Merge tag 'devicetree-fixes-for-5.12-1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / include / uapi / linux / vfio.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * VFIO API definition
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #ifndef _UAPIVFIO_H
13 #define _UAPIVFIO_H
14
15 #include <linux/types.h>
16 #include <linux/ioctl.h>
17
18 #define VFIO_API_VERSION        0
19
20
21 /* Kernel & User level defines for VFIO IOCTLs. */
22
23 /* Extensions */
24
25 #define VFIO_TYPE1_IOMMU                1
26 #define VFIO_SPAPR_TCE_IOMMU            2
27 #define VFIO_TYPE1v2_IOMMU              3
28 /*
29  * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30  * capability is subject to change as groups are added or removed.
31  */
32 #define VFIO_DMA_CC_IOMMU               4
33
34 /* Check if EEH is supported */
35 #define VFIO_EEH                        5
36
37 /* Two-stage IOMMU */
38 #define VFIO_TYPE1_NESTING_IOMMU        6       /* Implies v2 */
39
40 #define VFIO_SPAPR_TCE_v2_IOMMU         7
41
42 /*
43  * The No-IOMMU IOMMU offers no translation or isolation for devices and
44  * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45  * code will taint the host kernel and should be used with extreme caution.
46  */
47 #define VFIO_NOIOMMU_IOMMU              8
48
49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50 #define VFIO_UNMAP_ALL                  9
51
52 /* Supports the vaddr flag for DMA map and unmap */
53 #define VFIO_UPDATE_VADDR               10
54
55 /*
56  * The IOCTL interface is designed for extensibility by embedding the
57  * structure length (argsz) and flags into structures passed between
58  * kernel and userspace.  We therefore use the _IO() macro for these
59  * defines to avoid implicitly embedding a size into the ioctl request.
60  * As structure fields are added, argsz will increase to match and flag
61  * bits will be defined to indicate additional fields with valid data.
62  * It's *always* the caller's responsibility to indicate the size of
63  * the structure passed by setting argsz appropriately.
64  */
65
66 #define VFIO_TYPE       (';')
67 #define VFIO_BASE       100
68
69 /*
70  * For extension of INFO ioctls, VFIO makes use of a capability chain
71  * designed after PCI/e capabilities.  A flag bit indicates whether
72  * this capability chain is supported and a field defined in the fixed
73  * structure defines the offset of the first capability in the chain.
74  * This field is only valid when the corresponding bit in the flags
75  * bitmap is set.  This offset field is relative to the start of the
76  * INFO buffer, as is the next field within each capability header.
77  * The id within the header is a shared address space per INFO ioctl,
78  * while the version field is specific to the capability id.  The
79  * contents following the header are specific to the capability id.
80  */
81 struct vfio_info_cap_header {
82         __u16   id;             /* Identifies capability */
83         __u16   version;        /* Version specific to the capability ID */
84         __u32   next;           /* Offset of next capability */
85 };
86
87 /*
88  * Callers of INFO ioctls passing insufficiently sized buffers will see
89  * the capability chain flag bit set, a zero value for the first capability
90  * offset (if available within the provided argsz), and argsz will be
91  * updated to report the necessary buffer size.  For compatibility, the
92  * INFO ioctl will not report error in this case, but the capability chain
93  * will not be available.
94  */
95
96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
97
98 /**
99  * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
100  *
101  * Report the version of the VFIO API.  This allows us to bump the entire
102  * API version should we later need to add or change features in incompatible
103  * ways.
104  * Return: VFIO_API_VERSION
105  * Availability: Always
106  */
107 #define VFIO_GET_API_VERSION            _IO(VFIO_TYPE, VFIO_BASE + 0)
108
109 /**
110  * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
111  *
112  * Check whether an extension is supported.
113  * Return: 0 if not supported, 1 (or some other positive integer) if supported.
114  * Availability: Always
115  */
116 #define VFIO_CHECK_EXTENSION            _IO(VFIO_TYPE, VFIO_BASE + 1)
117
118 /**
119  * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
120  *
121  * Set the iommu to the given type.  The type must be supported by an
122  * iommu driver as verified by calling CHECK_EXTENSION using the same
123  * type.  A group must be set to this file descriptor before this
124  * ioctl is available.  The IOMMU interfaces enabled by this call are
125  * specific to the value set.
126  * Return: 0 on success, -errno on failure
127  * Availability: When VFIO group attached
128  */
129 #define VFIO_SET_IOMMU                  _IO(VFIO_TYPE, VFIO_BASE + 2)
130
131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
132
133 /**
134  * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
135  *                                              struct vfio_group_status)
136  *
137  * Retrieve information about the group.  Fills in provided
138  * struct vfio_group_info.  Caller sets argsz.
139  * Return: 0 on succes, -errno on failure.
140  * Availability: Always
141  */
142 struct vfio_group_status {
143         __u32   argsz;
144         __u32   flags;
145 #define VFIO_GROUP_FLAGS_VIABLE         (1 << 0)
146 #define VFIO_GROUP_FLAGS_CONTAINER_SET  (1 << 1)
147 };
148 #define VFIO_GROUP_GET_STATUS           _IO(VFIO_TYPE, VFIO_BASE + 3)
149
150 /**
151  * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
152  *
153  * Set the container for the VFIO group to the open VFIO file
154  * descriptor provided.  Groups may only belong to a single
155  * container.  Containers may, at their discretion, support multiple
156  * groups.  Only when a container is set are all of the interfaces
157  * of the VFIO file descriptor and the VFIO group file descriptor
158  * available to the user.
159  * Return: 0 on success, -errno on failure.
160  * Availability: Always
161  */
162 #define VFIO_GROUP_SET_CONTAINER        _IO(VFIO_TYPE, VFIO_BASE + 4)
163
164 /**
165  * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
166  *
167  * Remove the group from the attached container.  This is the
168  * opposite of the SET_CONTAINER call and returns the group to
169  * an initial state.  All device file descriptors must be released
170  * prior to calling this interface.  When removing the last group
171  * from a container, the IOMMU will be disabled and all state lost,
172  * effectively also returning the VFIO file descriptor to an initial
173  * state.
174  * Return: 0 on success, -errno on failure.
175  * Availability: When attached to container
176  */
177 #define VFIO_GROUP_UNSET_CONTAINER      _IO(VFIO_TYPE, VFIO_BASE + 5)
178
179 /**
180  * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
181  *
182  * Return a new file descriptor for the device object described by
183  * the provided string.  The string should match a device listed in
184  * the devices subdirectory of the IOMMU group sysfs entry.  The
185  * group containing the device must already be added to this context.
186  * Return: new file descriptor on success, -errno on failure.
