2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
48 struct cpuhp_cpu_state {
49 enum cpuhp_state state;
50 enum cpuhp_state target;
52 struct task_struct *thread;
57 struct hlist_node *node;
58 enum cpuhp_state cb_state;
60 struct completion done;
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
67 * cpuhp_step - Hotplug state machine step
68 * @name: Name of the step
69 * @startup: Startup function of the step
70 * @teardown: Teardown function of the step
71 * @skip_onerr: Do not invoke the functions on error rollback
72 * Will go away once the notifiers are gone
73 * @cant_stop: Bringup/teardown can't be stopped at this step
78 int (*single)(unsigned int cpu);
79 int (*multi)(unsigned int cpu,
80 struct hlist_node *node);
83 int (*single)(unsigned int cpu);
84 int (*multi)(unsigned int cpu,
85 struct hlist_node *node);
87 struct hlist_head list;
93 static DEFINE_MUTEX(cpuhp_state_mutex);
94 static struct cpuhp_step cpuhp_bp_states[];
95 static struct cpuhp_step cpuhp_ap_states[];
97 static bool cpuhp_is_ap_state(enum cpuhp_state state)
100 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 * purposes as that state is handled explicitly in cpu_down.
103 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
106 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
108 struct cpuhp_step *sp;
110 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116 * @cpu: The cpu for which the callback should be invoked
117 * @step: The step in the state machine
118 * @bringup: True if the bringup callback should be invoked
120 * Called from cpu hotplug and from the state register machinery.
122 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
123 bool bringup, struct hlist_node *node)
125 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
126 struct cpuhp_step *step = cpuhp_get_step(state);
127 int (*cbm)(unsigned int cpu, struct hlist_node *node);
128 int (*cb)(unsigned int cpu);
131 if (!step->multi_instance) {
132 cb = bringup ? step->startup.single : step->teardown.single;
135 trace_cpuhp_enter(cpu, st->target, state, cb);
137 trace_cpuhp_exit(cpu, st->state, state, ret);
140 cbm = bringup ? step->startup.multi : step->teardown.multi;
144 /* Single invocation for instance add/remove */
146 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
147 ret = cbm(cpu, node);
148 trace_cpuhp_exit(cpu, st->state, state, ret);
152 /* State transition. Invoke on all instances */
154 hlist_for_each(node, &step->list) {
155 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 ret = cbm(cpu, node);
157 trace_cpuhp_exit(cpu, st->state, state, ret);
164 /* Rollback the instances if one failed */
165 cbm = !bringup ? step->startup.multi : step->teardown.multi;
169 hlist_for_each(node, &step->list) {
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock);
180 bool cpuhp_tasks_frozen;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
184 * The following two APIs (cpu_maps_update_begin/done) must be used when
185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
187 void cpu_maps_update_begin(void)
189 mutex_lock(&cpu_add_remove_lock);
192 void cpu_maps_update_done(void)
194 mutex_unlock(&cpu_add_remove_lock);
197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198 * Should always be manipulated under cpu_add_remove_lock
200 static int cpu_hotplug_disabled;
202 #ifdef CONFIG_HOTPLUG_CPU
205 struct task_struct *active_writer;
206 /* wait queue to wake up the active_writer */
207 wait_queue_head_t wq;
208 /* verifies that no writer will get active while readers are active */
211 * Also blocks the new readers during
212 * an ongoing cpu hotplug operation.
216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
217 struct lockdep_map dep_map;
220 .active_writer = NULL,
221 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
222 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230 #define cpuhp_lock_acquire_tryread() \
231 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
233 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
236 void get_online_cpus(void)
239 if (cpu_hotplug.active_writer == current)
241 cpuhp_lock_acquire_read();
242 mutex_lock(&cpu_hotplug.lock);
243 atomic_inc(&cpu_hotplug.refcount);
244 mutex_unlock(&cpu_hotplug.lock);
246 EXPORT_SYMBOL_GPL(get_online_cpus);
248 void put_online_cpus(void)
252 if (cpu_hotplug.active_writer == current)
255 refcount = atomic_dec_return(&cpu_hotplug.refcount);
256 if (WARN_ON(refcount < 0)) /* try to fix things up */
257 atomic_inc(&cpu_hotplug.refcount);
259 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
260 wake_up(&cpu_hotplug.wq);
262 cpuhp_lock_release();
265 EXPORT_SYMBOL_GPL(put_online_cpus);
268 * This ensures that the hotplug operation can begin only when the
269 * refcount goes to zero.
271 * Note that during a cpu-hotplug operation, the new readers, if any,
272 * will be blocked by the cpu_hotplug.lock
274 * Since cpu_hotplug_begin() is always called after invoking
275 * cpu_maps_update_begin(), we can be sure that only one writer is active.
