Merge tag 'drm-misc-next-fixes-2017-05-05' of git://anongit.freedesktop.org/git/drm...
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99                             struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101                              struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110         struct logicalVolIntegrityDesc *lvid;
111         unsigned int partnum;
112         unsigned int offset;
113
114         if (!UDF_SB(sb)->s_lvid_bh)
115                 return NULL;
116         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117         partnum = le32_to_cpu(lvid->numOfPartitions);
118         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119              offsetof(struct logicalVolIntegrityDesc, impUse)) /
120              (2 * sizeof(uint32_t)) < partnum) {
121                 udf_err(sb, "Logical volume integrity descriptor corrupted "
122                         "(numOfPartitions = %u)!\n", partnum);
123                 return NULL;
124         }
125         /* The offset is to skip freeSpaceTable and sizeTable arrays */
126         offset = partnum * 2 * sizeof(uint32_t);
127         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132                       int flags, const char *dev_name, void *data)
133 {
134         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136
137 static struct file_system_type udf_fstype = {
138         .owner          = THIS_MODULE,
139         .name           = "udf",
140         .mount          = udf_mount,
141         .kill_sb        = kill_block_super,
142         .fs_flags       = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145
146 static struct kmem_cache *udf_inode_cachep;
147
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150         struct udf_inode_info *ei;
151         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152         if (!ei)
153                 return NULL;
154
155         ei->i_unique = 0;
156         ei->i_lenExtents = 0;
157         ei->i_next_alloc_block = 0;
158         ei->i_next_alloc_goal = 0;
159         ei->i_strat4096 = 0;
160         init_rwsem(&ei->i_data_sem);
161         ei->cached_extent.lstart = -1;
162         spin_lock_init(&ei->i_extent_cache_lock);
163
164         return &ei->vfs_inode;
165 }
166
167 static void udf_i_callback(struct rcu_head *head)
168 {
169         struct inode *inode = container_of(head, struct inode, i_rcu);
170         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172
173 static void udf_destroy_inode(struct inode *inode)
174 {
175         call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177
178 static void init_once(void *foo)
179 {
180         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182         ei->i_ext.i_data = NULL;
183         inode_init_once(&ei->vfs_inode);
184 }
185
186 static int __init init_inodecache(void)
187 {
188         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189                                              sizeof(struct udf_inode_info),
190                                              0, (SLAB_RECLAIM_ACCOUNT |
191                                                  SLAB_MEM_SPREAD |
192                                                  SLAB_ACCOUNT),
193                                              init_once);
194         if (!udf_inode_cachep)
195                 return -ENOMEM;
196         return 0;
197 }
198
199 static void destroy_inodecache(void)
200 {
201         /*
202          * Make sure all delayed rcu free inodes are flushed before we
203          * destroy cache.
204          */
205         rcu_barrier();
206         kmem_cache_destroy(udf_inode_cachep);
207 }
208
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211         .alloc_inode    = udf_alloc_inode,
212         .destroy_inode  = udf_destroy_inode,
213         .write_inode    = udf_write_inode,
214         .evict_inode    = udf_evict_inode,
215         .put_super      = udf_put_super,
216         .sync_fs        = udf_sync_fs,
217         .statfs         = udf_statfs,
218         .remount_fs     = udf_remount_fs,
219         .show_options   = udf_show_options,
220 };
221
222 struct udf_options {
223         unsigned char novrs;
224         unsigned int blocksize;
225         unsigned int session;
226         unsigned int lastblock;
227         unsigned int anchor;
228         unsigned int volume;
229         unsigned short partition;
230         unsigned int fileset;
231         unsigned int rootdir;
232         unsigned int flags;
233         umode_t umask;
234         kgid_t gid;
235         kuid_t uid;
236         umode_t fmode;
237         umode_t dmode;
238         struct nls_table *nls_map;
239 };
240
241 static int __init init_udf_fs(void)
242 {
243         int err;
244
245         err = init_inodecache();
246         if (err)
247                 goto out1;
248         err = register_filesystem(&udf_fstype);
249         if (err)
250                 goto out;
251
252         return 0;
253
254 out:
255         destroy_inodecache();
256
257 out1:
258         return err;
259 }
260
261 static void __exit exit_udf_fs(void)
262 {
263         unregister_filesystem(&udf_fstype);
264         destroy_inodecache();
265 }
266
267 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
268 {
269         struct udf_sb_info *sbi = UDF_SB(sb);
270
271         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
272                                   GFP_KERNEL);
273         if (!sbi->s_partmaps) {
274                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
275                         count);
276                 sbi->s_partitions = 0;
277                 return -ENOMEM;
278         }
279
280         sbi->s_partitions = count;
281         return 0;
282 }
283
284 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
285 {
286         int i;
287         int nr_groups = bitmap->s_nr_groups;
288
289         for (i = 0; i < nr_groups; i++)
290                 if (bitmap->s_block_bitmap[i])
291                         brelse(bitmap->s_block_bitmap[i]);
292
293         kvfree(bitmap);
294 }
295
296 static void udf_free_partition(struct udf_part_map *map)
297 {
298         int i;
299         struct udf_meta_data *mdata;
300
301         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
302                 iput(map->s_uspace.s_table);
303         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
304                 iput(map->s_fspace.s_table);
305         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
306                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
307         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
308                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
309         if (map->s_partition_type == UDF_SPARABLE_MAP15)
310                 for (i = 0; i < 4; i++)
311                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
312         else if (map->s_partition_type == UDF_METADATA_MAP25) {
313                 mdata = &map->s_type_specific.s_metadata;
314                 iput(mdata->s_metadata_fe);
315                 mdata->s_metadata_fe = NULL;
316
317                 iput(mdata->s_mirror_fe);
318                 mdata->s_mirror_fe = NULL;
319
320                 iput(mdata->s_bitmap_fe);
321                 mdata->s_bitmap_fe = NULL;
322         }
323 }
324
325 static void udf_sb_free_partitions(struct super_block *sb)
326 {
327         struct udf_sb_info *sbi = UDF_SB(sb);
328         int i;
329         if (sbi->s_partmaps == NULL)
330                 return;
331         for (i = 0; i < sbi->s_partitions; i++)
332                 udf_free_partition(&sbi->s_partmaps[i]);
333         kfree(sbi->s_partmaps);
334         sbi->s_partmaps = NULL;
335 }
336
337 static int udf_show_options(struct seq_file *seq, struct dentry *root)
338 {
339         struct super_block *sb = root->d_sb;
340         struct udf_sb_info *sbi = UDF_SB(sb);
341
342         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
343                 seq_puts(seq, ",nostrict");
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
345                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
347                 seq_puts(seq, ",unhide");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
349                 seq_puts(seq, ",undelete");
350         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
351                 seq_puts(seq, ",noadinicb");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
353                 seq_puts(seq, ",shortad");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
355                 seq_puts(seq, ",uid=forget");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
357                 seq_puts(seq, ",uid=ignore");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
359                 seq_puts(seq, ",gid=forget");
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
361                 seq_puts(seq, ",gid=ignore");
362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
363                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
364         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
365                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
366         if (sbi->s_umask != 0)
367                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
368         if (sbi->s_fmode != UDF_INVALID_MODE)
369                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
370         if (sbi->s_dmode != UDF_INVALID_MODE)
371                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
372         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
373                 seq_printf(seq, ",session=%u", sbi->s_session);
374         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
375                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
376         if (sbi->s_anchor != 0)
377                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
378         /*
379          * volume, partition, fileset and rootdir seem to be ignored
380          * currently
381          */
382         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
383                 seq_puts(seq, ",utf8");
384         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
385                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
386
387         return 0;
388 }
389
390 /*
391  * udf_parse_options
392  *
393  * PURPOSE
394  *      Parse mount options.
395  *
396  * DESCRIPTION
397  *      The following mount options are supported:
398  *
399  *      gid=            Set the default group.
400  *      umask=          Set the default umask.
401  *      mode=           Set the default file permissions.
402  *      dmode=          Set the default directory permissions.
403  *      uid=            Set the default user.
404  *      bs=             Set the block size.
405  *      unhide          Show otherwise hidden files.
406  *      undelete        Show deleted files in lists.
407  *      adinicb         Embed data in the inode (default)
408  *      noadinicb       Don't embed data in the inode
409  *      shortad         Use short ad's
410  *      longad          Use long ad's (default)
411  *      nostrict        Unset strict conformance
412  *      iocharset=      Set the NLS character set
413  *
414  *      The remaining are for debugging and disaster recovery:
415  *
416  *      novrs           Skip volume sequence recognition
417  *
418  *      The following expect a offset from 0.
419  *
420  *      session=        Set the CDROM session (default= last session)
421  *      anchor=         Override standard anchor location. (default= 256)
422  *      volume=         Override the VolumeDesc location. (unused)
423  *      partition=      Override the PartitionDesc location. (unused)
424  *      lastblock=      Set the last block of the filesystem/
425  *
426  *      The following expect a offset from the partition root.
427  *
428  *      fileset=        Override the fileset block location. (unused)
429  *      rootdir=        Override the root directory location. (unused)
430  *              WARNING: overriding the rootdir to a non-directory may
431  *              yield highly unpredictable results.