187  * Availability: When attached to container
188  */
189 #define VFIO_GROUP_GET_DEVICE_FD        _IO(VFIO_TYPE, VFIO_BASE + 6)
190
191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */
192
193 /**
194  * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
195  *                                              struct vfio_device_info)
196  *
197  * Retrieve information about the device.  Fills in provided
198  * struct vfio_device_info.  Caller sets argsz.
199  * Return: 0 on success, -errno on failure.
200  */
201 struct vfio_device_info {
202         __u32   argsz;
203         __u32   flags;
204 #define VFIO_DEVICE_FLAGS_RESET (1 << 0)        /* Device supports reset */
205 #define VFIO_DEVICE_FLAGS_PCI   (1 << 1)        /* vfio-pci device */
206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)     /* vfio-platform device */
207 #define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)        /* vfio-amba device */
208 #define VFIO_DEVICE_FLAGS_CCW   (1 << 4)        /* vfio-ccw device */
209 #define VFIO_DEVICE_FLAGS_AP    (1 << 5)        /* vfio-ap device */
210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)       /* vfio-fsl-mc device */
211 #define VFIO_DEVICE_FLAGS_CAPS  (1 << 7)        /* Info supports caps */
212         __u32   num_regions;    /* Max region index + 1 */
213         __u32   num_irqs;       /* Max IRQ index + 1 */
214         __u32   cap_offset;     /* Offset within info struct of first cap */
215 };
216 #define VFIO_DEVICE_GET_INFO            _IO(VFIO_TYPE, VFIO_BASE + 7)
217
218 /*
219  * Vendor driver using Mediated device framework should provide device_api
220  * attribute in supported type attribute groups. Device API string should be one
221  * of the following corresponding to device flags in vfio_device_info structure.
222  */
223
224 #define VFIO_DEVICE_API_PCI_STRING              "vfio-pci"
225 #define VFIO_DEVICE_API_PLATFORM_STRING         "vfio-platform"
226 #define VFIO_DEVICE_API_AMBA_STRING             "vfio-amba"
227 #define VFIO_DEVICE_API_CCW_STRING              "vfio-ccw"
228 #define VFIO_DEVICE_API_AP_STRING               "vfio-ap"
229
230 /*
231  * The following capabilities are unique to s390 zPCI devices.  Their contents
232  * are further-defined in vfio_zdev.h
233  */
234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE          1
235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP         2
236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL          3
237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP          4
238
239 /**
240  * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
241  *                                     struct vfio_region_info)
242  *
243  * Retrieve information about a device region.  Caller provides
244  * struct vfio_region_info with index value set.  Caller sets argsz.
245  * Implementation of region mapping is bus driver specific.  This is
246  * intended to describe MMIO, I/O port, as well as bus specific
247  * regions (ex. PCI config space).  Zero sized regions may be used
248  * to describe unimplemented regions (ex. unimplemented PCI BARs).
249  * Return: 0 on success, -errno on failure.
250  */
251 struct vfio_region_info {
252         __u32   argsz;
253         __u32   flags;
254 #define VFIO_REGION_INFO_FLAG_READ      (1 << 0) /* Region supports read */
255 #define VFIO_REGION_INFO_FLAG_WRITE     (1 << 1) /* Region supports write */
256 #define VFIO_REGION_INFO_FLAG_MMAP      (1 << 2) /* Region supports mmap */
257 #define VFIO_REGION_INFO_FLAG_CAPS      (1 << 3) /* Info supports caps */
258         __u32   index;          /* Region index */
259         __u32   cap_offset;     /* Offset within info struct of first cap */
260         __u64   size;           /* Region size (bytes) */
261         __u64   offset;         /* Region offset from start of device fd */
262 };
263 #define VFIO_DEVICE_GET_REGION_INFO     _IO(VFIO_TYPE, VFIO_BASE + 8)
264
265 /*
266  * The sparse mmap capability allows finer granularity of specifying areas
267  * within a region with mmap support.  When specified, the user should only
268  * mmap the offset ranges specified by the areas array.  mmaps outside of the
269  * areas specified may fail (such as the range covering a PCI MSI-X table) or
270  * may result in improper device behavior.
271  *
272  * The structures below define version 1 of this capability.
273  */
274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP        1
275
276 struct vfio_region_sparse_mmap_area {
277         __u64   offset; /* Offset of mmap'able area within region */
278         __u64   size;   /* Size of mmap'able area */
279 };
280
281 struct vfio_region_info_cap_sparse_mmap {
282         struct vfio_info_cap_header header;
283         __u32   nr_areas;
284         __u32   reserved;
285         struct vfio_region_sparse_mmap_area areas[];
286 };
287
288 /*
289  * The device specific type capability allows regions unique to a specific
290  * device or class of devices to be exposed.  This helps solve the problem for
291  * vfio bus drivers of defining which region indexes correspond to which region
292  * on the device, without needing to resort to static indexes, as done by
293  * vfio-pci.  For instance, if we were to go back in time, we might remove
294  * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
295  * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
296  * make a "VGA" device specific type to describe the VGA access space.  This
297  * means that non-VGA devices wouldn't need to waste this index, and thus the
298  * address space associated with it due to implementation of device file
299  * descriptor offsets in vfio-pci.
300  *
301  * The current implementation is now part of the user ABI, so we can't use this
302  * for VGA, but there are other upcoming use cases, such as opregions for Intel
303  * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
304  * use this for future additions.
305  *
306  * The structure below defines version 1 of this capability.
307  */
308 #define VFIO_REGION_INFO_CAP_TYPE       2
309
310 struct vfio_region_info_cap_type {
311         struct vfio_info_cap_header header;
312         __u32 type;     /* global per bus driver */
313         __u32 subtype;  /* type specific */
314 };
315
316 /*
317  * List of region types, global per bus driver.
318  * If you introduce a new type, please add it here.
319  */
320
321 /* PCI region type containing a PCI vendor part */
322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE        (1 << 31)
323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK        (0xffff)
324 #define VFIO_REGION_TYPE_GFX                    (1)
325 #define VFIO_REGION_TYPE_CCW                    (2)
326 #define VFIO_REGION_TYPE_MIGRATION              (3)
327
328 /* sub-types for VFIO_REGION_TYPE_PCI_* */
329
330 /* 8086 vendor PCI sub-types */
331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION  (1)
332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG  (2)
333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG   (3)
334
335 /* 10de vendor PCI sub-types */
336 /*
337  * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
338  */
339 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM  (1)
340
341 /* 1014 vendor PCI sub-types */
342 /*
343  * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
344  * to do TLB invalidation on a GPU.
345  */
346 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD    (1)
347
348 /* sub-types for VFIO_REGION_TYPE_GFX */
349 #define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
350
351 /**
352  * struct vfio_region_gfx_edid - EDID region layout.
353  *
354  * Set display link state and EDID blob.
