Merge branch 'master' into for-linus
[sfrench/cifs-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_ag.h"
41 #include "xfs_dmapi.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50         .shrink = xfsbufd_wakeup,
51         .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp)       do { } while (0)
64 # define XB_CLEAR_OWNER(bp)     do { } while (0)
65 # define XB_GET_OWNER(bp)       do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78         kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82         struct xfs_buf  *bp)
83 {
84         /*
85          * Return true if the buffer is vmapped.
86          *
87          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88          * code is clever enough to know it doesn't have to map a single page,
89          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90          */
91         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96         struct xfs_buf  *bp)
97 {
98         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102  *      Page Region interfaces.
103  *
104  *      For pages in filesystems where the blocksize is smaller than the
105  *      pagesize, we use the page->private field (long) to hold a bitmap
106  *      of uptodate regions within the page.
107  *
108  *      Each such region is "bytes per page / bits per long" bytes long.
109  *
110  *      NBPPR == number-of-bytes-per-page-region
111  *      BTOPR == bytes-to-page-region (rounded up)
112  *      BTOPRT == bytes-to-page-region-truncated (rounded down)
113  */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127         size_t          offset,
128         size_t          length)
129 {
130         unsigned long   mask;
131         int             first, final;
132
133         first = BTOPR(offset);
134         final = BTOPRT(offset + length - 1);
135         first = min(first, final);
136
137         mask = ~0UL;
138         mask <<= BITS_PER_LONG - (final - first);
139         mask >>= BITS_PER_LONG - (final);
140
141         ASSERT(offset + length <= PAGE_CACHE_SIZE);
142         ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144         return mask;
145 }
146
147 STATIC void
148 set_page_region(
149         struct page     *page,
150         size_t          offset,
151         size_t          length)
152 {
153         set_page_private(page,
154                 page_private(page) | page_region_mask(offset, length));
155         if (page_private(page) == ~0UL)
156                 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161         struct page     *page,
162         size_t          offset,
163         size_t          length)
164 {
165         unsigned long   mask = page_region_mask(offset, length);
166
167         return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171  *      Mapping of multi-page buffers into contiguous virtual space
172  */
173
174 typedef struct a_list {
175         void            *vm_addr;
176         struct a_list   *next;
177 } a_list_t;
178
179 static a_list_t         *as_free_head;
180 static int              as_list_len;
181 static DEFINE_SPINLOCK(as_lock);
182
183 /*
184  *      Try to batch vunmaps because they are costly.
185  */
186 STATIC void
187 free_address(
188         void            *addr)
189 {
190         a_list_t        *aentry;
191
192 #ifdef CONFIG_XEN
193         /*
194          * Xen needs to be able to make sure it can get an exclusive
195          * RO mapping of pages it wants to turn into a pagetable.  If
196          * a newly allocated page is also still being vmap()ed by xfs,
197          * it will cause pagetable construction to fail.  This is a
198          * quick workaround to always eagerly unmap pages so that Xen
199          * is happy.
200          */
201         vunmap(addr);
202         return;
203 #endif
204
205         aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
206         if (likely(aentry)) {
207                 spin_lock(&as_lock);
208                 aentry->next = as_free_head;
209                 aentry->vm_addr = addr;
210                 as_free_head = aentry;
211                 as_list_len++;
212                 spin_unlock(&as_lock);
213         } else {
214                 vunmap(addr);
215         }
216 }
217
218 STATIC void
219 purge_addresses(void)
220 {
221         a_list_t        *aentry, *old;
222
223         if (as_free_head == NULL)
224                 return;
225
226         spin_lock(&as_lock);
227         aentry = as_free_head;
228         as_free_head = NULL;
229         as_list_len = 0;
230         spin_unlock(&as_lock);
231
232         while ((old = aentry) != NULL) {
233                 vunmap(aentry->vm_addr);
234                 aentry = aentry->next;
235                 kfree(old);
236         }
237 }
238
239 /*
240  *      Internal xfs_buf_t object manipulation
241  */
242
243 STATIC void
244 _xfs_buf_initialize(
245         xfs_buf_t               *bp,
246         xfs_buftarg_t           *target,
247         xfs_off_t               range_base,
248         size_t                  range_length,
249         xfs_buf_flags_t         flags)
250 {
251         /*
252          * We don't want certain flags to appear in b_flags.
253          */
254         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
255
256         memset(bp, 0, sizeof(xfs_buf_t));
257         atomic_set(&bp->b_hold, 1);
258         init_completion(&bp->b_iowait);
259         INIT_LIST_HEAD(&bp->b_list);
260         INIT_LIST_HEAD(&bp->b_hash_list);
261         init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
262         XB_SET_OWNER(bp);
263         bp->b_target = target;
264         bp->b_file_offset = range_base;
265         /*
266          * Set buffer_length and count_desired to the same value initially.
267          * I/O routines should use count_desired, which will be the same in
268          * most cases but may be reset (e.g. XFS recovery).
269          */
270         bp->b_buffer_length = bp->b_count_desired = range_length;
271         bp->b_flags = flags;
272         bp->b_bn = XFS_BUF_DADDR_NULL;
273         atomic_set(&bp->b_pin_count, 0);
274         init_waitqueue_head(&bp->b_waiters);
275
276         XFS_STATS_INC(xb_create);
277
278         trace_xfs_buf_init(bp, _RET_IP_);
279 }
280
281 /*
282  *      Allocate a page array capable of holding a specified number
283  *      of pages, and point the page buf at it.
284  */
285 STATIC int
286 _xfs_buf_get_pages(
287         xfs_buf_t               *bp,
288         int                     page_count,
289         xfs_buf_flags_t         flags)
290 {
291         /* Make sure that we have a page list */
292         if (bp->b_pages == NULL) {
293                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
294                 bp->b_page_count = page_count;
295                 if (page_count <= XB_PAGES) {
296                         bp->b_pages = bp->b_page_array;
297                 } else {
298                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
299                                         page_count, xb_to_km(flags));
300                         if (bp->b_pages == NULL)
301                                 return -ENOMEM;
302                 }
303                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
304         }
305         return 0;
306 }
307
308 /*
309  *      Frees b_pages if it was allocated.
310  */
311 STATIC void
312 _xfs_buf_free_pages(
313         xfs_buf_t       *bp)
314 {
315         if (bp->b_pages != bp->b_page_array) {
316                 kmem_free(bp->b_pages);
317                 bp->b_pages = NULL;
318         }
319 }
320
321 /*
322  *      Releases the specified buffer.
323  *
324  *      The modification state of any associated pages is left unchanged.
325  *      The buffer most not be on any hash - use xfs_buf_rele instead for
326  *      hashed and refcounted buffers
327  */
328 void
329 xfs_buf_free(
330         xfs_buf_t               *bp)
331 {
332         trace_xfs_buf_free(bp, _RET_IP_);
333
334         ASSERT(list_empty(&bp->b_hash_list));
335
336         if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
337                 uint            i;
338
339                 if (xfs_buf_is_vmapped(bp))
340                         free_address(bp->b_addr - bp->b_offset);
341
342                 for (i = 0; i < bp->b_page_count; i++) {
343                         struct page     *page = bp->b_pages[i];
344
345                         if (bp->b_flags & _XBF_PAGE_CACHE)
346                                 ASSERT(!PagePrivate(page));
347                         page_cache_release(page);
348                 }
349         }
350         _xfs_buf_free_pages(bp);
351         xfs_buf_deallocate(bp);
352 }
353
354 /*
355  *      Finds all pages for buffer in question and builds it's page list.
