size plus static size and dynamic size. */
5565         header_size += 2 * sizeof(u64);
5566
5567         /* Do we fit in with the current stack dump size? */
5568         if ((u16) (header_size + stack_size) < header_size) {
5569                 /*
5570                  * If we overflow the maximum size for the sample,
5571                  * we customize the stack dump size to fit in.
5572                  */
5573                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5574                 stack_size = round_up(stack_size, sizeof(u64));
5575         }
5576
5577         return stack_size;
5578 }
5579
5580 static void
5581 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5582                           struct pt_regs *regs)
5583 {
5584         /* Case of a kernel thread, nothing to dump */
5585         if (!regs) {
5586                 u64 size = 0;
5587                 perf_output_put(handle, size);
5588         } else {
5589                 unsigned long sp;
5590                 unsigned int rem;
5591                 u64 dyn_size;
5592
5593                 /*
5594                  * We dump:
5595                  * static size
5596                  *   - the size requested by user or the best one we can fit
5597                  *     in to the sample max size
5598                  * data
5599                  *   - user stack dump data
5600                  * dynamic size
5601                  *   - the actual dumped size
5602                  */
5603
5604                 /* Static size. */
5605                 perf_output_put(handle, dump_size);
5606
5607                 /* Data. */
5608                 sp = perf_user_stack_pointer(regs);
5609                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5610                 dyn_size = dump_size - rem;
5611
5612                 perf_output_skip(handle, rem);
5613
5614                 /* Dynamic size. */
5615                 perf_output_put(handle, dyn_size);
5616         }
5617 }
5618
5619 static void __perf_event_header__init_id(struct perf_event_header *header,
5620                                          struct perf_sample_data *data,
5621                                          struct perf_event *event)
5622 {
5623         u64 sample_type = event->attr.sample_type;
5624
5625         data->type = sample_type;
5626         header->size += event->id_header_size;
5627
5628         if (sample_type & PERF_SAMPLE_TID) {
5629                 /* namespace issues */
5630                 data->tid_entry.pid = perf_event_pid(event, current);
5631                 data->tid_entry.tid = perf_event_tid(event, current);
5632         }
5633
5634         if (sample_type & PERF_SAMPLE_TIME)
5635                 data->time = perf_event_clock(event);
5636
5637         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5638                 data->id = primary_event_id(event);
5639
5640         if (sample_type & PERF_SAMPLE_STREAM_ID)
5641                 data->stream_id = event->id;
5642
5643         if (sample_type & PERF_SAMPLE_CPU) {
5644                 data->cpu_entry.cpu      = raw_smp_processor_id();
5645                 data->cpu_entry.reserved = 0;
5646         }
5647 }
5648
5649 void perf_event_header__init_id(struct perf_event_header *header,
5650                                 struct perf_sample_data *data,
5651                                 struct perf_event *event)
5652 {
5653         if (event->attr.sample_id_all)
5654                 __perf_event_header__init_id(header, data, event);
5655 }
5656
5657 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5658                                            struct perf_sample_data *data)
5659 {
5660         u64 sample_type = data->type;
5661
5662         if (sample_type & PERF_SAMPLE_TID)
5663                 perf_output_put(handle, data->tid_entry);
5664
5665         if (sample_type & PERF_SAMPLE_TIME)
5666                 perf_output_put(handle, data->time);
5667
5668         if (sample_type & PERF_SAMPLE_ID)
5669                 perf_output_put(handle, data->id);
5670
5671         if (sample_type & PERF_SAMPLE_STREAM_ID)
5672                 perf_output_put(handle, data->stream_id);
5673
5674         if (sample_type & PERF_SAMPLE_CPU)
5675                 perf_output_put(handle, data->cpu_entry);
5676
5677         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5678                 perf_output_put(handle, data->id);
5679 }
5680
5681 void perf_event__output_id_sample(struct perf_event *event,
5682                                   struct perf_output_handle *handle,
5683                                   struct perf_sample_data *sample)
5684 {
5685         if (event->attr.sample_id_all)
5686                 __perf_event__output_id_sample(handle, sample);
5687 }
5688
5689 static void perf_output_read_one(struct perf_output_handle *handle,
5690                                  struct perf_event *event,
5691                                  u64 enabled, u64 running)
5692 {
5693         u64 read_format = event->attr.read_format;
5694         u64 values[4];
5695         int n = 0;
5696
5697         values[n++] = perf_event_count(event);
5698         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5699                 values[n++] = enabled +
5700                         atomic64_read(&event->child_total_time_enabled);
5701         }
5702         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5703                 values[n++] = running +
5704                         atomic64_read(&event->child_total_time_running);
5705         }
5706         if (read_format & PERF_FORMAT_ID)
5707                 values[n++] = primary_event_id(event);
5708
5709         __output_copy(handle, values, n * sizeof(u64));
5710 }
5711
5712 static void perf_output_read_group(struct perf_output_handle *handle,
5713                             struct perf_event *event,
5714                             u64 enabled, u64 running)
5715 {
5716         struct perf_event *leader = event->group_leader, *sub;
5717         u64 read_format = event->attr.read_format;
5718         u64 values[5];
5719         int n = 0;
5720
5721         values[n++] = 1 + leader->nr_siblings;
5722
5723         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5724                 values[n++] = enabled;
5725
5726         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5727                 values[n++] = running;
5728
5729         if (leader != event)
5730                 leader->pmu->read(leader);
5731
5732         values[n++] = perf_event_count(leader);
5733         if (read_format & PERF_FORMAT_ID)
5734                 values[n++] = primary_event_id(leader);
5735
5736         __output_copy(handle, values, n * sizeof(u64));
5737
5738         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5739                 n = 0;
5740
5741                 if ((sub != event) &&
5742                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5743                         sub->pmu->read(sub);
5744
5745                 values[n++] = perf_event_count(sub);
5746                 if (read_format & PERF_FORMAT_ID)
5747                         values[n++] = primary_event_id(sub);
5748
5749                 __output_copy(handle, values, n * sizeof(u64));
5750         }
5751 }
5752
5753 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5754                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5755
5756 /*
5757  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5758  *
5759  * The problem is that its both hard and excessively expensive to iterate the
5760  * child list, not to mention that its impossible to IPI the children running
5761  * on another CPU, from interrupt/NMI context.
5762  */
5763 static void perf_output_read(struct perf_output_handle *handle,
5764                              struct perf_event *event)
5765 {
5766         u64 enabled = 0, running = 0, now;
5767         u64 read_format = event->attr.read_format;
5768
5769         /*
5770          * compute total_time_enabled, total_time_running
5771          * based on snapshot values taken when the event
5772          * was last scheduled in.
5773          *
5774          * we cannot simply called update_context_time()
5775          * because of locking issue as we are called in
5776          * NMI context
5777          */
5778         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5779                 calc_timer_values(event, &now, &enabled, &running);
5780
5781         if (event->attr.read_format & PERF_FORMAT_GROUP)
5782                 perf_output_read_group(handle, event, enabled, running);
5783         else
5784                 perf_output_read_one(handle, event, enabled, running);
5785 }
5786
5787 void perf_output_sample(struct perf_output_handle *handle,
5788                         struct perf_event_header *header,
5789                         struct perf_sample_data *data,
5790                         struct perf_event *event)
5791 {
5792         u64 sample_type = data->type;
5793
5794         perf_output_put(handle, *header);
5795
5796         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5797                 perf_output_put(handle, data->id);
5798
5799         if (sample_type & PERF_SAMPLE_IP)
5800                 perf_output_put(handle, data->ip);
5801
5802         if (sample_type & PERF_SAMPLE_TID)
5803                 perf_output_put(handle, data->tid_entry);
5804
5805         if (sample_type & PERF_SAMPLE_TIME)
5806                 perf_output_put(handle, data->time);
5807
5808         if (sample_type & PERF_SAMPLE_ADDR)
5809                 perf_output_put(handle, data->addr);
5810
5811         if (sample_type & PERF_SAMPLE_ID)
5812                 perf_output_put(handle, data->id);
5813
5814         if (sample_type & PERF_SAMPLE_STREAM_ID)
5815                 perf_output_put(handle, data->stream_id);
5816
5817         if (sample_type & PERF_SAMPLE_CPU)
5818                 perf_output_put(handle, data->cpu_entry);
5819
5820         if (sample_type & PERF_SAMPLE_PERIOD)
5821                 perf_output_put(handle, data->period);
5822
5823         if (sample_type & PERF_SAMPLE_READ)
5824                 perf_output_read(handle, event);
5825
5826         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5827                 if (data->callchain) {
5828                         int size = 1;
5829
5830                         if (data->callchain)
5831                                 size += data->callchain->nr;
5832
5833                         size *= sizeof(u64);
5834
5835                         __output_copy(handle, data->callchain, size);
5836                 } else {
5837                         u64 nr = 0;
5838                         perf_output_put(handle, nr);
5839                 }
5840         }
5841
5842         if (sample_type & PERF_SAMPLE_RAW) {
5843                 struct perf_raw_record *raw = data->raw;
5844
5845                 if (raw) {
5846                         struct perf_raw_frag *frag = &raw->frag;
5847
5848                         perf_output_put(handle, raw->size);
5849                         do {
5850                                 if (frag->copy) {
5851                                         __output_custom(handle, frag->copy,
5852                                                         frag->data, frag->size);
5853                                 } else {
5854                                         __output_copy(handle, frag->data,
5855                                                       frag->size);
5856                                 }
5857                                 if (perf_raw_frag_last(frag))
5858                                         break;
5859                                 frag = frag->next;
5860                         } while (1);
5861                         if (frag->pad)
5862                                 __output_skip(handle, NULL, frag->pad);
5863                 } else {
5864                         struct {
5865                                 u32     size;
5866                                 u32     data;
5867                         } raw = {
5868                                 .size = sizeof(u32),
5869                                 .data = 0,
5870                         };
5871                         perf_output_put(handle, raw);
5872                 }
5873         }
5874
5875         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5876                 if (data->br_stack) {
5877                         size_t size;
5878
5879                         size = data->br_stack->nr
5880                              * sizeof(struct perf_branch_entry);
5881
5882                         perf_output_put(handle, data->br_stack->nr);
5883                         perf_output_copy(handle, data->br_stack->entries, size);
5884                 } else {
5885                         /*
5886                          * we always store at least the value of nr
5887                          */
5888                         u64 nr = 0;
5889                         perf_output_put(handle, nr);
5890                 }
5891         }
5892
5893         if (sample_type & PERF_SAMPLE_REGS_USER) {
5894                 u64 abi = data->regs_user.abi;
5895
5896                 /*
5897                  * If there are no regs to dump, notice it through
5898                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5899                  */
5900                 perf_output_put(handle, abi);
5901
5902                 if (abi) {
5903                         u64 mask = event->attr.sample_regs_user;
5904                         perf_output_sample_regs(handle,
5905                                                 data->regs_user.regs,
5906                                                 mask);
5907                 }
5908         }
5909
5910         if (sample_type & PERF_SAMPLE_STACK_USER) {
5911                 perf_output_sample_ustack(handle,
5912                                           data->stack_user_size,
5913                                           data->regs_user.regs);
5914         }
5915
5916         if (sample_type & PERF_SAMPLE_WEIGHT)
5917                 perf_output_put(handle, data->weight);
5918
5919         if (sample_type & PERF_SAMPLE_DATA_SRC)
5920                 perf_output_put(handle, data->data_src.val);
5921
5922         if (sample_type & PERF_SAMPLE_TRANSACTION)
5923                 perf_output_put(handle, data->txn);
5924
5925         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5926                 u64 abi = data->regs_intr.abi;
5927                 /*
5928                  * If there are no regs to dump, notice it through
5929                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5930                  */
5931                 perf_output_put(handle, abi);
5932
5933                 if (abi) {
5934                         u64 mask = event->attr.sample_regs_intr;
5935
5936                         perf_output_sample_regs(handle,
5937                                                 data->regs_intr.regs,
5938                                                 mask);
5939                 }
5940         }
5941
5942         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5943                 perf_output_put(handle, data->phys_addr);
5944
5945         if (!event->attr.watermark) {
5946                 int wakeup_events = event->attr.wakeup_events;
5947
5948                 if (wakeup_events) {
5949                         struct ring_buffer *rb = handle->rb;
5950                         int events = local_inc_return(&rb->events);
5951
5952                         if (events >= wakeup_events) {
5953                                 local_sub(wakeup_events, &rb->events);
5954                                 local_inc(&rb->wakeup);
5955                         }
5956                 }
5957         }
5958 }
5959
5960 static u64 perf_virt_to_phys(u64 virt)
5961 {
5962         u64 phys_addr = 0;
5963         struct page *p = NULL;
5964
5965         if (!virt)
5966                 return 0;
5967
5968         if (virt >= TASK_SIZE) {
5969                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5970                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5971                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
5972                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5973         } else {
5974                 /*
5975                  * Walking the pages tables for user address.
5976                  * Interrupts are disabled, so it prevents any tear down
5977                  * of the page tables.
5978                  * Try IRQ-safe __get_user_pages_fast first.
5979                  * If failed, leave phys_addr as 0.
5980                  */
5981                 if ((current->mm != NULL) &&
5982                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5983                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5984
5985                 if (p)
5986                         put_page(p);
5987         }
5988
5989         return phys_addr;
5990 }
5991
5992 void perf_prepare_sample(struct perf_event_header *header,
5993                          struct perf_sample_data *data,
5994                          struct perf_event *event,
5995                          struct pt_regs *regs)
5996 {
5997         u64 sample_type = event->attr.sample_type;
5998
5999         header->type = PERF_RECORD_SAMPLE;
6000         header->size = sizeof(*header) + event->header_size;
6001
6002         header->misc = 0;
6003         header->misc |= perf_misc_flags(regs);
6004
6005         __perf_event_header__init_id(header, data, event);
6006
6007         if (sample_type & PERF_SAMPLE_IP)
6008                 data->ip = perf_instruction_pointer(regs);
6009
6010         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6011                 int size = 1;
6012
6013                 data->callchain = perf_callchain(event, regs);
6014
6015                 if (data->callchain)
6016                         size += data->callchain->nr;
6017
6018                 header->size += size * sizeof(u64);
6019         }
6020
6021         if (sample_type & PERF_SAMPLE_RAW) {
6022                 struct perf_raw_record *raw = data->raw;
6023                 int size;
6024
6025                 if (raw) {
6026                         struct perf_raw_frag *frag = &raw->frag;
6027                         u32 sum = 0;
6028
6029                         do {
6030                                 sum += frag->size;
6031                                 if (perf_raw_frag_last(frag))
6032                                         break;
6033                                 frag = frag->next;
6034                         } while (1);
6035
6036                         size = round_up(sum + sizeof(u32), sizeof(u64));
6037                         raw->size = size - sizeof(u32);
6038                         frag->pad = raw->size - sum;
6039                 } else {
6040                         size = sizeof(u64);
6041                 }
6042
6043                 header->size += size;
6044         }
6045
6046         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6047                 int size = sizeof(u64); /* nr */
6048                 if (data->br_stack) {
6049                         size += data->br_stack->nr
6050                               * sizeof(struct perf_branch_entry);
6051                 }
6052                 header->size += size;
6053         }
6054
6055         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6056                 perf_sample_regs_user(&data->regs_user, regs,
6057                                       &data->regs_user_copy);
6058
6059         if (sample_type & PERF_SAMPLE_REGS_USER) {
6060                 /* regs dump ABI info */
6061                 int size = sizeof(u64);
6062
6063                 if (data->regs_user.regs) {
6064                         u64 mask = event->attr.sample_regs_user;
6065                         size += hweight64(mask) * sizeof(u64);
6066                 }
6067
6068                 header->size += size;
6069         }
6070
6071         if (sample_type & PERF_SAMPLE_STACK_USER) {
6072                 /*
6073                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6074                  * processed as the last one or have additional check added
6075                  * in case new sample type is added, because we could eat
6076                  * up the rest of the sample size.
6077                  */
6078                 u16 stack_size = event->attr.sample_stack_user;
6079                 u16 size = sizeof(u64);
6080
6081                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6082                                                      data->regs_user.regs);
6083
6084                 /*
6085                  * If there is something to dump, add space for the dump
6086                  * itself and for the field that tells the dynamic size,
6087                  * which is how many have been actually dumped.
6088                  */
6089                 if (stack_size)
6090                         size += sizeof(u64) + stack_size;
6091
6092                 data->stack_user_size = stack_size;
6093                 header->size += size;
6094         }
6095
6096         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6097                 /* regs dump ABI info */
6098                 int size = sizeof(u64);
6099
6100                 perf_sample_regs_intr(&data->regs_intr, regs);
6101
6102                 if (data->regs_intr.regs) {
6103                         u64 mask = event->attr.sample_regs_intr;
6104
6105                         size += hweight64(mask) * sizeof(u64);
6106                 }
6107
6108                 header->size += size;
6109         }
6110
6111         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6112                 data->phys_addr = perf_virt_to_phys(data->addr);
6113 }
6114
6115 static void __always_inline
6116 __perf_event_output(struct perf_event *event,
6117                     struct perf_sample_data *data,
6118                     struct pt_regs *regs,
6119                     int (*output_begin)(struct perf_output_handle *,
6120                                         struct perf_event *,
6121                                         unsigned int))
6122 {
6123         struct perf_output_handle handle;
6124         struct perf_event_header header;
6125
6126         /* protect the callchain buffers */
6127         rcu_read_lock();
6128
6129         perf_prepare_sample(&header, data, event, regs);
6130
6131         if (output_begin(&handle, event, header.size))
6132                 goto exit;
6133
6134         perf_output_sample(&handle, &header, data, event);
6135
6136         perf_output_end(&handle);
6137
6138 exit:
6139         rcu_read_unlock();
6140 }
6141
6142 void
6143 perf_event_output_forward(struct perf_event *event,
6144                          struct perf_sample_data *data,
6145                          struct pt_regs *regs)
6146 {
6147         __perf_event_output(event, data, regs, perf_output_begin_forward);
6148 }
6149
6150 void
6151 perf_event_output_backward(struct perf_event *event,
6152                            struct perf_sample_data *data,
6153                            struct pt_regs *regs)
6154 {
6155         __perf_event_output(event, data, regs, perf_output_begin_backward);
6156 }
6157
6158 void
6159 perf_event_output(struct perf_event *event,
6160                   struct perf_sample_data *data,
6161                   struct pt_regs *regs)
6162 {
6163         __perf_event_output(event, data, regs, perf_output_begin);
6164 }
6165
6166 /*
6167  * read event_id
6168  */
6169
6170 struct perf_read_event {
6171         struct perf_event_header        header;
6172
6173         u32                             pid;
6174         u32                             tid;
6175 };
6176
6177 static void
6178 perf_event_read_event(struct perf_event *event,
6179                         struct task_struct *task)
6180 {
6181         struct perf_output_handle handle;
6182         struct perf_sample_data sample;
6183         struct perf_read_event read_event = {
6184                 .header = {
6185                         .type = PERF_RECORD_READ,
6186                         .misc = 0,
6187                         .size = sizeof(read_event) + event->read_size,
6188                 },
6189                 .pid = perf_event_pid(event, task),
6190                 .tid = perf_event_tid(event, task),
6191         };
6192         int ret;
6193
6194         perf_event_header__init_id(&read_event.header, &sample, event);
6195         ret = perf_output_begin(&handle, event, read_event.header.size);
6196         if (ret)
6197                 return;
6198
6199         perf_output_put(&handle, read_event);
6200         perf_output_read(&handle, event);
6201         perf_event__output_id_sample(event, &handle, &sample);
6202
6203         perf_output_end(&handle);
6204 }
6205
6206 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6207
6208 static void
6209 perf_iterate_ctx(struct perf_event_context *ctx,
6210                    perf_iterate_f output,
6211                    void *data, bool all)
6212 {
6213         struct perf_event *event;
6214
6215         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6216                 if (!all) {
6217                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6218                                 continue;
6219                         if (!event_filter_match(event))
6220                                 continue;
6221                 }
6222
6223                 output(event, data);
6224         }
6225 }
6226
6227 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6228 {
6229         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6230         struct perf_event *event;
6231
6232         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6233                 /*
6234                  * Skip events that are not fully formed yet; ensure that
6235                  * if we observe event->ctx, both event and ctx will be
6236                  * complete enough. See perf_install_in_context().
6237                  */
6238                 if (!smp_load_acquire(&event->ctx))
6239                         continue;
6240
6241                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6242                         continue;
6243                 if (!event_filter_match(event))
6244                         continue;
6245                 output(event, data);
6246         }
6247 }
6248
6249 /*
6250  * Iterate all events that need to receive side-band events.
6251  *
6252  * For new callers; ensure that account_pmu_sb_event() includes
6253  * your event, otherwise it might not get delivered.