355  *
356  * The EDID blob has monitor information such as brand, name, serial
357  * number, physical size, supported video modes and more.
358  *
359  * This special region allows userspace (typically qemu) set a virtual
360  * EDID for the virtual monitor, which allows a flexible display
361  * configuration.
362  *
363  * For the edid blob spec look here:
364  *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
365  *
366  * On linux systems you can find the EDID blob in sysfs:
367  *    /sys/class/drm/${card}/${connector}/edid
368  *
369  * You can use the edid-decode ulility (comes with xorg-x11-utils) to
370  * decode the EDID blob.
371  *
372  * @edid_offset: location of the edid blob, relative to the
373  *               start of the region (readonly).
374  * @edid_max_size: max size of the edid blob (readonly).
375  * @edid_size: actual edid size (read/write).
376  * @link_state: display link state (read/write).
377  * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
378  * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
379  * @max_xres: max display width (0 == no limitation, readonly).
380  * @max_yres: max display height (0 == no limitation, readonly).
381  *
382  * EDID update protocol:
383  *   (1) set link-state to down.
384  *   (2) update edid blob and size.
385  *   (3) set link-state to up.
386  */
387 struct vfio_region_gfx_edid {
388         __u32 edid_offset;
389         __u32 edid_max_size;
390         __u32 edid_size;
391         __u32 max_xres;
392         __u32 max_yres;
393         __u32 link_state;
394 #define VFIO_DEVICE_GFX_LINK_STATE_UP    1
395 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
396 };
397
398 /* sub-types for VFIO_REGION_TYPE_CCW */
399 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD       (1)
400 #define VFIO_REGION_SUBTYPE_CCW_SCHIB           (2)
401 #define VFIO_REGION_SUBTYPE_CCW_CRW             (3)
402
403 /* sub-types for VFIO_REGION_TYPE_MIGRATION */
404 #define VFIO_REGION_SUBTYPE_MIGRATION           (1)
405
406 /*
407  * The structure vfio_device_migration_info is placed at the 0th offset of
408  * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
409  * migration information. Field accesses from this structure are only supported
410  * at their native width and alignment. Otherwise, the result is undefined and
411  * vendor drivers should return an error.
412  *
413  * device_state: (read/write)
414  *      - The user application writes to this field to inform the vendor driver
415  *        about the device state to be transitioned to.
416  *      - The vendor driver should take the necessary actions to change the
417  *        device state. After successful transition to a given state, the
418  *        vendor driver should return success on write(device_state, state)
419  *        system call. If the device state transition fails, the vendor driver
420  *        should return an appropriate -errno for the fault condition.
421  *      - On the user application side, if the device state transition fails,
422  *        that is, if write(device_state, state) returns an error, read
423  *        device_state again to determine the current state of the device from
424  *        the vendor driver.
425  *      - The vendor driver should return previous state of the device unless
426  *        the vendor driver has encountered an internal error, in which case
427  *        the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
428  *      - The user application must use the device reset ioctl to recover the
429  *        device from VFIO_DEVICE_STATE_ERROR state. If the device is
430  *        indicated to be in a valid device state by reading device_state, the
431  *        user application may attempt to transition the device to any valid
432  *        state reachable from the current state or terminate itself.
433  *
434  *      device_state consists of 3 bits:
435  *      - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
436  *        it indicates the _STOP state. When the device state is changed to
437  *        _STOP, driver should stop the device before write() returns.
438  *      - If bit 1 is set, it indicates the _SAVING state, which means that the
439  *        driver should start gathering device state information that will be
440  *        provided to the VFIO user application to save the device's state.
441  *      - If bit 2 is set, it indicates the _RESUMING state, which means that
442  *        the driver should prepare to resume the device. Data provided through
443  *        the migration region should be used to resume the device.
444  *      Bits 3 - 31 are reserved for future use. To preserve them, the user
445  *      application should perform a read-modify-write operation on this
446  *      field when modifying the specified bits.
447  *
448  *  +------- _RESUMING
449  *  |+------ _SAVING
450  *  ||+----- _RUNNING
451  *  |||
452  *  000b => Device Stopped, not saving or resuming
453  *  001b => Device running, which is the default state
454  *  010b => Stop the device & save the device state, stop-and-copy state
455  *  011b => Device running and save the device state, pre-copy state
456  *  100b => Device stopped and the device state is resuming
457  *  101b => Invalid state
458  *  110b => Error state
459  *  111b => Invalid state
460  *
461  * State transitions:
462  *
463  *              _RESUMING  _RUNNING    Pre-copy    Stop-and-copy   _STOP
464  *                (100b)     (001b)     (011b)        (010b)       (000b)
465  * 0. Running or default state
466  *                             |
467  *
468  * 1. Normal Shutdown (optional)
469  *                             |------------------------------------->|
470  *
471  * 2. Save the state or suspend
472  *                             |------------------------->|---------->|
473  *
474  * 3. Save the state during live migration
475  *                             |----------->|------------>|---------->|
476  *
477  * 4. Resuming
478  *                  |<---------|
479  *
480  * 5. Resumed
481  *                  |--------->|
482  *
483  * 0. Default state of VFIO device is _RUNNING when the user application starts.
484  * 1. During normal shutdown of the user application, the user application may
485  *    optionally change the VFIO device state from _RUNNING to _STOP. This
486  *    transition is optional. The vendor driver must support this transition but
487  *    must not require it.
488  * 2. When the user application saves state or suspends the application, the
489  *    device state transitions from _RUNNING to stop-and-copy and then to _STOP.
490  *    On state transition from _RUNNING to stop-and-copy, driver must stop the
491  *    device, save the device state and send it to the application through the
492  *    migration region. The sequence to be followed for such transition is given
493  *    below.
494  * 3. In live migration of user application, the state transitions from _RUNNING
495  *    to pre-copy, to stop-and-copy, and to _STOP.
496  *    On state transition from _RUNNING to pre-copy, the driver should start
497  *    gathering the device state while the application is still running and send
498  *    the device state data to application through the migration region.
499  *    On state transition from pre-copy to stop-and-copy, the driver must stop
500  *    the device, save the device state and send it to the user application
501  *    through the migration region.
502  *    Vendor drivers must support the pre-copy state even for implementations
503  *    where no data is provided to the user before the stop-and-copy state. The
504  *    user must not be required to consume all migration data before the device
505  *    transitions to a new state, including the stop-and-copy state.
506  *    The sequence to be followed for above two transitions is given below.
507  * 4. To start the resuming phase, the device state should be transitioned from
508  *    the _RUNNING to the _RESUMING state.
509  *    In the _RESUMING state, the driver should use the device state data
510  *    received through the migration region to resume the device.