277 * Note that theoretically, there is a possibility of a livelock:
278 * - Refcount goes to zero, last reader wakes up the sleeping
280 * - Last reader unlocks the cpu_hotplug.lock.
281 * - A new reader arrives at this moment, bumps up the refcount.
282 * - The writer acquires the cpu_hotplug.lock finds the refcount
283 * non zero and goes to sleep again.
285 * However, this is very difficult to achieve in practice since
286 * get_online_cpus() not an api which is called all that often.
289 void cpu_hotplug_begin(void)
293 cpu_hotplug.active_writer = current;
294 cpuhp_lock_acquire();
297 mutex_lock(&cpu_hotplug.lock);
298 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
299 if (likely(!atomic_read(&cpu_hotplug.refcount)))
301 mutex_unlock(&cpu_hotplug.lock);
304 finish_wait(&cpu_hotplug.wq, &wait);
307 void cpu_hotplug_done(void)
309 cpu_hotplug.active_writer = NULL;
310 mutex_unlock(&cpu_hotplug.lock);
311 cpuhp_lock_release();
315 * Wait for currently running CPU hotplug operations to complete (if any) and
316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318 * hotplug path before performing hotplug operations. So acquiring that lock
319 * guarantees mutual exclusion from any currently running hotplug operations.
321 void cpu_hotplug_disable(void)
323 cpu_maps_update_begin();
324 cpu_hotplug_disabled++;
325 cpu_maps_update_done();
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
329 static void __cpu_hotplug_enable(void)
331 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
333 cpu_hotplug_disabled--;
336 void cpu_hotplug_enable(void)
338 cpu_maps_update_begin();
339 __cpu_hotplug_enable();
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
343 #endif /* CONFIG_HOTPLUG_CPU */
345 /* Notifier wrappers for transitioning to state machine */
347 static int bringup_wait_for_ap(unsigned int cpu)
349 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
351 wait_for_completion(&st->done);
355 static int bringup_cpu(unsigned int cpu)
357 struct task_struct *idle = idle_thread_get(cpu);
361 * Some architectures have to walk the irq descriptors to
362 * setup the vector space for the cpu which comes online.
363 * Prevent irq alloc/free across the bringup.
367 /* Arch-specific enabling code. */
368 ret = __cpu_up(cpu, idle);
372 ret = bringup_wait_for_ap(cpu);
373 BUG_ON(!cpu_online(cpu));
378 * Hotplug state machine related functions
380 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
382 for (st->state++; st->state < st->target; st->state++) {
383 struct cpuhp_step *step = cpuhp_get_step(st->state);
385 if (!step->skip_onerr)
386 cpuhp_invoke_callback(cpu, st->state, true, NULL);
390 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
391 enum cpuhp_state target)
393 enum cpuhp_state prev_state = st->state;
396 for (; st->state > target; st->state--) {
397 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
399 st->target = prev_state;
400 undo_cpu_down(cpu, st);
407 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
409 for (st->state--; st->state > st->target; st->state--) {
410 struct cpuhp_step *step = cpuhp_get_step(st->state);
412 if (!step->skip_onerr)
413 cpuhp_invoke_callback(cpu, st->state, false, NULL);
417 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
418 enum cpuhp_state target)
420 enum cpuhp_state prev_state = st->state;
423 while (st->state < target) {
425 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
427 st->target = prev_state;
428 undo_cpu_up(cpu, st);
436 * The cpu hotplug threads manage the bringup and teardown of the cpus
438 static void cpuhp_create(unsigned int cpu)
440 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
442 init_completion(&st->done);
445 static int cpuhp_should_run(unsigned int cpu)
447 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
449 return st->should_run;
452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
455 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
457 return cpuhp_down_callbacks(cpu, st, target);
460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
461 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
463 return cpuhp_up_callbacks(cpu, st, st->target);
467 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468 * callbacks when a state gets [un]installed at runtime.
470 static void cpuhp_thread_fun(unsigned int cpu)
472 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
476 * Paired with the mb() in cpuhp_kick_ap_work and
477 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
483 st->should_run = false;
485 /* Single callback invocation for [un]install ? */
487 if (st->cb_state < CPUHP_AP_ONLINE) {
489 ret = cpuhp_invoke_callback(cpu, st->cb_state,
490 st->bringup, st->node);
493 ret = cpuhp_invoke_callback(cpu, st->cb_state,
494 st->bringup, st->node);
496 } else if (st->rollback) {
497 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
499 undo_cpu_down(cpu, st);
500 st->rollback = false;
502 /* Cannot happen .... */
503 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
505 /* Regular hotplug work */
506 if (st->state < st->target)
507 ret = cpuhp_ap_online(cpu, st);
508 else if (st->state > st->target)
509 ret = cpuhp_ap_offline(cpu, st);
515 /* Invoke a single callback on a remote cpu */
517 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
518 struct hlist_node *node)
520 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522 if (!cpu_online(cpu))
526 * If we are up and running, use the hotplug thread. For early calls
527 * we invoke the thread function directly.