356  */
357 STATIC int
358 _xfs_buf_lookup_pages(
359         xfs_buf_t               *bp,
360         uint                    flags)
361 {
362         struct address_space    *mapping = bp->b_target->bt_mapping;
363         size_t                  blocksize = bp->b_target->bt_bsize;
364         size_t                  size = bp->b_count_desired;
365         size_t                  nbytes, offset;
366         gfp_t                   gfp_mask = xb_to_gfp(flags);
367         unsigned short          page_count, i;
368         pgoff_t                 first;
369         xfs_off_t               end;
370         int                     error;
371
372         end = bp->b_file_offset + bp->b_buffer_length;
373         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
374
375         error = _xfs_buf_get_pages(bp, page_count, flags);
376         if (unlikely(error))
377                 return error;
378         bp->b_flags |= _XBF_PAGE_CACHE;
379
380         offset = bp->b_offset;
381         first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
382
383         for (i = 0; i < bp->b_page_count; i++) {
384                 struct page     *page;
385                 uint            retries = 0;
386
387               retry:
388                 page = find_or_create_page(mapping, first + i, gfp_mask);
389                 if (unlikely(page == NULL)) {
390                         if (flags & XBF_READ_AHEAD) {
391                                 bp->b_page_count = i;
392                                 for (i = 0; i < bp->b_page_count; i++)
393                                         unlock_page(bp->b_pages[i]);
394                                 return -ENOMEM;
395                         }
396
397                         /*
398                          * This could deadlock.
399                          *
400                          * But until all the XFS lowlevel code is revamped to
401                          * handle buffer allocation failures we can't do much.
402                          */
403                         if (!(++retries % 100))
404                                 printk(KERN_ERR
405                                         "XFS: possible memory allocation "
406                                         "deadlock in %s (mode:0x%x)\n",
407                                         __func__, gfp_mask);
408
409                         XFS_STATS_INC(xb_page_retries);
410                         xfsbufd_wakeup(0, gfp_mask);
411                         congestion_wait(BLK_RW_ASYNC, HZ/50);
412                         goto retry;
413                 }
414
415                 XFS_STATS_INC(xb_page_found);
416
417                 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
418                 size -= nbytes;
419
420                 ASSERT(!PagePrivate(page));
421                 if (!PageUptodate(page)) {
422                         page_count--;
423                         if (blocksize >= PAGE_CACHE_SIZE) {
424                                 if (flags & XBF_READ)
425                                         bp->b_flags |= _XBF_PAGE_LOCKED;
426                         } else if (!PagePrivate(page)) {
427                                 if (test_page_region(page, offset, nbytes))
428                                         page_count++;
429                         }
430                 }
431
432                 bp->b_pages[i] = page;
433                 offset = 0;
434         }
435
436         if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
437                 for (i = 0; i < bp->b_page_count; i++)
438                         unlock_page(bp->b_pages[i]);
439         }
440
441         if (page_count == bp->b_page_count)
442                 bp->b_flags |= XBF_DONE;
443
444         return error;
445 }
446
447 /*
448  *      Map buffer into kernel address-space if nessecary.
449  */
450 STATIC int
451 _xfs_buf_map_pages(
452         xfs_buf_t               *bp,
453         uint                    flags)
454 {
455         /* A single page buffer is always mappable */
456         if (bp->b_page_count == 1) {
457                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
458                 bp->b_flags |= XBF_MAPPED;
459         } else if (flags & XBF_MAPPED) {
460                 if (as_list_len > 64)
461                         purge_addresses();
462                 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
463                                         VM_MAP, PAGE_KERNEL);
464                 if (unlikely(bp->b_addr == NULL))
465                         return -ENOMEM;
466                 bp->b_addr += bp->b_offset;
467                 bp->b_flags |= XBF_MAPPED;
468         }
469
470         return 0;
471 }
472
473 /*
474  *      Finding and Reading Buffers
475  */
476
477 /*
478  *      Look up, and creates if absent, a lockable buffer for
479  *      a given range of an inode.  The buffer is returned
480  *      locked.  If other overlapping buffers exist, they are
481  *      released before the new buffer is created and locked,
482  *      which may imply that this call will block until those buffers
483  *      are unlocked.  No I/O is implied by this call.
484  */
485 xfs_buf_t *
486 _xfs_buf_find(
487         xfs_buftarg_t           *btp,   /* block device target          */
488         xfs_off_t               ioff,   /* starting offset of range     */
489         size_t                  isize,  /* length of range              */
490         xfs_buf_flags_t         flags,
491         xfs_buf_t               *new_bp)
492 {
493         xfs_off_t               range_base;
494         size_t                  range_length;
495         xfs_bufhash_t           *hash;
496         xfs_buf_t               *bp, *n;
497
498         range_base = (ioff << BBSHIFT);
499         range_length = (isize << BBSHIFT);
500
501         /* Check for IOs smaller than the sector size / not sector aligned */
502         ASSERT(!(range_length < (1 << btp->bt_sshift)));
503         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
504
505         hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
506
507         spin_lock(&hash->bh_lock);
508
509         list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
510                 ASSERT(btp == bp->b_target);
511                 if (bp->b_file_offset == range_base &&
512                     bp->b_buffer_length == range_length) {
513                         /*
514                          * If we look at something, bring it to the
515                          * front of the list for next time.
516                          */
517                         atomic_inc(&bp->b_hold);
518                         list_move(&bp->b_hash_list, &hash->bh_list);
519                         goto found;
520                 }
521         }
522
523         /* No match found */
524         if (new_bp) {
525                 _xfs_buf_initialize(new_bp, btp, range_base,
526                                 range_length, flags);
527                 new_bp->b_hash = hash;
528                 list_add(&new_bp->b_hash_list, &hash->bh_list);
529         } else {
530                 XFS_STATS_INC(xb_miss_locked);
531         }
532
533         spin_unlock(&hash->bh_lock);
534         return new_bp;
535
536 found:
537         spin_unlock(&hash->bh_lock);
538
539         /* Attempt to get the semaphore without sleeping,
540          * if this does not work then we need to drop the
541          * spinlock and do a hard attempt on the semaphore.
542          */
543         if (down_trylock(&bp->b_sema)) {
544                 if (!(flags & XBF_TRYLOCK)) {
545                         /* wait for buffer ownership */
546                         xfs_buf_lock(bp);
547                         XFS_STATS_INC(xb_get_locked_waited);
548                 } else {
549                         /* We asked for a trylock and failed, no need
550                          * to look at file offset and length here, we
551                          * know that this buffer at least overlaps our
552                          * buffer and is locked, therefore our buffer
553                          * either does not exist, or is this buffer.
554                          */
555                         xfs_buf_rele(bp);
556                         XFS_STATS_INC(xb_busy_locked);
557                         return NULL;
558                 }
559         } else {
560                 /* trylock worked */
561                 XB_SET_OWNER(bp);
562         }
563
564         if (bp->b_flags & XBF_STALE) {
565                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566                 bp->b_flags &= XBF_MAPPED;
567         }
568
569         trace_xfs_buf_find(bp, flags, _RET_IP_);
570         XFS_STATS_INC(xb_get_locked);
571         return bp;
572 }
573
574 /*
575  *      Assembles a buffer covering the specified range.
576  *      Storage in memory for all portions of the buffer will be allocated,
577  *      although backing storage may not be.
