IB/uverbs: Allow all DESTROY commands to succeed after disassociate
[sfrench/cifs-2.6.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294                 iput(map->s_fspace.s_table);
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299         if (map->s_partition_type == UDF_SPARABLE_MAP15)
300                 for (i = 0; i < 4; i++)
301                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302         else if (map->s_partition_type == UDF_METADATA_MAP25) {
303                 mdata = &map->s_type_specific.s_metadata;
304                 iput(mdata->s_metadata_fe);
305                 mdata->s_metadata_fe = NULL;
306
307                 iput(mdata->s_mirror_fe);
308                 mdata->s_mirror_fe = NULL;
309
310                 iput(mdata->s_bitmap_fe);
311                 mdata->s_bitmap_fe = NULL;
312         }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317         struct udf_sb_info *sbi = UDF_SB(sb);
318         int i;
319
320         if (!sbi->s_partmaps)
321                 return;
322         for (i = 0; i < sbi->s_partitions; i++)
323                 udf_free_partition(&sbi->s_partmaps[i]);
324         kfree(sbi->s_partmaps);
325         sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330         struct super_block *sb = root->d_sb;
331         struct udf_sb_info *sbi = UDF_SB(sb);
332
333         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334                 seq_puts(seq, ",nostrict");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338                 seq_puts(seq, ",unhide");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340                 seq_puts(seq, ",undelete");
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342                 seq_puts(seq, ",noadinicb");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344                 seq_puts(seq, ",shortad");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346                 seq_puts(seq, ",uid=forget");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348                 seq_puts(seq, ",gid=forget");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353         if (sbi->s_umask != 0)
354                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355         if (sbi->s_fmode != UDF_INVALID_MODE)
356                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357         if (sbi->s_dmode != UDF_INVALID_MODE)
358                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360                 seq_printf(seq, ",session=%d", sbi->s_session);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363         if (sbi->s_anchor != 0)
364                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366                 seq_puts(seq, ",utf8");
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370         return 0;
371 }
372
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *      Parse mount options.
378  *
379  * DESCRIPTION
380  *      The following mount options are supported:
381  *
382  *      gid=            Set the default group.
383  *      umask=          Set the default umask.
384  *      mode=           Set the default file permissions.
385  *      dmode=          Set the default directory permissions.
386  *      uid=            Set the default user.
387  *      bs=             Set the block size.
388  *      unhide          Show otherwise hidden files.
389  *      undelete        Show deleted files in lists.
390  *      adinicb         Embed data in the inode (default)
391  *      noadinicb       Don't embed data in the inode
392  *      shortad         Use short ad's
393  *      longad          Use long ad's (default)
394  *      nostrict        Unset strict conformance
395  *      iocharset=      Set the NLS character set
396  *
397  *      The remaining are for debugging and disaster recovery:
398  *
399  *      novrs           Skip volume sequence recognition
400  *
401  *      The following expect a offset from 0.
402  *
403  *      session=        Set the CDROM session (default= last session)
404  *      anchor=         Override standard anchor location. (default= 256)
405  *      volume=         Override the VolumeDesc location. (unused)
406  *      partition=      Override the PartitionDesc location. (unused)
407  *      lastblock=      Set the last block of the filesystem/
408  *
409  *      The following expect a offset from the partition root.
410  *
411  *      fileset=        Override the fileset block location. (unused)
412  *      rootdir=        Override the root directory location. (unused)
413  *              WARNING: overriding the rootdir to a non-directory may
414  *              yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *      options         Pointer to mount options string.
418  *      uopts           Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *      <return>        1       Mount options parsed okay.
422  *      <return>        0       Error parsing mount options.
423  *
424  * HISTORY
425  *      July 1, 1997 - Andrew E. Mileski
426  *      Written, tested, and released.