6254  */
6255 static void
6256 perf_iterate_sb(perf_iterate_f output, void *data,
6257                struct perf_event_context *task_ctx)
6258 {
6259         struct perf_event_context *ctx;
6260         int ctxn;
6261
6262         rcu_read_lock();
6263         preempt_disable();
6264
6265         /*
6266          * If we have task_ctx != NULL we only notify the task context itself.
6267          * The task_ctx is set only for EXIT events before releasing task
6268          * context.
6269          */
6270         if (task_ctx) {
6271                 perf_iterate_ctx(task_ctx, output, data, false);
6272                 goto done;
6273         }
6274
6275         perf_iterate_sb_cpu(output, data);
6276
6277         for_each_task_context_nr(ctxn) {
6278                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6279                 if (ctx)
6280                         perf_iterate_ctx(ctx, output, data, false);
6281         }
6282 done:
6283         preempt_enable();
6284         rcu_read_unlock();
6285 }
6286
6287 /*
6288  * Clear all file-based filters at exec, they'll have to be
6289  * re-instated when/if these objects are mmapped again.
6290  */
6291 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6292 {
6293         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6294         struct perf_addr_filter *filter;
6295         unsigned int restart = 0, count = 0;
6296         unsigned long flags;
6297
6298         if (!has_addr_filter(event))
6299                 return;
6300
6301         raw_spin_lock_irqsave(&ifh->lock, flags);
6302         list_for_each_entry(filter, &ifh->list, entry) {
6303                 if (filter->inode) {
6304                         event->addr_filters_offs[count] = 0;
6305                         restart++;
6306                 }
6307
6308                 count++;
6309         }
6310
6311         if (restart)
6312                 event->addr_filters_gen++;
6313         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6314
6315         if (restart)
6316                 perf_event_stop(event, 1);
6317 }
6318
6319 void perf_event_exec(void)
6320 {
6321         struct perf_event_context *ctx;
6322         int ctxn;
6323
6324         rcu_read_lock();
6325         for_each_task_context_nr(ctxn) {
6326                 ctx = current->perf_event_ctxp[ctxn];
6327                 if (!ctx)
6328                         continue;
6329
6330                 perf_event_enable_on_exec(ctxn);
6331
6332                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6333                                    true);
6334         }
6335         rcu_read_unlock();
6336 }
6337
6338 struct remote_output {
6339         struct ring_buffer      *rb;
6340         int                     err;
6341 };
6342
6343 static void __perf_event_output_stop(struct perf_event *event, void *data)
6344 {
6345         struct perf_event *parent = event->parent;
6346         struct remote_output *ro = data;
6347         struct ring_buffer *rb = ro->rb;
6348         struct stop_event_data sd = {
6349                 .event  = event,
6350         };
6351
6352         if (!has_aux(event))
6353                 return;
6354
6355         if (!parent)
6356                 parent = event;
6357
6358         /*
6359          * In case of inheritance, it will be the parent that links to the
6360          * ring-buffer, but it will be the child that's actually using it.
6361          *
6362          * We are using event::rb to determine if the event should be stopped,
6363          * however this may race with ring_buffer_attach() (through set_output),
6364          * which will make us skip the event that actually needs to be stopped.
6365          * So ring_buffer_attach() has to stop an aux event before re-assigning
6366          * its rb pointer.
6367          */
6368         if (rcu_dereference(parent->rb) == rb)
6369                 ro->err = __perf_event_stop(&sd);
6370 }
6371
6372 static int __perf_pmu_output_stop(void *info)
6373 {
6374         struct perf_event *event = info;
6375         struct pmu *pmu = event->pmu;
6376         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6377         struct remote_output ro = {
6378                 .rb     = event->rb,
6379         };
6380
6381         rcu_read_lock();
6382         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6383         if (cpuctx->task_ctx)
6384                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6385                                    &ro, false);
6386         rcu_read_unlock();
6387
6388         return ro.err;
6389 }
6390
6391 static void perf_pmu_output_stop(struct perf_event *event)
6392 {
6393         struct perf_event *iter;
6394         int err, cpu;
6395
6396 restart:
6397         rcu_read_lock();
6398         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6399                 /*
6400                  * For per-CPU events, we need to make sure that neither they
6401                  * nor their children are running; for cpu==-1 events it's
6402                  * sufficient to stop the event itself if it's active, since
6403                  * it can't have children.
6404                  */
6405                 cpu = iter->cpu;
6406                 if (cpu == -1)
6407                         cpu = READ_ONCE(iter->oncpu);
6408
6409                 if (cpu == -1)
6410                         continue;
6411
6412                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6413                 if (err == -EAGAIN) {
6414                         rcu_read_unlock();
6415                         goto restart;
6416                 }
6417         }
6418         rcu_read_unlock();
6419 }
6420
6421 /*
6422  * task tracking -- fork/exit
6423  *
6424  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6425  */
6426
6427 struct perf_task_event {
6428         struct task_struct              *task;
6429         struct perf_event_context       *task_ctx;
6430
6431         struct {
6432                 struct perf_event_header        header;
6433
6434                 u32                             pid;
6435                 u32                             ppid;
6436                 u32                             tid;
6437                 u32                             ptid;
6438                 u64                             time;
6439         } event_id;
6440 };
6441
6442 static int perf_event_task_match(struct perf_event *event)
6443 {
6444         return event->attr.comm  || event->attr.mmap ||
6445                event->attr.mmap2 || event->attr.mmap_data ||
6446                event->attr.task;
6447 }
6448
6449 static void perf_event_task_output(struct perf_event *event,
6450                                    void *data)
6451 {
6452         struct perf_task_event *task_event = data;
6453         struct perf_output_handle handle;
6454         struct perf_sample_data sample;
6455         struct task_struct *task = task_event->task;
6456         int ret, size = task_event->event_id.header.size;
6457
6458         if (!perf_event_task_match(event))
6459                 return;
6460
6461         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6462
6463         ret = perf_output_begin(&handle, event,
6464                                 task_event->event_id.header.size);
6465         if (ret)
6466                 goto out;
6467
6468         task_event->event_id.pid = perf_event_pid(event, task);
6469         task_event->event_id.ppid = perf_event_pid(event, current);
6470
6471         task_event->event_id.tid = perf_event_tid(event, task);
6472         task_event->event_id.ptid = perf_event_tid(event, current);
6473
6474         task_event->event_id.time = perf_event_clock(event);
6475
6476         perf_output_put(&handle, task_event->event_id);
6477
6478         perf_event__output_id_sample(event, &handle, &sample);
6479
6480         perf_output_end(&handle);
6481 out:
6482         task_event->event_id.header.size = size;
6483 }
6484
6485 static void perf_event_task(struct task_struct *task,
6486                               struct perf_event_context *task_ctx,
6487                               int new)
6488 {
6489         struct perf_task_event task_event;
6490
6491         if (!atomic_read(&nr_comm_events) &&
6492             !atomic_read(&nr_mmap_events) &&
6493             !atomic_read(&nr_task_events))
6494                 return;
6495
6496         task_event = (struct perf_task_event){
6497                 .task     = task,
6498                 .task_ctx = task_ctx,
6499                 .event_id    = {
6500                         .header = {
6501                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6502                                 .misc = 0,
6503                                 .size = sizeof(task_event.event_id),
6504                         },
6505                         /* .pid  */
6506                         /* .ppid */
6507                         /* .tid  */
6508                         /* .ptid */
6509                         /* .time */
6510                 },
6511         };
6512
6513         perf_iterate_sb(perf_event_task_output,
6514                        &task_event,
6515                        task_ctx);
6516 }
6517
6518 void perf_event_fork(struct task_struct *task)
6519 {
6520         perf_event_task(task, NULL, 1);
6521         perf_event_namespaces(task);
6522 }
6523
6524 /*
6525  * comm tracking
6526  */
6527
6528 struct perf_comm_event {
6529         struct task_struct      *task;
6530         char                    *comm;
6531         int                     comm_size;
6532
6533         struct {
6534                 struct perf_event_header        header;
6535
6536                 u32                             pid;
6537                 u32                             tid;
6538         } event_id;
6539 };
6540
6541 static int perf_event_comm_match(struct perf_event *event)
6542 {
6543         return event->attr.comm;
6544 }
6545
6546 static void perf_event_comm_output(struct perf_event *event,
6547                                    void *data)
6548 {
6549         struct perf_comm_event *comm_event = data;
6550         struct perf_output_handle handle;
6551         struct perf_sample_data sample;
6552         int size = comm_event->event_id.header.size;
6553         int ret;
6554
6555         if (!perf_event_comm_match(event))
6556                 return;
6557
6558         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6559         ret = perf_output_begin(&handle, event,
6560                                 comm_event->event_id.header.size);
6561
6562         if (ret)
6563                 goto out;
6564
6565         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6566         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6567
6568         perf_output_put(&handle, comm_event->event_id);
6569         __output_copy(&handle, comm_event->comm,
6570                                    comm_event->comm_size);
6571
6572         perf_event__output_id_sample(event, &handle, &sample);
6573
6574         perf_output_end(&handle);
6575 out:
6576         comm_event->event_id.header.size = size;
6577 }
6578
6579 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6580 {
6581         char comm[TASK_COMM_LEN];
6582         unsigned int size;
6583
6584         memset(comm, 0, sizeof(comm));
6585         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6586         size = ALIGN(strlen(comm)+1, sizeof(u64));
6587
6588         comm_event->comm = comm;
6589         comm_event->comm_size = size;
6590
6591         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6592
6593         perf_iterate_sb(perf_event_comm_output,
6594                        comm_event,
6595                        NULL);
6596 }
6597
6598 void perf_event_comm(struct task_struct *task, bool exec)
6599 {
6600         struct perf_comm_event comm_event;
6601
6602         if (!atomic_read(&nr_comm_events))
6603                 return;
6604
6605         comm_event = (struct perf_comm_event){
6606                 .task   = task,
6607                 /* .comm      */
6608                 /* .comm_size */
6609                 .event_id  = {
6610                         .header = {
6611                                 .type = PERF_RECORD_COMM,
6612                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6613                                 /* .size */
6614                         },
6615                         /* .pid */
6616                         /* .tid */
6617                 },
6618         };
6619
6620         perf_event_comm_event(&comm_event);
6621 }
6622
6623 /*
6624  * namespaces tracking
6625  */
6626
6627 struct perf_namespaces_event {
6628         struct task_struct              *task;
6629
6630         struct {
6631                 struct perf_event_header        header;
6632
6633                 u32                             pid;
6634                 u32                             tid;
6635                 u64                             nr_namespaces;
6636                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6637         } event_id;
6638 };
6639
6640 static int perf_event_namespaces_match(struct perf_event *event)
6641 {
6642         return event->attr.namespaces;
6643 }
6644
6645 static void perf_event_namespaces_output(struct perf_event *event,
6646                                          void *data)
6647 {
6648         struct perf_namespaces_event *namespaces_event = data;
6649         struct perf_output_handle handle;
6650         struct perf_sample_data sample;
6651         u16 header_size = namespaces_event->event_id.header.size;
6652         int ret;
6653
6654         if (!perf_event_namespaces_match(event))
6655                 return;
6656
6657         perf_event_header__init_id(&namespaces_event->event_id.header,
6658                                    &sample, event);
6659         ret = perf_output_begin(&handle, event,
6660                                 namespaces_event->event_id.header.size);
6661         if (ret)
6662                 goto out;
6663
6664         namespaces_event->event_id.pid = perf_event_pid(event,
6665                                                         namespaces_event->task);
6666         namespaces_event->event_id.tid = perf_event_tid(event,
6667                                                         namespaces_event->task);
6668
6669         perf_output_put(&handle, namespaces_event->event_id);
6670
6671         perf_event__output_id_sample(event, &handle, &sample);
6672
6673         perf_output_end(&handle);
6674 out:
6675         namespaces_event->event_id.header.size = header_size;
6676 }
6677
6678 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6679                                    struct task_struct *task,
6680                                    const struct proc_ns_operations *ns_ops)
6681 {
6682         struct path ns_path;
6683         struct inode *ns_inode;
6684         void *error;
6685
6686         error = ns_get_path(&ns_path, task, ns_ops);
6687         if (!error) {
6688                 ns_inode = ns_path.dentry->d_inode;
6689                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6690                 ns_link_info->ino = ns_inode->i_ino;
6691                 path_put(&ns_path);
6692         }
6693 }
6694
6695 void perf_event_namespaces(struct task_struct *task)
6696 {
6697         struct perf_namespaces_event namespaces_event;
6698         struct perf_ns_link_info *ns_link_info;
6699
6700         if (!atomic_read(&nr_namespaces_events))
6701                 return;
6702
6703         namespaces_event = (struct perf_namespaces_event){
6704                 .task   = task,
6705                 .event_id  = {
6706                         .header = {
6707                                 .type = PERF_RECORD_NAMESPACES,
6708                                 .misc = 0,
6709                                 .size = sizeof(namespaces_event.event_id),
6710                         },
6711                         /* .pid */
6712                         /* .tid */
6713                         .nr_namespaces = NR_NAMESPACES,
6714                         /* .link_info[NR_NAMESPACES] */
6715                 },
6716         };
6717
6718         ns_link_info = namespaces_event.event_id.link_info;
6719
6720         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6721                                task, &mntns_operations);
6722
6723 #ifdef CONFIG_USER_NS
6724         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6725                                task, &userns_operations);
6726 #endif
6727 #ifdef CONFIG_NET_NS
6728         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6729                                task, &netns_operations);
6730 #endif
6731 #ifdef CONFIG_UTS_NS
6732         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6733                                task, &utsns_operations);
6734 #endif
6735 #ifdef CONFIG_IPC_NS
6736         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6737                                task, &ipcns_operations);
6738 #endif
6739 #ifdef CONFIG_PID_NS
6740         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6741                                task, &pidns_operations);
6742 #endif
6743 #ifdef CONFIG_CGROUPS
6744         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6745                                task, &cgroupns_operations);
6746 #endif
6747
6748         perf_iterate_sb(perf_event_namespaces_output,
6749                         &namespaces_event,
6750                         NULL);
6751 }
6752
6753 /*
6754  * mmap tracking
6755  */
6756
6757 struct perf_mmap_event {
6758         struct vm_area_struct   *vma;
6759
6760         const char              *file_name;
6761         int                     file_size;
6762         int                     maj, min;
6763         u64                     ino;
6764         u64                     ino_generation;
6765         u32                     prot, flags;
6766
6767         struct {
6768                 struct perf_event_header        header;
6769
6770                 u32                             pid;
6771                 u32                             tid;
6772                 u64                             start;
6773                 u64                             len;
6774                 u64                             pgoff;
6775         } event_id;
6776 };
6777
6778 static int perf_event_mmap_match(struct perf_event *event,
6779                                  void *data)
6780 {
6781         struct perf_mmap_event *mmap_event = data;
6782         struct vm_area_struct *vma = mmap_event->vma;
6783         int executable = vma->vm_flags & VM_EXEC;
6784
6785         return (!executable && event->attr.mmap_data) ||
6786                (executable && (event->attr.mmap || event->attr.mmap2));
6787 }
6788
6789 static void perf_event_mmap_output(struct perf_event *event,
6790                                    void *data)
6791 {
6792         struct perf_mmap_event *mmap_event = data;
6793         struct perf_output_handle handle;
6794         struct perf_sample_data sample;
6795         int size = mmap_event->event_id.header.size;
6796         int ret;
6797
6798         if (!perf_event_mmap_match(event, data))
6799                 return;
6800
6801         if (event->attr.mmap2) {
6802                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6803                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6804                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6805                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6806                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6807                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6808                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6809         }
6810
6811         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6812         ret = perf_output_begin(&handle, event,
6813                                 mmap_event->event_id.header.size);
6814         if (ret)
6815                 goto out;
6816
6817         mmap_event->event_id.pid = perf_event_pid(event, current);
6818         mmap_event->event_id.tid = perf_event_tid(event, current);
6819
6820         perf_output_put(&handle, mmap_event->event_id);
6821
6822         if (event->attr.mmap2) {
6823                 perf_output_put(&handle, mmap_event->maj);
6824                 perf_output_put(&handle, mmap_event->min);
6825                 perf_output_put(&handle, mmap_event->ino);
6826                 perf_output_put(&handle, mmap_event->ino_generation);
6827                 perf_output_put(&handle, mmap_event->prot);
6828                 perf_output_put(&handle, mmap_event->flags);
6829         }
6830
6831         __output_copy(&handle, mmap_event->file_name,
6832                                    mmap_event->file_size);
6833
6834         perf_event__output_id_sample(event, &handle, &sample);
6835
6836         perf_output_end(&handle);
6837 out:
6838         mmap_event->event_id.header.size = size;
6839 }
6840
6841 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6842 {
6843         struct vm_area_struct *vma = mmap_event->vma;
6844         struct file *file = vma->vm_file;
6845         int maj = 0, min = 0;
6846         u64 ino = 0, gen = 0;
6847         u32 prot = 0, flags = 0;
6848         unsigned int size;
6849         char tmp[16];
6850         char *buf = NULL;
6851         char *name;
6852
6853         if (vma->vm_flags & VM_READ)
6854                 prot |= PROT_READ;
6855         if (vma->vm_flags & VM_WRITE)
6856                 prot |= PROT_WRITE;
6857         if (vma->vm_flags & VM_EXEC)
6858                 prot |= PROT_EXEC;
6859
6860         if (vma->vm_flags & VM_MAYSHARE)
6861                 flags = MAP_SHARED;
6862         else
6863                 flags = MAP_PRIVATE;
6864
6865         if (vma->vm_flags & VM_DENYWRITE)
6866                 flags |= MAP_DENYWRITE;
6867         if (vma->vm_flags & VM_MAYEXEC)
6868                 flags |= MAP_EXECUTABLE;
6869         if (vma->vm_flags & VM_LOCKED)
6870                 flags |= MAP_LOCKED;
6871         if (vma->vm_flags & VM_HUGETLB)
6872                 flags |= MAP_HUGETLB;
6873
6874         if (file) {
6875                 struct inode *inode;
6876                 dev_t dev;
6877
6878                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6879                 if (!buf) {
6880                         name = "//enomem";
6881                         goto cpy_name;
6882                 }
6883                 /*
6884                  * d_path() works from the end of the rb backwards, so we
6885                  * need to add enough zero bytes after the string to handle
6886                  * the 64bit alignment we do later.
6887                  */
6888                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6889                 if (IS_ERR(name)) {
6890                         name = "//toolong";
6891                         goto cpy_name;
6892                 }
6893                 inode = file_inode(vma->vm_file);
6894                 dev = inode->i_sb->s_dev;
6895                 ino = inode->i_ino;
6896                 gen = inode->i_generation;
6897                 maj = MAJOR(dev);
6898                 min = MINOR(dev);
6899
6900                 goto got_name;
6901         } else {
6902                 if (vma->vm_ops && vma->vm_ops->name) {
6903                         name = (char *) vma->vm_ops->name(vma);
6904                         if (name)
6905                                 goto cpy_name;
6906                 }
6907
6908                 name = (char *)arch_vma_name(vma);
6909                 if (name)
6910                         goto cpy_name;
6911
6912                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6913                                 vma->vm_end >= vma->vm_mm->brk) {
6914                         name = "[heap]";
6915                         goto cpy_name;
6916                 }
6917                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6918                                 vma->vm_end >= vma->vm_mm->start_stack) {
6919                         name = "[stack]";
6920                         goto cpy_name;
6921                 }
6922
6923                 name = "//anon";
6924                 goto cpy_name;
6925         }
6926
6927 cpy_name:
6928         strlcpy(tmp, name, sizeof(tmp));
6929         name = tmp;
6930 got_name:
6931         /*
6932          * Since our buffer works in 8 byte units we need to align our string
6933          * size to a multiple of 8. However, we must guarantee the tail end is
6934          * zero'd out to avoid leaking random bits to userspace.
6935          */
6936         size = strlen(name)+1;
6937         while (!IS_ALIGNED(size, sizeof(u64)))
6938                 name[size++] = '\0';
6939
6940         mmap_event->file_name = name;
6941         mmap_event->file_size = size;
6942         mmap_event->maj = maj;
6943         mmap_event->min = min;
6944         mmap_event->ino = ino;
6945         mmap_event->ino_generation = gen;
6946         mmap_event->prot = prot;
6947         mmap_event->flags = flags;
6948
6949         if (!(vma->vm_flags & VM_EXEC))
6950                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6951
6952         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6953
6954         perf_iterate_sb(perf_event_mmap_output,
6955                        mmap_event,
6956                        NULL);
6957
6958         kfree(buf);
6959 }
6960
6961 /*
6962  * Check whether inode and address range match filter criteria.