511  * 5. After providing saved device data to the driver, the application should
512  *    change the state from _RESUMING to _RUNNING.
513  *
514  * reserved:
515  *      Reads on this field return zero and writes are ignored.
516  *
517  * pending_bytes: (read only)
518  *      The number of pending bytes still to be migrated from the vendor driver.
519  *
520  * data_offset: (read only)
521  *      The user application should read data_offset field from the migration
522  *      region. The user application should read the device data from this
523  *      offset within the migration region during the _SAVING state or write
524  *      the device data during the _RESUMING state. See below for details of
525  *      sequence to be followed.
526  *
527  * data_size: (read/write)
528  *      The user application should read data_size to get the size in bytes of
529  *      the data copied in the migration region during the _SAVING state and
530  *      write the size in bytes of the data copied in the migration region
531  *      during the _RESUMING state.
532  *
533  * The format of the migration region is as follows:
534  *  ------------------------------------------------------------------
535  * |vfio_device_migration_info|    data section                      |
536  * |                          |     ///////////////////////////////  |
537  * ------------------------------------------------------------------
538  *   ^                              ^
539  *  offset 0-trapped part        data_offset
540  *
541  * The structure vfio_device_migration_info is always followed by the data
542  * section in the region, so data_offset will always be nonzero. The offset
543  * from where the data is copied is decided by the kernel driver. The data
544  * section can be trapped, mmapped, or partitioned, depending on how the kernel
545  * driver defines the data section. The data section partition can be defined
546  * as mapped by the sparse mmap capability. If mmapped, data_offset must be
547  * page aligned, whereas initial section which contains the
548  * vfio_device_migration_info structure, might not end at the offset, which is
549  * page aligned. The user is not required to access through mmap regardless
550  * of the capabilities of the region mmap.
551  * The vendor driver should determine whether and how to partition the data
552  * section. The vendor driver should return data_offset accordingly.
553  *
554  * The sequence to be followed while in pre-copy state and stop-and-copy state
555  * is as follows:
556  * a. Read pending_bytes, indicating the start of a new iteration to get device
557  *    data. Repeated read on pending_bytes at this stage should have no side
558  *    effects.
559  *    If pending_bytes == 0, the user application should not iterate to get data
560  *    for that device.
561  *    If pending_bytes > 0, perform the following steps.
562  * b. Read data_offset, indicating that the vendor driver should make data
563  *    available through the data section. The vendor driver should return this
564  *    read operation only after data is available from (region + data_offset)
565  *    to (region + data_offset + data_size).
566  * c. Read data_size, which is the amount of data in bytes available through
567  *    the migration region.
568  *    Read on data_offset and data_size should return the offset and size of
569  *    the current buffer if the user application reads data_offset and
570  *    data_size more than once here.
571  * d. Read data_size bytes of data from (region + data_offset) from the
572  *    migration region.
573  * e. Process the data.
574  * f. Read pending_bytes, which indicates that the data from the previous
575  *    iteration has been read. If pending_bytes > 0, go to step b.
576  *
577  * The user application can transition from the _SAVING|_RUNNING
578  * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
579  * number of pending bytes. The user application should iterate in _SAVING
580  * (stop-and-copy) until pending_bytes is 0.
581  *
582  * The sequence to be followed while _RESUMING device state is as follows:
583  * While data for this device is available, repeat the following steps:
584  * a. Read data_offset from where the user application should write data.
585  * b. Write migration data starting at the migration region + data_offset for
586  *    the length determined by data_size from the migration source.
587  * c. Write data_size, which indicates to the vendor driver that data is
588  *    written in the migration region. Vendor driver must return this write
589  *    operations on consuming data. Vendor driver should apply the
590  *    user-provided migration region data to the device resume state.
591  *
592  * If an error occurs during the above sequences, the vendor driver can return
593  * an error code for next read() or write() operation, which will terminate the
594  * loop. The user application should then take the next necessary action, for
595  * example, failing migration or terminating the user application.
596  *
597  * For the user application, data is opaque. The user application should write
598  * data in the same order as the data is received and the data should be of
599  * same transaction size at the source.
600  */
601
602 struct vfio_device_migration_info {
603         __u32 device_state;         /* VFIO device state */
604 #define VFIO_DEVICE_STATE_STOP      (0)
605 #define VFIO_DEVICE_STATE_RUNNING   (1 << 0)
606 #define VFIO_DEVICE_STATE_SAVING    (1 << 1)
607 #define VFIO_DEVICE_STATE_RESUMING  (1 << 2)
608 #define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_RUNNING | \
609                                      VFIO_DEVICE_STATE_SAVING |  \
610                                      VFIO_DEVICE_STATE_RESUMING)
611
612 #define VFIO_DEVICE_STATE_VALID(state) \
613         (state & VFIO_DEVICE_STATE_RESUMING ? \
614         (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
615
616 #define VFIO_DEVICE_STATE_IS_ERROR(state) \
617         ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
618                                               VFIO_DEVICE_STATE_RESUMING))
619
620 #define VFIO_DEVICE_STATE_SET_ERROR(state) \
621         ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
622                                              VFIO_DEVICE_STATE_RESUMING)
623
624         __u32 reserved;
625         __u64 pending_bytes;
626         __u64 data_offset;
627         __u64 data_size;
628 };
629
630 /*
631  * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
632  * which allows direct access to non-MSIX registers which happened to be within
633  * the same system page.
634  *
635  * Even though the userspace gets direct access to the MSIX data, the existing
636  * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
637  */
638 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE      3
639
640 /*
641  * Capability with compressed real address (aka SSA - small system address)
642  * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
643  * and by the userspace to associate a NVLink bridge with a GPU.
644  */
645 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT     4
646
647 struct vfio_region_info_cap_nvlink2_ssatgt {
648         struct vfio_info_cap_header header;
649         __u64 tgt;
650 };
651
652 /*
653  * Capability with an NVLink link speed. The value is read by
654  * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
655  * property in the device tree. The value is fixed in the hardware
656  * and failing to provide the correct value results in the link
657  * not working with no indication from the driver why.
658  */
659 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD     5
660
661 struct vfio_region_info_cap_nvlink2_lnkspd {
662         struct vfio_info_cap_header header;
663         __u32 link_speed;
664         __u32 __pad;
665 };
666
667 /**
668  * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
669  *                                  struct vfio_irq_info)
670  *
671  * Retrieve information about a device IRQ.  Caller provides
672  * struct vfio_irq_info with index value set.  Caller sets argsz.
673  * Implementation of IRQ mapping is bus driver specific.  Indexes
674  * using multiple IRQs are primarily intended to support MSI-like
675  * interrupt blocks.  Zero count irq blocks may be used to describe
676  * unimplemented interrupt types.
677  *
678  * The EVENTFD flag indicates the interrupt index supports eventfd based
679  * signaling.