427  */
428
429 enum {
430         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434         Opt_rootdir, Opt_utf8, Opt_iocharset,
435         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436         Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440         {Opt_novrs,     "novrs"},
441         {Opt_nostrict,  "nostrict"},
442         {Opt_bs,        "bs=%u"},
443         {Opt_unhide,    "unhide"},
444         {Opt_undelete,  "undelete"},
445         {Opt_noadinicb, "noadinicb"},
446         {Opt_adinicb,   "adinicb"},
447         {Opt_shortad,   "shortad"},
448         {Opt_longad,    "longad"},
449         {Opt_uforget,   "uid=forget"},
450         {Opt_uignore,   "uid=ignore"},
451         {Opt_gforget,   "gid=forget"},
452         {Opt_gignore,   "gid=ignore"},
453         {Opt_gid,       "gid=%u"},
454         {Opt_uid,       "uid=%u"},
455         {Opt_umask,     "umask=%o"},
456         {Opt_session,   "session=%u"},
457         {Opt_lastblock, "lastblock=%u"},
458         {Opt_anchor,    "anchor=%u"},
459         {Opt_volume,    "volume=%u"},
460         {Opt_partition, "partition=%u"},
461         {Opt_fileset,   "fileset=%u"},
462         {Opt_rootdir,   "rootdir=%u"},
463         {Opt_utf8,      "utf8"},
464         {Opt_iocharset, "iocharset=%s"},
465         {Opt_fmode,     "mode=%o"},
466         {Opt_dmode,     "dmode=%o"},
467         {Opt_err,       NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471                              bool remount)
472 {
473         char *p;
474         int option;
475
476         uopt->novrs = 0;
477         uopt->session = 0xFFFFFFFF;
478         uopt->lastblock = 0;
479         uopt->anchor = 0;
480
481         if (!options)
482                 return 1;
483
484         while ((p = strsep(&options, ",")) != NULL) {
485                 substring_t args[MAX_OPT_ARGS];
486                 int token;
487                 unsigned n;
488                 if (!*p)
489                         continue;
490
491                 token = match_token(p, tokens, args);
492                 switch (token) {
493                 case Opt_novrs:
494                         uopt->novrs = 1;
495                         break;
496                 case Opt_bs:
497                         if (match_int(&args[0], &option))
498                                 return 0;
499                         n = option;
500                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501                                 return 0;
502                         uopt->blocksize = n;
503                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504                         break;
505                 case Opt_unhide:
506                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507                         break;
508                 case Opt_undelete:
509                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510                         break;
511                 case Opt_noadinicb:
512                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513                         break;
514                 case Opt_adinicb:
515                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516                         break;
517                 case Opt_shortad:
518                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519                         break;
520                 case Opt_longad:
521                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522                         break;
523                 case Opt_gid:
524                         if (match_int(args, &option))
525                                 return 0;
526                         uopt->gid = make_kgid(current_user_ns(), option);
527                         if (!gid_valid(uopt->gid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
530                         break;
531                 case Opt_uid:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->uid = make_kuid(current_user_ns(), option);
535                         if (!uid_valid(uopt->uid))
536                                 return 0;
537                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
538                         break;
539                 case Opt_umask:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->umask = option;
543                         break;
544                 case Opt_nostrict:
545                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546                         break;
547                 case Opt_session:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->session = option;
551                         if (!remount)
552                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553                         break;
554                 case Opt_lastblock:
555                         if (match_int(args, &option))
556                                 return 0;
557                         uopt->lastblock = option;
558                         if (!remount)
559                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560                         break;
561                 case Opt_anchor:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->anchor = option;
565                         break;
566                 case Opt_volume:
567                 case Opt_partition:
568                 case Opt_fileset:
569                 case Opt_rootdir:
570                         /* Ignored (never implemented properly) */
571                         break;
572                 case Opt_utf8:
573                         uopt->flags |= (1 << UDF_FLAG_UTF8);
574                         break;
575                 case Opt_iocharset:
576                         if (!remount) {
577                                 if (uopt->nls_map)
578                                         unload_nls(uopt->nls_map);
579                                 uopt->nls_map = load_nls(args[0].from);