6963  */
6964 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6965                                      struct file *file, unsigned long offset,
6966                                      unsigned long size)
6967 {
6968         if (filter->inode != file_inode(file))
6969                 return false;
6970
6971         if (filter->offset > offset + size)
6972                 return false;
6973
6974         if (filter->offset + filter->size < offset)
6975                 return false;
6976
6977         return true;
6978 }
6979
6980 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6981 {
6982         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6983         struct vm_area_struct *vma = data;
6984         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6985         struct file *file = vma->vm_file;
6986         struct perf_addr_filter *filter;
6987         unsigned int restart = 0, count = 0;
6988
6989         if (!has_addr_filter(event))
6990                 return;
6991
6992         if (!file)
6993                 return;
6994
6995         raw_spin_lock_irqsave(&ifh->lock, flags);
6996         list_for_each_entry(filter, &ifh->list, entry) {
6997                 if (perf_addr_filter_match(filter, file, off,
6998                                              vma->vm_end - vma->vm_start)) {
6999                         event->addr_filters_offs[count] = vma->vm_start;
7000                         restart++;
7001                 }
7002
7003                 count++;
7004         }
7005
7006         if (restart)
7007                 event->addr_filters_gen++;
7008         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7009
7010         if (restart)
7011                 perf_event_stop(event, 1);
7012 }
7013
7014 /*
7015  * Adjust all task's events' filters to the new vma
7016  */
7017 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7018 {
7019         struct perf_event_context *ctx;
7020         int ctxn;
7021
7022         /*
7023          * Data tracing isn't supported yet and as such there is no need
7024          * to keep track of anything that isn't related to executable code:
7025          */
7026         if (!(vma->vm_flags & VM_EXEC))
7027                 return;
7028
7029         rcu_read_lock();
7030         for_each_task_context_nr(ctxn) {
7031                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7032                 if (!ctx)
7033                         continue;
7034
7035                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7036         }
7037         rcu_read_unlock();
7038 }
7039
7040 void perf_event_mmap(struct vm_area_struct *vma)
7041 {
7042         struct perf_mmap_event mmap_event;
7043
7044         if (!atomic_read(&nr_mmap_events))
7045                 return;
7046
7047         mmap_event = (struct perf_mmap_event){
7048                 .vma    = vma,
7049                 /* .file_name */
7050                 /* .file_size */
7051                 .event_id  = {
7052                         .header = {
7053                                 .type = PERF_RECORD_MMAP,
7054                                 .misc = PERF_RECORD_MISC_USER,
7055                                 /* .size */
7056                         },
7057                         /* .pid */
7058                         /* .tid */
7059                         .start  = vma->vm_start,
7060                         .len    = vma->vm_end - vma->vm_start,
7061                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7062                 },
7063                 /* .maj (attr_mmap2 only) */
7064                 /* .min (attr_mmap2 only) */
7065                 /* .ino (attr_mmap2 only) */
7066                 /* .ino_generation (attr_mmap2 only) */
7067                 /* .prot (attr_mmap2 only) */
7068                 /* .flags (attr_mmap2 only) */
7069         };
7070
7071         perf_addr_filters_adjust(vma);
7072         perf_event_mmap_event(&mmap_event);
7073 }
7074
7075 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7076                           unsigned long size, u64 flags)
7077 {
7078         struct perf_output_handle handle;
7079         struct perf_sample_data sample;
7080         struct perf_aux_event {
7081                 struct perf_event_header        header;
7082                 u64                             offset;
7083                 u64                             size;
7084                 u64                             flags;
7085         } rec = {
7086                 .header = {
7087                         .type = PERF_RECORD_AUX,
7088                         .misc = 0,
7089                         .size = sizeof(rec),
7090                 },
7091                 .offset         = head,
7092                 .size           = size,
7093                 .flags          = flags,
7094         };
7095         int ret;
7096
7097         perf_event_header__init_id(&rec.header, &sample, event);
7098         ret = perf_output_begin(&handle, event, rec.header.size);
7099
7100         if (ret)
7101                 return;
7102
7103         perf_output_put(&handle, rec);
7104         perf_event__output_id_sample(event, &handle, &sample);
7105
7106         perf_output_end(&handle);
7107 }
7108
7109 /*
7110  * Lost/dropped samples logging
7111  */
7112 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7113 {
7114         struct perf_output_handle handle;
7115         struct perf_sample_data sample;
7116         int ret;
7117
7118         struct {
7119                 struct perf_event_header        header;
7120                 u64                             lost;
7121         } lost_samples_event = {
7122                 .header = {
7123                         .type = PERF_RECORD_LOST_SAMPLES,
7124                         .misc = 0,
7125                         .size = sizeof(lost_samples_event),
7126                 },
7127                 .lost           = lost,
7128         };
7129
7130         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7131
7132         ret = perf_output_begin(&handle, event,
7133                                 lost_samples_event.header.size);
7134         if (ret)
7135                 return;
7136
7137         perf_output_put(&handle, lost_samples_event);
7138         perf_event__output_id_sample(event, &handle, &sample);
7139         perf_output_end(&handle);
7140 }
7141
7142 /*
7143  * context_switch tracking
7144  */
7145
7146 struct perf_switch_event {
7147         struct task_struct      *task;
7148         struct task_struct      *next_prev;
7149
7150         struct {
7151                 struct perf_event_header        header;
7152                 u32                             next_prev_pid;
7153                 u32                             next_prev_tid;
7154         } event_id;
7155 };
7156
7157 static int perf_event_switch_match(struct perf_event *event)
7158 {
7159         return event->attr.context_switch;
7160 }
7161
7162 static void perf_event_switch_output(struct perf_event *event, void *data)
7163 {
7164         struct perf_switch_event *se = data;
7165         struct perf_output_handle handle;
7166         struct perf_sample_data sample;
7167         int ret;
7168
7169         if (!perf_event_switch_match(event))
7170                 return;
7171
7172         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7173         if (event->ctx->task) {
7174                 se->event_id.header.type = PERF_RECORD_SWITCH;
7175                 se->event_id.header.size = sizeof(se->event_id.header);
7176         } else {
7177                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7178                 se->event_id.header.size = sizeof(se->event_id);
7179                 se->event_id.next_prev_pid =
7180                                         perf_event_pid(event, se->next_prev);
7181                 se->event_id.next_prev_tid =
7182                                         perf_event_tid(event, se->next_prev);
7183         }
7184
7185         perf_event_header__init_id(&se->event_id.header, &sample, event);
7186
7187         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7188         if (ret)
7189                 return;
7190
7191         if (event->ctx->task)
7192                 perf_output_put(&handle, se->event_id.header);
7193         else
7194                 perf_output_put(&handle, se->event_id);
7195
7196         perf_event__output_id_sample(event, &handle, &sample);
7197
7198         perf_output_end(&handle);
7199 }
7200
7201 static void perf_event_switch(struct task_struct *task,
7202                               struct task_struct *next_prev, bool sched_in)
7203 {
7204         struct perf_switch_event switch_event;
7205
7206         /* N.B. caller checks nr_switch_events != 0 */
7207
7208         switch_event = (struct perf_switch_event){
7209                 .task           = task,
7210                 .next_prev      = next_prev,
7211                 .event_id       = {
7212                         .header = {
7213                                 /* .type */
7214                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7215                                 /* .size */
7216                         },
7217                         /* .next_prev_pid */
7218                         /* .next_prev_tid */
7219                 },
7220         };
7221
7222         perf_iterate_sb(perf_event_switch_output,
7223                        &switch_event,
7224                        NULL);
7225 }
7226
7227 /*
7228  * IRQ throttle logging
7229  */
7230
7231 static void perf_log_throttle(struct perf_event *event, int enable)
7232 {
7233         struct perf_output_handle handle;
7234         struct perf_sample_data sample;
7235         int ret;
7236
7237         struct {
7238                 struct perf_event_header        header;
7239                 u64                             time;
7240                 u64                             id;
7241                 u64                             stream_id;
7242         } throttle_event = {
7243                 .header = {
7244                         .type = PERF_RECORD_THROTTLE,
7245                         .misc = 0,
7246                         .size = sizeof(throttle_event),
7247                 },
7248                 .time           = perf_event_clock(event),
7249                 .id             = primary_event_id(event),
7250                 .stream_id      = event->id,
7251         };
7252
7253         if (enable)
7254                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7255
7256         perf_event_header__init_id(&throttle_event.header, &sample, event);
7257
7258         ret = perf_output_begin(&handle, event,
7259                                 throttle_event.header.size);
7260         if (ret)
7261                 return;
7262
7263         perf_output_put(&handle, throttle_event);
7264         perf_event__output_id_sample(event, &handle, &sample);
7265         perf_output_end(&handle);
7266 }
7267
7268 void perf_event_itrace_started(struct perf_event *event)
7269 {
7270         event->attach_state |= PERF_ATTACH_ITRACE;
7271 }
7272
7273 static void perf_log_itrace_start(struct perf_event *event)
7274 {
7275         struct perf_output_handle handle;
7276         struct perf_sample_data sample;
7277         struct perf_aux_event {
7278                 struct perf_event_header        header;
7279                 u32                             pid;
7280                 u32                             tid;
7281         } rec;
7282         int ret;
7283
7284         if (event->parent)
7285                 event = event->parent;
7286
7287         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7288             event->attach_state & PERF_ATTACH_ITRACE)
7289                 return;
7290
7291         rec.header.type = PERF_RECORD_ITRACE_START;
7292         rec.header.misc = 0;
7293         rec.header.size = sizeof(rec);
7294         rec.pid = perf_event_pid(event, current);
7295         rec.tid = perf_event_tid(event, current);
7296
7297         perf_event_header__init_id(&rec.header, &sample, event);
7298         ret = perf_output_begin(&handle, event, rec.header.size);
7299
7300         if (ret)
7301                 return;
7302
7303         perf_output_put(&handle, rec);
7304         perf_event__output_id_sample(event, &handle, &sample);
7305
7306         perf_output_end(&handle);
7307 }
7308
7309 static int
7310 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7311 {
7312         struct hw_perf_event *hwc = &event->hw;
7313         int ret = 0;
7314         u64 seq;
7315
7316         seq = __this_cpu_read(perf_throttled_seq);
7317         if (seq != hwc->interrupts_seq) {
7318                 hwc->interrupts_seq = seq;
7319                 hwc->interrupts = 1;
7320         } else {
7321                 hwc->interrupts++;
7322                 if (unlikely(throttle
7323                              && hwc->interrupts >= max_samples_per_tick)) {
7324                         __this_cpu_inc(perf_throttled_count);
7325                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7326                         hwc->interrupts = MAX_INTERRUPTS;
7327                         perf_log_throttle(event, 0);
7328                         ret = 1;
7329                 }
7330         }
7331
7332         if (event->attr.freq) {
7333                 u64 now = perf_clock();
7334                 s64 delta = now - hwc->freq_time_stamp;
7335
7336                 hwc->freq_time_stamp = now;
7337
7338                 if (delta > 0 && delta < 2*TICK_NSEC)
7339                         perf_adjust_period(event, delta, hwc->last_period, true);
7340         }
7341
7342         return ret;
7343 }
7344
7345 int perf_event_account_interrupt(struct perf_event *event)
7346 {
7347         return __perf_event_account_interrupt(event, 1);
7348 }
7349
7350 /*
7351  * Generic event overflow handling, sampling.
7352  */
7353
7354 static int __perf_event_overflow(struct perf_event *event,
7355                                    int throttle, struct perf_sample_data *data,
7356                                    struct pt_regs *regs)
7357 {
7358         int events = atomic_read(&event->event_limit);
7359         int ret = 0;
7360
7361         /*
7362          * Non-sampling counters might still use the PMI to fold short
7363          * hardware counters, ignore those.
7364          */
7365         if (unlikely(!is_sampling_event(event)))
7366                 return 0;
7367
7368         ret = __perf_event_account_interrupt(event, throttle);
7369
7370         /*
7371          * XXX event_limit might not quite work as expected on inherited
7372          * events
7373          */
7374
7375         event->pending_kill = POLL_IN;
7376         if (events && atomic_dec_and_test(&event->event_limit)) {
7377                 ret = 1;
7378                 event->pending_kill = POLL_HUP;
7379
7380                 perf_event_disable_inatomic(event);
7381         }
7382
7383         READ_ONCE(event->overflow_handler)(event, data, regs);
7384
7385         if (*perf_event_fasync(event) && event->pending_kill) {
7386                 event->pending_wakeup = 1;
7387                 irq_work_queue(&event->pending);
7388         }
7389
7390         return ret;
7391 }
7392
7393 int perf_event_overflow(struct perf_event *event,
7394                           struct perf_sample_data *data,
7395                           struct pt_regs *regs)
7396 {
7397         return __perf_event_overflow(event, 1, data, regs);
7398 }
7399
7400 /*
7401  * Generic software event infrastructure
7402  */
7403
7404 struct swevent_htable {
7405         struct swevent_hlist            *swevent_hlist;
7406         struct mutex                    hlist_mutex;
7407         int                             hlist_refcount;
7408
7409         /* Recursion avoidance in each contexts */
7410         int                             recursion[PERF_NR_CONTEXTS];
7411 };
7412
7413 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7414
7415 /*
7416  * We directly increment event->count and keep a second value in
7417  * event->hw.period_left to count intervals. This period event
7418  * is kept in the range [-sample_period, 0] so that we can use the
7419  * sign as trigger.
7420  */
7421
7422 u64 perf_swevent_set_period(struct perf_event *event)
7423 {
7424         struct hw_perf_event *hwc = &event->hw;
7425         u64 period = hwc->last_period;
7426         u64 nr, offset;
7427         s64 old, val;
7428
7429         hwc->last_period = hwc->sample_period;
7430
7431 again:
7432         old = val = local64_read(&hwc->period_left);
7433         if (val < 0)
7434                 return 0;
7435
7436         nr = div64_u64(period + val, period);
7437         offset = nr * period;
7438         val -= offset;
7439         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7440                 goto again;
7441
7442         return nr;
7443 }
7444
7445 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7446                                     struct perf_sample_data *data,
7447                                     struct pt_regs *regs)
7448 {
7449         struct hw_perf_event *hwc = &event->hw;
7450         int throttle = 0;
7451
7452         if (!overflow)
7453                 overflow = perf_swevent_set_period(event);
7454
7455         if (hwc->interrupts == MAX_INTERRUPTS)
7456                 return;
7457
7458         for (; overflow; overflow--) {
7459                 if (__perf_event_overflow(event, throttle,
7460                                             data, regs)) {
7461                         /*
7462                          * We inhibit the overflow from happening when
7463                          * hwc->interrupts == MAX_INTERRUPTS.
7464                          */
7465                         break;
7466                 }
7467                 throttle = 1;
7468         }
7469 }
7470
7471 static void perf_swevent_event(struct perf_event *event, u64 nr,
7472                                struct perf_sample_data *data,
7473                                struct pt_regs *regs)
7474 {
7475         struct hw_perf_event *hwc = &event->hw;
7476
7477         local64_add(nr, &event->count);
7478
7479         if (!regs)
7480                 return;
7481
7482         if (!is_sampling_event(event))
7483                 return;
7484
7485         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7486                 data->period = nr;
7487                 return perf_swevent_overflow(event, 1, data, regs);
7488         } else
7489                 data->period = event->hw.last_period;
7490
7491         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7492                 return perf_swevent_overflow(event, 1, data, regs);
7493
7494         if (local64_add_negative(nr, &hwc->period_left))
7495                 return;
7496
7497         perf_swevent_overflow(event, 0, data, regs);
7498 }
7499
7500 static int perf_exclude_event(struct perf_event *event,
7501                               struct pt_regs *regs)
7502 {
7503         if (event->hw.state & PERF_HES_STOPPED)
7504                 return 1;
7505
7506         if (regs) {
7507                 if (event->attr.exclude_user && user_mode(regs))
7508                         return 1;
7509
7510                 if (event->attr.exclude_kernel && !user_mode(regs))
7511                         return 1;
7512         }
7513
7514         return 0;
7515 }
7516
7517 static int perf_swevent_match(struct perf_event *event,
7518                                 enum perf_type_id type,
7519                                 u32 event_id,
7520                                 struct perf_sample_data *data,
7521                                 struct pt_regs *regs)
7522 {
7523         if (event->attr.type != type)
7524                 return 0;
7525
7526         if (event->attr.config != event_id)
7527                 return 0;
7528
7529         if (perf_exclude_event(event, regs))
7530                 return 0;
7531
7532         return 1;
7533 }
7534
7535 static inline u64 swevent_hash(u64 type, u32 event_id)
7536 {
7537         u64 val = event_id | (type << 32);
7538
7539         return hash_64(val, SWEVENT_HLIST_BITS);
7540 }
7541
7542 static inline struct hlist_head *
7543 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7544 {
7545         u64 hash = swevent_hash(type, event_id);
7546
7547         return &hlist->heads[hash];
7548 }
7549
7550 /* For the read side: events when they trigger */
7551 static inline struct hlist_head *
7552 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7553 {
7554         struct swevent_hlist *hlist;
7555
7556         hlist = rcu_dereference(swhash->swevent_hlist);
7557         if (!hlist)
7558                 return NULL;
7559
7560         return __find_swevent_head(hlist, type, event_id);
7561 }
7562
7563 /* For the event head insertion and removal in the hlist */
7564 static inline struct hlist_head *
7565 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7566 {
7567         struct swevent_hlist *hlist;
7568         u32 event_id = event->attr.config;
7569         u64 type = event->attr.type;
7570
7571         /*
7572          * Event scheduling is always serialized against hlist allocation
7573          * and release. Which makes the protected version suitable here.
7574          * The context lock guarantees that.