578  */
579 xfs_buf_t *
580 xfs_buf_get(
581         xfs_buftarg_t           *target,/* target for buffer            */
582         xfs_off_t               ioff,   /* starting offset of range     */
583         size_t                  isize,  /* length of range              */
584         xfs_buf_flags_t         flags)
585 {
586         xfs_buf_t               *bp, *new_bp;
587         int                     error = 0, i;
588
589         new_bp = xfs_buf_allocate(flags);
590         if (unlikely(!new_bp))
591                 return NULL;
592
593         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
594         if (bp == new_bp) {
595                 error = _xfs_buf_lookup_pages(bp, flags);
596                 if (error)
597                         goto no_buffer;
598         } else {
599                 xfs_buf_deallocate(new_bp);
600                 if (unlikely(bp == NULL))
601                         return NULL;
602         }
603
604         for (i = 0; i < bp->b_page_count; i++)
605                 mark_page_accessed(bp->b_pages[i]);
606
607         if (!(bp->b_flags & XBF_MAPPED)) {
608                 error = _xfs_buf_map_pages(bp, flags);
609                 if (unlikely(error)) {
610                         printk(KERN_WARNING "%s: failed to map pages\n",
611                                         __func__);
612                         goto no_buffer;
613                 }
614         }
615
616         XFS_STATS_INC(xb_get);
617
618         /*
619          * Always fill in the block number now, the mapped cases can do
620          * their own overlay of this later.
621          */
622         bp->b_bn = ioff;
623         bp->b_count_desired = bp->b_buffer_length;
624
625         trace_xfs_buf_get(bp, flags, _RET_IP_);
626         return bp;
627
628  no_buffer:
629         if (flags & (XBF_LOCK | XBF_TRYLOCK))
630                 xfs_buf_unlock(bp);
631         xfs_buf_rele(bp);
632         return NULL;
633 }
634
635 STATIC int
636 _xfs_buf_read(
637         xfs_buf_t               *bp,
638         xfs_buf_flags_t         flags)
639 {
640         int                     status;
641
642         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
643         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
644
645         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
646                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
647         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
648                         XBF_READ_AHEAD | _XBF_RUN_QUEUES);
649
650         status = xfs_buf_iorequest(bp);
651         if (!status && !(flags & XBF_ASYNC))
652                 status = xfs_buf_iowait(bp);
653         return status;
654 }
655
656 xfs_buf_t *
657 xfs_buf_read(
658         xfs_buftarg_t           *target,
659         xfs_off_t               ioff,
660         size_t                  isize,
661         xfs_buf_flags_t         flags)
662 {
663         xfs_buf_t               *bp;
664
665         flags |= XBF_READ;
666
667         bp = xfs_buf_get(target, ioff, isize, flags);
668         if (bp) {
669                 trace_xfs_buf_read(bp, flags, _RET_IP_);
670
671                 if (!XFS_BUF_ISDONE(bp)) {
672                         XFS_STATS_INC(xb_get_read);
673                         _xfs_buf_read(bp, flags);
674                 } else if (flags & XBF_ASYNC) {
675                         /*
676                          * Read ahead call which is already satisfied,
677                          * drop the buffer
678                          */
679                         goto no_buffer;
680                 } else {
681                         /* We do not want read in the flags */
682                         bp->b_flags &= ~XBF_READ;
683                 }
684         }
685
686         return bp;
687
688  no_buffer:
689         if (flags & (XBF_LOCK | XBF_TRYLOCK))
690                 xfs_buf_unlock(bp);
691         xfs_buf_rele(bp);
692         return NULL;
693 }
694
695 /*
696  *      If we are not low on memory then do the readahead in a deadlock
697  *      safe manner.
698  */
699 void
700 xfs_buf_readahead(
701         xfs_buftarg_t           *target,
702         xfs_off_t               ioff,
703         size_t                  isize,
704         xfs_buf_flags_t         flags)
705 {
706         struct backing_dev_info *bdi;
707
708         bdi = target->bt_mapping->backing_dev_info;
709         if (bdi_read_congested(bdi))
710                 return;
711
712         flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
713         xfs_buf_read(target, ioff, isize, flags);
714 }
715
716 xfs_buf_t *
717 xfs_buf_get_empty(
718         size_t                  len,
719         xfs_buftarg_t           *target)
720 {
721         xfs_buf_t               *bp;
722
723         bp = xfs_buf_allocate(0);
724         if (bp)
725                 _xfs_buf_initialize(bp, target, 0, len, 0);
726         return bp;
727 }
728
729 static inline struct page *
730 mem_to_page(
731         void                    *addr)
732 {
733         if ((!is_vmalloc_addr(addr))) {
734                 return virt_to_page(addr);
735         } else {
736                 return vmalloc_to_page(addr);
737         }
738 }
739
740 int
741 xfs_buf_associate_memory(
742         xfs_buf_t               *bp,
743         void                    *mem,
744         size_t                  len)
745 {
746         int                     rval;
747         int                     i = 0;
748         unsigned long           pageaddr;
749         unsigned long           offset;
750         size_t                  buflen;
751         int                     page_count;
752
753         pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
754         offset = (unsigned long)mem - pageaddr;
755         buflen = PAGE_CACHE_ALIGN(len + offset);
756         page_count = buflen >> PAGE_CACHE_SHIFT;
757
758         /* Free any previous set of page pointers */
759         if (bp->b_pages)
760                 _xfs_buf_free_pages(bp);
761
762         bp->b_pages = NULL;
763         bp->b_addr = mem;
764
765         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
766         if (rval)
767                 return rval;
768
769         bp->b_offset = offset;
770
771         for (i = 0; i < bp->b_page_count; i++) {
772                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
773                 pageaddr += PAGE_CACHE_SIZE;
774         }
775
776         bp->b_count_desired = len;
777         bp->b_buffer_length = buflen;
778         bp->b_flags |= XBF_MAPPED;
779         bp->b_flags &= ~_XBF_PAGE_LOCKED;
780
781         return 0;
782 }
783
784 xfs_buf_t *
785 xfs_buf_get_noaddr(
786         size_t                  len,
787         xfs_buftarg_t           *target)
788 {
789         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
790         int                     error, i;
791         xfs_buf_t               *bp;
792
793         bp = xfs_buf_allocate(0);
794         if (unlikely(bp == NULL))
795                 goto fail;
796         _xfs_buf_initialize(bp, target, 0, len, 0);
797
798         error = _xfs_buf_get_pages(bp, page_count, 0);
799         if (error)
800                 goto fail_free_buf;
801
802         for (i = 0; i < page_count; i++) {
803                 bp->b_pages[i] = alloc_page(GFP_KERNEL);
804                 if (!bp->b_pages[i])
805                         goto fail_free_mem;
806         }
807         bp->b_flags |= _XBF_PAGES;
808
809         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
810         if (unlikely(error)) {
811                 printk(KERN_WARNING "%s: failed to map pages\n",
812                                 __func__);
813                 goto fail_free_mem;
814         }
815
816         xfs_buf_unlock(bp);
817
818         trace_xfs_buf_get_noaddr(bp, _RET_IP_);
819         return bp;
820
821  fail_free_mem:
822         while (--i >= 0)
823                 __free_page(bp->b_pages[i]);
824         _xfs_buf_free_pages(bp);
825  fail_free_buf:
826         xfs_buf_deallocate(bp);
827  fail:
828         return NULL;
829 }
830
831 /*
832  *      Increment reference count on buffer, to hold the buffer concurrently
833  *      with another thread which may release (free) the buffer asynchronously.
834  *      Must hold the buffer already to call this function.
835  */
836 void
837 xfs_buf_hold(
838         xfs_buf_t               *bp)
839 {
840         trace_xfs_buf_hold(bp, _RET_IP_);
841         atomic_inc(&bp->b_hold);
842 }
843
844 /*
845  *      Releases a hold on the specified buffer.  If the
846  *      the hold count is 1, calls xfs_buf_free.