580                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581                         }
582                         break;
583                 case Opt_uforget:
584                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585                         break;
586                 case Opt_uignore:
587                 case Opt_gignore:
588                         /* These options are superseeded by uid=<number> */
589                         break;
590                 case Opt_gforget:
591                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592                         break;
593                 case Opt_fmode:
594                         if (match_octal(args, &option))
595                                 return 0;
596                         uopt->fmode = option & 0777;
597                         break;
598                 case Opt_dmode:
599                         if (match_octal(args, &option))
600                                 return 0;
601                         uopt->dmode = option & 0777;
602                         break;
603                 default:
604                         pr_err("bad mount option \"%s\" or missing value\n", p);
605                         return 0;
606                 }
607         }
608         return 1;
609 }
610
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613         struct udf_options uopt;
614         struct udf_sb_info *sbi = UDF_SB(sb);
615         int error = 0;
616         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617
618         sync_filesystem(sb);
619         if (lvidiu) {
620                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622                         return -EACCES;
623         }
624
625         uopt.flags = sbi->s_flags;
626         uopt.uid   = sbi->s_uid;
627         uopt.gid   = sbi->s_gid;
628         uopt.umask = sbi->s_umask;
629         uopt.fmode = sbi->s_fmode;
630         uopt.dmode = sbi->s_dmode;
631         uopt.nls_map = NULL;
632
633         if (!udf_parse_options(options, &uopt, true))
634                 return -EINVAL;
635
636         write_lock(&sbi->s_cred_lock);
637         sbi->s_flags = uopt.flags;
638         sbi->s_uid   = uopt.uid;
639         sbi->s_gid   = uopt.gid;
640         sbi->s_umask = uopt.umask;
641         sbi->s_fmode = uopt.fmode;
642         sbi->s_dmode = uopt.dmode;
643         write_unlock(&sbi->s_cred_lock);
644
645         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646                 goto out_unlock;
647
648         if (*flags & SB_RDONLY)
649                 udf_close_lvid(sb);
650         else
651                 udf_open_lvid(sb);
652
653 out_unlock:
654         return error;
655 }
656
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661         struct volStructDesc *vsd = NULL;
662         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663         int sectorsize;
664         struct buffer_head *bh = NULL;
665         int nsr02 = 0;
666         int nsr03 = 0;
667         struct udf_sb_info *sbi;
668
669         sbi = UDF_SB(sb);
670         if (sb->s_blocksize < sizeof(struct volStructDesc))
671                 sectorsize = sizeof(struct volStructDesc);
672         else
673                 sectorsize = sb->s_blocksize;
674
675         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676
677         udf_debug("Starting at sector %u (%lu byte sectors)\n",
678                   (unsigned int)(sector >> sb->s_blocksize_bits),
679                   sb->s_blocksize);
680         /* Process the sequence (if applicable). The hard limit on the sector
681          * offset is arbitrary, hopefully large enough so that all valid UDF
682          * filesystems will be recognised. There is no mention of an upper
683          * bound to the size of the volume recognition area in the standard.
684          *  The limit will prevent the code to read all the sectors of a
685          * specially crafted image (like a bluray disc full of CD001 sectors),
686          * potentially causing minutes or even hours of uninterruptible I/O
687          * activity. This actually happened with uninitialised SSD partitions
688          * (all 0xFF) before the check for the limit and all valid IDs were
689          * added */
690         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691              sector += sectorsize) {
692                 /* Read a block */
693                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694                 if (!bh)
695                         break;
696
697                 /* Look for ISO  descriptors */
698                 vsd = (struct volStructDesc *)(bh->b_data +
699                                               (sector & (sb->s_blocksize - 1)));
700
701                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702                                     VSD_STD_ID_LEN)) {
703                         switch (vsd->structType) {
704                         case 0:
705                                 udf_debug("ISO9660 Boot Record found\n");
706                                 break;
707                         case 1:
708                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
709                                 break;
710                         case 2:
711                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712                                 break;
713                         case 3:
714                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
715                                 break;
716                         case 255:
717                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718                                 break;
719                         default:
720                                 udf_debug("ISO9660 VRS (%u) found\n",
721                                           vsd->structType);
722                                 break;
723                         }