432  *
433  * PRE-CONDITIONS
434  *      options         Pointer to mount options string.
435  *      uopts           Pointer to mount options variable.
436  *
437  * POST-CONDITIONS
438  *      <return>        1       Mount options parsed okay.
439  *      <return>        0       Error parsing mount options.
440  *
441  * HISTORY
442  *      July 1, 1997 - Andrew E. Mileski
443  *      Written, tested, and released.
444  */
445
446 enum {
447         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
448         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
449         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
450         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
451         Opt_rootdir, Opt_utf8, Opt_iocharset,
452         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
453         Opt_fmode, Opt_dmode
454 };
455
456 static const match_table_t tokens = {
457         {Opt_novrs,     "novrs"},
458         {Opt_nostrict,  "nostrict"},
459         {Opt_bs,        "bs=%u"},
460         {Opt_unhide,    "unhide"},
461         {Opt_undelete,  "undelete"},
462         {Opt_noadinicb, "noadinicb"},
463         {Opt_adinicb,   "adinicb"},
464         {Opt_shortad,   "shortad"},
465         {Opt_longad,    "longad"},
466         {Opt_uforget,   "uid=forget"},
467         {Opt_uignore,   "uid=ignore"},
468         {Opt_gforget,   "gid=forget"},
469         {Opt_gignore,   "gid=ignore"},
470         {Opt_gid,       "gid=%u"},
471         {Opt_uid,       "uid=%u"},
472         {Opt_umask,     "umask=%o"},
473         {Opt_session,   "session=%u"},
474         {Opt_lastblock, "lastblock=%u"},
475         {Opt_anchor,    "anchor=%u"},
476         {Opt_volume,    "volume=%u"},
477         {Opt_partition, "partition=%u"},
478         {Opt_fileset,   "fileset=%u"},
479         {Opt_rootdir,   "rootdir=%u"},
480         {Opt_utf8,      "utf8"},
481         {Opt_iocharset, "iocharset=%s"},
482         {Opt_fmode,     "mode=%o"},
483         {Opt_dmode,     "dmode=%o"},
484         {Opt_err,       NULL}
485 };
486
487 static int udf_parse_options(char *options, struct udf_options *uopt,
488                              bool remount)
489 {
490         char *p;
491         int option;
492
493         uopt->novrs = 0;
494         uopt->partition = 0xFFFF;
495         uopt->session = 0xFFFFFFFF;
496         uopt->lastblock = 0;
497         uopt->anchor = 0;
498         uopt->volume = 0xFFFFFFFF;
499         uopt->rootdir = 0xFFFFFFFF;
500         uopt->fileset = 0xFFFFFFFF;
501         uopt->nls_map = NULL;
502
503         if (!options)
504                 return 1;
505
506         while ((p = strsep(&options, ",")) != NULL) {
507                 substring_t args[MAX_OPT_ARGS];
508                 int token;
509                 unsigned n;
510                 if (!*p)
511                         continue;
512
513                 token = match_token(p, tokens, args);
514                 switch (token) {
515                 case Opt_novrs:
516                         uopt->novrs = 1;
517                         break;
518                 case Opt_bs:
519                         if (match_int(&args[0], &option))
520                                 return 0;
521                         n = option;
522                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
523                                 return 0;
524                         uopt->blocksize = n;
525                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
526                         break;
527                 case Opt_unhide:
528                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
529                         break;
530                 case Opt_undelete:
531                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
532                         break;
533                 case Opt_noadinicb:
534                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
535                         break;
536                 case Opt_adinicb:
537                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
538                         break;
539                 case Opt_shortad:
540                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
541                         break;
542                 case Opt_longad:
543                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
544                         break;
545                 case Opt_gid:
546                         if (match_int(args, &option))
547                                 return 0;
548                         uopt->gid = make_kgid(current_user_ns(), option);
549                         if (!gid_valid(uopt->gid))
550                                 return 0;
551                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
552                         break;
553                 case Opt_uid:
554                         if (match_int(args, &option))
555                                 return 0;
556                         uopt->uid = make_kuid(current_user_ns(), option);
557                         if (!uid_valid(uopt->uid))
558                                 return 0;
559                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
560                         break;
561                 case Opt_umask:
562                         if (match_octal(args, &option))
563                                 return 0;
564                         uopt->umask = option;
565                         break;
566                 case Opt_nostrict:
567                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
568                         break;
569                 case Opt_session:
570                         if (match_int(args, &option))
571                                 return 0;
572                         uopt->session = option;
573                         if (!remount)
574                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
575                         break;
576                 case Opt_lastblock:
577                         if (match_int(args, &option))
578                                 return 0;
579                         uopt->lastblock = option;
580                         if (!remount)
581                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
582                         break;
583                 case Opt_anchor:
584                         if (match_int(args, &option))
585                                 return 0;
586                         uopt->anchor = option;
587                         break;
588                 case Opt_volume:
589                         if (match_int(args, &option))
590                                 return 0;
591                         uopt->volume = option;
592                         break;
593                 case Opt_partition:
594                         if (match_int(args, &option))
595                                 return 0;
596                         uopt->partition = option;
597                         break;
598                 case Opt_fileset:
599                         if (match_int(args, &option))
600                                 return 0;
601                         uopt->fileset = option;
602                         break;
603                 case Opt_rootdir:
604                         if (match_int(args, &option))
605                                 return 0;
606                         uopt->rootdir = option;
607                         break;
608                 case Opt_utf8:
609                         uopt->flags |= (1 << UDF_FLAG_UTF8);
610                         break;
611 #ifdef CONFIG_UDF_NLS
612                 case Opt_iocharset:
613                         uopt->nls_map = load_nls(args[0].from);
614                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
615                         break;
616 #endif
617                 case Opt_uignore:
618                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
619                         break;
620                 case Opt_uforget:
621                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
622                         break;
623                 case Opt_gignore:
624                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
625                         break;
626                 case Opt_gforget:
627                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
628                         break;
629                 case Opt_fmode:
630                         if (match_octal(args, &option))
631                                 return 0;
632                         uopt->fmode = option & 0777;
633                         break;
634                 case Opt_dmode:
635                         if (match_octal(args, &option))
636                                 return 0;
637                         uopt->dmode = option & 0777;
638                         break;
639                 default:
640                         pr_err("bad mount option \"%s\" or missing value\n", p);
641                         return 0;
642                 }
643         }
644         return 1;
645 }
646
647 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
648 {
649         struct udf_options uopt;
650         struct udf_sb_info *sbi = UDF_SB(sb);
651         int error = 0;
652         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
653
654         sync_filesystem(sb);
655         if (lvidiu) {
656                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
657                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
658                         return -EACCES;
659         }
660
661         uopt.flags = sbi->s_flags;
662         uopt.uid   = sbi->s_uid;
663         uopt.gid   = sbi->s_gid;
664         uopt.umask = sbi->s_umask;
665         uopt.fmode = sbi->s_fmode;
666         uopt.dmode = sbi->s_dmode;
667
668         if (!udf_parse_options(options, &uopt, true))
669                 return -EINVAL;
670
671         write_lock(&sbi->s_cred_lock);
672         sbi->s_flags = uopt.flags;
673         sbi->s_uid   = uopt.uid;
674         sbi->s_gid   = uopt.gid;
675         sbi->s_umask = uopt.umask;
676         sbi->s_fmode = uopt.fmode;
677         sbi->s_dmode = uopt.dmode;
678         write_unlock(&sbi->s_cred_lock);
679
680         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
681                 goto out_unlock;
682
683         if (*flags & MS_RDONLY)
684                 udf_close_lvid(sb);
685         else
686                 udf_open_lvid(sb);
687
688 out_unlock:
689         return error;
690 }
691
692 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
693 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
694 static loff_t udf_check_vsd(struct super_block *sb)
695 {
696         struct volStructDesc *vsd = NULL;
697         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
698         int sectorsize;
699         struct buffer_head *bh = NULL;
700         int nsr02 = 0;
701         int nsr03 = 0;
702         struct udf_sb_info *sbi;
703
704         sbi = UDF_SB(sb);
705         if (sb->s_blocksize < sizeof(struct volStructDesc))
706                 sectorsize = sizeof(struct volStructDesc);
707         else
708                 sectorsize = sb->s_blocksize;
709
710         sector += (sbi->s_session << sb->s_blocksize_bits);
711
712         udf_debug("Starting at sector %u (%ld byte sectors)\n",
713                   (unsigned int)(sector >> sb->s_blocksize_bits),
714                   sb->s_blocksize);
715         /* Process the sequence (if applicable). The hard limit on the sector
716          * offset is arbitrary, hopefully large enough so that all valid UDF
717          * filesystems will be recognised. There is no mention of an upper
718          * bound to the size of the volume recognition area in the standard.