530 return cpuhp_invoke_callback(cpu, state, bringup, node);
532 st->cb_state = state;
534 st->bringup = bringup;
538 * Make sure the above stores are visible before should_run becomes
539 * true. Paired with the mb() above in cpuhp_thread_fun()
542 st->should_run = true;
543 wake_up_process(st->thread);
544 wait_for_completion(&st->done);
548 /* Regular hotplug invocation of the AP hotplug thread */
549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
554 * Make sure the above stores are visible before should_run becomes
555 * true. Paired with the mb() above in cpuhp_thread_fun()
558 st->should_run = true;
559 wake_up_process(st->thread);
562 static int cpuhp_kick_ap_work(unsigned int cpu)
564 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
565 enum cpuhp_state state = st->state;
567 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
568 __cpuhp_kick_ap_work(st);
569 wait_for_completion(&st->done);
570 trace_cpuhp_exit(cpu, st->state, state, st->result);
574 static struct smp_hotplug_thread cpuhp_threads = {
575 .store = &cpuhp_state.thread,
576 .create = &cpuhp_create,
577 .thread_should_run = cpuhp_should_run,
578 .thread_fn = cpuhp_thread_fun,
579 .thread_comm = "cpuhp/%u",
583 void __init cpuhp_threads_init(void)
585 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
586 kthread_unpark(this_cpu_read(cpuhp_state.thread));
589 #ifdef CONFIG_HOTPLUG_CPU
591 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594 * This function walks all processes, finds a valid mm struct for each one and
595 * then clears a corresponding bit in mm's cpumask. While this all sounds
596 * trivial, there are various non-obvious corner cases, which this function
597 * tries to solve in a safe manner.
599 * Also note that the function uses a somewhat relaxed locking scheme, so it may
600 * be called only for an already offlined CPU.
602 void clear_tasks_mm_cpumask(int cpu)
604 struct task_struct *p;
607 * This function is called after the cpu is taken down and marked
608 * offline, so its not like new tasks will ever get this cpu set in
609 * their mm mask. -- Peter Zijlstra
610 * Thus, we may use rcu_read_lock() here, instead of grabbing
611 * full-fledged tasklist_lock.
613 WARN_ON(cpu_online(cpu));
615 for_each_process(p) {
616 struct task_struct *t;
619 * Main thread might exit, but other threads may still have
620 * a valid mm. Find one.
622 t = find_lock_task_mm(p);
625 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
631 static inline void check_for_tasks(int dead_cpu)
633 struct task_struct *g, *p;
635 read_lock(&tasklist_lock);
636 for_each_process_thread(g, p) {
640 * We do the check with unlocked task_rq(p)->lock.
641 * Order the reading to do not warn about a task,
642 * which was running on this cpu in the past, and
643 * it's just been woken on another cpu.
646 if (task_cpu(p) != dead_cpu)
649 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
652 read_unlock(&tasklist_lock);
655 /* Take this CPU down. */
656 static int take_cpu_down(void *_param)
658 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
659 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
660 int err, cpu = smp_processor_id();
662 /* Ensure this CPU doesn't handle any more interrupts. */
663 err = __cpu_disable();
668 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669 * do this step again.
671 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
673 /* Invoke the former CPU_DYING callbacks */
674 for (; st->state > target; st->state--)
675 cpuhp_invoke_callback(cpu, st->state, false, NULL);
677 /* Give up timekeeping duties */
678 tick_handover_do_timer();
679 /* Park the stopper thread */
680 stop_machine_park(cpu);
684 static int takedown_cpu(unsigned int cpu)
686 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 /* Park the smpboot threads */
690 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
691 smpboot_park_threads(cpu);
694 * Prevent irq alloc/free while the dying cpu reorganizes the
695 * interrupt affinities.
700 * So now all preempt/rcu users must observe !cpu_active().
702 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
704 /* CPU refused to die */
706 /* Unpark the hotplug thread so we can rollback there */
707 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
710 BUG_ON(cpu_online(cpu));
713 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714 * runnable tasks from the cpu, there's only the idle task left now
715 * that the migration thread is done doing the stop_machine thing.
717 * Wait for the stop thread to go away.