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725                                     VSD_STD_ID_LEN))
726                         ; /* nothing */
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728                                     VSD_STD_ID_LEN)) {
729                         brelse(bh);
730                         break;
731                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732                                     VSD_STD_ID_LEN))
733                         nsr02 = sector;
734                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735                                     VSD_STD_ID_LEN))
736                         nsr03 = sector;
737                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738                                     VSD_STD_ID_LEN))
739                         ; /* nothing */
740                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741                                     VSD_STD_ID_LEN))
742                         ; /* nothing */
743                 else {
744                         /* invalid id : end of volume recognition area */
745                         brelse(bh);
746                         break;
747                 }
748                 brelse(bh);
749         }
750
751         if (nsr03)
752                 return nsr03;
753         else if (nsr02)
754                 return nsr02;
755         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756                         VSD_FIRST_SECTOR_OFFSET)
757                 return -1;
758         else
759                 return 0;
760 }
761
762 static int udf_find_fileset(struct super_block *sb,
763                             struct kernel_lb_addr *fileset,
764                             struct kernel_lb_addr *root)
765 {
766         struct buffer_head *bh = NULL;
767         long lastblock;
768         uint16_t ident;
769         struct udf_sb_info *sbi;
770
771         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
772             fileset->partitionReferenceNum != 0xFFFF) {
773                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
774
775                 if (!bh) {
776                         return 1;
777                 } else if (ident != TAG_IDENT_FSD) {
778                         brelse(bh);
779                         return 1;
780                 }
781
782         }
783
784         sbi = UDF_SB(sb);
785         if (!bh) {
786                 /* Search backwards through the partitions */
787                 struct kernel_lb_addr newfileset;
788
789 /* --> cvg: FIXME - is it reasonable? */
790                 return 1;
791
792                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
793                      (newfileset.partitionReferenceNum != 0xFFFF &&
794                       fileset->logicalBlockNum == 0xFFFFFFFF &&
795                       fileset->partitionReferenceNum == 0xFFFF);
796                      newfileset.partitionReferenceNum--) {
797                         lastblock = sbi->s_partmaps
798                                         [newfileset.partitionReferenceNum]
799                                                 .s_partition_len;
800                         newfileset.logicalBlockNum = 0;
801
802                         do {
803                                 bh = udf_read_ptagged(sb, &newfileset, 0,
804                                                       &ident);
805                                 if (!bh) {
806                                         newfileset.logicalBlockNum++;
807                                         continue;
808                                 }
809
810                                 switch (ident) {
811                                 case TAG_IDENT_SBD:
812                                 {
813                                         struct spaceBitmapDesc *sp;
814                                         sp = (struct spaceBitmapDesc *)
815                                                                 bh->b_data;
816                                         newfileset.logicalBlockNum += 1 +
817                                                 ((le32_to_cpu(sp->numOfBytes) +
818                                                   sizeof(struct spaceBitmapDesc)
819                                                   - 1) >> sb->s_blocksize_bits);
820                                         brelse(bh);
821                                         break;
822                                 }
823                                 case TAG_IDENT_FSD:
824                                         *fileset = newfileset;
825                                         break;
826                                 default:
827                                         newfileset.logicalBlockNum++;
828                                         brelse(bh);
829                                         bh = NULL;
830                                         break;
831                                 }
832                         } while (newfileset.logicalBlockNum < lastblock &&
833                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
834                                  fileset->partitionReferenceNum == 0xFFFF);
835                 }
836         }
837
838         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
839              fileset->partitionReferenceNum != 0xFFFF) && bh) {
840                 udf_debug("Fileset at block=%u, partition=%u\n",
841                           fileset->logicalBlockNum,
842                           fileset->partitionReferenceNum);
843
844                 sbi->s_partition = fileset->partitionReferenceNum;
845                 udf_load_fileset(sb, bh, root);
846                 brelse(bh);
847                 return 0;
848         }
849         return 1;
850 }
851
852 /*
853  * Load primary Volume Descriptor Sequence
854  *
855  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856  * should be tried.