680  *
681  * The MASKABLE flags indicates the index supports MASK and UNMASK
682  * actions described below.
683  *
684  * AUTOMASKED indicates that after signaling, the interrupt line is
685  * automatically masked by VFIO and the user needs to unmask the line
686  * to receive new interrupts.  This is primarily intended to distinguish
687  * level triggered interrupts.
688  *
689  * The NORESIZE flag indicates that the interrupt lines within the index
690  * are setup as a set and new subindexes cannot be enabled without first
691  * disabling the entire index.  This is used for interrupts like PCI MSI
692  * and MSI-X where the driver may only use a subset of the available
693  * indexes, but VFIO needs to enable a specific number of vectors
694  * upfront.  In the case of MSI-X, where the user can enable MSI-X and
695  * then add and unmask vectors, it's up to userspace to make the decision
696  * whether to allocate the maximum supported number of vectors or tear
697  * down setup and incrementally increase the vectors as each is enabled.
698  */
699 struct vfio_irq_info {
700         __u32   argsz;
701         __u32   flags;
702 #define VFIO_IRQ_INFO_EVENTFD           (1 << 0)
703 #define VFIO_IRQ_INFO_MASKABLE          (1 << 1)
704 #define VFIO_IRQ_INFO_AUTOMASKED        (1 << 2)
705 #define VFIO_IRQ_INFO_NORESIZE          (1 << 3)
706         __u32   index;          /* IRQ index */
707         __u32   count;          /* Number of IRQs within this index */
708 };
709 #define VFIO_DEVICE_GET_IRQ_INFO        _IO(VFIO_TYPE, VFIO_BASE + 9)
710
711 /**
712  * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
713  *
714  * Set signaling, masking, and unmasking of interrupts.  Caller provides
715  * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
716  * the range of subindexes being specified.
717  *
718  * The DATA flags specify the type of data provided.  If DATA_NONE, the
719  * operation performs the specified action immediately on the specified
720  * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
721  * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
722  *
723  * DATA_BOOL allows sparse support for the same on arrays of interrupts.
724  * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
725  * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
726  * data = {1,0,1}
727  *
728  * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
729  * A value of -1 can be used to either de-assign interrupts if already
730  * assigned or skip un-assigned interrupts.  For example, to set an eventfd
731  * to be trigger for interrupts [0,0] and [0,2]:
732  * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
733  * data = {fd1, -1, fd2}
734  * If index [0,1] is previously set, two count = 1 ioctls calls would be
735  * required to set [0,0] and [0,2] without changing [0,1].
736  *
737  * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
738  * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
739  * from userspace (ie. simulate hardware triggering).
740  *
741  * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
742  * enables the interrupt index for the device.  Individual subindex interrupts
743  * can be disabled using the -1 value for DATA_EVENTFD or the index can be
744  * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
745  *
746  * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
747  * ACTION_TRIGGER specifies kernel->user signaling.
748  */
749 struct vfio_irq_set {
750         __u32   argsz;
751         __u32   flags;
752 #define VFIO_IRQ_SET_DATA_NONE          (1 << 0) /* Data not present */
753 #define VFIO_IRQ_SET_DATA_BOOL          (1 << 1) /* Data is bool (u8) */
754 #define VFIO_IRQ_SET_DATA_EVENTFD       (1 << 2) /* Data is eventfd (s32) */
755 #define VFIO_IRQ_SET_ACTION_MASK        (1 << 3) /* Mask interrupt */
756 #define VFIO_IRQ_SET_ACTION_UNMASK      (1 << 4) /* Unmask interrupt */
757 #define VFIO_IRQ_SET_ACTION_TRIGGER     (1 << 5) /* Trigger interrupt */
758         __u32   index;
759         __u32   start;
760         __u32   count;
761         __u8    data[];
762 };
763 #define VFIO_DEVICE_SET_IRQS            _IO(VFIO_TYPE, VFIO_BASE + 10)
764
765 #define VFIO_IRQ_SET_DATA_TYPE_MASK     (VFIO_IRQ_SET_DATA_NONE | \
766                                          VFIO_IRQ_SET_DATA_BOOL | \
767                                          VFIO_IRQ_SET_DATA_EVENTFD)
768 #define VFIO_IRQ_SET_ACTION_TYPE_MASK   (VFIO_IRQ_SET_ACTION_MASK | \
769                                          VFIO_IRQ_SET_ACTION_UNMASK | \
770                                          VFIO_IRQ_SET_ACTION_TRIGGER)
771 /**
772  * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
773  *
774  * Reset a device.
775  */
776 #define VFIO_DEVICE_RESET               _IO(VFIO_TYPE, VFIO_BASE + 11)
777
778 /*
779  * The VFIO-PCI bus driver makes use of the following fixed region and
780  * IRQ index mapping.  Unimplemented regions return a size of zero.
781  * Unimplemented IRQ types return a count of zero.
782  */
783
784 enum {
785         VFIO_PCI_BAR0_REGION_INDEX,
786         VFIO_PCI_BAR1_REGION_INDEX,
787         VFIO_PCI_BAR2_REGION_INDEX,
788         VFIO_PCI_BAR3_REGION_INDEX,
789         VFIO_PCI_BAR4_REGION_INDEX,
790         VFIO_PCI_BAR5_REGION_INDEX,
791         VFIO_PCI_ROM_REGION_INDEX,
792         VFIO_PCI_CONFIG_REGION_INDEX,
793         /*
794          * Expose VGA regions defined for PCI base class 03, subclass 00.
795          * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
796          * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
797          * range is found at it's identity mapped offset from the region
798          * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
799          * between described ranges are unimplemented.
800          */
801         VFIO_PCI_VGA_REGION_INDEX,
802         VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
803                                  /* device specific cap to define content. */
804 };
805
806 enum {
807         VFIO_PCI_INTX_IRQ_INDEX,
808         VFIO_PCI_MSI_IRQ_INDEX,
809         VFIO_PCI_MSIX_IRQ_INDEX,
810         VFIO_PCI_ERR_IRQ_INDEX,
811         VFIO_PCI_REQ_IRQ_INDEX,
812         VFIO_PCI_NUM_IRQS
813 };
814
815 /*
816  * The vfio-ccw bus driver makes use of the following fixed region and
817  * IRQ index mapping. Unimplemented regions return a size of zero.
818  * Unimplemented IRQ types return a count of zero.
819  */
820
821 enum {
822         VFIO_CCW_CONFIG_REGION_INDEX,
823         VFIO_CCW_NUM_REGIONS
824 };
825
826 enum {
827         VFIO_CCW_IO_IRQ_INDEX,
828         VFIO_CCW_CRW_IRQ_INDEX,
829         VFIO_CCW_REQ_IRQ_INDEX,
830         VFIO_CCW_NUM_IRQS
831 };
832
833 /**
834  * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
835  *                                            struct vfio_pci_hot_reset_info)
836  *
837  * Return: 0 on success, -errno on failure:
838  *      -enospc = insufficient buffer, -enodev = unsupported for device.