847  */
848 void
849 xfs_buf_rele(
850         xfs_buf_t               *bp)
851 {
852         xfs_bufhash_t           *hash = bp->b_hash;
853
854         trace_xfs_buf_rele(bp, _RET_IP_);
855
856         if (unlikely(!hash)) {
857                 ASSERT(!bp->b_relse);
858                 if (atomic_dec_and_test(&bp->b_hold))
859                         xfs_buf_free(bp);
860                 return;
861         }
862
863         ASSERT(atomic_read(&bp->b_hold) > 0);
864         if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
865                 if (bp->b_relse) {
866                         atomic_inc(&bp->b_hold);
867                         spin_unlock(&hash->bh_lock);
868                         (*(bp->b_relse)) (bp);
869                 } else if (bp->b_flags & XBF_FS_MANAGED) {
870                         spin_unlock(&hash->bh_lock);
871                 } else {
872                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
873                         list_del_init(&bp->b_hash_list);
874                         spin_unlock(&hash->bh_lock);
875                         xfs_buf_free(bp);
876                 }
877         }
878 }
879
880
881 /*
882  *      Mutual exclusion on buffers.  Locking model:
883  *
884  *      Buffers associated with inodes for which buffer locking
885  *      is not enabled are not protected by semaphores, and are
886  *      assumed to be exclusively owned by the caller.  There is a
887  *      spinlock in the buffer, used by the caller when concurrent
888  *      access is possible.
889  */
890
891 /*
892  *      Locks a buffer object, if it is not already locked.
893  *      Note that this in no way locks the underlying pages, so it is only
894  *      useful for synchronizing concurrent use of buffer objects, not for
895  *      synchronizing independent access to the underlying pages.
896  */
897 int
898 xfs_buf_cond_lock(
899         xfs_buf_t               *bp)
900 {
901         int                     locked;
902
903         locked = down_trylock(&bp->b_sema) == 0;
904         if (locked)
905                 XB_SET_OWNER(bp);
906
907         trace_xfs_buf_cond_lock(bp, _RET_IP_);
908         return locked ? 0 : -EBUSY;
909 }
910
911 int
912 xfs_buf_lock_value(
913         xfs_buf_t               *bp)
914 {
915         return bp->b_sema.count;
916 }
917
918 /*
919  *      Locks a buffer object.
920  *      Note that this in no way locks the underlying pages, so it is only
921  *      useful for synchronizing concurrent use of buffer objects, not for
922  *      synchronizing independent access to the underlying pages.
923  */
924 void
925 xfs_buf_lock(
926         xfs_buf_t               *bp)
927 {
928         trace_xfs_buf_lock(bp, _RET_IP_);
929
930         if (atomic_read(&bp->b_io_remaining))
931                 blk_run_address_space(bp->b_target->bt_mapping);
932         down(&bp->b_sema);
933         XB_SET_OWNER(bp);
934
935         trace_xfs_buf_lock_done(bp, _RET_IP_);
936 }
937
938 /*
939  *      Releases the lock on the buffer object.
940  *      If the buffer is marked delwri but is not queued, do so before we
941  *      unlock the buffer as we need to set flags correctly.  We also need to
942  *      take a reference for the delwri queue because the unlocker is going to
943  *      drop their's and they don't know we just queued it.
944  */
945 void
946 xfs_buf_unlock(
947         xfs_buf_t               *bp)
948 {
949         if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
950                 atomic_inc(&bp->b_hold);
951                 bp->b_flags |= XBF_ASYNC;
952                 xfs_buf_delwri_queue(bp, 0);
953         }
954
955         XB_CLEAR_OWNER(bp);
956         up(&bp->b_sema);
957
958         trace_xfs_buf_unlock(bp, _RET_IP_);
959 }
960
961
962 /*
963  *      Pinning Buffer Storage in Memory
964  *      Ensure that no attempt to force a buffer to disk will succeed.
965  */
966 void
967 xfs_buf_pin(
968         xfs_buf_t               *bp)
969 {
970         trace_xfs_buf_pin(bp, _RET_IP_);
971         atomic_inc(&bp->b_pin_count);
972 }
973
974 void
975 xfs_buf_unpin(
976         xfs_buf_t               *bp)
977 {
978         trace_xfs_buf_unpin(bp, _RET_IP_);
979
980         if (atomic_dec_and_test(&bp->b_pin_count))
981                 wake_up_all(&bp->b_waiters);
982 }
983
984 int
985 xfs_buf_ispin(
986         xfs_buf_t               *bp)
987 {
988         return atomic_read(&bp->b_pin_count);
989 }
990
991 STATIC void
992 xfs_buf_wait_unpin(
993         xfs_buf_t               *bp)
994 {
995         DECLARE_WAITQUEUE       (wait, current);
996
997         if (atomic_read(&bp->b_pin_count) == 0)
998                 return;
999
1000         add_wait_queue(&bp->b_waiters, &wait);
1001         for (;;) {
1002                 set_current_state(TASK_UNINTERRUPTIBLE);
1003                 if (atomic_read(&bp->b_pin_count) == 0)
1004                         break;
1005                 if (atomic_read(&bp->b_io_remaining))
1006                         blk_run_address_space(bp->b_target->bt_mapping);
1007                 schedule();
1008         }
1009         remove_wait_queue(&bp->b_waiters, &wait);
1010         set_current_state(TASK_RUNNING);
1011 }
1012
1013 /*
1014  *      Buffer Utility Routines
1015  */
1016
1017 STATIC void
1018 xfs_buf_iodone_work(
1019         struct work_struct      *work)
1020 {
1021         xfs_buf_t               *bp =
1022                 container_of(work, xfs_buf_t, b_iodone_work);
1023
1024         /*
1025          * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1026          * ordered flag and reissue them.  Because we can't tell the higher
1027          * layers directly that they should not issue ordered I/O anymore, they
1028          * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1029          */
1030         if ((bp->b_error == EOPNOTSUPP) &&
1031             (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1032                 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
1033                 bp->b_flags &= ~XBF_ORDERED;
1034                 bp->b_flags |= _XFS_BARRIER_FAILED;
1035                 xfs_buf_iorequest(bp);
1036         } else if (bp->b_iodone)
1037                 (*(bp->b_iodone))(bp);
1038         else if (bp->b_flags & XBF_ASYNC)
1039                 xfs_buf_relse(bp);
1040 }
1041
1042 void
1043 xfs_buf_ioend(
1044         xfs_buf_t               *bp,
1045         int                     schedule)
1046 {
1047         trace_xfs_buf_iodone(bp, _RET_IP_);
1048
1049         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1050         if (bp->b_error == 0)
1051                 bp->b_flags |= XBF_DONE;
1052
1053         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1054                 if (schedule) {
1055                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1056                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1057                 } else {
1058                         xfs_buf_iodone_work(&bp->b_iodone_work);
1059                 }
1060         } else {
1061                 complete(&bp->b_iowait);
1062         }
1063 }
1064
1065 void
1066 xfs_buf_ioerror(
1067         xfs_buf_t               *bp,
1068         int                     error)
1069 {
1070         ASSERT(error >= 0 && error <= 0xffff);
1071         bp->b_error = (unsigned short)error;
1072         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1073 }
1074
1075 int
1076 xfs_bwrite(
1077         struct xfs_mount        *mp,
1078         struct xfs_buf          *bp)
1079 {
1080         int                     iowait = (bp->b_flags & XBF_ASYNC) == 0;
1081         int                     error = 0;
1082
1083         bp->b_strat = xfs_bdstrat_cb;
1084         bp->b_mount = mp;
1085         bp->b_flags |= XBF_WRITE;
1086         if (!iowait)
1087                 bp->b_flags |= _XBF_RUN_QUEUES;
1088
1089         xfs_buf_delwri_dequeue(bp);
1090         xfs_buf_iostrategy(bp);
1091
1092         if (iowait) {
1093                 error = xfs_buf_iowait(bp);
1094                 if (error)
1095                         xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1096                 xfs_buf_relse(bp);
1097         }
1098
1099         return error;
1100 }
1101
1102 void
1103 xfs_bdwrite(
1104         void                    *mp,
1105         struct xfs_buf          *bp)
1106 {
1107         trace_xfs_buf_bdwrite(bp, _RET_IP_);
1108
1109         bp->b_strat = xfs_bdstrat_cb;
1110         bp->b_mount = mp;
1111
1112         bp->b_flags &= ~XBF_READ;
1113         bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1114
1115         xfs_buf_delwri_queue(bp, 1);
1116 }
1117
1118 /*
1119  * Called when we want to stop a buffer from getting written or read.