719          *  The limit will prevent the code to read all the sectors of a
720          * specially crafted image (like a bluray disc full of CD001 sectors),
721          * potentially causing minutes or even hours of uninterruptible I/O
722          * activity. This actually happened with uninitialised SSD partitions
723          * (all 0xFF) before the check for the limit and all valid IDs were
724          * added */
725         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
726              sector += sectorsize) {
727                 /* Read a block */
728                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
729                 if (!bh)
730                         break;
731
732                 /* Look for ISO  descriptors */
733                 vsd = (struct volStructDesc *)(bh->b_data +
734                                               (sector & (sb->s_blocksize - 1)));
735
736                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
737                                     VSD_STD_ID_LEN)) {
738                         switch (vsd->structType) {
739                         case 0:
740                                 udf_debug("ISO9660 Boot Record found\n");
741                                 break;
742                         case 1:
743                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
744                                 break;
745                         case 2:
746                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
747                                 break;
748                         case 3:
749                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
750                                 break;
751                         case 255:
752                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
753                                 break;
754                         default:
755                                 udf_debug("ISO9660 VRS (%u) found\n",
756                                           vsd->structType);
757                                 break;
758                         }
759                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
760                                     VSD_STD_ID_LEN))
761                         ; /* nothing */
762                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
763                                     VSD_STD_ID_LEN)) {
764                         brelse(bh);
765                         break;
766                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
767                                     VSD_STD_ID_LEN))
768                         nsr02 = sector;
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
770                                     VSD_STD_ID_LEN))
771                         nsr03 = sector;
772                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
773                                     VSD_STD_ID_LEN))
774                         ; /* nothing */
775                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
776                                     VSD_STD_ID_LEN))
777                         ; /* nothing */
778                 else {
779                         /* invalid id : end of volume recognition area */
780                         brelse(bh);
781                         break;
782                 }
783                 brelse(bh);
784         }
785
786         if (nsr03)
787                 return nsr03;
788         else if (nsr02)
789                 return nsr02;
790         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
791                         VSD_FIRST_SECTOR_OFFSET)
792                 return -1;
793         else
794                 return 0;
795 }
796
797 static int udf_find_fileset(struct super_block *sb,
798                             struct kernel_lb_addr *fileset,
799                             struct kernel_lb_addr *root)
800 {
801         struct buffer_head *bh = NULL;
802         long lastblock;
803         uint16_t ident;
804         struct udf_sb_info *sbi;
805
806         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
807             fileset->partitionReferenceNum != 0xFFFF) {
808                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
809
810                 if (!bh) {
811                         return 1;
812                 } else if (ident != TAG_IDENT_FSD) {
813                         brelse(bh);
814                         return 1;
815                 }
816
817         }
818
819         sbi = UDF_SB(sb);
820         if (!bh) {
821                 /* Search backwards through the partitions */
822                 struct kernel_lb_addr newfileset;
823
824 /* --> cvg: FIXME - is it reasonable? */
825                 return 1;
826
827                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
828                      (newfileset.partitionReferenceNum != 0xFFFF &&
829                       fileset->logicalBlockNum == 0xFFFFFFFF &&
830                       fileset->partitionReferenceNum == 0xFFFF);
831                      newfileset.partitionReferenceNum--) {
832                         lastblock = sbi->s_partmaps
833                                         [newfileset.partitionReferenceNum]
834                                                 .s_partition_len;
835                         newfileset.logicalBlockNum = 0;
836
837                         do {
838                                 bh = udf_read_ptagged(sb, &newfileset, 0,
839                                                       &ident);
840                                 if (!bh) {
841                                         newfileset.logicalBlockNum++;
842                                         continue;
843                                 }
844
845                                 switch (ident) {
846                                 case TAG_IDENT_SBD:
847                                 {
848                                         struct spaceBitmapDesc *sp;
849                                         sp = (struct spaceBitmapDesc *)
850                                                                 bh->b_data;
851                                         newfileset.logicalBlockNum += 1 +
852                                                 ((le32_to_cpu(sp->numOfBytes) +
853                                                   sizeof(struct spaceBitmapDesc)
854                                                   - 1) >> sb->s_blocksize_bits);
855                                         brelse(bh);
856                                         break;
857                                 }
858                                 case TAG_IDENT_FSD:
859                                         *fileset = newfileset;
860                                         break;
861                                 default:
862                                         newfileset.logicalBlockNum++;
863                                         brelse(bh);
864                                         bh = NULL;
865                                         break;
866                                 }
867                         } while (newfileset.logicalBlockNum < lastblock &&
868                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
869                                  fileset->partitionReferenceNum == 0xFFFF);
870                 }
871         }
872
873         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
874              fileset->partitionReferenceNum != 0xFFFF) && bh) {
875                 udf_debug("Fileset at block=%d, partition=%d\n",
876                           fileset->logicalBlockNum,
877                           fileset->partitionReferenceNum);
878
879                 sbi->s_partition = fileset->partitionReferenceNum;
880                 udf_load_fileset(sb, bh, root);
881                 brelse(bh);
882                 return 0;
883         }
884         return 1;
885 }
886
887 /*
888  * Load primary Volume Descriptor Sequence
889  *
890  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
891  * should be tried.
892  */
893 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
894 {
895         struct primaryVolDesc *pvoldesc;
896         uint8_t *outstr;
897         struct buffer_head *bh;
898         uint16_t ident;
899         int ret = -ENOMEM;
900
901         outstr = kmalloc(128, GFP_NOFS);
902         if (!outstr)
903                 return -ENOMEM;
904
905         bh = udf_read_tagged(sb, block, block, &ident);
906         if (!bh) {
907                 ret = -EAGAIN;
908                 goto out2;
909         }
910
911         if (ident != TAG_IDENT_PVD) {
912                 ret = -EIO;
913                 goto out_bh;
914         }
915
916         pvoldesc = (struct primaryVolDesc *)bh->b_data;
917
918         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
919                               pvoldesc->recordingDateAndTime)) {
920 #ifdef UDFFS_DEBUG
921                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
922                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
923                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
924                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
925 #endif
926         }
927
928         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
929         if (ret < 0)
930                 goto out_bh;
931
932         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
933         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934
935         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
936         if (ret < 0)
937                 goto out_bh;
938
939         outstr[ret] = 0;
940         udf_debug("volSetIdent[] = '%s'\n", outstr);
941
942         ret = 0;
943 out_bh:
944         brelse(bh);
945 out2:
946         kfree(outstr);
947         return ret;
948 }
949
950 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
951                                         u32 meta_file_loc, u32 partition_ref)
952 {
953         struct kernel_lb_addr addr;
954         struct inode *metadata_fe;
955
956         addr.logicalBlockNum = meta_file_loc;
957         addr.partitionReferenceNum = partition_ref;
958
959         metadata_fe = udf_iget_special(sb, &addr);
960
961         if (IS_ERR(metadata_fe)) {
962                 udf_warn(sb, "metadata inode efe not found\n");
963                 return metadata_fe;
964         }
965         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
966                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
967                 iput(metadata_fe);
968                 return ERR_PTR(-EIO);
969         }
970
971         return metadata_fe;
972 }
973
974 static int udf_load_metadata_files(struct super_block *sb, int partition,
975                                    int type1_index)
976 {
977         struct udf_sb_info *sbi = UDF_SB(sb);
978         struct udf_part_map *map;
979         struct udf_meta_data *mdata;
980         struct kernel_lb_addr addr;
981         struct inode *fe;
982
983         map = &sbi->s_partmaps[partition];
984         mdata = &map->s_type_specific.s_metadata;
985         mdata->s_phys_partition_ref = type1_index;
986
987         /* metadata address */
988         udf_debug("Metadata file location: block = %d part = %d\n",
989                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
990
991         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992                                          mdata->s_phys_partition_ref);
993         if (IS_ERR(fe)) {
994                 /* mirror file entry */
995                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
996                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
997
998                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999                                                  mdata->s_phys_partition_ref);
1000
1001                 if (IS_ERR(fe)) {
1002                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003                         return PTR_ERR(fe);
1004                 }
1005                 mdata->s_mirror_fe = fe;
1006         } else
1007                 mdata->s_metadata_fe = fe;
1008
1009
1010         /*
1011          * bitmap file entry
1012          * Note:
1013          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014         */
1015         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1018
1019                 udf_debug("Bitmap file location: block = %d part = %d\n",
1020                           addr.logicalBlockNum, addr.partitionReferenceNum);