839  */
840 struct vfio_pci_dependent_device {
841         __u32   group_id;
842         __u16   segment;
843         __u8    bus;
844         __u8    devfn; /* Use PCI_SLOT/PCI_FUNC */
845 };
846
847 struct vfio_pci_hot_reset_info {
848         __u32   argsz;
849         __u32   flags;
850         __u32   count;
851         struct vfio_pci_dependent_device        devices[];
852 };
853
854 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO      _IO(VFIO_TYPE, VFIO_BASE + 12)
855
856 /**
857  * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
858  *                                  struct vfio_pci_hot_reset)
859  *
860  * Return: 0 on success, -errno on failure.
861  */
862 struct vfio_pci_hot_reset {
863         __u32   argsz;
864         __u32   flags;
865         __u32   count;
866         __s32   group_fds[];
867 };
868
869 #define VFIO_DEVICE_PCI_HOT_RESET       _IO(VFIO_TYPE, VFIO_BASE + 13)
870
871 /**
872  * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
873  *                                    struct vfio_device_query_gfx_plane)
874  *
875  * Set the drm_plane_type and flags, then retrieve the gfx plane info.
876  *
877  * flags supported:
878  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
879  *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
880  *   support for dma-buf.
881  * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
882  *   to ask if the mdev supports region. 0 on support, -EINVAL on no
883  *   support for region.
884  * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
885  *   with each call to query the plane info.
886  * - Others are invalid and return -EINVAL.
887  *
888  * Note:
889  * 1. Plane could be disabled by guest. In that case, success will be
890  *    returned with zero-initialized drm_format, size, width and height
891  *    fields.
892  * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
893  *
894  * Return: 0 on success, -errno on other failure.
895  */
896 struct vfio_device_gfx_plane_info {
897         __u32 argsz;
898         __u32 flags;
899 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
900 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
901 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
902         /* in */
903         __u32 drm_plane_type;   /* type of plane: DRM_PLANE_TYPE_* */
904         /* out */
905         __u32 drm_format;       /* drm format of plane */
906         __u64 drm_format_mod;   /* tiled mode */
907         __u32 width;    /* width of plane */
908         __u32 height;   /* height of plane */
909         __u32 stride;   /* stride of plane */
910         __u32 size;     /* size of plane in bytes, align on page*/
911         __u32 x_pos;    /* horizontal position of cursor plane */
912         __u32 y_pos;    /* vertical position of cursor plane*/
913         __u32 x_hot;    /* horizontal position of cursor hotspot */
914         __u32 y_hot;    /* vertical position of cursor hotspot */
915         union {
916                 __u32 region_index;     /* region index */
917                 __u32 dmabuf_id;        /* dma-buf id */
918         };
919 };
920
921 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
922
923 /**
924  * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
925  *
926  * Return a new dma-buf file descriptor for an exposed guest framebuffer
927  * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
928  * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
929  */
930
931 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
932
933 /**
934  * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
935  *                              struct vfio_device_ioeventfd)
936  *
937  * Perform a write to the device at the specified device fd offset, with
938  * the specified data and width when the provided eventfd is triggered.
939  * vfio bus drivers may not support this for all regions, for all widths,
940  * or at all.  vfio-pci currently only enables support for BAR regions,
941  * excluding the MSI-X vector table.
942  *
943  * Return: 0 on success, -errno on failure.
944  */
945 struct vfio_device_ioeventfd {
946         __u32   argsz;
947         __u32   flags;
948 #define VFIO_DEVICE_IOEVENTFD_8         (1 << 0) /* 1-byte write */
949 #define VFIO_DEVICE_IOEVENTFD_16        (1 << 1) /* 2-byte write */
950 #define VFIO_DEVICE_IOEVENTFD_32        (1 << 2) /* 4-byte write */
951 #define VFIO_DEVICE_IOEVENTFD_64        (1 << 3) /* 8-byte write */
952 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
953         __u64   offset;                 /* device fd offset of write */
954         __u64   data;                   /* data to be written */
955         __s32   fd;                     /* -1 for de-assignment */
956 };
957
958 #define VFIO_DEVICE_IOEVENTFD           _IO(VFIO_TYPE, VFIO_BASE + 16)
959
960 /**
961  * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
962  *                             struct vfio_device_feature)
963  *
964  * Get, set, or probe feature data of the device.  The feature is selected
965  * using the FEATURE_MASK portion of the flags field.  Support for a feature
966  * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
967  * may optionally include the GET and/or SET bits to determine read vs write
968  * access of the feature respectively.  Probing a feature will return success
969  * if the feature is supported and all of the optionally indicated GET/SET
970  * methods are supported.  The format of the data portion of the structure is
971  * specific to the given feature.  The data portion is not required for
972  * probing.  GET and SET are mutually exclusive, except for use with PROBE.
973  *
974  * Return 0 on success, -errno on failure.
975  */
976 struct vfio_device_feature {
977         __u32   argsz;
978         __u32   flags;
979 #define VFIO_DEVICE_FEATURE_MASK        (0xffff) /* 16-bit feature index */
980 #define VFIO_DEVICE_FEATURE_GET         (1 << 16) /* Get feature into data[] */
981 #define VFIO_DEVICE_FEATURE_SET         (1 << 17) /* Set feature from data[] */
982 #define VFIO_DEVICE_FEATURE_PROBE       (1 << 18) /* Probe feature support */
983         __u8    data[];
984 };
985
986 #define VFIO_DEVICE_FEATURE             _IO(VFIO_TYPE, VFIO_BASE + 17)
987
988 /*
989  * Provide support for setting a PCI VF Token, which is used as a shared
990  * secret between PF and VF drivers.  This feature may only be set on a
991  * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
992  * open VFs.  Data provided when setting this feature is a 16-byte array
993  * (__u8 b[16]), representing a UUID.
994  */
995 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN        (0)
996
997 /* -------- API for Type1 VFIO IOMMU -------- */
998
999 /**
1000  * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1001  *
1002  * Retrieve information about the IOMMU object. Fills in provided
1003  * struct vfio_iommu_info. Caller sets argsz.
1004  *
1005  * XXX Should we do these by CHECK_EXTENSION too?