1120  * We attach the EIO error, muck with its flags, and call biodone
1121  * so that the proper iodone callbacks get called.
1122  */
1123 STATIC int
1124 xfs_bioerror(
1125         xfs_buf_t *bp)
1126 {
1127 #ifdef XFSERRORDEBUG
1128         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1129 #endif
1130
1131         /*
1132          * No need to wait until the buffer is unpinned, we aren't flushing it.
1133          */
1134         XFS_BUF_ERROR(bp, EIO);
1135
1136         /*
1137          * We're calling biodone, so delete XBF_DONE flag.
1138          */
1139         XFS_BUF_UNREAD(bp);
1140         XFS_BUF_UNDELAYWRITE(bp);
1141         XFS_BUF_UNDONE(bp);
1142         XFS_BUF_STALE(bp);
1143
1144         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1145         xfs_biodone(bp);
1146
1147         return EIO;
1148 }
1149
1150 /*
1151  * Same as xfs_bioerror, except that we are releasing the buffer
1152  * here ourselves, and avoiding the biodone call.
1153  * This is meant for userdata errors; metadata bufs come with
1154  * iodone functions attached, so that we can track down errors.
1155  */
1156 STATIC int
1157 xfs_bioerror_relse(
1158         struct xfs_buf  *bp)
1159 {
1160         int64_t         fl = XFS_BUF_BFLAGS(bp);
1161         /*
1162          * No need to wait until the buffer is unpinned.
1163          * We aren't flushing it.
1164          *
1165          * chunkhold expects B_DONE to be set, whether
1166          * we actually finish the I/O or not. We don't want to
1167          * change that interface.
1168          */
1169         XFS_BUF_UNREAD(bp);
1170         XFS_BUF_UNDELAYWRITE(bp);
1171         XFS_BUF_DONE(bp);
1172         XFS_BUF_STALE(bp);
1173         XFS_BUF_CLR_IODONE_FUNC(bp);
1174         XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1175         if (!(fl & XBF_ASYNC)) {
1176                 /*
1177                  * Mark b_error and B_ERROR _both_.
1178                  * Lot's of chunkcache code assumes that.
1179                  * There's no reason to mark error for
1180                  * ASYNC buffers.
1181                  */
1182                 XFS_BUF_ERROR(bp, EIO);
1183                 XFS_BUF_FINISH_IOWAIT(bp);
1184         } else {
1185                 xfs_buf_relse(bp);
1186         }
1187
1188         return EIO;
1189 }
1190
1191
1192 /*
1193  * All xfs metadata buffers except log state machine buffers
1194  * get this attached as their b_bdstrat callback function.
1195  * This is so that we can catch a buffer
1196  * after prematurely unpinning it to forcibly shutdown the filesystem.
1197  */
1198 int
1199 xfs_bdstrat_cb(
1200         struct xfs_buf  *bp)
1201 {
1202         if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1203                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1204                 /*
1205                  * Metadata write that didn't get logged but
1206                  * written delayed anyway. These aren't associated
1207                  * with a transaction, and can be ignored.
1208                  */
1209                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1210                         return xfs_bioerror_relse(bp);
1211                 else
1212                         return xfs_bioerror(bp);
1213         }
1214
1215         xfs_buf_iorequest(bp);
1216         return 0;
1217 }
1218
1219 /*
1220  * Wrapper around bdstrat so that we can stop data from going to disk in case
1221  * we are shutting down the filesystem.  Typically user data goes thru this
1222  * path; one of the exceptions is the superblock.
1223  */
1224 void
1225 xfsbdstrat(
1226         struct xfs_mount        *mp,
1227         struct xfs_buf          *bp)
1228 {
1229         if (XFS_FORCED_SHUTDOWN(mp)) {
1230                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1231                 xfs_bioerror_relse(bp);
1232                 return;
1233         }
1234
1235         xfs_buf_iorequest(bp);
1236 }
1237
1238 STATIC void
1239 _xfs_buf_ioend(
1240         xfs_buf_t               *bp,
1241         int                     schedule)
1242 {
1243         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1244                 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1245                 xfs_buf_ioend(bp, schedule);
1246         }
1247 }
1248
1249 STATIC void
1250 xfs_buf_bio_end_io(
1251         struct bio              *bio,
1252         int                     error)
1253 {
1254         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1255         unsigned int            blocksize = bp->b_target->bt_bsize;
1256         struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1257
1258         xfs_buf_ioerror(bp, -error);
1259
1260         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1261                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1262
1263         do {
1264                 struct page     *page = bvec->bv_page;
1265
1266                 ASSERT(!PagePrivate(page));
1267                 if (unlikely(bp->b_error)) {
1268                         if (bp->b_flags & XBF_READ)
1269                                 ClearPageUptodate(page);
1270                 } else if (blocksize >= PAGE_CACHE_SIZE) {
1271                         SetPageUptodate(page);
1272                 } else if (!PagePrivate(page) &&
1273                                 (bp->b_flags & _XBF_PAGE_CACHE)) {
1274                         set_page_region(page, bvec->bv_offset, bvec->bv_len);
1275                 }
1276
1277                 if (--bvec >= bio->bi_io_vec)
1278                         prefetchw(&bvec->bv_page->flags);
1279
1280                 if (bp->b_flags & _XBF_PAGE_LOCKED)
1281                         unlock_page(page);
1282         } while (bvec >= bio->bi_io_vec);
1283
1284         _xfs_buf_ioend(bp, 1);
1285         bio_put(bio);
1286 }
1287
1288 STATIC void
1289 _xfs_buf_ioapply(
1290         xfs_buf_t               *bp)
1291 {
1292         int                     rw, map_i, total_nr_pages, nr_pages;
1293         struct bio              *bio;
1294         int                     offset = bp->b_offset;
1295         int                     size = bp->b_count_desired;
1296         sector_t                sector = bp->b_bn;
1297         unsigned int            blocksize = bp->b_target->bt_bsize;
1298
1299         total_nr_pages = bp->b_page_count;
1300         map_i = 0;
1301
1302         if (bp->b_flags & XBF_ORDERED) {
1303                 ASSERT(!(bp->b_flags & XBF_READ));
1304                 rw = WRITE_BARRIER;
1305         } else if (bp->b_flags & XBF_LOG_BUFFER) {
1306                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1307                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1308                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1309         } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1310                 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1311                 bp->b_flags &= ~_XBF_RUN_QUEUES;
1312                 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1313         } else {
1314                 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1315                      (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1316         }
1317
1318         /* Special code path for reading a sub page size buffer in --
1319          * we populate up the whole page, and hence the other metadata
1320          * in the same page.  This optimization is only valid when the
1321          * filesystem block size is not smaller than the page size.