1021
1022                 fe = udf_iget_special(sb, &addr);
1023                 if (IS_ERR(fe)) {
1024                         if (sb->s_flags & MS_RDONLY)
1025                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026                         else {
1027                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028                                 return PTR_ERR(fe);
1029                         }
1030                 } else
1031                         mdata->s_bitmap_fe = fe;
1032         }
1033
1034         udf_debug("udf_load_metadata_files Ok\n");
1035         return 0;
1036 }
1037
1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039                              struct kernel_lb_addr *root)
1040 {
1041         struct fileSetDesc *fset;
1042
1043         fset = (struct fileSetDesc *)bh->b_data;
1044
1045         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046
1047         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048
1049         udf_debug("Rootdir at block=%d, partition=%d\n",
1050                   root->logicalBlockNum, root->partitionReferenceNum);
1051 }
1052
1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054 {
1055         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056         return DIV_ROUND_UP(map->s_partition_len +
1057                             (sizeof(struct spaceBitmapDesc) << 3),
1058                             sb->s_blocksize * 8);
1059 }
1060
1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062 {
1063         struct udf_bitmap *bitmap;
1064         int nr_groups;
1065         int size;
1066
1067         nr_groups = udf_compute_nr_groups(sb, index);
1068         size = sizeof(struct udf_bitmap) +
1069                 (sizeof(struct buffer_head *) * nr_groups);
1070
1071         if (size <= PAGE_SIZE)
1072                 bitmap = kzalloc(size, GFP_KERNEL);
1073         else
1074                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075
1076         if (bitmap == NULL)
1077                 return NULL;
1078
1079         bitmap->s_nr_groups = nr_groups;
1080         return bitmap;
1081 }
1082
1083 static int udf_fill_partdesc_info(struct super_block *sb,
1084                 struct partitionDesc *p, int p_index)
1085 {
1086         struct udf_part_map *map;
1087         struct udf_sb_info *sbi = UDF_SB(sb);
1088         struct partitionHeaderDesc *phd;
1089
1090         map = &sbi->s_partmaps[p_index];
1091
1092         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094
1095         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103
1104         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105                   p_index, map->s_partition_type,
1106                   map->s_partition_root, map->s_partition_len);
1107
1108         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110                 return 0;
1111
1112         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113         if (phd->unallocSpaceTable.extLength) {
1114                 struct kernel_lb_addr loc = {
1115                         .logicalBlockNum = le32_to_cpu(
1116                                 phd->unallocSpaceTable.extPosition),
1117                         .partitionReferenceNum = p_index,
1118                 };
1119                 struct inode *inode;
1120
1121                 inode = udf_iget_special(sb, &loc);
1122                 if (IS_ERR(inode)) {
1123                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124                                   p_index);
1125                         return PTR_ERR(inode);
1126                 }
1127                 map->s_uspace.s_table = inode;
1128                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130                           p_index, map->s_uspace.s_table->i_ino);
1131         }
1132
1133         if (phd->unallocSpaceBitmap.extLength) {
1134                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135                 if (!bitmap)
1136                         return -ENOMEM;
1137                 map->s_uspace.s_bitmap = bitmap;
1138                 bitmap->s_extPosition = le32_to_cpu(
1139                                 phd->unallocSpaceBitmap.extPosition);
1140                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142                           p_index, bitmap->s_extPosition);
1143         }
1144
1145         if (phd->partitionIntegrityTable.extLength)
1146                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147
1148         if (phd->freedSpaceTable.extLength) {
1149                 struct kernel_lb_addr loc = {
1150                         .logicalBlockNum = le32_to_cpu(
1151                                 phd->freedSpaceTable.extPosition),
1152                         .partitionReferenceNum = p_index,
1153                 };
1154                 struct inode *inode;
1155
1156                 inode = udf_iget_special(sb, &loc);
1157                 if (IS_ERR(inode)) {
1158                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1159                                   p_index);
1160                         return PTR_ERR(inode);
1161                 }
1162                 map->s_fspace.s_table = inode;
1163                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165                           p_index, map->s_fspace.s_table->i_ino);
1166         }
1167
1168         if (phd->freedSpaceBitmap.extLength) {
1169                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170                 if (!bitmap)
1171                         return -ENOMEM;
1172                 map->s_fspace.s_bitmap = bitmap;
1173                 bitmap->s_extPosition = le32_to_cpu(
1174                                 phd->freedSpaceBitmap.extPosition);
1175                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177                           p_index, bitmap->s_extPosition);
1178         }
1179         return 0;
1180 }
1181
1182 static void udf_find_vat_block(struct super_block *sb, int p_index,
1183                                int type1_index, sector_t start_block)
1184 {
1185         struct udf_sb_info *sbi = UDF_SB(sb);
1186         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187         sector_t vat_block;
1188         struct kernel_lb_addr ino;
1189         struct inode *inode;
1190
1191         /*
1192          * VAT file entry is in the last recorded block. Some broken disks have
1193          * it a few blocks before so try a bit harder...
1194          */
1195         ino.partitionReferenceNum = type1_index;
1196         for (vat_block = start_block;
1197              vat_block >= map->s_partition_root &&
1198              vat_block >= start_block - 3; vat_block--) {
1199                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1200                 inode = udf_iget_special(sb, &ino);
1201                 if (!IS_ERR(inode)) {
1202                         sbi->s_vat_inode = inode;
1203                         break;
1204                 }
1205         }
1206 }
1207
1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209 {
1210         struct udf_sb_info *sbi = UDF_SB(sb);
1211         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212         struct buffer_head *bh = NULL;
1213         struct udf_inode_info *vati;
1214         uint32_t pos;
1215         struct virtualAllocationTable20 *vat20;
1216         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1217                           sb->s_blocksize_bits;
1218
1219         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220         if (!sbi->s_vat_inode &&
1221             sbi->s_last_block != blocks - 1) {
1222                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223                           (unsigned long)sbi->s_last_block,
1224                           (unsigned long)blocks - 1);
1225                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226         }
1227         if (!sbi->s_vat_inode)
1228                 return -EIO;
1229
1230         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231                 map->s_type_specific.s_virtual.s_start_offset = 0;
1232                 map->s_type_specific.s_virtual.s_num_entries =
1233                         (sbi->s_vat_inode->i_size - 36) >> 2;
1234         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235                 vati = UDF_I(sbi->s_vat_inode);
1236                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237                         pos = udf_block_map(sbi->s_vat_inode, 0);
1238                         bh = sb_bread(sb, pos);
1239                         if (!bh)
1240                                 return -EIO;
1241                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242                 } else {
1243                         vat20 = (struct virtualAllocationTable20 *)
1244                                                         vati->i_ext.i_data;
1245                 }
1246
1247                 map->s_type_specific.s_virtual.s_start_offset =
1248                         le16_to_cpu(vat20->lengthHeader);
1249                 map->s_type_specific.s_virtual.s_num_entries =
1250                         (sbi->s_vat_inode->i_size -
1251                                 map->s_type_specific.s_virtual.
1252                                         s_start_offset) >> 2;
1253                 brelse(bh);
1254         }
1255         return 0;
1256 }
1257
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266         struct buffer_head *bh;
1267         struct partitionDesc *p;
1268         struct udf_part_map *map;
1269         struct udf_sb_info *sbi = UDF_SB(sb);
1270         int i, type1_idx;
1271         uint16_t partitionNumber;
1272         uint16_t ident;
1273         int ret;
1274
1275         bh = udf_read_tagged(sb, block, block, &ident);
1276         if (!bh)
1277                 return -EAGAIN;
1278         if (ident != TAG_IDENT_PD) {
1279                 ret = 0;
1280                 goto out_bh;
1281         }
1282
1283         p = (struct partitionDesc *)bh->b_data;
1284         partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286         /* First scan for TYPE1 and SPARABLE partitions */
1287         for (i = 0; i < sbi->s_partitions; i++) {
1288                 map = &sbi->s_partmaps[i];
1289                 udf_debug("Searching map: (%d == %d)\n",
1290                           map->s_partition_num, partitionNumber);
1291                 if (map->s_partition_num == partitionNumber &&
1292                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293                      map->s_partition_type == UDF_SPARABLE_MAP15))
1294                         break;
1295         }
1296
1297         if (i >= sbi->s_partitions) {
1298                 udf_debug("Partition (%d) not found in partition map\n",
1299                           partitionNumber);
1300                 ret = 0;
1301                 goto out_bh;
1302         }
1303
1304         ret = udf_fill_partdesc_info(sb, p, i);
1305         if (ret < 0)
1306                 goto out_bh;
1307
1308         /*
1309          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310          * PHYSICAL partitions are already set up
1311          */
1312         type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314         map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316         for (i = 0; i < sbi->s_partitions; i++) {
1317                 map = &sbi->s_partmaps[i];
1318
1319                 if (map->s_partition_num == partitionNumber &&
1320                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322                      map->s_partition_type == UDF_METADATA_MAP25))
1323                         break;
1324         }
1325
1326         if (i >= sbi->s_partitions) {
1327                 ret = 0;
1328                 goto out_bh;
1329         }
1330
1331         ret = udf_fill_partdesc_info(sb, p, i);
1332         if (ret < 0)
1333                 goto out_bh;
1334
1335         if (map->s_partition_type == UDF_METADATA_MAP25) {
1336                 ret = udf_load_metadata_files(sb, i, type1_idx);
1337                 if (ret < 0) {
1338                         udf_err(sb, "error loading MetaData partition map %d\n",
1339                                 i);
1340                         goto out_bh;
1341                 }
1342         } else {
1343                 /*
1344                  * If we have a partition with virtual map, we don't handle
1345                  * writing to it (we overwrite blocks instead of relocating
1346                  * them).