7575          */
7576         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7577                                           lockdep_is_held(&event->ctx->lock));
7578         if (!hlist)
7579                 return NULL;
7580
7581         return __find_swevent_head(hlist, type, event_id);
7582 }
7583
7584 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7585                                     u64 nr,
7586                                     struct perf_sample_data *data,
7587                                     struct pt_regs *regs)
7588 {
7589         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7590         struct perf_event *event;
7591         struct hlist_head *head;
7592
7593         rcu_read_lock();
7594         head = find_swevent_head_rcu(swhash, type, event_id);
7595         if (!head)
7596                 goto end;
7597
7598         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7599                 if (perf_swevent_match(event, type, event_id, data, regs))
7600                         perf_swevent_event(event, nr, data, regs);
7601         }
7602 end:
7603         rcu_read_unlock();
7604 }
7605
7606 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7607
7608 int perf_swevent_get_recursion_context(void)
7609 {
7610         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7611
7612         return get_recursion_context(swhash->recursion);
7613 }
7614 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7615
7616 void perf_swevent_put_recursion_context(int rctx)
7617 {
7618         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7619
7620         put_recursion_context(swhash->recursion, rctx);
7621 }
7622
7623 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624 {
7625         struct perf_sample_data data;
7626
7627         if (WARN_ON_ONCE(!regs))
7628                 return;
7629
7630         perf_sample_data_init(&data, addr, 0);
7631         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7632 }
7633
7634 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7635 {
7636         int rctx;
7637
7638         preempt_disable_notrace();
7639         rctx = perf_swevent_get_recursion_context();
7640         if (unlikely(rctx < 0))
7641                 goto fail;
7642
7643         ___perf_sw_event(event_id, nr, regs, addr);
7644
7645         perf_swevent_put_recursion_context(rctx);
7646 fail:
7647         preempt_enable_notrace();
7648 }
7649
7650 static void perf_swevent_read(struct perf_event *event)
7651 {
7652 }
7653
7654 static int perf_swevent_add(struct perf_event *event, int flags)
7655 {
7656         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657         struct hw_perf_event *hwc = &event->hw;
7658         struct hlist_head *head;
7659
7660         if (is_sampling_event(event)) {
7661                 hwc->last_period = hwc->sample_period;
7662                 perf_swevent_set_period(event);
7663         }
7664
7665         hwc->state = !(flags & PERF_EF_START);
7666
7667         head = find_swevent_head(swhash, event);
7668         if (WARN_ON_ONCE(!head))
7669                 return -EINVAL;
7670
7671         hlist_add_head_rcu(&event->hlist_entry, head);
7672         perf_event_update_userpage(event);
7673
7674         return 0;
7675 }
7676
7677 static void perf_swevent_del(struct perf_event *event, int flags)
7678 {
7679         hlist_del_rcu(&event->hlist_entry);
7680 }
7681
7682 static void perf_swevent_start(struct perf_event *event, int flags)
7683 {
7684         event->hw.state = 0;
7685 }
7686
7687 static void perf_swevent_stop(struct perf_event *event, int flags)
7688 {
7689         event->hw.state = PERF_HES_STOPPED;
7690 }
7691
7692 /* Deref the hlist from the update side */
7693 static inline struct swevent_hlist *
7694 swevent_hlist_deref(struct swevent_htable *swhash)
7695 {
7696         return rcu_dereference_protected(swhash->swevent_hlist,
7697                                          lockdep_is_held(&swhash->hlist_mutex));
7698 }
7699
7700 static void swevent_hlist_release(struct swevent_htable *swhash)
7701 {
7702         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7703
7704         if (!hlist)
7705                 return;
7706
7707         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7708         kfree_rcu(hlist, rcu_head);
7709 }
7710
7711 static void swevent_hlist_put_cpu(int cpu)
7712 {
7713         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7714
7715         mutex_lock(&swhash->hlist_mutex);
7716
7717         if (!--swhash->hlist_refcount)
7718                 swevent_hlist_release(swhash);
7719
7720         mutex_unlock(&swhash->hlist_mutex);
7721 }
7722
7723 static void swevent_hlist_put(void)
7724 {
7725         int cpu;
7726
7727         for_each_possible_cpu(cpu)
7728                 swevent_hlist_put_cpu(cpu);
7729 }
7730
7731 static int swevent_hlist_get_cpu(int cpu)
7732 {
7733         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7734         int err = 0;
7735
7736         mutex_lock(&swhash->hlist_mutex);
7737         if (!swevent_hlist_deref(swhash) &&
7738             cpumask_test_cpu(cpu, perf_online_mask)) {
7739                 struct swevent_hlist *hlist;
7740
7741                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7742                 if (!hlist) {
7743                         err = -ENOMEM;
7744                         goto exit;
7745                 }
7746                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7747         }
7748         swhash->hlist_refcount++;
7749 exit:
7750         mutex_unlock(&swhash->hlist_mutex);
7751
7752         return err;
7753 }
7754
7755 static int swevent_hlist_get(void)
7756 {
7757         int err, cpu, failed_cpu;
7758
7759         mutex_lock(&pmus_lock);
7760         for_each_possible_cpu(cpu) {
7761                 err = swevent_hlist_get_cpu(cpu);
7762                 if (err) {
7763                         failed_cpu = cpu;
7764                         goto fail;
7765                 }
7766         }
7767         mutex_unlock(&pmus_lock);
7768         return 0;
7769 fail:
7770         for_each_possible_cpu(cpu) {
7771                 if (cpu == failed_cpu)
7772                         break;
7773                 swevent_hlist_put_cpu(cpu);
7774         }
7775         mutex_unlock(&pmus_lock);
7776         return err;
7777 }
7778
7779 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7780
7781 static void sw_perf_event_destroy(struct perf_event *event)
7782 {
7783         u64 event_id = event->attr.config;
7784
7785         WARN_ON(event->parent);
7786
7787         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7788         swevent_hlist_put();
7789 }
7790
7791 static int perf_swevent_init(struct perf_event *event)
7792 {
7793         u64 event_id = event->attr.config;
7794
7795         if (event->attr.type != PERF_TYPE_SOFTWARE)
7796                 return -ENOENT;
7797
7798         /*
7799          * no branch sampling for software events
7800          */
7801         if (has_branch_stack(event))
7802                 return -EOPNOTSUPP;
7803
7804         switch (event_id) {
7805         case PERF_COUNT_SW_CPU_CLOCK:
7806         case PERF_COUNT_SW_TASK_CLOCK:
7807                 return -ENOENT;
7808
7809         default:
7810                 break;
7811         }
7812
7813         if (event_id >= PERF_COUNT_SW_MAX)
7814                 return -ENOENT;
7815
7816         if (!event->parent) {
7817                 int err;
7818
7819                 err = swevent_hlist_get();
7820                 if (err)
7821                         return err;
7822
7823                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7824                 event->destroy = sw_perf_event_destroy;
7825         }
7826
7827         return 0;
7828 }
7829
7830 static struct pmu perf_swevent = {
7831         .task_ctx_nr    = perf_sw_context,
7832
7833         .capabilities   = PERF_PMU_CAP_NO_NMI,
7834
7835         .event_init     = perf_swevent_init,
7836         .add            = perf_swevent_add,
7837         .del            = perf_swevent_del,
7838         .start          = perf_swevent_start,
7839         .stop           = perf_swevent_stop,
7840         .read           = perf_swevent_read,
7841 };
7842
7843 #ifdef CONFIG_EVENT_TRACING
7844
7845 static int perf_tp_filter_match(struct perf_event *event,
7846                                 struct perf_sample_data *data)
7847 {
7848         void *record = data->raw->frag.data;
7849
7850         /* only top level events have filters set */
7851         if (event->parent)
7852                 event = event->parent;
7853
7854         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7855                 return 1;
7856         return 0;
7857 }
7858
7859 static int perf_tp_event_match(struct perf_event *event,
7860                                 struct perf_sample_data *data,
7861                                 struct pt_regs *regs)
7862 {
7863         if (event->hw.state & PERF_HES_STOPPED)
7864                 return 0;
7865         /*
7866          * All tracepoints are from kernel-space.
7867          */
7868         if (event->attr.exclude_kernel)
7869                 return 0;
7870
7871         if (!perf_tp_filter_match(event, data))
7872                 return 0;
7873
7874         return 1;
7875 }
7876
7877 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7878                                struct trace_event_call *call, u64 count,
7879                                struct pt_regs *regs, struct hlist_head *head,
7880                                struct task_struct *task)
7881 {
7882         if (bpf_prog_array_valid(call)) {
7883                 *(struct pt_regs **)raw_data = regs;
7884                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7885                         perf_swevent_put_recursion_context(rctx);
7886                         return;
7887                 }
7888         }
7889         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7890                       rctx, task);
7891 }
7892 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7893
7894 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7895                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7896                    struct task_struct *task)
7897 {
7898         struct perf_sample_data data;
7899         struct perf_event *event;
7900
7901         struct perf_raw_record raw = {
7902                 .frag = {
7903                         .size = entry_size,
7904                         .data = record,
7905                 },
7906         };
7907
7908         perf_sample_data_init(&data, 0, 0);
7909         data.raw = &raw;
7910
7911         perf_trace_buf_update(record, event_type);
7912
7913         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7914                 if (perf_tp_event_match(event, &data, regs))
7915                         perf_swevent_event(event, count, &data, regs);
7916         }
7917
7918         /*
7919          * If we got specified a target task, also iterate its context and
7920          * deliver this event there too.
7921          */
7922         if (task && task != current) {
7923                 struct perf_event_context *ctx;
7924                 struct trace_entry *entry = record;
7925
7926                 rcu_read_lock();
7927                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7928                 if (!ctx)
7929                         goto unlock;
7930
7931                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7932                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7933                                 continue;
7934                         if (event->attr.config != entry->type)
7935                                 continue;
7936                         if (perf_tp_event_match(event, &data, regs))
7937                                 perf_swevent_event(event, count, &data, regs);
7938                 }
7939 unlock:
7940                 rcu_read_unlock();
7941         }
7942
7943         perf_swevent_put_recursion_context(rctx);
7944 }
7945 EXPORT_SYMBOL_GPL(perf_tp_event);
7946
7947 static void tp_perf_event_destroy(struct perf_event *event)
7948 {
7949         perf_trace_destroy(event);
7950 }
7951
7952 static int perf_tp_event_init(struct perf_event *event)
7953 {
7954         int err;
7955
7956         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7957                 return -ENOENT;
7958
7959         /*
7960          * no branch sampling for tracepoint events
7961          */
7962         if (has_branch_stack(event))
7963                 return -EOPNOTSUPP;
7964
7965         err = perf_trace_init(event);
7966         if (err)
7967                 return err;
7968
7969         event->destroy = tp_perf_event_destroy;
7970
7971         return 0;
7972 }
7973
7974 static struct pmu perf_tracepoint = {
7975         .task_ctx_nr    = perf_sw_context,
7976
7977         .event_init     = perf_tp_event_init,
7978         .add            = perf_trace_add,
7979         .del            = perf_trace_del,
7980         .start          = perf_swevent_start,
7981         .stop           = perf_swevent_stop,
7982         .read           = perf_swevent_read,
7983 };
7984
7985 static inline void perf_tp_register(void)
7986 {
7987         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7988 }
7989
7990 static void perf_event_free_filter(struct perf_event *event)
7991 {
7992         ftrace_profile_free_filter(event);
7993 }
7994
7995 #ifdef CONFIG_BPF_SYSCALL
7996 static void bpf_overflow_handler(struct perf_event *event,
7997                                  struct perf_sample_data *data,
7998                                  struct pt_regs *regs)
7999 {
8000         struct bpf_perf_event_data_kern ctx = {
8001                 .data = data,
8002                 .event = event,
8003         };
8004         int ret = 0;
8005
8006         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8007         preempt_disable();
8008         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8009                 goto out;
8010         rcu_read_lock();
8011         ret = BPF_PROG_RUN(event->prog, &ctx);
8012         rcu_read_unlock();
8013 out:
8014         __this_cpu_dec(bpf_prog_active);
8015         preempt_enable();
8016         if (!ret)
8017                 return;
8018
8019         event->orig_overflow_handler(event, data, regs);
8020 }
8021
8022 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8023 {
8024         struct bpf_prog *prog;
8025
8026         if (event->overflow_handler_context)
8027                 /* hw breakpoint or kernel counter */
8028                 return -EINVAL;
8029
8030         if (event->prog)
8031                 return -EEXIST;
8032
8033         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8034         if (IS_ERR(prog))
8035                 return PTR_ERR(prog);
8036
8037         event->prog = prog;
8038         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8039         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8040         return 0;
8041 }
8042
8043 static void perf_event_free_bpf_handler(struct perf_event *event)
8044 {
8045         struct bpf_prog *prog = event->prog;
8046
8047         if (!prog)
8048                 return;
8049
8050         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8051         event->prog = NULL;
8052         bpf_prog_put(prog);
8053 }
8054 #else
8055 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8056 {
8057         return -EOPNOTSUPP;
8058 }
8059 static void perf_event_free_bpf_handler(struct perf_event *event)
8060 {
8061 }
8062 #endif
8063
8064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8065 {
8066         bool is_kprobe, is_tracepoint, is_syscall_tp;
8067         struct bpf_prog *prog;
8068         int ret;
8069
8070         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8071                 return perf_event_set_bpf_handler(event, prog_fd);
8072
8073         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8074         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8075         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8076         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8077                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8078                 return -EINVAL;
8079
8080         prog = bpf_prog_get(prog_fd);
8081         if (IS_ERR(prog))
8082                 return PTR_ERR(prog);
8083
8084         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8085             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8086             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8087                 /* valid fd, but invalid bpf program type */
8088                 bpf_prog_put(prog);
8089                 return -EINVAL;
8090         }
8091
8092         if (is_tracepoint || is_syscall_tp) {
8093                 int off = trace_event_get_offsets(event->tp_event);
8094
8095                 if (prog->aux->max_ctx_offset > off) {
8096                         bpf_prog_put(prog);
8097                         return -EACCES;
8098                 }
8099         }
8100
8101         ret = perf_event_attach_bpf_prog(event, prog);
8102         if (ret)
8103                 bpf_prog_put(prog);
8104         return ret;
8105 }
8106
8107 static void perf_event_free_bpf_prog(struct perf_event *event)
8108 {
8109         if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8110                 perf_event_free_bpf_handler(event);
8111                 return;
8112         }
8113         perf_event_detach_bpf_prog(event);
8114 }
8115
8116 #else
8117
8118 static inline void perf_tp_register(void)
8119 {
8120 }
8121
8122 static void perf_event_free_filter(struct perf_event *event)
8123 {
8124 }
8125
8126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8127 {
8128         return -ENOENT;
8129 }
8130
8131 static void perf_event_free_bpf_prog(struct perf_event *event)
8132 {
8133 }
8134 #endif /* CONFIG_EVENT_TRACING */
8135
8136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8137 void perf_bp_event(struct perf_event *bp, void *data)
8138 {
8139         struct perf_sample_data sample;
8140         struct pt_regs *regs = data;
8141
8142         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143
8144         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145                 perf_swevent_event(bp, 1, &sample, regs);
8146 }
8147 #endif
8148
8149 /*
8150  * Allocate a new address filter
8151  */
8152 static struct perf_addr_filter *
8153 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8154 {
8155         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8156         struct perf_addr_filter *filter;
8157
8158         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8159         if (!filter)
8160                 return NULL;
8161
8162         INIT_LIST_HEAD(&filter->entry);
8163         list_add_tail(&filter->entry, filters);
8164
8165         return filter;
8166 }
8167
8168 static void free_filters_list(struct list_head *filters)
8169 {
8170         struct perf_addr_filter *filter, *iter;
8171
8172         list_for_each_entry_safe(filter, iter, filters, entry) {
8173                 if (filter->inode)
8174                         iput(filter->inode);
8175                 list_del(&filter->entry);
8176                 kfree(filter);
8177         }
8178 }
8179
8180 /*
8181  * Free existing address filters and optionally install new ones
8182  */
8183 static void perf_addr_filters_splice(struct perf_event *event,
8184                                      struct list_head *head)
8185 {
8186         unsigned long flags;
8187         LIST_HEAD(list);
8188
8189         if (!has_addr_filter(event))
8190                 return;
8191
8192         /* don't bother with children, they don't have their own filters */
8193         if (event->parent)
8194                 return;
8195
8196         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8197
8198         list_splice_init(&event->addr_filters.list, &list);
8199         if (head)
8200                 list_splice(head, &event->addr_filters.list);
8201
8202         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8203
8204         free_filters_list(&list);
8205 }
8206
8207 /*
8208  * Scan through mm's vmas and see if one of them matches the
8209  * @filter; if so, adjust filter's address range.
8210  * Called with mm::mmap_sem down for reading.
8211  */
8212 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8213                                             struct mm_struct *mm)
8214 {
8215         struct vm_area_struct *vma;
8216
8217         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8218                 struct file *file = vma->vm_file;
8219                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8220                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8221
8222                 if (!file)
8223                         continue;
8224
8225                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8226                         continue;
8227
8228                 return vma->vm_start;
8229         }
8230
8231         return 0;
8232 }
8233
8234 /*
8235  * Update event's address range filters based on the
8236  * task's existing mappings, if any.
8237  */
8238 static void perf_event_addr_filters_apply(struct perf_event *event)
8239 {
8240         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8241         struct task_struct *task = READ_ONCE(event->ctx->task);
8242         struct perf_addr_filter *filter;
8243         struct mm_struct *mm = NULL;
8244         unsigned int count = 0;
8245         unsigned long flags;
8246
8247         /*
8248          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8249          * will stop on the parent's child_mutex that our caller is also holding
8250          */
8251         if (task == TASK_TOMBSTONE)
8252                 return;
8253
8254         if (!ifh->nr_file_filters)
8255                 return;
8256
8257         mm = get_task_mm(event->ctx->task);
8258         if (!mm)
8259                 goto restart;
8260
8261         down_read(&mm->mmap_sem);
8262
8263         raw_spin_lock_irqsave(&ifh->lock, flags);
8264         list_for_each_entry(filter, &ifh->list, entry) {
8265                 event->addr_filters_offs[count] = 0;
8266
8267                 /*
8268                  * Adjust base offset if the filter is associated to a binary
8269                  * that needs to be mapped:
8270                  */
8271                 if (filter->inode)
8272                         event->addr_filters_offs[count] =
8273                                 perf_addr_filter_apply(filter, mm);
8274
8275                 count++;
8276         }
8277
8278         event->addr_filters_gen++;
8279         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8280
8281         up_read(&mm->mmap_sem);
8282
8283         mmput(mm);
8284
8285 restart:
8286         perf_event_stop(event, 1);
8287 }
8288
8289 /*
8290  * Address range filtering: limiting the data to certain
8291  * instruction address ranges. Filters are ioctl()ed to us from
8292  * userspace as ascii strings.
8293  *
8294  * Filter string format:
8295  *
8296  * ACTION RANGE_SPEC
8297  * where ACTION is one of the
8298  *  * "filter": limit the trace to this region
8299  *  * "start": start tracing from this address
8300  *  * "stop": stop tracing at this address/region;
8301  * RANGE_SPEC is
8302  *  * for kernel addresses: <start address>[/<size>]
8303  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8304  *
8305  * if <size> is not specified, the range is treated as a single address.
8306  */
8307 enum {
8308         IF_ACT_NONE = -1,
8309         IF_ACT_FILTER,
8310         IF_ACT_START,
8311         IF_ACT_STOP,
8312         IF_SRC_FILE,
8313         IF_SRC_KERNEL,
8314         IF_SRC_FILEADDR,
8315         IF_SRC_KERNELADDR,
8316 };
8317
8318 enum {
8319         IF_STATE_ACTION = 0,
8320         IF_STATE_SOURCE,
8321         IF_STATE_END,
8322 };
8323
8324 static const match_table_t if_tokens = {
8325         { IF_ACT_FILTER,        "filter" },
8326         { IF_ACT_START,         "start" },
8327         { IF_ACT_STOP,          "stop" },
8328         { IF_SRC_FILE,          "%u/%u@%s" },
8329         { IF_SRC_KERNEL,        "%u/%u" },
8330         { IF_SRC_FILEADDR,      "%u@%s" },
8331         { IF_SRC_KERNELADDR,    "%u" },
8332         { IF_ACT_NONE,          NULL },
8333 };
8334
8335 /*
8336  * Address filter string parser
8337  */
8338 static int
8339 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8340                              struct list_head *filters)
8341 {
8342         struct perf_addr_filter *filter = NULL;
8343         char *start, *orig, *filename = NULL;
8344         struct path path;
8345         substring_t args[MAX_OPT_ARGS];
8346         int state = IF_STATE_ACTION, token;
8347         unsigned int kernel = 0;
8348         int ret = -EINVAL;
8349
8350         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8351         if (!fstr)
8352                 return -ENOMEM;
8353
8354         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8355                 ret = -EINVAL;
8356
8357                 if (!*start)
8358                         continue;
8359
8360                 /* filter definition begins */
8361                 if (state == IF_STATE_ACTION) {
8362                         filter = perf_addr_filter_new(event, filters);
8363                         if (!filter)
8364                                 goto fail;
8365                 }
8366
8367                 token = match_token(start, if_tokens, args);
8368                 switch (token) {
8369                 case IF_ACT_FILTER:
8370                 case IF_ACT_START:
8371                         filter->filter = 1;
8372
8373                 case IF_ACT_STOP:
8374                         if (state != IF_STATE_ACTION)
8375                                 goto fail;
8376
8377                         state = IF_STATE_SOURCE;
8378                         break;
8379
8380                 case IF_SRC_KERNELADDR:
8381                 case IF_SRC_KERNEL:
8382                         kernel = 1;
8383
8384                 case IF_SRC_FILEADDR:
8385                 case IF_SRC_FILE:
8386                         if (state != IF_STATE_SOURCE)
8387                                 goto fail;
8388
8389                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8390                                 filter->range = 1;
8391
8392                         *args[0].to = 0;
8393                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8394                         if (ret)
8395                                 goto fail;
8396
8397                         if (filter->range) {
8398                                 *args[1].to = 0;
8399                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8400                                 if (ret)
8401                                         goto fail;
8402                         }
8403
8404                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8405                                 int fpos = filter->range ? 2 : 1;
8406
8407                                 filename = match_strdup(&args[fpos]);
8408                                 if (!filename) {
8409                                         ret = -ENOMEM;
8410                                         goto fail;
8411                                 }
8412                         }
8413
8414                         state = IF_STATE_END;
8415                         break;
8416
8417                 default:
8418                         goto fail;
8419                 }
8420
8421                 /*
8422                  * Filter definition is fully parsed, validate and install it.
8423                  * Make sure that it doesn't contradict itself or the event's
8424                  * attribute.
8425                  */
8426                 if (state == IF_STATE_END) {
8427                         ret = -EINVAL;
8428                         if (kernel && event->attr.exclude_kernel)
8429                                 goto fail;
8430
8431                         if (!kernel) {
8432                                 if (!filename)
8433                                         goto fail;
8434
8435                                 /*
8436                                  * For now, we only support file-based filters
8437                                  * in per-task events; doing so for CPU-wide
8438                                  * events requires additional context switching
8439                                  * trickery, since same object code will be
8440                                  * mapped at different virtual addresses in
8441                                  * different processes.