1322          */
1323         if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1324             ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1325               (XBF_READ|_XBF_PAGE_LOCKED)) &&
1326             (blocksize >= PAGE_CACHE_SIZE)) {
1327                 bio = bio_alloc(GFP_NOIO, 1);
1328
1329                 bio->bi_bdev = bp->b_target->bt_bdev;
1330                 bio->bi_sector = sector - (offset >> BBSHIFT);
1331                 bio->bi_end_io = xfs_buf_bio_end_io;
1332                 bio->bi_private = bp;
1333
1334                 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1335                 size = 0;
1336
1337                 atomic_inc(&bp->b_io_remaining);
1338
1339                 goto submit_io;
1340         }
1341
1342 next_chunk:
1343         atomic_inc(&bp->b_io_remaining);
1344         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1345         if (nr_pages > total_nr_pages)
1346                 nr_pages = total_nr_pages;
1347
1348         bio = bio_alloc(GFP_NOIO, nr_pages);
1349         bio->bi_bdev = bp->b_target->bt_bdev;
1350         bio->bi_sector = sector;
1351         bio->bi_end_io = xfs_buf_bio_end_io;
1352         bio->bi_private = bp;
1353
1354         for (; size && nr_pages; nr_pages--, map_i++) {
1355                 int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1356
1357                 if (nbytes > size)
1358                         nbytes = size;
1359
1360                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1361                 if (rbytes < nbytes)
1362                         break;
1363
1364                 offset = 0;
1365                 sector += nbytes >> BBSHIFT;
1366                 size -= nbytes;
1367                 total_nr_pages--;
1368         }
1369
1370 submit_io:
1371         if (likely(bio->bi_size)) {
1372                 if (xfs_buf_is_vmapped(bp)) {
1373                         flush_kernel_vmap_range(bp->b_addr,
1374                                                 xfs_buf_vmap_len(bp));
1375                 }
1376                 submit_bio(rw, bio);
1377                 if (size)
1378                         goto next_chunk;
1379         } else {
1380                 bio_put(bio);
1381                 xfs_buf_ioerror(bp, EIO);
1382         }
1383 }
1384
1385 int
1386 xfs_buf_iorequest(
1387         xfs_buf_t               *bp)
1388 {
1389         trace_xfs_buf_iorequest(bp, _RET_IP_);
1390
1391         if (bp->b_flags & XBF_DELWRI) {
1392                 xfs_buf_delwri_queue(bp, 1);
1393                 return 0;
1394         }
1395
1396         if (bp->b_flags & XBF_WRITE) {
1397                 xfs_buf_wait_unpin(bp);
1398         }
1399
1400         xfs_buf_hold(bp);
1401
1402         /* Set the count to 1 initially, this will stop an I/O
1403          * completion callout which happens before we have started
1404          * all the I/O from calling xfs_buf_ioend too early.
1405          */
1406         atomic_set(&bp->b_io_remaining, 1);
1407         _xfs_buf_ioapply(bp);
1408         _xfs_buf_ioend(bp, 0);
1409
1410         xfs_buf_rele(bp);
1411         return 0;
1412 }
1413
1414 /*
1415  *      Waits for I/O to complete on the buffer supplied.
1416  *      It returns immediately if no I/O is pending.
1417  *      It returns the I/O error code, if any, or 0 if there was no error.
1418  */
1419 int
1420 xfs_buf_iowait(
1421         xfs_buf_t               *bp)
1422 {
1423         trace_xfs_buf_iowait(bp, _RET_IP_);
1424
1425         if (atomic_read(&bp->b_io_remaining))
1426                 blk_run_address_space(bp->b_target->bt_mapping);
1427         wait_for_completion(&bp->b_iowait);
1428
1429         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1430         return bp->b_error;
1431 }
1432
1433 xfs_caddr_t
1434 xfs_buf_offset(
1435         xfs_buf_t               *bp,
1436         size_t                  offset)
1437 {
1438         struct page             *page;
1439
1440         if (bp->b_flags & XBF_MAPPED)
1441                 return XFS_BUF_PTR(bp) + offset;
1442
1443         offset += bp->b_offset;
1444         page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1445         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1446 }
1447
1448 /*
1449  *      Move data into or out of a buffer.
1450  */
1451 void
1452 xfs_buf_iomove(
1453         xfs_buf_t               *bp,    /* buffer to process            */
1454         size_t                  boff,   /* starting buffer offset       */
1455         size_t                  bsize,  /* length to copy               */
1456         void                    *data,  /* data address                 */
1457         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1458 {
1459         size_t                  bend, cpoff, csize;
1460         struct page             *page;
1461
1462         bend = boff + bsize;
1463         while (boff < bend) {
1464                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1465                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1466                 csize = min_t(size_t,
1467                               PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1468
1469                 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1470
1471                 switch (mode) {
1472                 case XBRW_ZERO:
1473                         memset(page_address(page) + cpoff, 0, csize);
1474                         break;
1475                 case XBRW_READ:
1476                         memcpy(data, page_address(page) + cpoff, csize);
1477                         break;
1478                 case XBRW_WRITE:
1479                         memcpy(page_address(page) + cpoff, data, csize);
1480                 }
1481
1482                 boff += csize;
1483                 data += csize;
1484         }
1485 }
1486
1487 /*
1488  *      Handling of buffer targets (buftargs).
1489  */
1490
1491 /*
1492  *      Wait for any bufs with callbacks that have been submitted but
1493  *      have not yet returned... walk the hash list for the target.
1494  */
1495 void
1496 xfs_wait_buftarg(
1497         xfs_buftarg_t   *btp)
1498 {
1499         xfs_buf_t       *bp, *n;
1500         xfs_bufhash_t   *hash;
1501         uint            i;
1502
1503         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1504                 hash = &btp->bt_hash[i];
1505 again:
1506                 spin_lock(&hash->bh_lock);
1507                 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1508                         ASSERT(btp == bp->b_target);
1509                         if (!(bp->b_flags & XBF_FS_MANAGED)) {
1510                                 spin_unlock(&hash->bh_lock);
1511                                 /*
1512                                  * Catch superblock reference count leaks
1513                                  * immediately
1514                                  */
1515                                 BUG_ON(bp->b_bn == 0);
1516                                 delay(100);
1517                                 goto again;
1518                         }
1519                 }
1520                 spin_unlock(&hash->bh_lock);
1521         }
1522 }
1523
1524 /*
1525  *      Allocate buffer hash table for a given target.
1526  *      For devices containing metadata (i.e. not the log/realtime devices)
1527  *      we need to allocate a much larger hash table.