1006  */
1007 struct vfio_iommu_type1_info {
1008         __u32   argsz;
1009         __u32   flags;
1010 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0)        /* supported page sizes info */
1011 #define VFIO_IOMMU_INFO_CAPS    (1 << 1)        /* Info supports caps */
1012         __u64   iova_pgsizes;   /* Bitmap of supported page sizes */
1013         __u32   cap_offset;     /* Offset within info struct of first cap */
1014 };
1015
1016 /*
1017  * The IOVA capability allows to report the valid IOVA range(s)
1018  * excluding any non-relaxable reserved regions exposed by
1019  * devices attached to the container. Any DMA map attempt
1020  * outside the valid iova range will return error.
1021  *
1022  * The structures below define version 1 of this capability.
1023  */
1024 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1025
1026 struct vfio_iova_range {
1027         __u64   start;
1028         __u64   end;
1029 };
1030
1031 struct vfio_iommu_type1_info_cap_iova_range {
1032         struct  vfio_info_cap_header header;
1033         __u32   nr_iovas;
1034         __u32   reserved;
1035         struct  vfio_iova_range iova_ranges[];
1036 };
1037
1038 /*
1039  * The migration capability allows to report supported features for migration.
1040  *
1041  * The structures below define version 1 of this capability.
1042  *
1043  * The existence of this capability indicates that IOMMU kernel driver supports
1044  * dirty page logging.
1045  *
1046  * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1047  * page logging.
1048  * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1049  * size in bytes that can be used by user applications when getting the dirty
1050  * bitmap.
1051  */
1052 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1053
1054 struct vfio_iommu_type1_info_cap_migration {
1055         struct  vfio_info_cap_header header;
1056         __u32   flags;
1057         __u64   pgsize_bitmap;
1058         __u64   max_dirty_bitmap_size;          /* in bytes */
1059 };
1060
1061 /*
1062  * The DMA available capability allows to report the current number of
1063  * simultaneously outstanding DMA mappings that are allowed.
1064  *
1065  * The structure below defines version 1 of this capability.
1066  *
1067  * avail: specifies the current number of outstanding DMA mappings allowed.
1068  */
1069 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1070
1071 struct vfio_iommu_type1_info_dma_avail {
1072         struct  vfio_info_cap_header header;
1073         __u32   avail;
1074 };
1075
1076 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1077
1078 /**
1079  * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1080  *
1081  * Map process virtual addresses to IO virtual addresses using the
1082  * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1083  *
1084  * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1085  * unblock translation of host virtual addresses in the iova range.  The vaddr
1086  * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1087  * maintain memory consistency within the user application, the updated vaddr
1088  * must address the same memory object as originally mapped.  Failure to do so
1089  * will result in user memory corruption and/or device misbehavior.  iova and
1090  * size must match those in the original MAP_DMA call.  Protection is not
1091  * changed, and the READ & WRITE flags must be 0.
1092  */
1093 struct vfio_iommu_type1_dma_map {
1094         __u32   argsz;
1095         __u32   flags;
1096 #define VFIO_DMA_MAP_FLAG_READ (1 << 0)         /* readable from device */
1097 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)        /* writable from device */
1098 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1099         __u64   vaddr;                          /* Process virtual address */
1100         __u64   iova;                           /* IO virtual address */
1101         __u64   size;                           /* Size of mapping (bytes) */
1102 };
1103
1104 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1105
1106 struct vfio_bitmap {
1107         __u64        pgsize;    /* page size for bitmap in bytes */
1108         __u64        size;      /* in bytes */
1109         __u64 __user *data;     /* one bit per page */
1110 };
1111
1112 /**
1113  * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1114  *                                                      struct vfio_dma_unmap)
1115  *
1116  * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1117  * Caller sets argsz.  The actual unmapped size is returned in the size
1118  * field.  No guarantee is made to the user that arbitrary unmaps of iova
1119  * or size different from those used in the original mapping call will
1120  * succeed.
1121  *
1122  * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1123  * before unmapping IO virtual addresses. When this flag is set, the user must
1124  * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1125  * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1126  * A bit in the bitmap represents one page, of user provided page size in
1127  * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1128  * indicates that the page at that offset from iova is dirty. A Bitmap of the
1129  * pages in the range of unmapped size is returned in the user-provided
1130  * vfio_bitmap.data.
1131  *
1132  * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1133  * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1134  *
1135  * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1136  * virtual addresses in the iova range.  Tasks that attempt to translate an
1137  * iova's vaddr will block.  DMA to already-mapped pages continues.  This
1138  * cannot be combined with the get-dirty-bitmap flag.
1139  */
1140 struct vfio_iommu_type1_dma_unmap {
1141         __u32   argsz;
1142         __u32   flags;
1143 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1144 #define VFIO_DMA_UNMAP_FLAG_ALL              (1 << 1)
1145 #define VFIO_DMA_UNMAP_FLAG_VADDR            (1 << 2)
1146         __u64   iova;                           /* IO virtual address */
1147         __u64   size;                           /* Size of mapping (bytes) */
1148         __u8    data[];
1149 };
1150
1151 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1152
1153 /*
1154  * IOCTLs to enable/disable IOMMU container usage.
1155  * No parameters are supported.
1156  */
1157 #define VFIO_IOMMU_ENABLE       _IO(VFIO_TYPE, VFIO_BASE + 15)
1158 #define VFIO_IOMMU_DISABLE      _IO(VFIO_TYPE, VFIO_BASE + 16)
1159
1160 /**
1161  * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1162  *                                     struct vfio_iommu_type1_dirty_bitmap)
1163  * IOCTL is used for dirty pages logging.
1164  * Caller should set flag depending on which operation to perform, details as
1165  * below:
1166  *
1167  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1168  * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1169  * the device; designed to be used when a migration is in progress. Dirty pages
1170  * are logged until logging is disabled by user application by calling the IOCTL
1171  * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1172  *
1173  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1174  * the IOMMU driver to stop logging dirtied pages.
1175  *
1176  * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1177  * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1178  * The user must specify the IOVA range and the pgsize through the structure
1179  * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1180  * supports getting a bitmap of the smallest supported pgsize only and can be
1181  * modified in future to get a bitmap of any specified supported pgsize. The
1182  * user must provide a zeroed memory area for the bitmap memory and specify its
1183  * size in bitmap.size. One bit is used to represent one page consecutively
1184  * starting from iova offset. The user should provide page size in bitmap.pgsize
1185  * field. A bit set in the bitmap indicates that the page at that offset from
1186  * iova is dirty. The caller must set argsz to a value including the size of
1187  * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1188  * actual bitmap. If dirty pages logging is not enabled, an error will be
1189  * returned.
1190  *
1191  * Only one of the flags _START, _STOP and _GET may be specified at a time.