8442                                  */
8443                                 ret = -EOPNOTSUPP;
8444                                 if (!event->ctx->task)
8445                                         goto fail_free_name;
8446
8447                                 /* look up the path and grab its inode */
8448                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8449                                 if (ret)
8450                                         goto fail_free_name;
8451
8452                                 filter->inode = igrab(d_inode(path.dentry));
8453                                 path_put(&path);
8454                                 kfree(filename);
8455                                 filename = NULL;
8456
8457                                 ret = -EINVAL;
8458                                 if (!filter->inode ||
8459                                     !S_ISREG(filter->inode->i_mode))
8460                                         /* free_filters_list() will iput() */
8461                                         goto fail;
8462
8463                                 event->addr_filters.nr_file_filters++;
8464                         }
8465
8466                         /* ready to consume more filters */
8467                         state = IF_STATE_ACTION;
8468                         filter = NULL;
8469                 }
8470         }
8471
8472         if (state != IF_STATE_ACTION)
8473                 goto fail;
8474
8475         kfree(orig);
8476
8477         return 0;
8478
8479 fail_free_name:
8480         kfree(filename);
8481 fail:
8482         free_filters_list(filters);
8483         kfree(orig);
8484
8485         return ret;
8486 }
8487
8488 static int
8489 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8490 {
8491         LIST_HEAD(filters);
8492         int ret;
8493
8494         /*
8495          * Since this is called in perf_ioctl() path, we're already holding
8496          * ctx::mutex.
8497          */
8498         lockdep_assert_held(&event->ctx->mutex);
8499
8500         if (WARN_ON_ONCE(event->parent))
8501                 return -EINVAL;
8502
8503         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8504         if (ret)
8505                 goto fail_clear_files;
8506
8507         ret = event->pmu->addr_filters_validate(&filters);
8508         if (ret)
8509                 goto fail_free_filters;
8510
8511         /* remove existing filters, if any */
8512         perf_addr_filters_splice(event, &filters);
8513
8514         /* install new filters */
8515         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8516
8517         return ret;
8518
8519 fail_free_filters:
8520         free_filters_list(&filters);
8521
8522 fail_clear_files:
8523         event->addr_filters.nr_file_filters = 0;
8524
8525         return ret;
8526 }
8527
8528 static int
8529 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8530 {
8531         struct perf_event_context *ctx = event->ctx;
8532         int ret;
8533
8534         /*
8535          * Beware, here be dragons!!
8536          *
8537          * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8538          * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8539          * perf_event_ctx_lock() we already have a reference on ctx.
8540          *
8541          * This can result in event getting moved to a different ctx, but that
8542          * does not affect the tracepoint state.
8543          */
8544         mutex_unlock(&ctx->mutex);
8545         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8546         mutex_lock(&ctx->mutex);
8547
8548         return ret;
8549 }
8550
8551 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8552 {
8553         char *filter_str;
8554         int ret = -EINVAL;
8555
8556         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8557             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8558             !has_addr_filter(event))
8559                 return -EINVAL;
8560
8561         filter_str = strndup_user(arg, PAGE_SIZE);
8562         if (IS_ERR(filter_str))
8563                 return PTR_ERR(filter_str);
8564
8565         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8566             event->attr.type == PERF_TYPE_TRACEPOINT)
8567                 ret = perf_tracepoint_set_filter(event, filter_str);
8568         else if (has_addr_filter(event))
8569                 ret = perf_event_set_addr_filter(event, filter_str);
8570
8571         kfree(filter_str);
8572         return ret;
8573 }
8574
8575 /*
8576  * hrtimer based swevent callback
8577  */
8578
8579 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8580 {
8581         enum hrtimer_restart ret = HRTIMER_RESTART;
8582         struct perf_sample_data data;
8583         struct pt_regs *regs;
8584         struct perf_event *event;
8585         u64 period;
8586
8587         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8588
8589         if (event->state != PERF_EVENT_STATE_ACTIVE)
8590                 return HRTIMER_NORESTART;
8591
8592         event->pmu->read(event);
8593
8594         perf_sample_data_init(&data, 0, event->hw.last_period);
8595         regs = get_irq_regs();
8596
8597         if (regs && !perf_exclude_event(event, regs)) {
8598                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8599                         if (__perf_event_overflow(event, 1, &data, regs))
8600                                 ret = HRTIMER_NORESTART;
8601         }
8602
8603         period = max_t(u64, 10000, event->hw.sample_period);
8604         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8605
8606         return ret;
8607 }
8608
8609 static void perf_swevent_start_hrtimer(struct perf_event *event)
8610 {
8611         struct hw_perf_event *hwc = &event->hw;
8612         s64 period;
8613
8614         if (!is_sampling_event(event))
8615                 return;
8616
8617         period = local64_read(&hwc->period_left);
8618         if (period) {
8619                 if (period < 0)
8620                         period = 10000;
8621
8622                 local64_set(&hwc->period_left, 0);
8623         } else {
8624                 period = max_t(u64, 10000, hwc->sample_period);
8625         }
8626         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8627                       HRTIMER_MODE_REL_PINNED);
8628 }
8629
8630 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8631 {
8632         struct hw_perf_event *hwc = &event->hw;
8633
8634         if (is_sampling_event(event)) {
8635                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8636                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8637
8638                 hrtimer_cancel(&hwc->hrtimer);
8639         }
8640 }
8641
8642 static void perf_swevent_init_hrtimer(struct perf_event *event)
8643 {
8644         struct hw_perf_event *hwc = &event->hw;
8645
8646         if (!is_sampling_event(event))
8647                 return;
8648
8649         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8650         hwc->hrtimer.function = perf_swevent_hrtimer;
8651
8652         /*
8653          * Since hrtimers have a fixed rate, we can do a static freq->period
8654          * mapping and avoid the whole period adjust feedback stuff.
8655          */
8656         if (event->attr.freq) {
8657                 long freq = event->attr.sample_freq;
8658
8659                 event->attr.sample_period = NSEC_PER_SEC / freq;
8660                 hwc->sample_period = event->attr.sample_period;
8661                 local64_set(&hwc->period_left, hwc->sample_period);
8662                 hwc->last_period = hwc->sample_period;
8663                 event->attr.freq = 0;
8664         }
8665 }
8666
8667 /*
8668  * Software event: cpu wall time clock
8669  */
8670
8671 static void cpu_clock_event_update(struct perf_event *event)
8672 {
8673         s64 prev;
8674         u64 now;
8675
8676         now = local_clock();
8677         prev = local64_xchg(&event->hw.prev_count, now);
8678         local64_add(now - prev, &event->count);
8679 }
8680
8681 static void cpu_clock_event_start(struct perf_event *event, int flags)
8682 {
8683         local64_set(&event->hw.prev_count, local_clock());
8684         perf_swevent_start_hrtimer(event);
8685 }
8686
8687 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8688 {
8689         perf_swevent_cancel_hrtimer(event);
8690         cpu_clock_event_update(event);
8691 }
8692
8693 static int cpu_clock_event_add(struct perf_event *event, int flags)
8694 {
8695         if (flags & PERF_EF_START)
8696                 cpu_clock_event_start(event, flags);
8697         perf_event_update_userpage(event);
8698
8699         return 0;
8700 }
8701
8702 static void cpu_clock_event_del(struct perf_event *event, int flags)
8703 {
8704         cpu_clock_event_stop(event, flags);
8705 }
8706
8707 static void cpu_clock_event_read(struct perf_event *event)
8708 {
8709         cpu_clock_event_update(event);
8710 }
8711
8712 static int cpu_clock_event_init(struct perf_event *event)
8713 {
8714         if (event->attr.type != PERF_TYPE_SOFTWARE)
8715                 return -ENOENT;
8716
8717         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8718                 return -ENOENT;
8719
8720         /*
8721          * no branch sampling for software events
8722          */
8723         if (has_branch_stack(event))
8724                 return -EOPNOTSUPP;
8725
8726         perf_swevent_init_hrtimer(event);
8727
8728         return 0;
8729 }
8730
8731 static struct pmu perf_cpu_clock = {
8732         .task_ctx_nr    = perf_sw_context,
8733
8734         .capabilities   = PERF_PMU_CAP_NO_NMI,
8735
8736         .event_init     = cpu_clock_event_init,
8737         .add            = cpu_clock_event_add,
8738         .del            = cpu_clock_event_del,
8739         .start          = cpu_clock_event_start,
8740         .stop           = cpu_clock_event_stop,
8741         .read           = cpu_clock_event_read,
8742 };
8743
8744 /*
8745  * Software event: task time clock
8746  */
8747
8748 static void task_clock_event_update(struct perf_event *event, u64 now)
8749 {
8750         u64 prev;
8751         s64 delta;
8752
8753         prev = local64_xchg(&event->hw.prev_count, now);
8754         delta = now - prev;
8755         local64_add(delta, &event->count);
8756 }
8757
8758 static void task_clock_event_start(struct perf_event *event, int flags)
8759 {
8760         local64_set(&event->hw.prev_count, event->ctx->time);
8761         perf_swevent_start_hrtimer(event);
8762 }
8763
8764 static void task_clock_event_stop(struct perf_event *event, int flags)
8765 {
8766         perf_swevent_cancel_hrtimer(event);
8767         task_clock_event_update(event, event->ctx->time);
8768 }
8769
8770 static int task_clock_event_add(struct perf_event *event, int flags)
8771 {
8772         if (flags & PERF_EF_START)
8773                 task_clock_event_start(event, flags);
8774         perf_event_update_userpage(event);
8775
8776         return 0;
8777 }
8778
8779 static void task_clock_event_del(struct perf_event *event, int flags)
8780 {
8781         task_clock_event_stop(event, PERF_EF_UPDATE);
8782 }
8783
8784 static void task_clock_event_read(struct perf_event *event)
8785 {
8786         u64 now = perf_clock();
8787         u64 delta = now - event->ctx->timestamp;
8788         u64 time = event->ctx->time + delta;
8789
8790         task_clock_event_update(event, time);
8791 }
8792
8793 static int task_clock_event_init(struct perf_event *event)
8794 {
8795         if (event->attr.type != PERF_TYPE_SOFTWARE)
8796                 return -ENOENT;
8797
8798         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8799                 return -ENOENT;
8800
8801         /*
8802          * no branch sampling for software events
8803          */
8804         if (has_branch_stack(event))
8805                 return -EOPNOTSUPP;
8806
8807         perf_swevent_init_hrtimer(event);
8808
8809         return 0;
8810 }
8811
8812 static struct pmu perf_task_clock = {
8813         .task_ctx_nr    = perf_sw_context,
8814
8815         .capabilities   = PERF_PMU_CAP_NO_NMI,
8816
8817         .event_init     = task_clock_event_init,
8818         .add            = task_clock_event_add,
8819         .del            = task_clock_event_del,
8820         .start          = task_clock_event_start,
8821         .stop           = task_clock_event_stop,
8822         .read           = task_clock_event_read,
8823 };
8824
8825 static void perf_pmu_nop_void(struct pmu *pmu)
8826 {
8827 }
8828
8829 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8830 {
8831 }
8832
8833 static int perf_pmu_nop_int(struct pmu *pmu)
8834 {
8835         return 0;
8836 }
8837
8838 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8839
8840 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8841 {
8842         __this_cpu_write(nop_txn_flags, flags);
8843
8844         if (flags & ~PERF_PMU_TXN_ADD)
8845                 return;
8846
8847         perf_pmu_disable(pmu);
8848 }
8849
8850 static int perf_pmu_commit_txn(struct pmu *pmu)
8851 {
8852         unsigned int flags = __this_cpu_read(nop_txn_flags);
8853
8854         __this_cpu_write(nop_txn_flags, 0);
8855
8856         if (flags & ~PERF_PMU_TXN_ADD)
8857                 return 0;
8858
8859         perf_pmu_enable(pmu);
8860         return 0;
8861 }
8862
8863 static void perf_pmu_cancel_txn(struct pmu *pmu)
8864 {
8865         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8866
8867         __this_cpu_write(nop_txn_flags, 0);
8868
8869         if (flags & ~PERF_PMU_TXN_ADD)
8870                 return;
8871
8872         perf_pmu_enable(pmu);
8873 }
8874
8875 static int perf_event_idx_default(struct perf_event *event)
8876 {
8877         return 0;
8878 }
8879
8880 /*
8881  * Ensures all contexts with the same task_ctx_nr have the same
8882  * pmu_cpu_context too.
8883  */
8884 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8885 {
8886         struct pmu *pmu;
8887
8888         if (ctxn < 0)
8889                 return NULL;
8890
8891         list_for_each_entry(pmu, &pmus, entry) {
8892                 if (pmu->task_ctx_nr == ctxn)
8893                         return pmu->pmu_cpu_context;
8894         }
8895
8896         return NULL;
8897 }
8898
8899 static void free_pmu_context(struct pmu *pmu)
8900 {
8901         /*
8902          * Static contexts such as perf_sw_context have a global lifetime
8903          * and may be shared between different PMUs. Avoid freeing them
8904          * when a single PMU is going away.
8905          */
8906         if (pmu->task_ctx_nr > perf_invalid_context)
8907                 return;
8908
8909         mutex_lock(&pmus_lock);
8910         free_percpu(pmu->pmu_cpu_context);
8911         mutex_unlock(&pmus_lock);
8912 }
8913
8914 /*
8915  * Let userspace know that this PMU supports address range filtering:
8916  */
8917 static ssize_t nr_addr_filters_show(struct device *dev,
8918                                     struct device_attribute *attr,
8919                                     char *page)
8920 {
8921         struct pmu *pmu = dev_get_drvdata(dev);
8922
8923         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8924 }
8925 DEVICE_ATTR_RO(nr_addr_filters);
8926
8927 static struct idr pmu_idr;
8928
8929 static ssize_t
8930 type_show(struct device *dev, struct device_attribute *attr, char *page)
8931 {
8932         struct pmu *pmu = dev_get_drvdata(dev);
8933
8934         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8935 }
8936 static DEVICE_ATTR_RO(type);
8937
8938 static ssize_t
8939 perf_event_mux_interval_ms_show(struct device *dev,
8940                                 struct device_attribute *attr,
8941                                 char *page)
8942 {
8943         struct pmu *pmu = dev_get_drvdata(dev);
8944
8945         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8946 }
8947
8948 static DEFINE_MUTEX(mux_interval_mutex);
8949
8950 static ssize_t
8951 perf_event_mux_interval_ms_store(struct device *dev,
8952                                  struct device_attribute *attr,
8953                                  const char *buf, size_t count)
8954 {
8955         struct pmu *pmu = dev_get_drvdata(dev);
8956         int timer, cpu, ret;
8957
8958         ret = kstrtoint(buf, 0, &timer);
8959         if (ret)
8960                 return ret;
8961
8962         if (timer < 1)
8963                 return -EINVAL;
8964
8965         /* same value, noting to do */
8966         if (timer == pmu->hrtimer_interval_ms)
8967                 return count;
8968
8969         mutex_lock(&mux_interval_mutex);
8970         pmu->hrtimer_interval_ms = timer;
8971
8972         /* update all cpuctx for this PMU */
8973         cpus_read_lock();
8974         for_each_online_cpu(cpu) {
8975                 struct perf_cpu_context *cpuctx;
8976                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8977                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8978
8979                 cpu_function_call(cpu,
8980                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8981         }
8982         cpus_read_unlock();
8983         mutex_unlock(&mux_interval_mutex);
8984
8985         return count;
8986 }
8987 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8988
8989 static struct attribute *pmu_dev_attrs[] = {
8990         &dev_attr_type.attr,
8991         &dev_attr_perf_event_mux_interval_ms.attr,
8992         NULL,
8993 };
8994 ATTRIBUTE_GROUPS(pmu_dev);
8995
8996 static int pmu_bus_running;
8997 static struct bus_type pmu_bus = {
8998         .name           = "event_source",
8999         .dev_groups     = pmu_dev_groups,
9000 };
9001
9002 static void pmu_dev_release(struct device *dev)
9003 {
9004         kfree(dev);
9005 }
9006
9007 static int pmu_dev_alloc(struct pmu *pmu)
9008 {
9009         int ret = -ENOMEM;
9010
9011         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9012         if (!pmu->dev)
9013                 goto out;
9014
9015         pmu->dev->groups = pmu->attr_groups;
9016         device_initialize(pmu->dev);
9017         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9018         if (ret)
9019                 goto free_dev;
9020
9021         dev_set_drvdata(pmu->dev, pmu);
9022         pmu->dev->bus = &pmu_bus;
9023         pmu->dev->release = pmu_dev_release;
9024         ret = device_add(pmu->dev);
9025         if (ret)
9026                 goto free_dev;
9027
9028         /* For PMUs with address filters, throw in an extra attribute: */
9029         if (pmu->nr_addr_filters)
9030                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9031
9032         if (ret)
9033                 goto del_dev;
9034
9035 out:
9036         return ret;
9037
9038 del_dev:
9039         device_del(pmu->dev);
9040
9041 free_dev:
9042         put_device(pmu->dev);
9043         goto out;
9044 }
9045
9046 static struct lock_class_key cpuctx_mutex;
9047 static struct lock_class_key cpuctx_lock;
9048
9049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9050 {
9051         int cpu, ret;
9052
9053         mutex_lock(&pmus_lock);
9054         ret = -ENOMEM;
9055         pmu->pmu_disable_count = alloc_percpu(int);
9056         if (!pmu->pmu_disable_count)
9057                 goto unlock;
9058
9059         pmu->type = -1;
9060         if (!name)
9061                 goto skip_type;
9062         pmu->name = name;
9063
9064         if (type < 0) {
9065                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9066                 if (type < 0) {
9067                         ret = type;
9068                         goto free_pdc;
9069                 }
9070         }
9071         pmu->type = type;
9072
9073         if (pmu_bus_running) {
9074                 ret = pmu_dev_alloc(pmu);
9075                 if (ret)
9076                         goto free_idr;
9077         }
9078
9079 skip_type:
9080         if (pmu->task_ctx_nr == perf_hw_context) {
9081                 static int hw_context_taken = 0;
9082
9083                 /*
9084                  * Other than systems with heterogeneous CPUs, it never makes
9085                  * sense for two PMUs to share perf_hw_context. PMUs which are
9086                  * uncore must use perf_invalid_context.
9087                  */
9088                 if (WARN_ON_ONCE(hw_context_taken &&
9089                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9090                         pmu->task_ctx_nr = perf_invalid_context;
9091
9092                 hw_context_taken = 1;
9093         }
9094
9095         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9096         if (pmu->pmu_cpu_context)
9097                 goto got_cpu_context;
9098
9099         ret = -ENOMEM;
9100         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9101         if (!pmu->pmu_cpu_context)
9102                 goto free_dev;
9103
9104         for_each_possible_cpu(cpu) {
9105                 struct perf_cpu_context *cpuctx;
9106
9107                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9108                 __perf_event_init_context(&cpuctx->ctx);
9109                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9110                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9111                 cpuctx->ctx.pmu = pmu;
9112                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9113
9114                 __perf_mux_hrtimer_init(cpuctx, cpu);
9115         }
9116
9117 got_cpu_context:
9118         if (!pmu->start_txn) {
9119                 if (pmu->pmu_enable) {
9120                         /*
9121                          * If we have pmu_enable/pmu_disable calls, install
9122                          * transaction stubs that use that to try and batch
9123                          * hardware accesses.
9124                          */
9125                         pmu->start_txn  = perf_pmu_start_txn;
9126                         pmu->commit_txn = perf_pmu_commit_txn;
9127                         pmu->cancel_txn = perf_pmu_cancel_txn;
9128                 } else {
9129                         pmu->start_txn  = perf_pmu_nop_txn;
9130                         pmu->commit_txn = perf_pmu_nop_int;
9131                         pmu->cancel_txn = perf_pmu_nop_void;
9132                 }
9133         }
9134
9135         if (!pmu->pmu_enable) {
9136                 pmu->pmu_enable  = perf_pmu_nop_void;
9137                 pmu->pmu_disable = perf_pmu_nop_void;
9138         }
9139
9140         if (!pmu->event_idx)
9141                 pmu->event_idx = perf_event_idx_default;
9142
9143         list_add_rcu(&pmu->entry, &pmus);
9144         atomic_set(&pmu->exclusive_cnt, 0);
9145         ret = 0;
9146 unlock:
9147         mutex_unlock(&pmus_lock);
9148
9149         return ret;
9150
9151 free_dev:
9152         device_del(pmu->dev);
9153         put_device(pmu->dev);
9154
9155 free_idr:
9156         if (pmu->type >= PERF_TYPE_MAX)
9157                 idr_remove(&pmu_idr, pmu->type);
9158
9159 free_pdc:
9160         free_percpu(pmu->pmu_disable_count);
9161         goto unlock;
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_register);
9164
9165 void perf_pmu_unregister(struct pmu *pmu)
9166 {
9167         int remove_device;
9168
9169         mutex_lock(&pmus_lock);
9170         remove_device = pmu_bus_running;
9171         list_del_rcu(&pmu->entry);
9172         mutex_unlock(&pmus_lock);
9173
9174         /*
9175          * We dereference the pmu list under both SRCU and regular RCU, so
9176          * synchronize against both of those.