1347                  */
1348                 if (!(sb->s_flags & MS_RDONLY)) {
1349                         ret = -EACCES;
1350                         goto out_bh;
1351                 }
1352                 ret = udf_load_vat(sb, i, type1_idx);
1353                 if (ret < 0)
1354                         goto out_bh;
1355         }
1356         ret = 0;
1357 out_bh:
1358         /* In case loading failed, we handle cleanup in udf_fill_super */
1359         brelse(bh);
1360         return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364                                  struct udf_part_map *map,
1365                                  struct sparablePartitionMap *spm)
1366 {
1367         uint32_t loc;
1368         uint16_t ident;
1369         struct sparingTable *st;
1370         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371         int i;
1372         struct buffer_head *bh;
1373
1374         map->s_partition_type = UDF_SPARABLE_MAP15;
1375         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376         if (!is_power_of_2(sdata->s_packet_len)) {
1377                 udf_err(sb, "error loading logical volume descriptor: "
1378                         "Invalid packet length %u\n",
1379                         (unsigned)sdata->s_packet_len);
1380                 return -EIO;
1381         }
1382         if (spm->numSparingTables > 4) {
1383                 udf_err(sb, "error loading logical volume descriptor: "
1384                         "Too many sparing tables (%d)\n",
1385                         (int)spm->numSparingTables);
1386                 return -EIO;
1387         }
1388
1389         for (i = 0; i < spm->numSparingTables; i++) {
1390                 loc = le32_to_cpu(spm->locSparingTable[i]);
1391                 bh = udf_read_tagged(sb, loc, loc, &ident);
1392                 if (!bh)
1393                         continue;
1394
1395                 st = (struct sparingTable *)bh->b_data;
1396                 if (ident != 0 ||
1397                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398                             strlen(UDF_ID_SPARING)) ||
1399                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400                                                         sb->s_blocksize) {
1401                         brelse(bh);
1402                         continue;
1403                 }
1404
1405                 sdata->s_spar_map[i] = bh;
1406         }
1407         map->s_partition_func = udf_get_pblock_spar15;
1408         return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412                                struct kernel_lb_addr *fileset)
1413 {
1414         struct logicalVolDesc *lvd;
1415         int i, offset;
1416         uint8_t type;
1417         struct udf_sb_info *sbi = UDF_SB(sb);
1418         struct genericPartitionMap *gpm;
1419         uint16_t ident;
1420         struct buffer_head *bh;
1421         unsigned int table_len;
1422         int ret;
1423
1424         bh = udf_read_tagged(sb, block, block, &ident);
1425         if (!bh)
1426                 return -EAGAIN;
1427         BUG_ON(ident != TAG_IDENT_LVD);
1428         lvd = (struct logicalVolDesc *)bh->b_data;
1429         table_len = le32_to_cpu(lvd->mapTableLength);
1430         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431                 udf_err(sb, "error loading logical volume descriptor: "
1432                         "Partition table too long (%u > %lu)\n", table_len,
1433                         sb->s_blocksize - sizeof(*lvd));
1434                 ret = -EIO;
1435                 goto out_bh;
1436         }
1437
1438         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439         if (ret)
1440                 goto out_bh;
1441
1442         for (i = 0, offset = 0;
1443              i < sbi->s_partitions && offset < table_len;
1444              i++, offset += gpm->partitionMapLength) {
1445                 struct udf_part_map *map = &sbi->s_partmaps[i];
1446                 gpm = (struct genericPartitionMap *)
1447                                 &(lvd->partitionMaps[offset]);
1448                 type = gpm->partitionMapType;
1449                 if (type == 1) {
1450                         struct genericPartitionMap1 *gpm1 =
1451                                 (struct genericPartitionMap1 *)gpm;
1452                         map->s_partition_type = UDF_TYPE1_MAP15;
1453                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455                         map->s_partition_func = NULL;
1456                 } else if (type == 2) {
1457                         struct udfPartitionMap2 *upm2 =
1458                                                 (struct udfPartitionMap2 *)gpm;
1459                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460                                                 strlen(UDF_ID_VIRTUAL))) {
1461                                 u16 suf =
1462                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1463                                                         identSuffix)[0]);
1464                                 if (suf < 0x0200) {
1465                                         map->s_partition_type =
1466                                                         UDF_VIRTUAL_MAP15;
1467                                         map->s_partition_func =
1468                                                         udf_get_pblock_virt15;
1469                                 } else {
1470                                         map->s_partition_type =
1471                                                         UDF_VIRTUAL_MAP20;
1472                                         map->s_partition_func =
1473                                                         udf_get_pblock_virt20;
1474                                 }
1475                         } else if (!strncmp(upm2->partIdent.ident,
1476                                                 UDF_ID_SPARABLE,
1477                                                 strlen(UDF_ID_SPARABLE))) {
1478                                 ret = udf_load_sparable_map(sb, map,
1479                                         (struct sparablePartitionMap *)gpm);
1480                                 if (ret < 0)
1481                                         goto out_bh;
1482                         } else if (!strncmp(upm2->partIdent.ident,
1483                                                 UDF_ID_METADATA,
1484                                                 strlen(UDF_ID_METADATA))) {
1485                                 struct udf_meta_data *mdata =
1486                                         &map->s_type_specific.s_metadata;
1487                                 struct metadataPartitionMap *mdm =
1488                                                 (struct metadataPartitionMap *)
1489                                                 &(lvd->partitionMaps[offset]);
1490                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491                                           i, type, UDF_ID_METADATA);
1492
1493                                 map->s_partition_type = UDF_METADATA_MAP25;
1494                                 map->s_partition_func = udf_get_pblock_meta25;
1495
1496                                 mdata->s_meta_file_loc   =
1497                                         le32_to_cpu(mdm->metadataFileLoc);
1498                                 mdata->s_mirror_file_loc =
1499                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1500                                 mdata->s_bitmap_file_loc =
1501                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1502                                 mdata->s_alloc_unit_size =
1503                                         le32_to_cpu(mdm->allocUnitSize);
1504                                 mdata->s_align_unit_size =
1505                                         le16_to_cpu(mdm->alignUnitSize);
1506                                 if (mdm->flags & 0x01)
1507                                         mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509                                 udf_debug("Metadata Ident suffix=0x%x\n",
1510                                           le16_to_cpu(*(__le16 *)
1511                                                       mdm->partIdent.identSuffix));
1512                                 udf_debug("Metadata part num=%d\n",
1513                                           le16_to_cpu(mdm->partitionNum));
1514                                 udf_debug("Metadata part alloc unit size=%d\n",
1515                                           le32_to_cpu(mdm->allocUnitSize));
1516                                 udf_debug("Metadata file loc=%d\n",
1517                                           le32_to_cpu(mdm->metadataFileLoc));
1518                                 udf_debug("Mirror file loc=%d\n",
1519                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1520                                 udf_debug("Bitmap file loc=%d\n",
1521                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1522                                 udf_debug("Flags: %d %d\n",
1523                                           mdata->s_flags, mdm->flags);
1524                         } else {
1525                                 udf_debug("Unknown ident: %s\n",
1526                                           upm2->partIdent.ident);
1527                                 continue;
1528                         }
1529                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531                 }
1532                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533                           i, map->s_partition_num, type, map->s_volumeseqnum);
1534         }
1535
1536         if (fileset) {
1537                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539                 *fileset = lelb_to_cpu(la->extLocation);
1540                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541                           fileset->logicalBlockNum,
1542                           fileset->partitionReferenceNum);
1543         }
1544         if (lvd->integritySeqExt.extLength)
1545                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546         ret = 0;
1547 out_bh:
1548         brelse(bh);
1549         return ret;
1550 }
1551
1552 /*
1553  * Find the prevailing Logical Volume Integrity Descriptor.
1554  */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557         struct buffer_head *bh, *final_bh;
1558         uint16_t ident;
1559         struct udf_sb_info *sbi = UDF_SB(sb);
1560         struct logicalVolIntegrityDesc *lvid;
1561         int indirections = 0;
1562
1563         while (++indirections <= UDF_MAX_LVID_NESTING) {
1564                 final_bh = NULL;
1565                 while (loc.extLength > 0 &&
1566                         (bh = udf_read_tagged(sb, loc.extLocation,
1567                                         loc.extLocation, &ident))) {
1568                         if (ident != TAG_IDENT_LVID) {
1569                                 brelse(bh);
1570                                 break;
1571                         }
1572
1573                         brelse(final_bh);
1574                         final_bh = bh;
1575
1576                         loc.extLength -= sb->s_blocksize;
1577                         loc.extLocation++;
1578                 }
1579
1580                 if (!final_bh)
1581                         return;
1582
1583                 brelse(sbi->s_lvid_bh);
1584                 sbi->s_lvid_bh = final_bh;
1585
1586                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587                 if (lvid->nextIntegrityExt.extLength == 0)
1588                         return;
1589
1590                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1591         }
1592
1593         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594                 UDF_MAX_LVID_NESTING);
1595         brelse(sbi->s_lvid_bh);
1596         sbi->s_lvid_bh = NULL;
1597 }
1598
1599
1600 /*
1601  * Process a main/reserve volume descriptor sequence.
1602  *   @block             First block of first extent of the sequence.
1603  *   @lastblock         Lastblock of first extent of the sequence.