1192  *
1193  */
1194 struct vfio_iommu_type1_dirty_bitmap {
1195         __u32        argsz;
1196         __u32        flags;
1197 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START       (1 << 0)
1198 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP        (1 << 1)
1199 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP  (1 << 2)
1200         __u8         data[];
1201 };
1202
1203 struct vfio_iommu_type1_dirty_bitmap_get {
1204         __u64              iova;        /* IO virtual address */
1205         __u64              size;        /* Size of iova range */
1206         struct vfio_bitmap bitmap;
1207 };
1208
1209 #define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1210
1211 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1212
1213 /*
1214  * The SPAPR TCE DDW info struct provides the information about
1215  * the details of Dynamic DMA window capability.
1216  *
1217  * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1218  * @max_dynamic_windows_supported tells the maximum number of windows
1219  * which the platform can create.
1220  * @levels tells the maximum number of levels in multi-level IOMMU tables;
1221  * this allows splitting a table into smaller chunks which reduces
1222  * the amount of physically contiguous memory required for the table.
1223  */
1224 struct vfio_iommu_spapr_tce_ddw_info {
1225         __u64 pgsizes;                  /* Bitmap of supported page sizes */
1226         __u32 max_dynamic_windows_supported;
1227         __u32 levels;
1228 };
1229
1230 /*
1231  * The SPAPR TCE info struct provides the information about the PCI bus
1232  * address ranges available for DMA, these values are programmed into
1233  * the hardware so the guest has to know that information.
1234  *
1235  * The DMA 32 bit window start is an absolute PCI bus address.
1236  * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1237  * addresses too so the window works as a filter rather than an offset
1238  * for IOVA addresses.
1239  *
1240  * Flags supported:
1241  * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1242  *   (DDW) support is present. @ddw is only supported when DDW is present.
1243  */
1244 struct vfio_iommu_spapr_tce_info {
1245         __u32 argsz;
1246         __u32 flags;
1247 #define VFIO_IOMMU_SPAPR_INFO_DDW       (1 << 0)        /* DDW supported */
1248         __u32 dma32_window_start;       /* 32 bit window start (bytes) */
1249         __u32 dma32_window_size;        /* 32 bit window size (bytes) */
1250         struct vfio_iommu_spapr_tce_ddw_info ddw;
1251 };
1252
1253 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO   _IO(VFIO_TYPE, VFIO_BASE + 12)
1254
1255 /*
1256  * EEH PE operation struct provides ways to:
1257  * - enable/disable EEH functionality;
1258  * - unfreeze IO/DMA for frozen PE;
1259  * - read PE state;
1260  * - reset PE;
1261  * - configure PE;
1262  * - inject EEH error.
1263  */
1264 struct vfio_eeh_pe_err {
1265         __u32 type;
1266         __u32 func;
1267         __u64 addr;
1268         __u64 mask;
1269 };
1270
1271 struct vfio_eeh_pe_op {
1272         __u32 argsz;
1273         __u32 flags;
1274         __u32 op;
1275         union {
1276                 struct vfio_eeh_pe_err err;
1277         };
1278 };
1279
1280 #define VFIO_EEH_PE_DISABLE             0       /* Disable EEH functionality */
1281 #define VFIO_EEH_PE_ENABLE              1       /* Enable EEH functionality  */
1282 #define VFIO_EEH_PE_UNFREEZE_IO         2       /* Enable IO for frozen PE   */
1283 #define VFIO_EEH_PE_UNFREEZE_DMA        3       /* Enable DMA for frozen PE  */
1284 #define VFIO_EEH_PE_GET_STATE           4       /* PE state retrieval        */
1285 #define  VFIO_EEH_PE_STATE_NORMAL       0       /* PE in functional state    */
1286 #define  VFIO_EEH_PE_STATE_RESET        1       /* PE reset in progress      */
1287 #define  VFIO_EEH_PE_STATE_STOPPED      2       /* Stopped DMA and IO        */
1288 #define  VFIO_EEH_PE_STATE_STOPPED_DMA  4       /* Stopped DMA only          */
1289 #define  VFIO_EEH_PE_STATE_UNAVAIL      5       /* State unavailable         */
1290 #define VFIO_EEH_PE_RESET_DEACTIVATE    5       /* Deassert PE reset         */
1291 #define VFIO_EEH_PE_RESET_HOT           6       /* Assert hot reset          */
1292 #define VFIO_EEH_PE_RESET_FUNDAMENTAL   7       /* Assert fundamental reset  */
1293 #define VFIO_EEH_PE_CONFIGURE           8       /* PE configuration          */
1294 #define VFIO_EEH_PE_INJECT_ERR          9       /* Inject EEH error          */
1295
1296 #define VFIO_EEH_PE_OP                  _IO(VFIO_TYPE, VFIO_BASE + 21)
1297
1298 /**
1299  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1300  *
1301  * Registers user space memory where DMA is allowed. It pins
1302  * user pages and does the locked memory accounting so
1303  * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1304  * get faster.
1305  */
1306 struct vfio_iommu_spapr_register_memory {
1307         __u32   argsz;
1308         __u32   flags;
1309         __u64   vaddr;                          /* Process virtual address */
1310         __u64   size;                           /* Size of mapping (bytes) */
1311 };
1312 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY        _IO(VFIO_TYPE, VFIO_BASE + 17)
1313
1314 /**
1315  * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1316  *
1317  * Unregisters user space memory registered with
1318  * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1319  * Uses vfio_iommu_spapr_register_memory for parameters.
1320  */
1321 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY      _IO(VFIO_TYPE, VFIO_BASE + 18)
1322
1323 /**
1324  * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1325  *
1326  * Creates an additional TCE table and programs it (sets a new DMA window)
1327  * to every IOMMU group in the container. It receives page shift, window
1328  * size and number of levels in the TCE table being created.
1329  *
1330  * It allocates and returns an offset on a PCI bus of the new DMA window.
1331  */
1332 struct vfio_iommu_spapr_tce_create {
1333         __u32 argsz;
1334         __u32 flags;
1335         /* in */
1336         __u32 page_shift;
1337         __u32 __resv1;
1338         __u64 window_size;
1339         __u32 levels;
1340         __u32 __resv2;
1341         /* out */
1342         __u64 start_addr;
1343 };
1344 #define VFIO_IOMMU_SPAPR_TCE_CREATE     _IO(VFIO_TYPE, VFIO_BASE + 19)
1345
1346 /**
1347  * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1348  *
1349  * Unprograms a TCE table from all groups in the container and destroys it.
1350  * It receives a PCI bus offset as a window id.
1351  */
1352 struct vfio_iommu_spapr_tce_remove {
1353         __u32 argsz;
1354         __u32 flags;
1355         /* in */
1356         __u64 start_addr;
1357 };
1358 #define VFIO_IOMMU_SPAPR_TCE_REMOVE     _IO(VFIO_TYPE, VFIO_BASE + 20)
1359
1360 /* ***************************************************************** */
1361
1362 #endif /* _UAPIVFIO_H */