9177          */
9178         synchronize_srcu(&pmus_srcu);
9179         synchronize_rcu();
9180
9181         free_percpu(pmu->pmu_disable_count);
9182         if (pmu->type >= PERF_TYPE_MAX)
9183                 idr_remove(&pmu_idr, pmu->type);
9184         if (remove_device) {
9185                 if (pmu->nr_addr_filters)
9186                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9187                 device_del(pmu->dev);
9188                 put_device(pmu->dev);
9189         }
9190         free_pmu_context(pmu);
9191 }
9192 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9193
9194 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9195 {
9196         struct perf_event_context *ctx = NULL;
9197         int ret;
9198
9199         if (!try_module_get(pmu->module))
9200                 return -ENODEV;
9201
9202         /*
9203          * A number of pmu->event_init() methods iterate the sibling_list to,
9204          * for example, validate if the group fits on the PMU. Therefore,
9205          * if this is a sibling event, acquire the ctx->mutex to protect
9206          * the sibling_list.
9207          */
9208         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9209                 /*
9210                  * This ctx->mutex can nest when we're called through
9211                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9212                  */
9213                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9214                                                  SINGLE_DEPTH_NESTING);
9215                 BUG_ON(!ctx);
9216         }
9217
9218         event->pmu = pmu;
9219         ret = pmu->event_init(event);
9220
9221         if (ctx)
9222                 perf_event_ctx_unlock(event->group_leader, ctx);
9223
9224         if (ret)
9225                 module_put(pmu->module);
9226
9227         return ret;
9228 }
9229
9230 static struct pmu *perf_init_event(struct perf_event *event)
9231 {
9232         struct pmu *pmu;
9233         int idx;
9234         int ret;
9235
9236         idx = srcu_read_lock(&pmus_srcu);
9237
9238         /* Try parent's PMU first: */
9239         if (event->parent && event->parent->pmu) {
9240                 pmu = event->parent->pmu;
9241                 ret = perf_try_init_event(pmu, event);
9242                 if (!ret)
9243                         goto unlock;
9244         }
9245
9246         rcu_read_lock();
9247         pmu = idr_find(&pmu_idr, event->attr.type);
9248         rcu_read_unlock();
9249         if (pmu) {
9250                 ret = perf_try_init_event(pmu, event);
9251                 if (ret)
9252                         pmu = ERR_PTR(ret);
9253                 goto unlock;
9254         }
9255
9256         list_for_each_entry_rcu(pmu, &pmus, entry) {
9257                 ret = perf_try_init_event(pmu, event);
9258                 if (!ret)
9259                         goto unlock;
9260
9261                 if (ret != -ENOENT) {
9262                         pmu = ERR_PTR(ret);
9263                         goto unlock;
9264                 }
9265         }
9266         pmu = ERR_PTR(-ENOENT);
9267 unlock:
9268         srcu_read_unlock(&pmus_srcu, idx);
9269
9270         return pmu;
9271 }
9272
9273 static void attach_sb_event(struct perf_event *event)
9274 {
9275         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9276
9277         raw_spin_lock(&pel->lock);
9278         list_add_rcu(&event->sb_list, &pel->list);
9279         raw_spin_unlock(&pel->lock);
9280 }
9281
9282 /*
9283  * We keep a list of all !task (and therefore per-cpu) events
9284  * that need to receive side-band records.
9285  *
9286  * This avoids having to scan all the various PMU per-cpu contexts
9287  * looking for them.
9288  */
9289 static void account_pmu_sb_event(struct perf_event *event)
9290 {
9291         if (is_sb_event(event))
9292                 attach_sb_event(event);
9293 }
9294
9295 static void account_event_cpu(struct perf_event *event, int cpu)
9296 {
9297         if (event->parent)
9298                 return;
9299
9300         if (is_cgroup_event(event))
9301                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9302 }
9303
9304 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9305 static void account_freq_event_nohz(void)
9306 {
9307 #ifdef CONFIG_NO_HZ_FULL
9308         /* Lock so we don't race with concurrent unaccount */
9309         spin_lock(&nr_freq_lock);
9310         if (atomic_inc_return(&nr_freq_events) == 1)
9311                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9312         spin_unlock(&nr_freq_lock);
9313 #endif
9314 }
9315
9316 static void account_freq_event(void)
9317 {
9318         if (tick_nohz_full_enabled())
9319                 account_freq_event_nohz();
9320         else
9321                 atomic_inc(&nr_freq_events);
9322 }
9323
9324
9325 static void account_event(struct perf_event *event)
9326 {
9327         bool inc = false;
9328
9329         if (event->parent)
9330                 return;
9331
9332         if (event->attach_state & PERF_ATTACH_TASK)
9333                 inc = true;
9334         if (event->attr.mmap || event->attr.mmap_data)
9335                 atomic_inc(&nr_mmap_events);
9336         if (event->attr.comm)
9337                 atomic_inc(&nr_comm_events);
9338         if (event->attr.namespaces)
9339                 atomic_inc(&nr_namespaces_events);
9340         if (event->attr.task)
9341                 atomic_inc(&nr_task_events);
9342         if (event->attr.freq)
9343                 account_freq_event();
9344         if (event->attr.context_switch) {
9345                 atomic_inc(&nr_switch_events);
9346                 inc = true;
9347         }
9348         if (has_branch_stack(event))
9349                 inc = true;
9350         if (is_cgroup_event(event))
9351                 inc = true;
9352
9353         if (inc) {
9354                 /*
9355                  * We need the mutex here because static_branch_enable()
9356                  * must complete *before* the perf_sched_count increment
9357                  * becomes visible.
9358                  */
9359                 if (atomic_inc_not_zero(&perf_sched_count))
9360                         goto enabled;
9361
9362                 mutex_lock(&perf_sched_mutex);
9363                 if (!atomic_read(&perf_sched_count)) {
9364                         static_branch_enable(&perf_sched_events);
9365                         /*
9366                          * Guarantee that all CPUs observe they key change and
9367                          * call the perf scheduling hooks before proceeding to
9368                          * install events that need them.
9369                          */
9370                         synchronize_sched();
9371                 }
9372                 /*
9373                  * Now that we have waited for the sync_sched(), allow further
9374                  * increments to by-pass the mutex.
9375                  */
9376                 atomic_inc(&perf_sched_count);
9377                 mutex_unlock(&perf_sched_mutex);
9378         }
9379 enabled:
9380
9381         account_event_cpu(event, event->cpu);
9382
9383         account_pmu_sb_event(event);
9384 }
9385
9386 /*
9387  * Allocate and initialize a event structure
9388  */
9389 static struct perf_event *
9390 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9391                  struct task_struct *task,
9392                  struct perf_event *group_leader,
9393                  struct perf_event *parent_event,
9394                  perf_overflow_handler_t overflow_handler,
9395                  void *context, int cgroup_fd)
9396 {
9397         struct pmu *pmu;
9398         struct perf_event *event;
9399         struct hw_perf_event *hwc;
9400         long err = -EINVAL;
9401
9402         if ((unsigned)cpu >= nr_cpu_ids) {
9403                 if (!task || cpu != -1)
9404                         return ERR_PTR(-EINVAL);
9405         }
9406
9407         event = kzalloc(sizeof(*event), GFP_KERNEL);
9408         if (!event)
9409                 return ERR_PTR(-ENOMEM);
9410
9411         /*
9412          * Single events are their own group leaders, with an
9413          * empty sibling list:
9414          */
9415         if (!group_leader)
9416                 group_leader = event;
9417
9418         mutex_init(&event->child_mutex);
9419         INIT_LIST_HEAD(&event->child_list);
9420
9421         INIT_LIST_HEAD(&event->group_entry);
9422         INIT_LIST_HEAD(&event->event_entry);
9423         INIT_LIST_HEAD(&event->sibling_list);
9424         INIT_LIST_HEAD(&event->rb_entry);
9425         INIT_LIST_HEAD(&event->active_entry);
9426         INIT_LIST_HEAD(&event->addr_filters.list);
9427         INIT_HLIST_NODE(&event->hlist_entry);
9428
9429
9430         init_waitqueue_head(&event->waitq);
9431         init_irq_work(&event->pending, perf_pending_event);
9432
9433         mutex_init(&event->mmap_mutex);
9434         raw_spin_lock_init(&event->addr_filters.lock);
9435
9436         atomic_long_set(&event->refcount, 1);
9437         event->cpu              = cpu;
9438         event->attr             = *attr;
9439         event->group_leader     = group_leader;
9440         event->pmu              = NULL;
9441         event->oncpu            = -1;
9442
9443         event->parent           = parent_event;
9444
9445         event->ns               = get_pid_ns(task_active_pid_ns(current));
9446         event->id               = atomic64_inc_return(&perf_event_id);
9447
9448         event->state            = PERF_EVENT_STATE_INACTIVE;
9449
9450         if (task) {
9451                 event->attach_state = PERF_ATTACH_TASK;
9452                 /*
9453                  * XXX pmu::event_init needs to know what task to account to
9454                  * and we cannot use the ctx information because we need the
9455                  * pmu before we get a ctx.
9456                  */
9457                 event->hw.target = task;
9458         }
9459
9460         event->clock = &local_clock;
9461         if (parent_event)
9462                 event->clock = parent_event->clock;
9463
9464         if (!overflow_handler && parent_event) {
9465                 overflow_handler = parent_event->overflow_handler;
9466                 context = parent_event->overflow_handler_context;
9467 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9468                 if (overflow_handler == bpf_overflow_handler) {
9469                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9470
9471                         if (IS_ERR(prog)) {
9472                                 err = PTR_ERR(prog);
9473                                 goto err_ns;
9474                         }
9475                         event->prog = prog;
9476                         event->orig_overflow_handler =
9477                                 parent_event->orig_overflow_handler;
9478                 }
9479 #endif
9480         }
9481
9482         if (overflow_handler) {
9483                 event->overflow_handler = overflow_handler;
9484                 event->overflow_handler_context = context;
9485         } else if (is_write_backward(event)){
9486                 event->overflow_handler = perf_event_output_backward;
9487                 event->overflow_handler_context = NULL;
9488         } else {
9489                 event->overflow_handler = perf_event_output_forward;
9490                 event->overflow_handler_context = NULL;
9491         }
9492
9493         perf_event__state_init(event);
9494
9495         pmu = NULL;
9496
9497         hwc = &event->hw;
9498         hwc->sample_period = attr->sample_period;
9499         if (attr->freq && attr->sample_freq)
9500                 hwc->sample_period = 1;
9501         hwc->last_period = hwc->sample_period;
9502
9503         local64_set(&hwc->period_left, hwc->sample_period);
9504
9505         /*
9506          * We currently do not support PERF_SAMPLE_READ on inherited events.
9507          * See perf_output_read().
9508          */
9509         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9510                 goto err_ns;
9511
9512         if (!has_branch_stack(event))
9513                 event->attr.branch_sample_type = 0;
9514
9515         if (cgroup_fd != -1) {
9516                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9517                 if (err)
9518                         goto err_ns;
9519         }
9520
9521         pmu = perf_init_event(event);
9522         if (IS_ERR(pmu)) {
9523                 err = PTR_ERR(pmu);
9524                 goto err_ns;
9525         }
9526
9527         err = exclusive_event_init(event);
9528         if (err)
9529                 goto err_pmu;
9530
9531         if (has_addr_filter(event)) {
9532                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9533                                                    sizeof(unsigned long),
9534                                                    GFP_KERNEL);
9535                 if (!event->addr_filters_offs) {
9536                         err = -ENOMEM;
9537                         goto err_per_task;
9538                 }
9539
9540                 /* force hw sync on the address filters */
9541                 event->addr_filters_gen = 1;
9542         }
9543
9544         if (!event->parent) {
9545                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9546                         err = get_callchain_buffers(attr->sample_max_stack);
9547                         if (err)
9548                                 goto err_addr_filters;
9549                 }
9550         }
9551
9552         /* symmetric to unaccount_event() in _free_event() */
9553         account_event(event);
9554
9555         return event;
9556
9557 err_addr_filters:
9558         kfree(event->addr_filters_offs);
9559
9560 err_per_task:
9561         exclusive_event_destroy(event);
9562
9563 err_pmu:
9564         if (event->destroy)
9565                 event->destroy(event);
9566         module_put(pmu->module);
9567 err_ns:
9568         if (is_cgroup_event(event))
9569                 perf_detach_cgroup(event);
9570         if (event->ns)
9571                 put_pid_ns(event->ns);
9572         kfree(event);
9573
9574         return ERR_PTR(err);
9575 }
9576
9577 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9578                           struct perf_event_attr *attr)
9579 {
9580         u32 size;
9581         int ret;
9582
9583         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9584                 return -EFAULT;
9585
9586         /*
9587          * zero the full structure, so that a short copy will be nice.
9588          */
9589         memset(attr, 0, sizeof(*attr));
9590
9591         ret = get_user(size, &uattr->size);
9592         if (ret)
9593                 return ret;
9594
9595         if (size > PAGE_SIZE)   /* silly large */
9596                 goto err_size;
9597
9598         if (!size)              /* abi compat */
9599                 size = PERF_ATTR_SIZE_VER0;
9600
9601         if (size < PERF_ATTR_SIZE_VER0)
9602                 goto err_size;
9603
9604         /*
9605          * If we're handed a bigger struct than we know of,
9606          * ensure all the unknown bits are 0 - i.e. new
9607          * user-space does not rely on any kernel feature
9608          * extensions we dont know about yet.
9609          */
9610         if (size > sizeof(*attr)) {
9611                 unsigned char __user *addr;
9612                 unsigned char __user *end;
9613                 unsigned char val;
9614
9615                 addr = (void __user *)uattr + sizeof(*attr);
9616                 end  = (void __user *)uattr + size;
9617
9618                 for (; addr < end; addr++) {
9619                         ret = get_user(val, addr);
9620                         if (ret)
9621                                 return ret;
9622                         if (val)
9623                                 goto err_size;
9624                 }
9625                 size = sizeof(*attr);
9626         }
9627
9628         ret = copy_from_user(attr, uattr, size);
9629         if (ret)
9630                 return -EFAULT;
9631
9632         attr->size = size;
9633
9634         if (attr->__reserved_1)
9635                 return -EINVAL;
9636
9637         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9638                 return -EINVAL;
9639
9640         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9641                 return -EINVAL;
9642
9643         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9644                 u64 mask = attr->branch_sample_type;
9645
9646                 /* only using defined bits */
9647                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9648                         return -EINVAL;
9649
9650                 /* at least one branch bit must be set */
9651                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9652                         return -EINVAL;
9653
9654                 /* propagate priv level, when not set for branch */
9655                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9656
9657                         /* exclude_kernel checked on syscall entry */
9658                         if (!attr->exclude_kernel)
9659                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9660
9661                         if (!attr->exclude_user)
9662                                 mask |= PERF_SAMPLE_BRANCH_USER;
9663
9664                         if (!attr->exclude_hv)
9665                                 mask |= PERF_SAMPLE_BRANCH_HV;
9666                         /*
9667                          * adjust user setting (for HW filter setup)
9668                          */
9669                         attr->branch_sample_type = mask;
9670                 }
9671                 /* privileged levels capture (kernel, hv): check permissions */
9672                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9673                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9674                         return -EACCES;
9675         }
9676
9677         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9678                 ret = perf_reg_validate(attr->sample_regs_user);
9679                 if (ret)
9680                         return ret;
9681         }
9682
9683         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9684                 if (!arch_perf_have_user_stack_dump())
9685                         return -ENOSYS;
9686
9687                 /*
9688                  * We have __u32 type for the size, but so far
9689                  * we can only use __u16 as maximum due to the
9690                  * __u16 sample size limit.
9691                  */
9692                 if (attr->sample_stack_user >= USHRT_MAX)
9693                         ret = -EINVAL;
9694                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9695                         ret = -EINVAL;
9696         }
9697
9698         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9699                 ret = perf_reg_validate(attr->sample_regs_intr);
9700 out:
9701         return ret;
9702
9703 err_size:
9704         put_user(sizeof(*attr), &uattr->size);
9705         ret = -E2BIG;
9706         goto out;
9707 }
9708
9709 static int
9710 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9711 {
9712         struct ring_buffer *rb = NULL;
9713         int ret = -EINVAL;
9714
9715         if (!output_event)
9716                 goto set;
9717
9718         /* don't allow circular references */
9719         if (event == output_event)
9720                 goto out;
9721
9722         /*
9723          * Don't allow cross-cpu buffers
9724          */
9725         if (output_event->cpu != event->cpu)
9726                 goto out;
9727
9728         /*
9729          * If its not a per-cpu rb, it must be the same task.
9730          */
9731         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9732                 goto out;
9733
9734         /*
9735          * Mixing clocks in the same buffer is trouble you don't need.
9736          */
9737         if (output_event->clock != event->clock)
9738                 goto out;
9739
9740         /*
9741          * Either writing ring buffer from beginning or from end.
9742          * Mixing is not allowed.
9743          */
9744         if (is_write_backward(output_event) != is_write_backward(event))
9745                 goto out;
9746
9747         /*
9748          * If both events generate aux data, they must be on the same PMU
9749          */
9750         if (has_aux(event) && has_aux(output_event) &&
9751             event->pmu != output_event->pmu)
9752                 goto out;
9753
9754 set:
9755         mutex_lock(&event->mmap_mutex);
9756         /* Can't redirect output if we've got an active mmap() */
9757         if (atomic_read(&event->mmap_count))
9758                 goto unlock;
9759
9760         if (output_event) {
9761                 /* get the rb we want to redirect to */
9762                 rb = ring_buffer_get(output_event);
9763                 if (!rb)
9764                         goto unlock;
9765         }
9766
9767         ring_buffer_attach(event, rb);
9768
9769         ret = 0;
9770 unlock:
9771         mutex_unlock(&event->mmap_mutex);
9772
9773 out:
9774         return ret;
9775 }
9776
9777 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9778 {
9779         if (b < a)
9780                 swap(a, b);
9781
9782         mutex_lock(a);
9783         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9784 }
9785
9786 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9787 {
9788         bool nmi_safe = false;
9789
9790         switch (clk_id) {
9791         case CLOCK_MONOTONIC:
9792                 event->clock = &ktime_get_mono_fast_ns;
9793                 nmi_safe = true;
9794                 break;
9795
9796         case CLOCK_MONOTONIC_RAW:
9797                 event->clock = &ktime_get_raw_fast_ns;
9798                 nmi_safe = true;
9799                 break;
9800
9801         case CLOCK_REALTIME:
9802                 event->clock = &ktime_get_real_ns;
9803                 break;
9804
9805         case CLOCK_BOOTTIME:
9806                 event->clock = &ktime_get_boot_ns;
9807                 break;
9808
9809         case CLOCK_TAI:
9810                 event->clock = &ktime_get_tai_ns;
9811                 break;
9812
9813         default:
9814                 return -EINVAL;
9815         }
9816
9817         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9818                 return -EINVAL;
9819
9820         return 0;
9821 }
9822
9823 /*
9824  * Variation on perf_event_ctx_lock_nested(), except we take two context
9825  * mutexes.
9826  */
9827 static struct perf_event_context *
9828 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9829                              struct perf_event_context *ctx)
9830 {
9831         struct perf_event_context *gctx;
9832
9833 again:
9834         rcu_read_lock();
9835         gctx = READ_ONCE(group_leader->ctx);
9836         if (!atomic_inc_not_zero(&gctx->refcount)) {
9837                 rcu_read_unlock();
9838                 goto again;
9839         }
9840         rcu_read_unlock();
9841
9842         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9843
9844         if (group_leader->ctx != gctx) {
9845                 mutex_unlock(&ctx->mutex);
9846                 mutex_unlock(&gctx->mutex);
9847                 put_ctx(gctx);
9848                 goto again;
9849         }
9850
9851         return gctx;
9852 }
9853
9854 /**
9855  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9856  *
9857  * @attr_uptr:  event_id type attributes for monitoring/sampling
9858  * @pid:                target pid
9859  * @cpu:                target cpu
9860  * @group_fd:           group leader event fd
9861  */
9862 SYSCALL_DEFINE5(perf_event_open,
9863                 struct perf_event_attr __user *, attr_uptr,
9864                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9865 {
9866         struct perf_event *group_leader = NULL, *output_event = NULL;
9867         struct perf_event *event, *sibling;
9868         struct perf_event_attr attr;
9869         struct perf_event_context *ctx, *uninitialized_var(gctx);
9870         struct file *event_file = NULL;
9871         struct fd group = {NULL, 0};
9872         struct task_struct *task = NULL;
9873         struct pmu *pmu;
9874         int event_fd;
9875         int move_group = 0;
9876         int err;
9877         int f_flags = O_RDWR;
9878         int cgroup_fd = -1;
9879
9880         /* for future expandability... */
9881         if (flags & ~PERF_FLAG_ALL)
9882                 return -EINVAL;
9883
9884         err = perf_copy_attr(attr_uptr, &attr);
9885         if (err)
9886                 return err;
9887
9888         if (!attr.exclude_kernel) {
9889                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9890                         return -EACCES;
9891         }
9892
9893         if (attr.namespaces) {
9894                 if (!capable(CAP_SYS_ADMIN))
9895                         return -EACCES;
9896         }
9897
9898         if (attr.freq) {
9899                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9900                         return -EINVAL;
9901         } else {
9902                 if (attr.sample_period & (1ULL << 63))
9903                         return -EINVAL;
9904         }
9905
9906         /* Only privileged users can get physical addresses */
9907         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9908             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9909                 return -EACCES;
9910
9911         if (!attr.sample_max_stack)
9912                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9913
9914         /*
9915          * In cgroup mode, the pid argument is used to pass the fd
9916          * opened to the cgroup directory in cgroupfs. The cpu argument
9917          * designates the cpu on which to monitor threads from that
9918          * cgroup.