719 wait_for_completion(&st->done);
720 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
722 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
725 hotplug_cpu__broadcast_tick_pull(cpu);
726 /* This actually kills the CPU. */
729 tick_cleanup_dead_cpu(cpu);
733 static void cpuhp_complete_idle_dead(void *arg)
735 struct cpuhp_cpu_state *st = arg;
740 void cpuhp_report_idle_dead(void)
742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
744 BUG_ON(st->state != CPUHP_AP_OFFLINE);
745 rcu_report_dead(smp_processor_id());
746 st->state = CPUHP_AP_IDLE_DEAD;
748 * We cannot call complete after rcu_report_dead() so we delegate it
751 smp_call_function_single(cpumask_first(cpu_online_mask),
752 cpuhp_complete_idle_dead, st, 0);
756 #define takedown_cpu NULL
759 #ifdef CONFIG_HOTPLUG_CPU
761 /* Requires cpu_add_remove_lock to be held */
762 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
763 enum cpuhp_state target)
765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
766 int prev_state, ret = 0;
768 if (num_online_cpus() == 1)
771 if (!cpu_present(cpu))
776 cpuhp_tasks_frozen = tasks_frozen;
778 prev_state = st->state;
781 * If the current CPU state is in the range of the AP hotplug thread,
782 * then we need to kick the thread.
784 if (st->state > CPUHP_TEARDOWN_CPU) {
785 ret = cpuhp_kick_ap_work(cpu);
787 * The AP side has done the error rollback already. Just
788 * return the error code..
794 * We might have stopped still in the range of the AP hotplug
795 * thread. Nothing to do anymore.
797 if (st->state > CPUHP_TEARDOWN_CPU)
801 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
802 * to do the further cleanups.
804 ret = cpuhp_down_callbacks(cpu, st, target);
805 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
806 st->target = prev_state;
808 cpuhp_kick_ap_work(cpu);
816 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
820 cpu_maps_update_begin();
822 if (cpu_hotplug_disabled) {
827 err = _cpu_down(cpu, 0, target);
830 cpu_maps_update_done();
833 int cpu_down(unsigned int cpu)
835 return do_cpu_down(cpu, CPUHP_OFFLINE);
837 EXPORT_SYMBOL(cpu_down);
838 #endif /*CONFIG_HOTPLUG_CPU*/
841 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
842 * @cpu: cpu that just started
844 * It must be called by the arch code on the new cpu, before the new cpu
845 * enables interrupts and before the "boot" cpu returns from __cpu_up().
847 void notify_cpu_starting(unsigned int cpu)
849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
852 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
853 while (st->state < target) {
855 cpuhp_invoke_callback(cpu, st->state, true, NULL);
860 * Called from the idle task. We need to set active here, so we can kick off
861 * the stopper thread and unpark the smpboot threads. If the target state is
862 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865 void cpuhp_online_idle(enum cpuhp_state state)
867 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
868 unsigned int cpu = smp_processor_id();
870 /* Happens for the boot cpu */
871 if (state != CPUHP_AP_ONLINE_IDLE)
874 st->state = CPUHP_AP_ONLINE_IDLE;
876 /* Unpark the stopper thread and the hotplug thread of this cpu */
877 stop_machine_unpark(cpu);
878 kthread_unpark(st->thread);
880 /* Should we go further up ? */
881 if (st->target > CPUHP_AP_ONLINE_IDLE)
882 __cpuhp_kick_ap_work(st);
887 /* Requires cpu_add_remove_lock to be held */
888 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
891 struct task_struct *idle;
896 if (!cpu_present(cpu)) {
902 * The caller of do_cpu_up might have raced with another
903 * caller. Ignore it for now.
905 if (st->state >= target)
908 if (st->state == CPUHP_OFFLINE) {
909 /* Let it fail before we try to bring the cpu up */
910 idle = idle_thread_get(cpu);
917 cpuhp_tasks_frozen = tasks_frozen;
921 * If the current CPU state is in the range of the AP hotplug thread,
922 * then we need to kick the thread once more.
924 if (st->state > CPUHP_BRINGUP_CPU) {
925 ret = cpuhp_kick_ap_work(cpu);
927 * The AP side has done the error rollback already. Just
928 * return the error code..
935 * Try to reach the target state. We max out on the BP at
936 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
937 * responsible for bringing it up to the target state.
939 target = min((int)target, CPUHP_BRINGUP_CPU);
940 ret = cpuhp_up_callbacks(cpu, st, target);
946 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
950 if (!cpu_possible(cpu)) {
951 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
953 #if defined(CONFIG_IA64)
954 pr_err("please check additional_cpus= boot parameter\n");
959 err = try_online_node(cpu_to_node(cpu));
963 cpu_maps_update_begin();
965 if (cpu_hotplug_disabled) {
970 err = _cpu_up(cpu, 0, target);
972 cpu_maps_update_done();
976 int cpu_up(unsigned int cpu)
978 return do_cpu_up(cpu, CPUHP_ONLINE);
980 EXPORT_SYMBOL_GPL(cpu_up);
982 #ifdef CONFIG_PM_SLEEP_SMP
983 static cpumask_var_t frozen_cpus;
985 int freeze_secondary_cpus(int primary)
989 cpu_maps_update_begin();
990 if (!cpu_online(primary))
991 primary = cpumask_first(cpu_online_mask);
993 * We take down all of the non-boot CPUs in one shot to avoid races
994 * with the userspace trying to use the CPU hotplug at the same time
996 cpumask_clear(frozen_cpus);
998 pr_info("Disabling non-boot CPUs ...\n");
999 for_each_online_cpu(cpu) {
1002 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1003 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1006 cpumask_set_cpu(cpu, frozen_cpus);
1008 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1014 BUG_ON(num_online_cpus() > 1);
1016 pr_err("Non-boot CPUs are not disabled\n");
1019 * Make sure the CPUs won't be enabled by someone else. We need to do
1020 * this even in case of failure as all disable_nonboot_cpus() users are
1021 * supposed to do enable_nonboot_cpus() on the failure path.