1604  *   @fileset           There we store extent containing root fileset
1605  *
1606  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607  * sequence
1608  */
1609 static noinline int udf_process_sequence(
1610                 struct super_block *sb,
1611                 sector_t block, sector_t lastblock,
1612                 struct kernel_lb_addr *fileset)
1613 {
1614         struct buffer_head *bh = NULL;
1615         struct udf_vds_record vds[VDS_POS_LENGTH];
1616         struct udf_vds_record *curr;
1617         struct generic_desc *gd;
1618         struct volDescPtr *vdp;
1619         bool done = false;
1620         uint32_t vdsn;
1621         uint16_t ident;
1622         long next_s = 0, next_e = 0;
1623         int ret;
1624         unsigned int indirections = 0;
1625
1626         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627
1628         /*
1629          * Read the main descriptor sequence and find which descriptors
1630          * are in it.
1631          */
1632         for (; (!done && block <= lastblock); block++) {
1633
1634                 bh = udf_read_tagged(sb, block, block, &ident);
1635                 if (!bh) {
1636                         udf_err(sb,
1637                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638                                 (unsigned long long)block);
1639                         return -EAGAIN;
1640                 }
1641
1642                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643                 gd = (struct generic_desc *)bh->b_data;
1644                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1645                 switch (ident) {
1646                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648                         if (vdsn >= curr->volDescSeqNum) {
1649                                 curr->volDescSeqNum = vdsn;
1650                                 curr->block = block;
1651                         }
1652                         break;
1653                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1655                         if (vdsn >= curr->volDescSeqNum) {
1656                                 curr->volDescSeqNum = vdsn;
1657                                 curr->block = block;
1658
1659                                 vdp = (struct volDescPtr *)bh->b_data;
1660                                 next_s = le32_to_cpu(
1661                                         vdp->nextVolDescSeqExt.extLocation);
1662                                 next_e = le32_to_cpu(
1663                                         vdp->nextVolDescSeqExt.extLength);
1664                                 next_e = next_e >> sb->s_blocksize_bits;
1665                                 next_e += next_s;
1666                         }
1667                         break;
1668                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670                         if (vdsn >= curr->volDescSeqNum) {
1671                                 curr->volDescSeqNum = vdsn;
1672                                 curr->block = block;
1673                         }
1674                         break;
1675                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676                         curr = &vds[VDS_POS_PARTITION_DESC];
1677                         if (!curr->block)
1678                                 curr->block = block;
1679                         break;
1680                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682                         if (vdsn >= curr->volDescSeqNum) {
1683                                 curr->volDescSeqNum = vdsn;
1684                                 curr->block = block;
1685                         }
1686                         break;
1687                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689                         if (vdsn >= curr->volDescSeqNum) {
1690                                 curr->volDescSeqNum = vdsn;
1691                                 curr->block = block;
1692                         }
1693                         break;
1694                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695                         if (++indirections > UDF_MAX_TD_NESTING) {
1696                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697                                 brelse(bh);
1698                                 return -EIO;
1699                         }
1700
1701                         vds[VDS_POS_TERMINATING_DESC].block = block;
1702                         if (next_e) {
1703                                 block = next_s;
1704                                 lastblock = next_e;
1705                                 next_s = next_e = 0;
1706                         } else
1707                                 done = true;
1708                         break;
1709                 }
1710                 brelse(bh);
1711         }
1712         /*
1713          * Now read interesting descriptors again and process them
1714          * in a suitable order
1715          */
1716         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718                 return -EAGAIN;
1719         }
1720         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721         if (ret < 0)
1722                 return ret;
1723
1724         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725                 ret = udf_load_logicalvol(sb,
1726                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727                                           fileset);
1728                 if (ret < 0)
1729                         return ret;
1730         }
1731
1732         if (vds[VDS_POS_PARTITION_DESC].block) {
1733                 /*
1734                  * We rescan the whole descriptor sequence to find
1735                  * partition descriptor blocks and process them.
1736                  */
1737                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1738                      block < vds[VDS_POS_TERMINATING_DESC].block;
1739                      block++) {
1740                         ret = udf_load_partdesc(sb, block);
1741                         if (ret < 0)
1742                                 return ret;
1743                 }
1744         }
1745
1746         return 0;
1747 }
1748
1749 /*
1750  * Load Volume Descriptor Sequence described by anchor in bh
1751  *
1752  * Returns <0 on error, 0 on success
1753  */
1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755                              struct kernel_lb_addr *fileset)
1756 {
1757         struct anchorVolDescPtr *anchor;
1758         sector_t main_s, main_e, reserve_s, reserve_e;
1759         int ret;
1760
1761         anchor = (struct anchorVolDescPtr *)bh->b_data;
1762
1763         /* Locate the main sequence */
1764         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766         main_e = main_e >> sb->s_blocksize_bits;
1767         main_e += main_s;
1768
1769         /* Locate the reserve sequence */
1770         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772         reserve_e = reserve_e >> sb->s_blocksize_bits;
1773         reserve_e += reserve_s;
1774
1775         /* Process the main & reserve sequences */
1776         /* responsible for finding the PartitionDesc(s) */
1777         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778         if (ret != -EAGAIN)
1779                 return ret;
1780         udf_sb_free_partitions(sb);
1781         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782         if (ret < 0) {
1783                 udf_sb_free_partitions(sb);
1784                 /* No sequence was OK, return -EIO */
1785                 if (ret == -EAGAIN)
1786                         ret = -EIO;
1787         }
1788         return ret;
1789 }
1790
1791 /*
1792  * Check whether there is an anchor block in the given block and
1793  * load Volume Descriptor Sequence if so.
1794  *
1795  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796  * block
1797  */
1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799                                   struct kernel_lb_addr *fileset)
1800 {
1801         struct buffer_head *bh;
1802         uint16_t ident;
1803         int ret;
1804
1805         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806             udf_fixed_to_variable(block) >=
1807             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1808                 return -EAGAIN;
1809
1810         bh = udf_read_tagged(sb, block, block, &ident);
1811         if (!bh)
1812                 return -EAGAIN;
1813         if (ident != TAG_IDENT_AVDP) {
1814                 brelse(bh);
1815                 return -EAGAIN;
1816         }
1817         ret = udf_load_sequence(sb, bh, fileset);
1818         brelse(bh);
1819         return ret;
1820 }
1821
1822 /*
1823  * Search for an anchor volume descriptor pointer.
1824  *
1825  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826  * of anchors.
1827  */
1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829                             struct kernel_lb_addr *fileset)
1830 {
1831         sector_t last[6];
1832         int i;
1833         struct udf_sb_info *sbi = UDF_SB(sb);
1834         int last_count = 0;
1835         int ret;
1836
1837         /* First try user provided anchor */
1838         if (sbi->s_anchor) {
1839                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840                 if (ret != -EAGAIN)
1841                         return ret;
1842         }
1843         /*
1844          * according to spec, anchor is in either:
1845          *     block 256
1846          *     lastblock-256
1847          *     lastblock
1848          *  however, if the disc isn't closed, it could be 512.
1849          */
1850         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851         if (ret != -EAGAIN)
1852                 return ret;
1853         /*
1854          * The trouble is which block is the last one. Drives often misreport
1855          * this so we try various possibilities.
1856          */
1857         last[last_count++] = *lastblock;
1858         if (*lastblock >= 1)
1859                 last[last_count++] = *lastblock - 1;
1860         last[last_count++] = *lastblock + 1;
1861         if (*lastblock >= 2)
1862                 last[last_count++] = *lastblock - 2;
1863         if (*lastblock >= 150)
1864                 last[last_count++] = *lastblock - 150;
1865         if (*lastblock >= 152)
1866                 last[last_count++] = *lastblock - 152;
1867
1868         for (i = 0; i < last_count; i++) {
1869                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1870                                 sb->s_blocksize_bits)
1871                         continue;
1872                 ret = udf_check_anchor_block(sb, last[i], fileset);
1873                 if (ret != -EAGAIN) {
1874                         if (!ret)
1875                                 *lastblock = last[i];
1876                         return ret;
1877                 }
1878                 if (last[i] < 256)
1879                         continue;
1880                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881                 if (ret != -EAGAIN) {
1882                         if (!ret)
1883                                 *lastblock = last[i];
1884                         return ret;
1885                 }
1886         }
1887
1888         /* Finally try block 512 in case media is open */
1889         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 }
1891
1892 /*
1893  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894  * area specified by it. The function expects sbi->s_lastblock to be the last
1895  * block on the media.
1896  *
1897  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898  * was not found.
1899  */
1900 static int udf_find_anchor(struct super_block *sb,
1901                            struct kernel_lb_addr *fileset)
1902 {
1903         struct udf_sb_info *sbi = UDF_SB(sb);
1904         sector_t lastblock = sbi->s_last_block;
1905         int ret;
1906
1907         ret = udf_scan_anchors(sb, &lastblock, fileset);
1908         if (ret != -EAGAIN)
1909                 goto out;
1910
1911         /* No anchor found? Try VARCONV conversion of block numbers */
1912         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914         /* Firstly, we try to not convert number of the last block */
1915         ret = udf_scan_anchors(sb, &lastblock, fileset);
1916         if (ret != -EAGAIN)
1917                 goto out;
1918
1919         lastblock = sbi->s_last_block;
1920         /* Secondly, we try with converted number of the last block */
1921         ret = udf_scan_anchors(sb, &lastblock, fileset);
1922         if (ret < 0) {
1923                 /* VARCONV didn't help. Clear it. */
1924                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925         }
1926 out:
1927         if (ret == 0)
1928                 sbi->s_last_block = lastblock;
1929         return ret;
1930 }
1931
1932 /*
1933  * Check Volume Structure Descriptor, find Anchor block and load Volume
1934  * Descriptor Sequence.