9919          */
9920         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9921                 return -EINVAL;
9922
9923         if (flags & PERF_FLAG_FD_CLOEXEC)
9924                 f_flags |= O_CLOEXEC;
9925
9926         event_fd = get_unused_fd_flags(f_flags);
9927         if (event_fd < 0)
9928                 return event_fd;
9929
9930         if (group_fd != -1) {
9931                 err = perf_fget_light(group_fd, &group);
9932                 if (err)
9933                         goto err_fd;
9934                 group_leader = group.file->private_data;
9935                 if (flags & PERF_FLAG_FD_OUTPUT)
9936                         output_event = group_leader;
9937                 if (flags & PERF_FLAG_FD_NO_GROUP)
9938                         group_leader = NULL;
9939         }
9940
9941         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9942                 task = find_lively_task_by_vpid(pid);
9943                 if (IS_ERR(task)) {
9944                         err = PTR_ERR(task);
9945                         goto err_group_fd;
9946                 }
9947         }
9948
9949         if (task && group_leader &&
9950             group_leader->attr.inherit != attr.inherit) {
9951                 err = -EINVAL;
9952                 goto err_task;
9953         }
9954
9955         if (task) {
9956                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9957                 if (err)
9958                         goto err_task;
9959
9960                 /*
9961                  * Reuse ptrace permission checks for now.
9962                  *
9963                  * We must hold cred_guard_mutex across this and any potential
9964                  * perf_install_in_context() call for this new event to
9965                  * serialize against exec() altering our credentials (and the
9966                  * perf_event_exit_task() that could imply).
9967                  */
9968                 err = -EACCES;
9969                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9970                         goto err_cred;
9971         }
9972
9973         if (flags & PERF_FLAG_PID_CGROUP)
9974                 cgroup_fd = pid;
9975
9976         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9977                                  NULL, NULL, cgroup_fd);
9978         if (IS_ERR(event)) {
9979                 err = PTR_ERR(event);
9980                 goto err_cred;
9981         }
9982
9983         if (is_sampling_event(event)) {
9984                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9985                         err = -EOPNOTSUPP;
9986                         goto err_alloc;
9987                 }
9988         }
9989
9990         /*
9991          * Special case software events and allow them to be part of
9992          * any hardware group.
9993          */
9994         pmu = event->pmu;
9995
9996         if (attr.use_clockid) {
9997                 err = perf_event_set_clock(event, attr.clockid);
9998                 if (err)
9999                         goto err_alloc;
10000         }
10001
10002         if (pmu->task_ctx_nr == perf_sw_context)
10003                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10004
10005         if (group_leader &&
10006             (is_software_event(event) != is_software_event(group_leader))) {
10007                 if (is_software_event(event)) {
10008                         /*
10009                          * If event and group_leader are not both a software
10010                          * event, and event is, then group leader is not.
10011                          *
10012                          * Allow the addition of software events to !software
10013                          * groups, this is safe because software events never
10014                          * fail to schedule.
10015                          */
10016                         pmu = group_leader->pmu;
10017                 } else if (is_software_event(group_leader) &&
10018                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10019                         /*
10020                          * In case the group is a pure software group, and we
10021                          * try to add a hardware event, move the whole group to
10022                          * the hardware context.
10023                          */
10024                         move_group = 1;
10025                 }
10026         }
10027
10028         /*
10029          * Get the target context (task or percpu):
10030          */
10031         ctx = find_get_context(pmu, task, event);
10032         if (IS_ERR(ctx)) {
10033                 err = PTR_ERR(ctx);
10034                 goto err_alloc;
10035         }
10036
10037         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10038                 err = -EBUSY;
10039                 goto err_context;
10040         }
10041
10042         /*
10043          * Look up the group leader (we will attach this event to it):
10044          */
10045         if (group_leader) {
10046                 err = -EINVAL;
10047
10048                 /*
10049                  * Do not allow a recursive hierarchy (this new sibling
10050                  * becoming part of another group-sibling):
10051                  */
10052                 if (group_leader->group_leader != group_leader)
10053                         goto err_context;
10054
10055                 /* All events in a group should have the same clock */
10056                 if (group_leader->clock != event->clock)
10057                         goto err_context;
10058
10059                 /*
10060                  * Make sure we're both events for the same CPU;
10061                  * grouping events for different CPUs is broken; since
10062                  * you can never concurrently schedule them anyhow.
10063                  */
10064                 if (group_leader->cpu != event->cpu)
10065                         goto err_context;
10066
10067                 /*
10068                  * Make sure we're both on the same task, or both
10069                  * per-CPU events.
10070                  */
10071                 if (group_leader->ctx->task != ctx->task)
10072                         goto err_context;
10073
10074                 /*
10075                  * Do not allow to attach to a group in a different task
10076                  * or CPU context. If we're moving SW events, we'll fix
10077                  * this up later, so allow that.
10078                  */
10079                 if (!move_group && group_leader->ctx != ctx)
10080                         goto err_context;
10081
10082                 /*
10083                  * Only a group leader can be exclusive or pinned
10084                  */
10085                 if (attr.exclusive || attr.pinned)
10086                         goto err_context;
10087         }
10088
10089         if (output_event) {
10090                 err = perf_event_set_output(event, output_event);
10091                 if (err)
10092                         goto err_context;
10093         }
10094
10095         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10096                                         f_flags);
10097         if (IS_ERR(event_file)) {
10098                 err = PTR_ERR(event_file);
10099                 event_file = NULL;
10100                 goto err_context;
10101         }
10102
10103         if (move_group) {
10104                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10105
10106                 if (gctx->task == TASK_TOMBSTONE) {
10107                         err = -ESRCH;
10108                         goto err_locked;
10109                 }
10110
10111                 /*
10112                  * Check if we raced against another sys_perf_event_open() call
10113                  * moving the software group underneath us.
10114                  */
10115                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10116                         /*
10117                          * If someone moved the group out from under us, check
10118                          * if this new event wound up on the same ctx, if so
10119                          * its the regular !move_group case, otherwise fail.
10120                          */
10121                         if (gctx != ctx) {
10122                                 err = -EINVAL;
10123                                 goto err_locked;
10124                         } else {
10125                                 perf_event_ctx_unlock(group_leader, gctx);
10126                                 move_group = 0;
10127                         }
10128                 }
10129         } else {
10130                 mutex_lock(&ctx->mutex);
10131         }
10132
10133         if (ctx->task == TASK_TOMBSTONE) {
10134                 err = -ESRCH;
10135                 goto err_locked;
10136         }
10137
10138         if (!perf_event_validate_size(event)) {
10139                 err = -E2BIG;
10140                 goto err_locked;
10141         }
10142
10143         if (!task) {
10144                 /*
10145                  * Check if the @cpu we're creating an event for is online.
10146                  *
10147                  * We use the perf_cpu_context::ctx::mutex to serialize against
10148                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10149                  */
10150                 struct perf_cpu_context *cpuctx =
10151                         container_of(ctx, struct perf_cpu_context, ctx);
10152
10153                 if (!cpuctx->online) {
10154                         err = -ENODEV;
10155                         goto err_locked;
10156                 }
10157         }
10158
10159
10160         /*
10161          * Must be under the same ctx::mutex as perf_install_in_context(),
10162          * because we need to serialize with concurrent event creation.
10163          */
10164         if (!exclusive_event_installable(event, ctx)) {
10165                 /* exclusive and group stuff are assumed mutually exclusive */
10166                 WARN_ON_ONCE(move_group);
10167
10168                 err = -EBUSY;
10169                 goto err_locked;
10170         }
10171
10172         WARN_ON_ONCE(ctx->parent_ctx);
10173
10174         /*
10175          * This is the point on no return; we cannot fail hereafter. This is
10176          * where we start modifying current state.
10177          */
10178
10179         if (move_group) {
10180                 /*
10181                  * See perf_event_ctx_lock() for comments on the details
10182                  * of swizzling perf_event::ctx.
10183                  */
10184                 perf_remove_from_context(group_leader, 0);
10185                 put_ctx(gctx);
10186
10187                 list_for_each_entry(sibling, &group_leader->sibling_list,
10188                                     group_entry) {
10189                         perf_remove_from_context(sibling, 0);
10190                         put_ctx(gctx);
10191                 }
10192
10193                 /*
10194                  * Wait for everybody to stop referencing the events through
10195                  * the old lists, before installing it on new lists.
10196                  */
10197                 synchronize_rcu();
10198
10199                 /*
10200                  * Install the group siblings before the group leader.
10201                  *
10202                  * Because a group leader will try and install the entire group
10203                  * (through the sibling list, which is still in-tact), we can
10204                  * end up with siblings installed in the wrong context.
10205                  *
10206                  * By installing siblings first we NO-OP because they're not
10207                  * reachable through the group lists.
10208                  */
10209                 list_for_each_entry(sibling, &group_leader->sibling_list,
10210                                     group_entry) {
10211                         perf_event__state_init(sibling);
10212                         perf_install_in_context(ctx, sibling, sibling->cpu);
10213                         get_ctx(ctx);
10214                 }
10215
10216                 /*
10217                  * Removing from the context ends up with disabled
10218                  * event. What we want here is event in the initial
10219                  * startup state, ready to be add into new context.
10220                  */
10221                 perf_event__state_init(group_leader);
10222                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10223                 get_ctx(ctx);
10224         }
10225
10226         /*
10227          * Precalculate sample_data sizes; do while holding ctx::mutex such
10228          * that we're serialized against further additions and before
10229          * perf_install_in_context() which is the point the event is active and
10230          * can use these values.
10231          */
10232         perf_event__header_size(event);
10233         perf_event__id_header_size(event);
10234
10235         event->owner = current;
10236
10237         perf_install_in_context(ctx, event, event->cpu);
10238         perf_unpin_context(ctx);
10239
10240         if (move_group)
10241                 perf_event_ctx_unlock(group_leader, gctx);
10242         mutex_unlock(&ctx->mutex);
10243
10244         if (task) {
10245                 mutex_unlock(&task->signal->cred_guard_mutex);
10246                 put_task_struct(task);
10247         }
10248
10249         mutex_lock(&current->perf_event_mutex);
10250         list_add_tail(&event->owner_entry, &current->perf_event_list);
10251         mutex_unlock(&current->perf_event_mutex);
10252
10253         /*
10254          * Drop the reference on the group_event after placing the
10255          * new event on the sibling_list. This ensures destruction
10256          * of the group leader will find the pointer to itself in
10257          * perf_group_detach().
10258          */
10259         fdput(group);
10260         fd_install(event_fd, event_file);
10261         return event_fd;
10262
10263 err_locked:
10264         if (move_group)
10265                 perf_event_ctx_unlock(group_leader, gctx);
10266         mutex_unlock(&ctx->mutex);
10267 /* err_file: */
10268         fput(event_file);
10269 err_context:
10270         perf_unpin_context(ctx);
10271         put_ctx(ctx);
10272 err_alloc:
10273         /*
10274          * If event_file is set, the fput() above will have called ->release()
10275          * and that will take care of freeing the event.
10276          */
10277         if (!event_file)
10278                 free_event(event);
10279 err_cred:
10280         if (task)
10281                 mutex_unlock(&task->signal->cred_guard_mutex);
10282 err_task:
10283         if (task)
10284                 put_task_struct(task);
10285 err_group_fd:
10286         fdput(group);
10287 err_fd:
10288         put_unused_fd(event_fd);
10289         return err;
10290 }
10291
10292 /**
10293  * perf_event_create_kernel_counter
10294  *
10295  * @attr: attributes of the counter to create
10296  * @cpu: cpu in which the counter is bound
10297  * @task: task to profile (NULL for percpu)
10298  */
10299 struct perf_event *
10300 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10301                                  struct task_struct *task,
10302                                  perf_overflow_handler_t overflow_handler,
10303                                  void *context)
10304 {
10305         struct perf_event_context *ctx;
10306         struct perf_event *event;
10307         int err;
10308
10309         /*
10310          * Get the target context (task or percpu):
10311          */
10312
10313         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10314                                  overflow_handler, context, -1);
10315         if (IS_ERR(event)) {
10316                 err = PTR_ERR(event);
10317                 goto err;
10318         }
10319
10320         /* Mark owner so we could distinguish it from user events. */
10321         event->owner = TASK_TOMBSTONE;
10322
10323         ctx = find_get_context(event->pmu, task, event);
10324         if (IS_ERR(ctx)) {
10325                 err = PTR_ERR(ctx);
10326                 goto err_free;
10327         }
10328
10329         WARN_ON_ONCE(ctx->parent_ctx);
10330         mutex_lock(&ctx->mutex);
10331         if (ctx->task == TASK_TOMBSTONE) {
10332                 err = -ESRCH;
10333                 goto err_unlock;
10334         }
10335
10336         if (!task) {
10337                 /*
10338                  * Check if the @cpu we're creating an event for is online.
10339                  *
10340                  * We use the perf_cpu_context::ctx::mutex to serialize against
10341                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10342                  */
10343                 struct perf_cpu_context *cpuctx =
10344                         container_of(ctx, struct perf_cpu_context, ctx);
10345                 if (!cpuctx->online) {
10346                         err = -ENODEV;
10347                         goto err_unlock;
10348                 }
10349         }
10350
10351         if (!exclusive_event_installable(event, ctx)) {
10352                 err = -EBUSY;
10353                 goto err_unlock;
10354         }
10355
10356         perf_install_in_context(ctx, event, cpu);
10357         perf_unpin_context(ctx);
10358         mutex_unlock(&ctx->mutex);
10359
10360         return event;
10361
10362 err_unlock:
10363         mutex_unlock(&ctx->mutex);
10364         perf_unpin_context(ctx);
10365         put_ctx(ctx);
10366 err_free:
10367         free_event(event);
10368 err:
10369         return ERR_PTR(err);
10370 }
10371 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10372
10373 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10374 {
10375         struct perf_event_context *src_ctx;
10376         struct perf_event_context *dst_ctx;
10377         struct perf_event *event, *tmp;
10378         LIST_HEAD(events);
10379
10380         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10381         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10382
10383         /*
10384          * See perf_event_ctx_lock() for comments on the details
10385          * of swizzling perf_event::ctx.
10386          */
10387         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10388         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10389                                  event_entry) {
10390                 perf_remove_from_context(event, 0);
10391                 unaccount_event_cpu(event, src_cpu);
10392                 put_ctx(src_ctx);
10393                 list_add(&event->migrate_entry, &events);
10394         }
10395
10396         /*
10397          * Wait for the events to quiesce before re-instating them.
10398          */
10399         synchronize_rcu();
10400
10401         /*
10402          * Re-instate events in 2 passes.
10403          *
10404          * Skip over group leaders and only install siblings on this first
10405          * pass, siblings will not get enabled without a leader, however a
10406          * leader will enable its siblings, even if those are still on the old
10407          * context.
10408          */
10409         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10410                 if (event->group_leader == event)
10411                         continue;
10412
10413                 list_del(&event->migrate_entry);
10414                 if (event->state >= PERF_EVENT_STATE_OFF)
10415                         event->state = PERF_EVENT_STATE_INACTIVE;
10416                 account_event_cpu(event, dst_cpu);
10417                 perf_install_in_context(dst_ctx, event, dst_cpu);
10418                 get_ctx(dst_ctx);
10419         }
10420
10421         /*
10422          * Once all the siblings are setup properly, install the group leaders
10423          * to make it go.
10424          */
10425         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10426                 list_del(&event->migrate_entry);
10427                 if (event->state >= PERF_EVENT_STATE_OFF)
10428                         event->state = PERF_EVENT_STATE_INACTIVE;
10429                 account_event_cpu(event, dst_cpu);
10430                 perf_install_in_context(dst_ctx, event, dst_cpu);
10431                 get_ctx(dst_ctx);
10432         }
10433         mutex_unlock(&dst_ctx->mutex);
10434         mutex_unlock(&src_ctx->mutex);
10435 }
10436 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10437
10438 static void sync_child_event(struct perf_event *child_event,
10439                                struct task_struct *child)
10440 {
10441         struct perf_event *parent_event = child_event->parent;
10442         u64 child_val;
10443
10444         if (child_event->attr.inherit_stat)
10445                 perf_event_read_event(child_event, child);
10446
10447         child_val = perf_event_count(child_event);
10448
10449         /*
10450          * Add back the child's count to the parent's count:
10451          */
10452         atomic64_add(child_val, &parent_event->child_count);
10453         atomic64_add(child_event->total_time_enabled,
10454                      &parent_event->child_total_time_enabled);
10455         atomic64_add(child_event->total_time_running,
10456                      &parent_event->child_total_time_running);
10457 }
10458
10459 static void
10460 perf_event_exit_event(struct perf_event *child_event,
10461                       struct perf_event_context *child_ctx,
10462                       struct task_struct *child)
10463 {
10464         struct perf_event *parent_event = child_event->parent;
10465
10466         /*
10467          * Do not destroy the 'original' grouping; because of the context
10468          * switch optimization the original events could've ended up in a
10469          * random child task.
10470          *
10471          * If we were to destroy the original group, all group related
10472          * operations would cease to function properly after this random
10473          * child dies.
10474          *
10475          * Do destroy all inherited groups, we don't care about those
10476          * and being thorough is better.
10477          */
10478         raw_spin_lock_irq(&child_ctx->lock);
10479         WARN_ON_ONCE(child_ctx->is_active);
10480
10481         if (parent_event)
10482                 perf_group_detach(child_event);
10483         list_del_event(child_event, child_ctx);
10484         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10485         raw_spin_unlock_irq(&child_ctx->lock);
10486
10487         /*
10488          * Parent events are governed by their filedesc, retain them.
10489          */
10490         if (!parent_event) {
10491                 perf_event_wakeup(child_event);
10492                 return;
10493         }
10494         /*
10495          * Child events can be cleaned up.
10496          */
10497
10498         sync_child_event(child_event, child);
10499
10500         /*
10501          * Remove this event from the parent's list
10502          */
10503         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10504         mutex_lock(&parent_event->child_mutex);
10505         list_del_init(&child_event->child_list);
10506         mutex_unlock(&parent_event->child_mutex);
10507
10508         /*
10509          * Kick perf_poll() for is_event_hup().
10510          */
10511         perf_event_wakeup(parent_event);
10512         free_event(child_event);
10513         put_event(parent_event);
10514 }
10515
10516 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10517 {
10518         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10519         struct perf_event *child_event, *next;
10520
10521         WARN_ON_ONCE(child != current);
10522
10523         child_ctx = perf_pin_task_context(child, ctxn);
10524         if (!child_ctx)
10525                 return;
10526
10527         /*
10528          * In order to reduce the amount of tricky in ctx tear-down, we hold
10529          * ctx::mutex over the entire thing. This serializes against almost
10530          * everything that wants to access the ctx.
10531          *
10532          * The exception is sys_perf_event_open() /
10533          * perf_event_create_kernel_count() which does find_get_context()
10534          * without ctx::mutex (it cannot because of the move_group double mutex
10535          * lock thing). See the comments in perf_install_in_context().
10536          */
10537         mutex_lock(&child_ctx->mutex);
10538
10539         /*
10540          * In a single ctx::lock section, de-schedule the events and detach the
10541          * context from the task such that we cannot ever get it scheduled back
10542          * in.
10543          */
10544         raw_spin_lock_irq(&child_ctx->lock);
10545         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10546
10547         /*
10548          * Now that the context is inactive, destroy the task <-> ctx relation
10549          * and mark the context dead.
10550          */
10551         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10552         put_ctx(child_ctx); /* cannot be last */
10553         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10554         put_task_struct(current); /* cannot be last */
10555
10556         clone_ctx = unclone_ctx(child_ctx);
10557         raw_spin_unlock_irq(&child_ctx->lock);
10558
10559         if (clone_ctx)
10560                 put_ctx(clone_ctx);
10561
10562         /*
10563          * Report the task dead after unscheduling the events so that we
10564          * won't get any samples after PERF_RECORD_EXIT. We can however still
10565          * get a few PERF_RECORD_READ events.