1023 cpu_hotplug_disabled++;
1025 cpu_maps_update_done();
1029 void __weak arch_enable_nonboot_cpus_begin(void)
1033 void __weak arch_enable_nonboot_cpus_end(void)
1037 void enable_nonboot_cpus(void)
1041 /* Allow everyone to use the CPU hotplug again */
1042 cpu_maps_update_begin();
1043 __cpu_hotplug_enable();
1044 if (cpumask_empty(frozen_cpus))
1047 pr_info("Enabling non-boot CPUs ...\n");
1049 arch_enable_nonboot_cpus_begin();
1051 for_each_cpu(cpu, frozen_cpus) {
1052 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1053 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1054 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1056 pr_info("CPU%d is up\n", cpu);
1059 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062 arch_enable_nonboot_cpus_end();
1064 cpumask_clear(frozen_cpus);
1066 cpu_maps_update_done();
1069 static int __init alloc_frozen_cpus(void)
1071 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1075 core_initcall(alloc_frozen_cpus);
1078 * When callbacks for CPU hotplug notifications are being executed, we must
1079 * ensure that the state of the system with respect to the tasks being frozen
1080 * or not, as reported by the notification, remains unchanged *throughout the
1081 * duration* of the execution of the callbacks.
1082 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1084 * This synchronization is implemented by mutually excluding regular CPU
1085 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1086 * Hibernate notifications.
1089 cpu_hotplug_pm_callback(struct notifier_block *nb,
1090 unsigned long action, void *ptr)
1094 case PM_SUSPEND_PREPARE:
1095 case PM_HIBERNATION_PREPARE:
1096 cpu_hotplug_disable();
1099 case PM_POST_SUSPEND:
1100 case PM_POST_HIBERNATION:
1101 cpu_hotplug_enable();
1112 static int __init cpu_hotplug_pm_sync_init(void)
1115 * cpu_hotplug_pm_callback has higher priority than x86
1116 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1117 * to disable cpu hotplug to avoid cpu hotplug race.
1119 pm_notifier(cpu_hotplug_pm_callback, 0);
1122 core_initcall(cpu_hotplug_pm_sync_init);
1124 #endif /* CONFIG_PM_SLEEP_SMP */
1126 #endif /* CONFIG_SMP */
1128 /* Boot processor state steps */
1129 static struct cpuhp_step cpuhp_bp_states[] = {
1132 .startup.single = NULL,
1133 .teardown.single = NULL,
1136 [CPUHP_CREATE_THREADS]= {
1137 .name = "threads:prepare",
1138 .startup.single = smpboot_create_threads,
1139 .teardown.single = NULL,
1142 [CPUHP_PERF_PREPARE] = {
1143 .name = "perf:prepare",
1144 .startup.single = perf_event_init_cpu,
1145 .teardown.single = perf_event_exit_cpu,
1147 [CPUHP_WORKQUEUE_PREP] = {
1148 .name = "workqueue:prepare",
1149 .startup.single = workqueue_prepare_cpu,
1150 .teardown.single = NULL,
1152 [CPUHP_HRTIMERS_PREPARE] = {
1153 .name = "hrtimers:prepare",
1154 .startup.single = hrtimers_prepare_cpu,
1155 .teardown.single = hrtimers_dead_cpu,
1157 [CPUHP_SMPCFD_PREPARE] = {
1158 .name = "smpcfd:prepare",
1159 .startup.single = smpcfd_prepare_cpu,
1160 .teardown.single = smpcfd_dead_cpu,
1162 [CPUHP_RELAY_PREPARE] = {
1163 .name = "relay:prepare",
1164 .startup.single = relay_prepare_cpu,
1165 .teardown.single = NULL,
1167 [CPUHP_SLAB_PREPARE] = {
1168 .name = "slab:prepare",
1169 .startup.single = slab_prepare_cpu,
1170 .teardown.single = slab_dead_cpu,
1172 [CPUHP_RCUTREE_PREP] = {
1173 .name = "RCU/tree:prepare",
1174 .startup.single = rcutree_prepare_cpu,
1175 .teardown.single = rcutree_dead_cpu,
1178 * On the tear-down path, timers_dead_cpu() must be invoked
1179 * before blk_mq_queue_reinit_notify() from notify_dead(),
1180 * otherwise a RCU stall occurs.