1528  */
1529 STATIC void
1530 xfs_alloc_bufhash(
1531         xfs_buftarg_t           *btp,
1532         int                     external)
1533 {
1534         unsigned int            i;
1535
1536         btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1537         btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1538         btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1539                                          sizeof(xfs_bufhash_t));
1540         for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1541                 spin_lock_init(&btp->bt_hash[i].bh_lock);
1542                 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1543         }
1544 }
1545
1546 STATIC void
1547 xfs_free_bufhash(
1548         xfs_buftarg_t           *btp)
1549 {
1550         kmem_free_large(btp->bt_hash);
1551         btp->bt_hash = NULL;
1552 }
1553
1554 /*
1555  *      buftarg list for delwrite queue processing
1556  */
1557 static LIST_HEAD(xfs_buftarg_list);
1558 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1559
1560 STATIC void
1561 xfs_register_buftarg(
1562         xfs_buftarg_t           *btp)
1563 {
1564         spin_lock(&xfs_buftarg_lock);
1565         list_add(&btp->bt_list, &xfs_buftarg_list);
1566         spin_unlock(&xfs_buftarg_lock);
1567 }
1568
1569 STATIC void
1570 xfs_unregister_buftarg(
1571         xfs_buftarg_t           *btp)
1572 {
1573         spin_lock(&xfs_buftarg_lock);
1574         list_del(&btp->bt_list);
1575         spin_unlock(&xfs_buftarg_lock);
1576 }
1577
1578 void
1579 xfs_free_buftarg(
1580         struct xfs_mount        *mp,
1581         struct xfs_buftarg      *btp)
1582 {
1583         xfs_flush_buftarg(btp, 1);
1584         if (mp->m_flags & XFS_MOUNT_BARRIER)
1585                 xfs_blkdev_issue_flush(btp);
1586         xfs_free_bufhash(btp);
1587         iput(btp->bt_mapping->host);
1588
1589         /* Unregister the buftarg first so that we don't get a
1590          * wakeup finding a non-existent task
1591          */
1592         xfs_unregister_buftarg(btp);
1593         kthread_stop(btp->bt_task);
1594
1595         kmem_free(btp);
1596 }
1597
1598 STATIC int
1599 xfs_setsize_buftarg_flags(
1600         xfs_buftarg_t           *btp,
1601         unsigned int            blocksize,
1602         unsigned int            sectorsize,
1603         int                     verbose)
1604 {
1605         btp->bt_bsize = blocksize;
1606         btp->bt_sshift = ffs(sectorsize) - 1;
1607         btp->bt_smask = sectorsize - 1;
1608
1609         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1610                 printk(KERN_WARNING
1611                         "XFS: Cannot set_blocksize to %u on device %s\n",
1612                         sectorsize, XFS_BUFTARG_NAME(btp));
1613                 return EINVAL;
1614         }
1615
1616         if (verbose &&
1617             (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1618                 printk(KERN_WARNING
1619                         "XFS: %u byte sectors in use on device %s.  "
1620                         "This is suboptimal; %u or greater is ideal.\n",
1621                         sectorsize, XFS_BUFTARG_NAME(btp),
1622                         (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1623         }
1624
1625         return 0;
1626 }
1627
1628 /*
1629  *      When allocating the initial buffer target we have not yet
1630  *      read in the superblock, so don't know what sized sectors
1631  *      are being used is at this early stage.  Play safe.
1632  */
1633 STATIC int
1634 xfs_setsize_buftarg_early(
1635         xfs_buftarg_t           *btp,
1636         struct block_device     *bdev)
1637 {
1638         return xfs_setsize_buftarg_flags(btp,
1639                         PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1640 }
1641
1642 int
1643 xfs_setsize_buftarg(
1644         xfs_buftarg_t           *btp,
1645         unsigned int            blocksize,
1646         unsigned int            sectorsize)
1647 {
1648         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1649 }
1650
1651 STATIC int
1652 xfs_mapping_buftarg(
1653         xfs_buftarg_t           *btp,
1654         struct block_device     *bdev)
1655 {
1656         struct backing_dev_info *bdi;
1657         struct inode            *inode;
1658         struct address_space    *mapping;
1659         static const struct address_space_operations mapping_aops = {
1660                 .sync_page = block_sync_page,
1661                 .migratepage = fail_migrate_page,
1662         };
1663
1664         inode = new_inode(bdev->bd_inode->i_sb);
1665         if (!inode) {
1666                 printk(KERN_WARNING
1667                         "XFS: Cannot allocate mapping inode for device %s\n",
1668                         XFS_BUFTARG_NAME(btp));
1669                 return ENOMEM;
1670         }
1671         inode->i_mode = S_IFBLK;
1672         inode->i_bdev = bdev;
1673         inode->i_rdev = bdev->bd_dev;
1674         bdi = blk_get_backing_dev_info(bdev);
1675         if (!bdi)
1676                 bdi = &default_backing_dev_info;
1677         mapping = &inode->i_data;
1678         mapping->a_ops = &mapping_aops;
1679         mapping->backing_dev_info = bdi;
1680         mapping_set_gfp_mask(mapping, GFP_NOFS);
1681         btp->bt_mapping = mapping;
1682         return 0;
1683 }
1684
1685 STATIC int
1686 xfs_alloc_delwrite_queue(
1687         xfs_buftarg_t           *btp)
1688 {
1689         int     error = 0;
1690
1691         INIT_LIST_HEAD(&btp->bt_list);
1692         INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1693         spin_lock_init(&btp->bt_delwrite_lock);
1694         btp->bt_flags = 0;
1695         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1696         if (IS_ERR(btp->bt_task)) {
1697                 error = PTR_ERR(btp->bt_task);
1698                 goto out_error;
1699         }
1700         xfs_register_buftarg(btp);
1701 out_error:
1702         return error;
1703 }
1704
1705 xfs_buftarg_t *
1706 xfs_alloc_buftarg(
1707         struct block_device     *bdev,
1708         int                     external)
1709 {
1710         xfs_buftarg_t           *btp;
1711
1712         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1713
1714         btp->bt_dev =  bdev->bd_dev;
1715         btp->bt_bdev = bdev;
1716         if (xfs_setsize_buftarg_early(btp, bdev))
1717                 goto error;
1718         if (xfs_mapping_buftarg(btp, bdev))
1719                 goto error;
1720         if (xfs_alloc_delwrite_queue(btp))
1721                 goto error;
1722         xfs_alloc_bufhash(btp, external);
1723         return btp;
1724
1725 error:
1726         kmem_free(btp);
1727         return NULL;
1728 }
1729
1730
1731 /*
1732  *      Delayed write buffer handling
1733  */
1734 STATIC void
1735 xfs_buf_delwri_queue(
1736         xfs_buf_t               *bp,
1737         int                     unlock)
1738 {
1739         struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1740         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1741
1742         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1743
1744         ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1745
1746         spin_lock(dwlk);
1747         /* If already in the queue, dequeue and place at tail */
1748         if (!list_empty(&bp->b_list)) {
1749                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1750                 if (unlock)
1751                         atomic_dec(&bp->b_hold);
1752                 list_del(&bp->b_list);
1753         }
1754
1755         if (list_empty(dwq)) {
1756                 /* start xfsbufd as it is about to have something to do */
1757                 wake_up_process(bp->b_target->bt_task);
1758         }
1759
1760         bp->b_flags |= _XBF_DELWRI_Q;
1761         list_add_tail(&bp->b_list, dwq);
1762         bp->b_queuetime = jiffies;
1763         spin_unlock(dwlk);
1764
1765         if (unlock)
1766                 xfs_buf_unlock(bp);
1767 }
1768
1769 void
1770 xfs_buf_delwri_dequeue(
1771         xfs_buf_t               *bp)
1772 {
1773         spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1774         int                     dequeued = 0;
1775
1776         spin_lock(dwlk);
1777         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1778                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1779                 list_del_init(&bp->b_list);
1780                 dequeued = 1;
1781         }
1782         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1783         spin_unlock(dwlk);
1784
1785         if (dequeued)
1786                 xfs_buf_rele(bp);
1787
1788         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1789 }
1790
1791 /*
1792  * If a delwri buffer needs to be pushed before it has aged out, then promote
1793  * it to the head of the delwri queue so that it will be flushed on the next
1794  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1795  * than the age currently needed to flush the buffer. Hence the next time the
1796  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1797  */
1798 void
1799 xfs_buf_delwri_promote(
1800         struct xfs_buf  *bp)
1801 {
1802         struct xfs_buftarg *btp = bp->b_target;
1803         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1804
1805         ASSERT(bp->b_flags & XBF_DELWRI);
1806         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1807
1808         /*
1809          * Check the buffer age before locking the delayed write queue as we
1810          * don't need to promote buffers that are already past the flush age.