1935  *
1936  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937  * block was not found.
1938  */
1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940                         int silent, struct kernel_lb_addr *fileset)
1941 {
1942         struct udf_sb_info *sbi = UDF_SB(sb);
1943         loff_t nsr_off;
1944         int ret;
1945
1946         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947                 if (!silent)
1948                         udf_warn(sb, "Bad block size\n");
1949                 return -EINVAL;
1950         }
1951         sbi->s_last_block = uopt->lastblock;
1952         if (!uopt->novrs) {
1953                 /* Check that it is NSR02 compliant */
1954                 nsr_off = udf_check_vsd(sb);
1955                 if (!nsr_off) {
1956                         if (!silent)
1957                                 udf_warn(sb, "No VRS found\n");
1958                         return -EINVAL;
1959                 }
1960                 if (nsr_off == -1)
1961                         udf_debug("Failed to read sector at offset %d. "
1962                                   "Assuming open disc. Skipping validity "
1963                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1964                 if (!sbi->s_last_block)
1965                         sbi->s_last_block = udf_get_last_block(sb);
1966         } else {
1967                 udf_debug("Validity check skipped because of novrs option\n");
1968         }
1969
1970         /* Look for anchor block and load Volume Descriptor Sequence */
1971         sbi->s_anchor = uopt->anchor;
1972         ret = udf_find_anchor(sb, fileset);
1973         if (ret < 0) {
1974                 if (!silent && ret == -EAGAIN)
1975                         udf_warn(sb, "No anchor found\n");
1976                 return ret;
1977         }
1978         return 0;
1979 }
1980
1981 static void udf_open_lvid(struct super_block *sb)
1982 {
1983         struct udf_sb_info *sbi = UDF_SB(sb);
1984         struct buffer_head *bh = sbi->s_lvid_bh;
1985         struct logicalVolIntegrityDesc *lvid;
1986         struct logicalVolIntegrityDescImpUse *lvidiu;
1987         struct timespec ts;
1988
1989         if (!bh)
1990                 return;
1991         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1992         lvidiu = udf_sb_lvidiu(sb);
1993         if (!lvidiu)
1994                 return;
1995
1996         mutex_lock(&sbi->s_alloc_mutex);
1997         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1998         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1999         ktime_get_real_ts(&ts);
2000         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2001         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2002
2003         lvid->descTag.descCRC = cpu_to_le16(
2004                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005                         le16_to_cpu(lvid->descTag.descCRCLength)));
2006
2007         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008         mark_buffer_dirty(bh);
2009         sbi->s_lvid_dirty = 0;
2010         mutex_unlock(&sbi->s_alloc_mutex);
2011         /* Make opening of filesystem visible on the media immediately */
2012         sync_dirty_buffer(bh);
2013 }
2014
2015 static void udf_close_lvid(struct super_block *sb)
2016 {
2017         struct udf_sb_info *sbi = UDF_SB(sb);
2018         struct buffer_head *bh = sbi->s_lvid_bh;
2019         struct logicalVolIntegrityDesc *lvid;
2020         struct logicalVolIntegrityDescImpUse *lvidiu;
2021         struct timespec ts;
2022
2023         if (!bh)
2024                 return;
2025         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026         lvidiu = udf_sb_lvidiu(sb);
2027         if (!lvidiu)
2028                 return;
2029
2030         mutex_lock(&sbi->s_alloc_mutex);
2031         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033         ktime_get_real_ts(&ts);
2034         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2035         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2036                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2037         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2038                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2039         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2040                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2041         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042
2043         lvid->descTag.descCRC = cpu_to_le16(
2044                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2046
2047         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048         /*
2049          * We set buffer uptodate unconditionally here to avoid spurious
2050          * warnings from mark_buffer_dirty() when previous EIO has marked
2051          * the buffer as !uptodate
2052          */
2053         set_buffer_uptodate(bh);
2054         mark_buffer_dirty(bh);
2055         sbi->s_lvid_dirty = 0;
2056         mutex_unlock(&sbi->s_alloc_mutex);
2057         /* Make closing of filesystem visible on the media immediately */
2058         sync_dirty_buffer(bh);
2059 }
2060
2061 u64 lvid_get_unique_id(struct super_block *sb)
2062 {
2063         struct buffer_head *bh;
2064         struct udf_sb_info *sbi = UDF_SB(sb);
2065         struct logicalVolIntegrityDesc *lvid;
2066         struct logicalVolHeaderDesc *lvhd;
2067         u64 uniqueID;
2068         u64 ret;
2069
2070         bh = sbi->s_lvid_bh;
2071         if (!bh)
2072                 return 0;
2073
2074         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076
2077         mutex_lock(&sbi->s_alloc_mutex);
2078         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079         if (!(++uniqueID & 0xFFFFFFFF))
2080                 uniqueID += 16;
2081         lvhd->uniqueID = cpu_to_le64(uniqueID);
2082         mutex_unlock(&sbi->s_alloc_mutex);
2083         mark_buffer_dirty(bh);
2084
2085         return ret;
2086 }
2087
2088 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089 {
2090         int ret = -EINVAL;
2091         struct inode *inode = NULL;
2092         struct udf_options uopt;
2093         struct kernel_lb_addr rootdir, fileset;
2094         struct udf_sb_info *sbi;
2095         bool lvid_open = false;
2096
2097         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098         uopt.uid = INVALID_UID;
2099         uopt.gid = INVALID_GID;
2100         uopt.umask = 0;
2101         uopt.fmode = UDF_INVALID_MODE;
2102         uopt.dmode = UDF_INVALID_MODE;
2103
2104         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2105         if (!sbi)
2106                 return -ENOMEM;
2107
2108         sb->s_fs_info = sbi;
2109
2110         mutex_init(&sbi->s_alloc_mutex);
2111
2112         if (!udf_parse_options((char *)options, &uopt, false))
2113                 goto parse_options_failure;
2114
2115         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118                 goto parse_options_failure;
2119         }
2120 #ifdef CONFIG_UDF_NLS
2121         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122                 uopt.nls_map = load_nls_default();
2123                 if (!uopt.nls_map)
2124                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125                 else
2126                         udf_debug("Using default NLS map\n");
2127         }
2128 #endif
2129         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132         fileset.logicalBlockNum = 0xFFFFFFFF;
2133         fileset.partitionReferenceNum = 0xFFFF;
2134
2135         sbi->s_flags = uopt.flags;
2136         sbi->s_uid = uopt.uid;
2137         sbi->s_gid = uopt.gid;
2138         sbi->s_umask = uopt.umask;
2139         sbi->s_fmode = uopt.fmode;
2140         sbi->s_dmode = uopt.dmode;
2141         sbi->s_nls_map = uopt.nls_map;
2142         rwlock_init(&sbi->s_cred_lock);
2143
2144         if (uopt.session == 0xFFFFFFFF)
2145                 sbi->s_session = udf_get_last_session(sb);
2146         else
2147                 sbi->s_session = uopt.session;
2148
2149         udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151         /* Fill in the rest of the superblock */
2152         sb->s_op = &udf_sb_ops;
2153         sb->s_export_op = &udf_export_ops;
2154
2155         sb->s_magic = UDF_SUPER_MAGIC;
2156         sb->s_time_gran = 1000;
2157
2158         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160         } else {
2161                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162                 while (uopt.blocksize <= 4096) {
2163                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164                         if (ret < 0) {
2165                                 if (!silent && ret != -EACCES) {
2166                                         pr_notice("Scanning with blocksize %d failed\n",
2167                                                   uopt.blocksize);
2168                                 }
2169                                 brelse(sbi->s_lvid_bh);
2170                                 sbi->s_lvid_bh = NULL;
2171                                 /*
2172                                  * EACCES is special - we want to propagate to
2173                                  * upper layers that we cannot handle RW mount.