1182 [CPUHP_TIMERS_DEAD] = {
1183 .name = "timers:dead",
1184 .startup.single = NULL,
1185 .teardown.single = timers_dead_cpu,
1187 /* Kicks the plugged cpu into life */
1188 [CPUHP_BRINGUP_CPU] = {
1189 .name = "cpu:bringup",
1190 .startup.single = bringup_cpu,
1191 .teardown.single = NULL,
1194 [CPUHP_AP_SMPCFD_DYING] = {
1195 .name = "smpcfd:dying",
1196 .startup.single = NULL,
1197 .teardown.single = smpcfd_dying_cpu,
1200 * Handled on controll processor until the plugged processor manages
1203 [CPUHP_TEARDOWN_CPU] = {
1204 .name = "cpu:teardown",
1205 .startup.single = NULL,
1206 .teardown.single = takedown_cpu,
1210 [CPUHP_BRINGUP_CPU] = { },
1214 /* Application processor state steps */
1215 static struct cpuhp_step cpuhp_ap_states[] = {
1217 /* Final state before CPU kills itself */
1218 [CPUHP_AP_IDLE_DEAD] = {
1219 .name = "idle:dead",
1222 * Last state before CPU enters the idle loop to die. Transient state
1223 * for synchronization.
1225 [CPUHP_AP_OFFLINE] = {
1226 .name = "ap:offline",
1229 /* First state is scheduler control. Interrupts are disabled */
1230 [CPUHP_AP_SCHED_STARTING] = {
1231 .name = "sched:starting",
1232 .startup.single = sched_cpu_starting,
1233 .teardown.single = sched_cpu_dying,
1235 [CPUHP_AP_RCUTREE_DYING] = {
1236 .name = "RCU/tree:dying",
1237 .startup.single = NULL,
1238 .teardown.single = rcutree_dying_cpu,
1240 /* Entry state on starting. Interrupts enabled from here on. Transient
1241 * state for synchronsization */
1242 [CPUHP_AP_ONLINE] = {
1243 .name = "ap:online",
1245 /* Handle smpboot threads park/unpark */
1246 [CPUHP_AP_SMPBOOT_THREADS] = {
1247 .name = "smpboot/threads:online",
1248 .startup.single = smpboot_unpark_threads,
1249 .teardown.single = NULL,
1251 [CPUHP_AP_PERF_ONLINE] = {
1252 .name = "perf:online",
1253 .startup.single = perf_event_init_cpu,
1254 .teardown.single = perf_event_exit_cpu,
1256 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1257 .name = "workqueue:online",
1258 .startup.single = workqueue_online_cpu,
1259 .teardown.single = workqueue_offline_cpu,
1261 [CPUHP_AP_RCUTREE_ONLINE] = {
1262 .name = "RCU/tree:online",
1263 .startup.single = rcutree_online_cpu,
1264 .teardown.single = rcutree_offline_cpu,
1268 * The dynamically registered state space is here
1272 /* Last state is scheduler control setting the cpu active */
1273 [CPUHP_AP_ACTIVE] = {
1274 .name = "sched:active",
1275 .startup.single = sched_cpu_activate,
1276 .teardown.single = sched_cpu_deactivate,
1280 /* CPU is fully up and running. */
1283 .startup.single = NULL,
1284 .teardown.single = NULL,
1288 /* Sanity check for callbacks */
1289 static int cpuhp_cb_check(enum cpuhp_state state)
1291 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1297 * Returns a free for dynamic slot assignment of the Online state. The states
1298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1299 * by having no name assigned.
1301 static int cpuhp_reserve_state(enum cpuhp_state state)
1303 enum cpuhp_state i, end;
1304 struct cpuhp_step *step;
1307 case CPUHP_AP_ONLINE_DYN:
1308 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1309 end = CPUHP_AP_ONLINE_DYN_END;
1311 case CPUHP_BP_PREPARE_DYN:
1312 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1313 end = CPUHP_BP_PREPARE_DYN_END;
1319 for (i = state; i <= end; i++, step++) {
1323 WARN(1, "No more dynamic states available for CPU hotplug\n");
1327 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1328 int (*startup)(unsigned int cpu),
1329 int (*teardown)(unsigned int cpu),
1330 bool multi_instance)
1332 /* (Un)Install the callbacks for further cpu hotplug operations */
1333 struct cpuhp_step *sp;
1336 mutex_lock(&cpuhp_state_mutex);
1338 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1339 ret = cpuhp_reserve_state(state);
1344 sp = cpuhp_get_step(state);
1345 if (name && sp->name) {
1349 sp->startup.single = startup;
1350 sp->teardown.single = teardown;
1352 sp->multi_instance = multi_instance;
1353 INIT_HLIST_HEAD(&sp->list);
1355 mutex_unlock(&cpuhp_state_mutex);
1359 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1361 return cpuhp_get_step(state)->teardown.single;
1365 * Call the startup/teardown function for a step either on the AP or
1366 * on the current CPU.