857  */
858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859 {
860         struct primaryVolDesc *pvoldesc;
861         uint8_t *outstr;
862         struct buffer_head *bh;
863         uint16_t ident;
864         int ret = -ENOMEM;
865 #ifdef UDFFS_DEBUG
866         struct timestamp *ts;
867 #endif
868
869         outstr = kmalloc(128, GFP_NOFS);
870         if (!outstr)
871                 return -ENOMEM;
872
873         bh = udf_read_tagged(sb, block, block, &ident);
874         if (!bh) {
875                 ret = -EAGAIN;
876                 goto out2;
877         }
878
879         if (ident != TAG_IDENT_PVD) {
880                 ret = -EIO;
881                 goto out_bh;
882         }
883
884         pvoldesc = (struct primaryVolDesc *)bh->b_data;
885
886         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
887                               pvoldesc->recordingDateAndTime);
888 #ifdef UDFFS_DEBUG
889         ts = &pvoldesc->recordingDateAndTime;
890         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
891                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
892                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
893 #endif
894
895
896         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
897         if (ret < 0)
898                 goto out_bh;
899
900         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
901         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
902
903         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
904         if (ret < 0)
905                 goto out_bh;
906
907         outstr[ret] = 0;
908         udf_debug("volSetIdent[] = '%s'\n", outstr);
909
910         ret = 0;
911 out_bh:
912         brelse(bh);
913 out2:
914         kfree(outstr);
915         return ret;
916 }
917
918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
919                                         u32 meta_file_loc, u32 partition_ref)
920 {
921         struct kernel_lb_addr addr;
922         struct inode *metadata_fe;
923
924         addr.logicalBlockNum = meta_file_loc;
925         addr.partitionReferenceNum = partition_ref;
926
927         metadata_fe = udf_iget_special(sb, &addr);
928
929         if (IS_ERR(metadata_fe)) {
930                 udf_warn(sb, "metadata inode efe not found\n");
931                 return metadata_fe;
932         }
933         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
934                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
935                 iput(metadata_fe);
936                 return ERR_PTR(-EIO);
937         }
938
939         return metadata_fe;
940 }
941
942 static int udf_load_metadata_files(struct super_block *sb, int partition,
943                                    int type1_index)
944 {
945         struct udf_sb_info *sbi = UDF_SB(sb);
946         struct udf_part_map *map;
947         struct udf_meta_data *mdata;
948         struct kernel_lb_addr addr;
949         struct inode *fe;
950
951         map = &sbi->s_partmaps[partition];
952         mdata = &map->s_type_specific.s_metadata;
953         mdata->s_phys_partition_ref = type1_index;
954
955         /* metadata address */
956         udf_debug("Metadata file location: block = %u part = %u\n",
957                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
958
959         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
960                                          mdata->s_phys_partition_ref);
961         if (IS_ERR(fe)) {
962                 /* mirror file entry */
963                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
964                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
965
966                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
967                                                  mdata->s_phys_partition_ref);
968
969                 if (IS_ERR(fe)) {
970                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
971                         return PTR_ERR(fe);
972                 }
973                 mdata->s_mirror_fe = fe;
974         } else
975                 mdata->s_metadata_fe = fe;
976
977
978         /*
979          * bitmap file entry
980          * Note:
981          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
982         */
983         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
984                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
985                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
986
987                 udf_debug("Bitmap file location: block = %u part = %u\n",
988                           addr.logicalBlockNum, addr.partitionReferenceNum);
989
990                 fe = udf_iget_special(sb, &addr);
991                 if (IS_ERR(fe)) {
992                         if (sb_rdonly(sb))
993                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
994                         else {
995                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
996                                 return PTR_ERR(fe);
997                         }
998                 } else
999                         mdata->s_bitmap_fe = fe;
1000         }
1001
1002         udf_debug("udf_load_metadata_files Ok\n");
1003         return 0;
1004 }
1005
1006 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1007                              struct kernel_lb_addr *root)
1008 {
1009         struct fileSetDesc *fset;
1010
1011         fset = (struct fileSetDesc *)bh->b_data;
1012
1013         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1014
1015         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1016
1017         udf_debug("Rootdir at block=%u, partition=%u\n",
1018                   root->logicalBlockNum, root->partitionReferenceNum);
1019 }
1020
1021 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1022 {
1023         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1024         return DIV_ROUND_UP(map->s_partition_len +
1025                             (sizeof(struct spaceBitmapDesc) << 3),
1026                             sb->s_blocksize * 8);
1027 }
1028
1029 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1030 {
1031         struct udf_bitmap *bitmap;
1032         int nr_groups;
1033         int size;
1034
1035         nr_groups = udf_compute_nr_groups(sb, index);
1036         size = sizeof(struct udf_bitmap) +
1037                 (sizeof(struct buffer_head *) * nr_groups);
1038
1039         if (size <= PAGE_SIZE)
1040                 bitmap = kzalloc(size, GFP_KERNEL);
1041         else
1042                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1043