2174                                  */
2175                                 if (ret == -EACCES)
2176                                         break;
2177                         } else
2178                                 break;
2179
2180                         uopt.blocksize <<= 1;
2181                 }
2182         }
2183         if (ret < 0) {
2184                 if (ret == -EAGAIN) {
2185                         udf_warn(sb, "No partition found (1)\n");
2186                         ret = -EINVAL;
2187                 }
2188                 goto error_out;
2189         }
2190
2191         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2192
2193         if (sbi->s_lvid_bh) {
2194                 struct logicalVolIntegrityDescImpUse *lvidiu =
2195                                                         udf_sb_lvidiu(sb);
2196                 uint16_t minUDFReadRev;
2197                 uint16_t minUDFWriteRev;
2198
2199                 if (!lvidiu) {
2200                         ret = -EINVAL;
2201                         goto error_out;
2202                 }
2203                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207                                 minUDFReadRev,
2208                                 UDF_MAX_READ_VERSION);
2209                         ret = -EINVAL;
2210                         goto error_out;
2211                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212                            !(sb->s_flags & MS_RDONLY)) {
2213                         ret = -EACCES;
2214                         goto error_out;
2215                 }
2216
2217                 sbi->s_udfrev = minUDFWriteRev;
2218
2219                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223         }
2224
2225         if (!sbi->s_partitions) {
2226                 udf_warn(sb, "No partition found (2)\n");
2227                 ret = -EINVAL;
2228                 goto error_out;
2229         }
2230
2231         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232                         UDF_PART_FLAG_READ_ONLY &&
2233             !(sb->s_flags & MS_RDONLY)) {
2234                 ret = -EACCES;
2235                 goto error_out;
2236         }
2237
2238         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239                 udf_warn(sb, "No fileset found\n");
2240                 ret = -EINVAL;
2241                 goto error_out;
2242         }
2243
2244         if (!silent) {
2245                 struct timestamp ts;
2246                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248                          sbi->s_volume_ident,
2249                          le16_to_cpu(ts.year), ts.month, ts.day,
2250                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251         }
2252         if (!(sb->s_flags & MS_RDONLY)) {
2253                 udf_open_lvid(sb);
2254                 lvid_open = true;
2255         }
2256
2257         /* Assign the root inode */
2258         /* assign inodes by physical block number */
2259         /* perhaps it's not extensible enough, but for now ... */
2260         inode = udf_iget(sb, &rootdir);
2261         if (IS_ERR(inode)) {
2262                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2263                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264                 ret = PTR_ERR(inode);
2265                 goto error_out;
2266         }
2267
2268         /* Allocate a dentry for the root inode */
2269         sb->s_root = d_make_root(inode);
2270         if (!sb->s_root) {
2271                 udf_err(sb, "Couldn't allocate root dentry\n");
2272                 ret = -ENOMEM;
2273                 goto error_out;
2274         }
2275         sb->s_maxbytes = MAX_LFS_FILESIZE;
2276         sb->s_max_links = UDF_MAX_LINKS;
2277         return 0;
2278
2279 error_out:
2280         iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 #ifdef CONFIG_UDF_NLS
2283         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2284                 unload_nls(sbi->s_nls_map);
2285 #endif
2286         if (lvid_open)
2287                 udf_close_lvid(sb);
2288         brelse(sbi->s_lvid_bh);
2289         udf_sb_free_partitions(sb);
2290         kfree(sbi);
2291         sb->s_fs_info = NULL;
2292
2293         return ret;
2294 }
2295
2296 void _udf_err(struct super_block *sb, const char *function,
2297               const char *fmt, ...)
2298 {
2299         struct va_format vaf;
2300         va_list args;
2301
2302         va_start(args, fmt);
2303
2304         vaf.fmt = fmt;
2305         vaf.va = &args;
2306
2307         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308
2309         va_end(args);
2310 }
2311
2312 void _udf_warn(struct super_block *sb, const char *function,
2313                const char *fmt, ...)
2314 {
2315         struct va_format vaf;
2316         va_list args;
2317
2318         va_start(args, fmt);
2319
2320         vaf.fmt = fmt;
2321         vaf.va = &args;
2322
2323         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324
2325         va_end(args);
2326 }
2327
2328 static void udf_put_super(struct super_block *sb)
2329 {
2330         struct udf_sb_info *sbi;
2331
2332         sbi = UDF_SB(sb);
2333
2334         iput(sbi->s_vat_inode);
2335 #ifdef CONFIG_UDF_NLS
2336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337                 unload_nls(sbi->s_nls_map);
2338 #endif
2339         if (!(sb->s_flags & MS_RDONLY))
2340                 udf_close_lvid(sb);
2341         brelse(sbi->s_lvid_bh);
2342         udf_sb_free_partitions(sb);
2343         mutex_destroy(&sbi->s_alloc_mutex);
2344         kfree(sb->s_fs_info);
2345         sb->s_fs_info = NULL;
2346 }
2347
2348 static int udf_sync_fs(struct super_block *sb, int wait)
2349 {
2350         struct udf_sb_info *sbi = UDF_SB(sb);
2351
2352         mutex_lock(&sbi->s_alloc_mutex);
2353         if (sbi->s_lvid_dirty) {
2354                 /*
2355                  * Blockdevice will be synced later so we don't have to submit
2356                  * the buffer for IO
2357                  */
2358                 mark_buffer_dirty(sbi->s_lvid_bh);
2359                 sbi->s_lvid_dirty = 0;
2360         }
2361         mutex_unlock(&sbi->s_alloc_mutex);
2362
2363         return 0;
2364 }
2365
2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367 {
2368         struct super_block *sb = dentry->d_sb;
2369         struct udf_sb_info *sbi = UDF_SB(sb);
2370         struct logicalVolIntegrityDescImpUse *lvidiu;
2371         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372
2373         lvidiu = udf_sb_lvidiu(sb);
2374         buf->f_type = UDF_SUPER_MAGIC;
2375         buf->f_bsize = sb->s_blocksize;
2376         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377         buf->f_bfree = udf_count_free(sb);
2378         buf->f_bavail = buf->f_bfree;
2379         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2381                         + buf->f_bfree;
2382         buf->f_ffree = buf->f_bfree;
2383         buf->f_namelen = UDF_NAME_LEN;
2384         buf->f_fsid.val[0] = (u32)id;
2385         buf->f_fsid.val[1] = (u32)(id >> 32);
2386
2387         return 0;
2388 }
2389
2390 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391                                           struct udf_bitmap *bitmap)
2392 {
2393         struct buffer_head *bh = NULL;
2394         unsigned int accum = 0;
2395         int index;
2396         int block = 0, newblock;
2397         struct kernel_lb_addr loc;
2398         uint32_t bytes;
2399         uint8_t *ptr;
2400         uint16_t ident;
2401         struct spaceBitmapDesc *bm;
2402
2403         loc.logicalBlockNum = bitmap->s_extPosition;
2404         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406
2407         if (!bh) {
2408                 udf_err(sb, "udf_count_free failed\n");
2409                 goto out;
2410         } else if (ident != TAG_IDENT_SBD) {
2411                 brelse(bh);
2412                 udf_err(sb, "udf_count_free failed\n");
2413                 goto out;
2414         }
2415
2416         bm = (struct spaceBitmapDesc *)bh->b_data;
2417         bytes = le32_to_cpu(bm->numOfBytes);
2418         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419         ptr = (uint8_t *)bh->b_data;
2420
2421         while (bytes > 0) {
2422                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2424                                         cur_bytes * 8);
2425                 bytes -= cur_bytes;
2426                 if (bytes) {
2427                         brelse(bh);
2428                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429                         bh = udf_tread(sb, newblock);
2430                         if (!bh) {
2431                                 udf_debug("read failed\n");
2432                                 goto out;
2433                         }
2434                         index = 0;
2435                         ptr = (uint8_t *)bh->b_data;
2436                 }
2437         }
2438         brelse(bh);
2439 out:
2440         return accum;
2441 }
2442
2443 static unsigned int udf_count_free_table(struct super_block *sb,
2444                                          struct inode *table)
2445 {
2446         unsigned int accum = 0;
2447         uint32_t elen;
2448         struct kernel_lb_addr eloc;
2449         int8_t etype;
2450         struct extent_position epos;
2451
2452         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453         epos.block = UDF_I(table)->i_location;
2454         epos.offset = sizeof(struct unallocSpaceEntry);
2455         epos.bh = NULL;
2456
2457         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458                 accum += (elen >> table->i_sb->s_blocksize_bits);
2459
2460         brelse(epos.bh);
2461         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462
2463         return accum;
2464 }
2465
2466 static unsigned int udf_count_free(struct super_block *sb)
2467 {
2468         unsigned int accum = 0;
2469         struct udf_sb_info *sbi;
2470         struct udf_part_map *map;
2471
2472         sbi = UDF_SB(sb);
2473         if (sbi->s_lvid_bh) {
2474                 struct logicalVolIntegrityDesc *lvid =
2475                         (struct logicalVolIntegrityDesc *)
2476                         sbi->s_lvid_bh->b_data;
2477                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478                         accum = le32_to_cpu(
2479                                         lvid->freeSpaceTable[sbi->s_partition]);
2480                         if (accum == 0xFFFFFFFF)
2481                                 accum = 0;
2482                 }
2483         }
2484
2485         if (accum)
2486                 return accum;
2487
2488         map = &sbi->s_partmaps[sbi->s_partition];
2489         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490                 accum += udf_count_free_bitmap(sb,
2491                                                map->s_uspace.s_bitmap);
2492         }
2493         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494                 accum += udf_count_free_bitmap(sb,
2495                                                map->s_fspace.s_bitmap);
2496         }
2497         if (accum)
2498                 return accum;
2499
2500         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501                 accum += udf_count_free_table(sb,
2502                                               map->s_uspace.s_table);
2503         }
2504         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505                 accum += udf_count_free_table(sb,
2506                                               map->s_fspace.s_table);
2507         }
2508
2509         return accum;
2510 }
2511
2512 MODULE_AUTHOR("Ben Fennema");
2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514 MODULE_LICENSE("GPL");
2515 module_init(init_udf_fs)
2516 module_exit(exit_udf_fs)