1368 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1369 struct hlist_node *node)
1371 struct cpuhp_step *sp = cpuhp_get_step(state);
1374 if ((bringup && !sp->startup.single) ||
1375 (!bringup && !sp->teardown.single))
1378 * The non AP bound callbacks can fail on bringup. On teardown
1379 * e.g. module removal we crash for now.
1382 if (cpuhp_is_ap_state(state))
1383 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1385 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1387 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1389 BUG_ON(ret && !bringup);
1394 * Called from __cpuhp_setup_state on a recoverable failure.
1396 * Note: The teardown callbacks for rollback are not allowed to fail!
1398 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1399 struct hlist_node *node)
1403 /* Roll back the already executed steps on the other cpus */
1404 for_each_present_cpu(cpu) {
1405 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1406 int cpustate = st->state;
1408 if (cpu >= failedcpu)
1411 /* Did we invoke the startup call on that cpu ? */
1412 if (cpustate >= state)
1413 cpuhp_issue_call(cpu, state, false, node);
1417 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1420 struct cpuhp_step *sp;
1424 sp = cpuhp_get_step(state);
1425 if (sp->multi_instance == false)
1430 if (!invoke || !sp->startup.multi)
1434 * Try to call the startup callback for each present cpu
1435 * depending on the hotplug state of the cpu.
1437 for_each_present_cpu(cpu) {
1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 int cpustate = st->state;
1441 if (cpustate < state)
1444 ret = cpuhp_issue_call(cpu, state, true, node);
1446 if (sp->teardown.multi)
1447 cpuhp_rollback_install(cpu, state, node);
1453 mutex_lock(&cpuhp_state_mutex);
1454 hlist_add_head(node, &sp->list);
1455 mutex_unlock(&cpuhp_state_mutex);
1461 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1464 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1465 * @state: The state to setup
1466 * @invoke: If true, the startup function is invoked for cpus where
1467 * cpu state >= @state
1468 * @startup: startup callback function
1469 * @teardown: teardown callback function
1470 * @multi_instance: State is set up for multiple instances which get
1475 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1476 * 0 for all other states
1477 * On failure: proper (negative) error code
1479 int __cpuhp_setup_state(enum cpuhp_state state,
1480 const char *name, bool invoke,
1481 int (*startup)(unsigned int cpu),
1482 int (*teardown)(unsigned int cpu),
1483 bool multi_instance)
1488 if (cpuhp_cb_check(state) || !name)
1493 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1496 dynstate = state == CPUHP_AP_ONLINE_DYN;
1497 if (ret > 0 && dynstate) {
1502 if (ret || !invoke || !startup)
1506 * Try to call the startup callback for each present cpu
1507 * depending on the hotplug state of the cpu.
1509 for_each_present_cpu(cpu) {
1510 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1511 int cpustate = st->state;
1513 if (cpustate < state)
1516 ret = cpuhp_issue_call(cpu, state, true, NULL);
1519 cpuhp_rollback_install(cpu, state, NULL);
1520 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1527 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1528 * dynamically allocated state in case of success.
1530 if (!ret && dynstate)
1534 EXPORT_SYMBOL(__cpuhp_setup_state);
1536 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1537 struct hlist_node *node, bool invoke)
1539 struct cpuhp_step *sp = cpuhp_get_step(state);
1542 BUG_ON(cpuhp_cb_check(state));
1544 if (!sp->multi_instance)
1548 if (!invoke || !cpuhp_get_teardown_cb(state))
1551 * Call the teardown callback for each present cpu depending
1552 * on the hotplug state of the cpu. This function is not
1553 * allowed to fail currently!
1555 for_each_present_cpu(cpu) {
1556 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1557 int cpustate = st->state;
1559 if (cpustate >= state)
1560 cpuhp_issue_call(cpu, state, false, node);
1564 mutex_lock(&cpuhp_state_mutex);
1566 mutex_unlock(&cpuhp_state_mutex);
1571 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1573 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1574 * @state: The state to remove
1575 * @invoke: If true, the teardown function is invoked for cpus where
1576 * cpu state >= @state
1578 * The teardown callback is currently not allowed to fail. Think
1579 * about module removal!