10566          */
10567         perf_event_task(child, child_ctx, 0);
10568
10569         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10570                 perf_event_exit_event(child_event, child_ctx, child);
10571
10572         mutex_unlock(&child_ctx->mutex);
10573
10574         put_ctx(child_ctx);
10575 }
10576
10577 /*
10578  * When a child task exits, feed back event values to parent events.
10579  *
10580  * Can be called with cred_guard_mutex held when called from
10581  * install_exec_creds().
10582  */
10583 void perf_event_exit_task(struct task_struct *child)
10584 {
10585         struct perf_event *event, *tmp;
10586         int ctxn;
10587
10588         mutex_lock(&child->perf_event_mutex);
10589         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10590                                  owner_entry) {
10591                 list_del_init(&event->owner_entry);
10592
10593                 /*
10594                  * Ensure the list deletion is visible before we clear
10595                  * the owner, closes a race against perf_release() where
10596                  * we need to serialize on the owner->perf_event_mutex.
10597                  */
10598                 smp_store_release(&event->owner, NULL);
10599         }
10600         mutex_unlock(&child->perf_event_mutex);
10601
10602         for_each_task_context_nr(ctxn)
10603                 perf_event_exit_task_context(child, ctxn);
10604
10605         /*
10606          * The perf_event_exit_task_context calls perf_event_task
10607          * with child's task_ctx, which generates EXIT events for
10608          * child contexts and sets child->perf_event_ctxp[] to NULL.
10609          * At this point we need to send EXIT events to cpu contexts.
10610          */
10611         perf_event_task(child, NULL, 0);
10612 }
10613
10614 static void perf_free_event(struct perf_event *event,
10615                             struct perf_event_context *ctx)
10616 {
10617         struct perf_event *parent = event->parent;
10618
10619         if (WARN_ON_ONCE(!parent))
10620                 return;
10621
10622         mutex_lock(&parent->child_mutex);
10623         list_del_init(&event->child_list);
10624         mutex_unlock(&parent->child_mutex);
10625
10626         put_event(parent);
10627
10628         raw_spin_lock_irq(&ctx->lock);
10629         perf_group_detach(event);
10630         list_del_event(event, ctx);
10631         raw_spin_unlock_irq(&ctx->lock);
10632         free_event(event);
10633 }
10634
10635 /*
10636  * Free an unexposed, unused context as created by inheritance by
10637  * perf_event_init_task below, used by fork() in case of fail.
10638  *
10639  * Not all locks are strictly required, but take them anyway to be nice and
10640  * help out with the lockdep assertions.
10641  */
10642 void perf_event_free_task(struct task_struct *task)
10643 {
10644         struct perf_event_context *ctx;
10645         struct perf_event *event, *tmp;
10646         int ctxn;
10647
10648         for_each_task_context_nr(ctxn) {
10649                 ctx = task->perf_event_ctxp[ctxn];
10650                 if (!ctx)
10651                         continue;
10652
10653                 mutex_lock(&ctx->mutex);
10654                 raw_spin_lock_irq(&ctx->lock);
10655                 /*
10656                  * Destroy the task <-> ctx relation and mark the context dead.
10657                  *
10658                  * This is important because even though the task hasn't been
10659                  * exposed yet the context has been (through child_list).
10660                  */
10661                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10662                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10663                 put_task_struct(task); /* cannot be last */
10664                 raw_spin_unlock_irq(&ctx->lock);
10665
10666                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10667                         perf_free_event(event, ctx);
10668
10669                 mutex_unlock(&ctx->mutex);
10670                 put_ctx(ctx);
10671         }
10672 }
10673
10674 void perf_event_delayed_put(struct task_struct *task)
10675 {
10676         int ctxn;
10677
10678         for_each_task_context_nr(ctxn)
10679                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10680 }
10681
10682 struct file *perf_event_get(unsigned int fd)
10683 {
10684         struct file *file;
10685
10686         file = fget_raw(fd);
10687         if (!file)
10688                 return ERR_PTR(-EBADF);
10689
10690         if (file->f_op != &perf_fops) {
10691                 fput(file);
10692                 return ERR_PTR(-EBADF);
10693         }
10694
10695         return file;
10696 }
10697
10698 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10699 {
10700         if (!event)
10701                 return ERR_PTR(-EINVAL);
10702
10703         return &event->attr;
10704 }
10705
10706 /*
10707  * Inherit a event from parent task to child task.
10708  *
10709  * Returns:
10710  *  - valid pointer on success
10711  *  - NULL for orphaned events
10712  *  - IS_ERR() on error
10713  */
10714 static struct perf_event *
10715 inherit_event(struct perf_event *parent_event,
10716               struct task_struct *parent,
10717               struct perf_event_context *parent_ctx,
10718               struct task_struct *child,
10719               struct perf_event *group_leader,
10720               struct perf_event_context *child_ctx)
10721 {
10722         enum perf_event_state parent_state = parent_event->state;
10723         struct perf_event *child_event;
10724         unsigned long flags;
10725
10726         /*
10727          * Instead of creating recursive hierarchies of events,
10728          * we link inherited events back to the original parent,
10729          * which has a filp for sure, which we use as the reference
10730          * count:
10731          */
10732         if (parent_event->parent)
10733                 parent_event = parent_event->parent;
10734
10735         child_event = perf_event_alloc(&parent_event->attr,
10736                                            parent_event->cpu,
10737                                            child,
10738                                            group_leader, parent_event,
10739                                            NULL, NULL, -1);
10740         if (IS_ERR(child_event))
10741                 return child_event;
10742
10743         /*
10744          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10745          * must be under the same lock in order to serialize against
10746          * perf_event_release_kernel(), such that either we must observe
10747          * is_orphaned_event() or they will observe us on the child_list.
10748          */
10749         mutex_lock(&parent_event->child_mutex);
10750         if (is_orphaned_event(parent_event) ||
10751             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10752                 mutex_unlock(&parent_event->child_mutex);
10753                 free_event(child_event);
10754                 return NULL;
10755         }
10756
10757         get_ctx(child_ctx);
10758
10759         /*
10760          * Make the child state follow the state of the parent event,
10761          * not its attr.disabled bit.  We hold the parent's mutex,
10762          * so we won't race with perf_event_{en, dis}able_family.
10763          */
10764         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10765                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10766         else
10767                 child_event->state = PERF_EVENT_STATE_OFF;
10768
10769         if (parent_event->attr.freq) {
10770                 u64 sample_period = parent_event->hw.sample_period;
10771                 struct hw_perf_event *hwc = &child_event->hw;
10772
10773                 hwc->sample_period = sample_period;
10774                 hwc->last_period   = sample_period;
10775
10776                 local64_set(&hwc->period_left, sample_period);
10777         }
10778
10779         child_event->ctx = child_ctx;
10780         child_event->overflow_handler = parent_event->overflow_handler;
10781         child_event->overflow_handler_context
10782                 = parent_event->overflow_handler_context;
10783
10784         /*
10785          * Precalculate sample_data sizes
10786          */
10787         perf_event__header_size(child_event);
10788         perf_event__id_header_size(child_event);
10789
10790         /*
10791          * Link it up in the child's context:
10792          */
10793         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10794         add_event_to_ctx(child_event, child_ctx);
10795         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10796
10797         /*
10798          * Link this into the parent event's child list
10799          */
10800         list_add_tail(&child_event->child_list, &parent_event->child_list);
10801         mutex_unlock(&parent_event->child_mutex);
10802
10803         return child_event;
10804 }
10805
10806 /*
10807  * Inherits an event group.
10808  *
10809  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10810  * This matches with perf_event_release_kernel() removing all child events.
10811  *
10812  * Returns:
10813  *  - 0 on success
10814  *  - <0 on error
10815  */
10816 static int inherit_group(struct perf_event *parent_event,
10817               struct task_struct *parent,
10818               struct perf_event_context *parent_ctx,
10819               struct task_struct *child,
10820               struct perf_event_context *child_ctx)
10821 {
10822         struct perf_event *leader;
10823         struct perf_event *sub;
10824         struct perf_event *child_ctr;
10825
10826         leader = inherit_event(parent_event, parent, parent_ctx,
10827                                  child, NULL, child_ctx);
10828         if (IS_ERR(leader))
10829                 return PTR_ERR(leader);
10830         /*
10831          * @leader can be NULL here because of is_orphaned_event(). In this
10832          * case inherit_event() will create individual events, similar to what
10833          * perf_group_detach() would do anyway.
10834          */
10835         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10836                 child_ctr = inherit_event(sub, parent, parent_ctx,
10837                                             child, leader, child_ctx);
10838                 if (IS_ERR(child_ctr))
10839                         return PTR_ERR(child_ctr);
10840         }
10841         return 0;
10842 }
10843
10844 /*
10845  * Creates the child task context and tries to inherit the event-group.
10846  *
10847  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10848  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10849  * consistent with perf_event_release_kernel() removing all child events.
10850  *
10851  * Returns:
10852  *  - 0 on success
10853  *  - <0 on error
10854  */
10855 static int
10856 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10857                    struct perf_event_context *parent_ctx,
10858                    struct task_struct *child, int ctxn,
10859                    int *inherited_all)
10860 {
10861         int ret;
10862         struct perf_event_context *child_ctx;
10863
10864         if (!event->attr.inherit) {
10865                 *inherited_all = 0;
10866                 return 0;
10867         }
10868
10869         child_ctx = child->perf_event_ctxp[ctxn];
10870         if (!child_ctx) {
10871                 /*
10872                  * This is executed from the parent task context, so
10873                  * inherit events that have been marked for cloning.
10874                  * First allocate and initialize a context for the
10875                  * child.
10876                  */
10877                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10878                 if (!child_ctx)
10879                         return -ENOMEM;
10880
10881                 child->perf_event_ctxp[ctxn] = child_ctx;
10882         }
10883
10884         ret = inherit_group(event, parent, parent_ctx,
10885                             child, child_ctx);
10886
10887         if (ret)
10888                 *inherited_all = 0;
10889
10890         return ret;
10891 }
10892
10893 /*
10894  * Initialize the perf_event context in task_struct
10895  */
10896 static int perf_event_init_context(struct task_struct *child, int ctxn)
10897 {
10898         struct perf_event_context *child_ctx, *parent_ctx;
10899         struct perf_event_context *cloned_ctx;
10900         struct perf_event *event;
10901         struct task_struct *parent = current;
10902         int inherited_all = 1;
10903         unsigned long flags;
10904         int ret = 0;
10905
10906         if (likely(!parent->perf_event_ctxp[ctxn]))
10907                 return 0;
10908
10909         /*
10910          * If the parent's context is a clone, pin it so it won't get
10911          * swapped under us.
10912          */
10913         parent_ctx = perf_pin_task_context(parent, ctxn);
10914         if (!parent_ctx)
10915                 return 0;
10916
10917         /*
10918          * No need to check if parent_ctx != NULL here; since we saw
10919          * it non-NULL earlier, the only reason for it to become NULL
10920          * is if we exit, and since we're currently in the middle of
10921          * a fork we can't be exiting at the same time.
10922          */
10923
10924         /*
10925          * Lock the parent list. No need to lock the child - not PID
10926          * hashed yet and not running, so nobody can access it.
10927          */
10928         mutex_lock(&parent_ctx->mutex);
10929
10930         /*
10931          * We dont have to disable NMIs - we are only looking at
10932          * the list, not manipulating it:
10933          */
10934         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10935                 ret = inherit_task_group(event, parent, parent_ctx,
10936                                          child, ctxn, &inherited_all);
10937                 if (ret)
10938                         goto out_unlock;
10939         }
10940
10941         /*
10942          * We can't hold ctx->lock when iterating the ->flexible_group list due
10943          * to allocations, but we need to prevent rotation because
10944          * rotate_ctx() will change the list from interrupt context.
10945          */
10946         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10947         parent_ctx->rotate_disable = 1;
10948         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10949
10950         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10951                 ret = inherit_task_group(event, parent, parent_ctx,
10952                                          child, ctxn, &inherited_all);
10953                 if (ret)
10954                         goto out_unlock;
10955         }
10956
10957         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10958         parent_ctx->rotate_disable = 0;
10959
10960         child_ctx = child->perf_event_ctxp[ctxn];
10961
10962         if (child_ctx && inherited_all) {
10963                 /*
10964                  * Mark the child context as a clone of the parent
10965                  * context, or of whatever the parent is a clone of.
10966                  *
10967                  * Note that if the parent is a clone, the holding of
10968                  * parent_ctx->lock avoids it from being uncloned.
10969                  */
10970                 cloned_ctx = parent_ctx->parent_ctx;
10971                 if (cloned_ctx) {
10972                         child_ctx->parent_ctx = cloned_ctx;
10973                         child_ctx->parent_gen = parent_ctx->parent_gen;
10974                 } else {
10975                         child_ctx->parent_ctx = parent_ctx;
10976                         child_ctx->parent_gen = parent_ctx->generation;
10977                 }
10978                 get_ctx(child_ctx->parent_ctx);
10979         }
10980
10981         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10982 out_unlock:
10983         mutex_unlock(&parent_ctx->mutex);
10984
10985         perf_unpin_context(parent_ctx);
10986         put_ctx(parent_ctx);
10987
10988         return ret;
10989 }
10990
10991 /*
10992  * Initialize the perf_event context in task_struct
10993  */
10994 int perf_event_init_task(struct task_struct *child)
10995 {
10996         int ctxn, ret;
10997
10998         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10999         mutex_init(&child->perf_event_mutex);
11000         INIT_LIST_HEAD(&child->perf_event_list);
11001
11002         for_each_task_context_nr(ctxn) {
11003                 ret = perf_event_init_context(child, ctxn);
11004                 if (ret) {
11005                         perf_event_free_task(child);
11006                         return ret;
11007                 }
11008         }
11009
11010         return 0;
11011 }
11012
11013 static void __init perf_event_init_all_cpus(void)
11014 {
11015         struct swevent_htable *swhash;
11016         int cpu;
11017
11018         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11019
11020         for_each_possible_cpu(cpu) {
11021                 swhash = &per_cpu(swevent_htable, cpu);
11022                 mutex_init(&swhash->hlist_mutex);
11023                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11024
11025                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11026                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11027
11028 #ifdef CONFIG_CGROUP_PERF
11029                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11030 #endif
11031                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11032         }
11033 }
11034
11035 void perf_swevent_init_cpu(unsigned int cpu)
11036 {
11037         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11038
11039         mutex_lock(&swhash->hlist_mutex);
11040         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11041                 struct swevent_hlist *hlist;
11042
11043                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11044                 WARN_ON(!hlist);
11045                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11046         }
11047         mutex_unlock(&swhash->hlist_mutex);
11048 }
11049
11050 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11051 static void __perf_event_exit_context(void *__info)
11052 {
11053         struct perf_event_context *ctx = __info;
11054         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11055         struct perf_event *event;
11056
11057         raw_spin_lock(&ctx->lock);
11058         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11059         list_for_each_entry(event, &ctx->event_list, event_entry)
11060                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11061         raw_spin_unlock(&ctx->lock);
11062 }
11063
11064 static void perf_event_exit_cpu_context(int cpu)
11065 {
11066         struct perf_cpu_context *cpuctx;
11067         struct perf_event_context *ctx;
11068         struct pmu *pmu;
11069
11070         mutex_lock(&pmus_lock);
11071         list_for_each_entry(pmu, &pmus, entry) {
11072                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11073                 ctx = &cpuctx->ctx;
11074
11075                 mutex_lock(&ctx->mutex);
11076                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11077                 cpuctx->online = 0;
11078                 mutex_unlock(&ctx->mutex);
11079         }
11080         cpumask_clear_cpu(cpu, perf_online_mask);
11081         mutex_unlock(&pmus_lock);
11082 }
11083 #else
11084
11085 static void perf_event_exit_cpu_context(int cpu) { }
11086
11087 #endif
11088
11089 int perf_event_init_cpu(unsigned int cpu)
11090 {
11091         struct perf_cpu_context *cpuctx;
11092         struct perf_event_context *ctx;
11093         struct pmu *pmu;
11094
11095         perf_swevent_init_cpu(cpu);
11096
11097         mutex_lock(&pmus_lock);
11098         cpumask_set_cpu(cpu, perf_online_mask);
11099         list_for_each_entry(pmu, &pmus, entry) {
11100                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11101                 ctx = &cpuctx->ctx;
11102
11103                 mutex_lock(&ctx->mutex);
11104                 cpuctx->online = 1;
11105                 mutex_unlock(&ctx->mutex);
11106         }
11107         mutex_unlock(&pmus_lock);
11108
11109         return 0;
11110 }
11111
11112 int perf_event_exit_cpu(unsigned int cpu)
11113 {
11114         perf_event_exit_cpu_context(cpu);
11115         return 0;
11116 }
11117
11118 static int
11119 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11120 {
11121         int cpu;
11122
11123         for_each_online_cpu(cpu)
11124                 perf_event_exit_cpu(cpu);
11125
11126         return NOTIFY_OK;
11127 }
11128
11129 /*
11130  * Run the perf reboot notifier at the very last possible moment so that
11131  * the generic watchdog code runs as long as possible.
11132  */
11133 static struct notifier_block perf_reboot_notifier = {
11134         .notifier_call = perf_reboot,
11135         .priority = INT_MIN,
11136 };
11137
11138 void __init perf_event_init(void)
11139 {
11140         int ret;
11141
11142         idr_init(&pmu_idr);
11143
11144         perf_event_init_all_cpus();
11145         init_srcu_struct(&pmus_srcu);
11146         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11147         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11148         perf_pmu_register(&perf_task_clock, NULL, -1);
11149         perf_tp_register();
11150         perf_event_init_cpu(smp_processor_id());
11151         register_reboot_notifier(&perf_reboot_notifier);
11152
11153         ret = init_hw_breakpoint();
11154         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11155
11156         /*
11157          * Build time assertion that we keep the data_head at the intended
11158          * location.  IOW, validation we got the __reserved[] size right.
11159          */
11160         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11161                      != 1024);
11162 }
11163
11164 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11165                               char *page)
11166 {
11167         struct perf_pmu_events_attr *pmu_attr =
11168                 container_of(attr, struct perf_pmu_events_attr, attr);
11169
11170         if (pmu_attr->event_str)
11171                 return sprintf(page, "%s\n", pmu_attr->event_str);
11172
11173         return 0;
11174 }
11175 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11176
11177 static int __init perf_event_sysfs_init(void)
11178 {
11179         struct pmu *pmu;
11180         int ret;
11181
11182         mutex_lock(&pmus_lock);
11183
11184         ret = bus_register(&pmu_bus);
11185         if (ret)
11186                 goto unlock;
11187
11188         list_for_each_entry(pmu, &pmus, entry) {
11189                 if (!pmu->name || pmu->type < 0)
11190                         continue;
11191
11192                 ret = pmu_dev_alloc(pmu);
11193                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11194         }
11195         pmu_bus_running = 1;
11196         ret = 0;
11197
11198 unlock:
11199         mutex_unlock(&pmus_lock);
11200
11201         return ret;
11202 }
11203 device_initcall(perf_event_sysfs_init);
11204
11205 #ifdef CONFIG_CGROUP_PERF
11206 static struct cgroup_subsys_state *
11207 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11208 {
11209         struct perf_cgroup *jc;
11210
11211         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11212         if (!jc)
11213                 return ERR_PTR(-ENOMEM);
11214
11215         jc->info = alloc_percpu(struct perf_cgroup_info);
11216         if (!jc->info) {
11217                 kfree(jc);
11218                 return ERR_PTR(-ENOMEM);
11219         }
11220
11221         return &jc->css;
11222 }
11223
11224 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11225 {
11226         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11227
11228         free_percpu(jc->info);
11229         kfree(jc);
11230 }
11231
11232 static int __perf_cgroup_move(void *info)
11233 {
11234         struct task_struct *task = info;
11235         rcu_read_lock();
11236         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11237         rcu_read_unlock();
11238         return 0;
11239 }
11240
11241 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11242 {
11243         struct task_struct *task;
11244         struct cgroup_subsys_state *css;
11245
11246         cgroup_taskset_for_each(task, css, tset)
11247                 task_function_call(task, __perf_cgroup_move, task);
11248 }
11249
11250 struct cgroup_subsys perf_event_cgrp_subsys = {
11251         .css_alloc      = perf_cgroup_css_alloc,
11252         .css_free       = perf_cgroup_css_free,
11253         .attach         = perf_cgroup_attach,
11254         /*
11255          * Implicitly enable on dfl hierarchy so that perf events can
11256          * always be filtered by cgroup2 path as long as perf_event
11257          * controller is not mounted on a legacy hierarchy.
11258          */
11259         .implicit_on_dfl = true,
11260         .threaded       = true,
11261 };
11262 #endif /* CONFIG_CGROUP_PERF */