1811          */
1812         if (bp->b_queuetime < jiffies - age)
1813                 return;
1814         bp->b_queuetime = jiffies - age;
1815         spin_lock(&btp->bt_delwrite_lock);
1816         list_move(&bp->b_list, &btp->bt_delwrite_queue);
1817         spin_unlock(&btp->bt_delwrite_lock);
1818 }
1819
1820 STATIC void
1821 xfs_buf_runall_queues(
1822         struct workqueue_struct *queue)
1823 {
1824         flush_workqueue(queue);
1825 }
1826
1827 STATIC int
1828 xfsbufd_wakeup(
1829         int                     priority,
1830         gfp_t                   mask)
1831 {
1832         xfs_buftarg_t           *btp;
1833
1834         spin_lock(&xfs_buftarg_lock);
1835         list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1836                 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1837                         continue;
1838                 if (list_empty(&btp->bt_delwrite_queue))
1839                         continue;
1840                 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1841                 wake_up_process(btp->bt_task);
1842         }
1843         spin_unlock(&xfs_buftarg_lock);
1844         return 0;
1845 }
1846
1847 /*
1848  * Move as many buffers as specified to the supplied list
1849  * idicating if we skipped any buffers to prevent deadlocks.
1850  */
1851 STATIC int
1852 xfs_buf_delwri_split(
1853         xfs_buftarg_t   *target,
1854         struct list_head *list,
1855         unsigned long   age)
1856 {
1857         xfs_buf_t       *bp, *n;
1858         struct list_head *dwq = &target->bt_delwrite_queue;
1859         spinlock_t      *dwlk = &target->bt_delwrite_lock;
1860         int             skipped = 0;
1861         int             force;
1862
1863         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1864         INIT_LIST_HEAD(list);
1865         spin_lock(dwlk);
1866         list_for_each_entry_safe(bp, n, dwq, b_list) {
1867                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1868                 ASSERT(bp->b_flags & XBF_DELWRI);
1869
1870                 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1871                         if (!force &&
1872                             time_before(jiffies, bp->b_queuetime + age)) {
1873                                 xfs_buf_unlock(bp);
1874                                 break;
1875                         }
1876
1877                         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1878                                          _XBF_RUN_QUEUES);
1879                         bp->b_flags |= XBF_WRITE;
1880                         list_move_tail(&bp->b_list, list);
1881                 } else
1882                         skipped++;
1883         }
1884         spin_unlock(dwlk);
1885
1886         return skipped;
1887
1888 }
1889
1890 /*
1891  * Compare function is more complex than it needs to be because
1892  * the return value is only 32 bits and we are doing comparisons
1893  * on 64 bit values
1894  */
1895 static int
1896 xfs_buf_cmp(
1897         void            *priv,
1898         struct list_head *a,
1899         struct list_head *b)
1900 {
1901         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1902         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1903         xfs_daddr_t             diff;
1904
1905         diff = ap->b_bn - bp->b_bn;
1906         if (diff < 0)
1907                 return -1;
1908         if (diff > 0)
1909                 return 1;
1910         return 0;
1911 }
1912
1913 void
1914 xfs_buf_delwri_sort(
1915         xfs_buftarg_t   *target,
1916         struct list_head *list)
1917 {
1918         list_sort(NULL, list, xfs_buf_cmp);
1919 }
1920
1921 STATIC int
1922 xfsbufd(
1923         void            *data)
1924 {
1925         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1926
1927         current->flags |= PF_MEMALLOC;
1928
1929         set_freezable();
1930
1931         do {
1932                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1933                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1934                 int     count = 0;
1935                 struct list_head tmp;
1936
1937                 if (unlikely(freezing(current))) {
1938                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1939                         refrigerator();
1940                 } else {
1941                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1942                 }
1943
1944                 /* sleep for a long time if there is nothing to do. */
1945                 if (list_empty(&target->bt_delwrite_queue))
1946                         tout = MAX_SCHEDULE_TIMEOUT;
1947                 schedule_timeout_interruptible(tout);
1948
1949                 xfs_buf_delwri_split(target, &tmp, age);
1950                 list_sort(NULL, &tmp, xfs_buf_cmp);
1951                 while (!list_empty(&tmp)) {
1952                         struct xfs_buf *bp;
1953                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1954                         list_del_init(&bp->b_list);
1955                         xfs_buf_iostrategy(bp);
1956                         count++;
1957                 }
1958
1959                 if (as_list_len > 0)
1960                         purge_addresses();
1961                 if (count)
1962                         blk_run_address_space(target->bt_mapping);
1963
1964         } while (!kthread_should_stop());
1965
1966         return 0;
1967 }
1968
1969 /*
1970  *      Go through all incore buffers, and release buffers if they belong to
1971  *      the given device. This is used in filesystem error handling to
1972  *      preserve the consistency of its metadata.
1973  */
1974 int
1975 xfs_flush_buftarg(
1976         xfs_buftarg_t   *target,
1977         int             wait)
1978 {
1979         xfs_buf_t       *bp;
1980         int             pincount = 0;
1981         LIST_HEAD(tmp_list);
1982         LIST_HEAD(wait_list);
1983
1984         xfs_buf_runall_queues(xfsconvertd_workqueue);
1985         xfs_buf_runall_queues(xfsdatad_workqueue);
1986         xfs_buf_runall_queues(xfslogd_workqueue);
1987
1988         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1989         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1990
1991         /*
1992          * Dropped the delayed write list lock, now walk the temporary list.
1993          * All I/O is issued async and then if we need to wait for completion
1994          * we do that after issuing all the IO.
1995          */
1996         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1997         while (!list_empty(&tmp_list)) {
1998                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1999                 ASSERT(target == bp->b_target);
2000                 list_del_init(&bp->b_list);
2001                 if (wait) {
2002                         bp->b_flags &= ~XBF_ASYNC;
2003                         list_add(&bp->b_list, &wait_list);
2004                 }
2005                 xfs_buf_iostrategy(bp);
2006         }
2007
2008         if (wait) {
2009                 /* Expedite and wait for IO to complete. */
2010                 blk_run_address_space(target->bt_mapping);
2011                 while (!list_empty(&wait_list)) {
2012                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2013
2014                         list_del_init(&bp->b_list);
2015                         xfs_iowait(bp);
2016                         xfs_buf_relse(bp);
2017                 }
2018         }
2019
2020         return pincount;
2021 }
2022
2023 int __init
2024 xfs_buf_init(void)
2025 {
2026         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2027                                                 KM_ZONE_HWALIGN, NULL);
2028         if (!xfs_buf_zone)
2029                 goto out;
2030
2031         xfslogd_workqueue = create_workqueue("xfslogd");
2032         if (!xfslogd_workqueue)
2033                 goto out_free_buf_zone;
2034
2035         xfsdatad_workqueue = create_workqueue("xfsdatad");
2036         if (!xfsdatad_workqueue)
2037                 goto out_destroy_xfslogd_workqueue;
2038
2039         xfsconvertd_workqueue = create_workqueue("xfsconvertd");
2040         if (!xfsconvertd_workqueue)
2041                 goto out_destroy_xfsdatad_workqueue;
2042
2043         register_shrinker(&xfs_buf_shake);
2044         return 0;
2045
2046  out_destroy_xfsdatad_workqueue:
2047         destroy_workqueue(xfsdatad_workqueue);
2048  out_destroy_xfslogd_workqueue:
2049         destroy_workqueue(xfslogd_workqueue);
2050  out_free_buf_zone:
2051         kmem_zone_destroy(xfs_buf_zone);
2052  out:
2053         return -ENOMEM;
2054 }
2055
2056 void
2057 xfs_buf_terminate(void)
2058 {
2059         unregister_shrinker(&xfs_buf_shake);
2060         destroy_workqueue(xfsconvertd_workqueue);
2061         destroy_workqueue(xfsdatad_workqueue);
2062         destroy_workqueue(xfslogd_workqueue);
2063         kmem_zone_destroy(xfs_buf_zone);
2064 }
2065
2066 #ifdef CONFIG_KDB_MODULES
2067 struct list_head *
2068 xfs_get_buftarg_list(void)
2069 {
2070         return &xfs_buftarg_list;
2071 }
2072 #endif