1581 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1583 struct cpuhp_step *sp = cpuhp_get_step(state);
1586 BUG_ON(cpuhp_cb_check(state));
1590 if (sp->multi_instance) {
1591 WARN(!hlist_empty(&sp->list),
1592 "Error: Removing state %d which has instances left.\n",
1597 if (!invoke || !cpuhp_get_teardown_cb(state))
1601 * Call the teardown callback for each present cpu depending
1602 * on the hotplug state of the cpu. This function is not
1603 * allowed to fail currently!
1605 for_each_present_cpu(cpu) {
1606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1607 int cpustate = st->state;
1609 if (cpustate >= state)
1610 cpuhp_issue_call(cpu, state, false, NULL);
1613 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1616 EXPORT_SYMBOL(__cpuhp_remove_state);
1618 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1619 static ssize_t show_cpuhp_state(struct device *dev,
1620 struct device_attribute *attr, char *buf)
1622 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1624 return sprintf(buf, "%d\n", st->state);
1626 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1628 static ssize_t write_cpuhp_target(struct device *dev,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1633 struct cpuhp_step *sp;
1636 ret = kstrtoint(buf, 10, &target);
1640 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1641 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1644 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1648 ret = lock_device_hotplug_sysfs();
1652 mutex_lock(&cpuhp_state_mutex);
1653 sp = cpuhp_get_step(target);
1654 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1655 mutex_unlock(&cpuhp_state_mutex);
1659 if (st->state < target)
1660 ret = do_cpu_up(dev->id, target);
1662 ret = do_cpu_down(dev->id, target);
1664 unlock_device_hotplug();
1665 return ret ? ret : count;
1668 static ssize_t show_cpuhp_target(struct device *dev,
1669 struct device_attribute *attr, char *buf)
1671 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1673 return sprintf(buf, "%d\n", st->target);
1675 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1677 static struct attribute *cpuhp_cpu_attrs[] = {
1678 &dev_attr_state.attr,
1679 &dev_attr_target.attr,
1683 static struct attribute_group cpuhp_cpu_attr_group = {
1684 .attrs = cpuhp_cpu_attrs,
1689 static ssize_t show_cpuhp_states(struct device *dev,
1690 struct device_attribute *attr, char *buf)
1692 ssize_t cur, res = 0;
1695 mutex_lock(&cpuhp_state_mutex);
1696 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1697 struct cpuhp_step *sp = cpuhp_get_step(i);
1700 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1705 mutex_unlock(&cpuhp_state_mutex);
1708 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1710 static struct attribute *cpuhp_cpu_root_attrs[] = {
1711 &dev_attr_states.attr,
1715 static struct attribute_group cpuhp_cpu_root_attr_group = {
1716 .attrs = cpuhp_cpu_root_attrs,
1721 static int __init cpuhp_sysfs_init(void)
1725 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1726 &cpuhp_cpu_root_attr_group);
1730 for_each_possible_cpu(cpu) {
1731 struct device *dev = get_cpu_device(cpu);
1735 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1741 device_initcall(cpuhp_sysfs_init);
1745 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1746 * represents all NR_CPUS bits binary values of 1<<nr.
1748 * It is used by cpumask_of() to get a constant address to a CPU
1749 * mask value that has a single bit set only.
1752 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1753 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1754 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1755 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1756 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1758 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1760 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1761 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1762 #if BITS_PER_LONG > 32
1763 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1764 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1767 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1769 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1770 EXPORT_SYMBOL(cpu_all_bits);
1772 #ifdef CONFIG_INIT_ALL_POSSIBLE
1773 struct cpumask __cpu_possible_mask __read_mostly
1776 struct cpumask __cpu_possible_mask __read_mostly;
1778 EXPORT_SYMBOL(__cpu_possible_mask);
1780 struct cpumask __cpu_online_mask __read_mostly;
1781 EXPORT_SYMBOL(__cpu_online_mask);
1783 struct cpumask __cpu_present_mask __read_mostly;
1784 EXPORT_SYMBOL(__cpu_present_mask);
1786 struct cpumask __cpu_active_mask __read_mostly;
1787 EXPORT_SYMBOL(__cpu_active_mask);
1789 void init_cpu_present(const struct cpumask *src)
1791 cpumask_copy(&__cpu_present_mask, src);
1794 void init_cpu_possible(const struct cpumask *src)
1796 cpumask_copy(&__cpu_possible_mask, src);
1799 void init_cpu_online(const struct cpumask *src)
1801 cpumask_copy(&__cpu_online_mask, src);
1805 * Activate the first processor.
1807 void __init boot_cpu_init(void)
1809 int cpu = smp_processor_id();
1811 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1812 set_cpu_online(cpu, true);
1813 set_cpu_active(cpu, true);
1814 set_cpu_present(cpu, true);
1815 set_cpu_possible(cpu, true);
1819 * Must be called _AFTER_ setting up the per_cpu areas
1821 void __init boot_cpu_state_init(void)
1823 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;