1044         if (!bitmap)
1045                 return NULL;
1046
1047         bitmap->s_nr_groups = nr_groups;
1048         return bitmap;
1049 }
1050
1051 static int udf_fill_partdesc_info(struct super_block *sb,
1052                 struct partitionDesc *p, int p_index)
1053 {
1054         struct udf_part_map *map;
1055         struct udf_sb_info *sbi = UDF_SB(sb);
1056         struct partitionHeaderDesc *phd;
1057
1058         map = &sbi->s_partmaps[p_index];
1059
1060         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1061         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1062
1063         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1064                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1065         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1066                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1067         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1068                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1069         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1070                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1071
1072         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1073                   p_index, map->s_partition_type,
1074                   map->s_partition_root, map->s_partition_len);
1075
1076         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1077             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1078                 return 0;
1079
1080         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1081         if (phd->unallocSpaceTable.extLength) {
1082                 struct kernel_lb_addr loc = {
1083                         .logicalBlockNum = le32_to_cpu(
1084                                 phd->unallocSpaceTable.extPosition),
1085                         .partitionReferenceNum = p_index,
1086                 };
1087                 struct inode *inode;
1088
1089                 inode = udf_iget_special(sb, &loc);
1090                 if (IS_ERR(inode)) {
1091                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1092                                   p_index);
1093                         return PTR_ERR(inode);
1094                 }
1095                 map->s_uspace.s_table = inode;
1096                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1097                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1098                           p_index, map->s_uspace.s_table->i_ino);
1099         }
1100
1101         if (phd->unallocSpaceBitmap.extLength) {
1102                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1103                 if (!bitmap)
1104                         return -ENOMEM;
1105                 map->s_uspace.s_bitmap = bitmap;
1106                 bitmap->s_extPosition = le32_to_cpu(
1107                                 phd->unallocSpaceBitmap.extPosition);
1108                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1109                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1110                           p_index, bitmap->s_extPosition);
1111         }
1112
1113         if (phd->partitionIntegrityTable.extLength)
1114                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1115
1116         if (phd->freedSpaceTable.extLength) {
1117                 struct kernel_lb_addr loc = {
1118                         .logicalBlockNum = le32_to_cpu(
1119                                 phd->freedSpaceTable.extPosition),
1120                         .partitionReferenceNum = p_index,
1121                 };
1122                 struct inode *inode;
1123
1124                 inode = udf_iget_special(sb, &loc);
1125                 if (IS_ERR(inode)) {
1126                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1127                                   p_index);
1128                         return PTR_ERR(inode);
1129                 }
1130                 map->s_fspace.s_table = inode;
1131                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1132                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1133                           p_index, map->s_fspace.s_table->i_ino);
1134         }
1135
1136         if (phd->freedSpaceBitmap.extLength) {
1137                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138                 if (!bitmap)
1139                         return -ENOMEM;
1140                 map->s_fspace.s_bitmap = bitmap;
1141                 bitmap->s_extPosition = le32_to_cpu(
1142                                 phd->freedSpaceBitmap.extPosition);
1143                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1144                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1145                           p_index, bitmap->s_extPosition);
1146         }
1147         return 0;
1148 }
1149
1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151                                int type1_index, sector_t start_block)
1152 {
1153         struct udf_sb_info *sbi = UDF_SB(sb);
1154         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155         sector_t vat_block;
1156         struct kernel_lb_addr ino;
1157         struct inode *inode;
1158
1159         /*
1160          * VAT file entry is in the last recorded block. Some broken disks have
1161          * it a few blocks before so try a bit harder...
1162          */
1163         ino.partitionReferenceNum = type1_index;
1164         for (vat_block = start_block;
1165              vat_block >= map->s_partition_root &&
1166              vat_block >= start_block - 3; vat_block--) {
1167                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168                 inode = udf_iget_special(sb, &ino);
1169                 if (!IS_ERR(inode)) {
1170                         sbi->s_vat_inode = inode;
1171                         break;
1172                 }
1173         }
1174 }
1175
1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177 {
1178         struct udf_sb_info *sbi = UDF_SB(sb);
1179         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180         struct buffer_head *bh = NULL;
1181         struct udf_inode_info *vati;
1182         uint32_t pos;
1183         struct virtualAllocationTable20 *vat20;
1184         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1185                           sb->s_blocksize_bits;
1186
1187         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1188         if (!sbi->s_vat_inode &&
1189             sbi->s_last_block != blocks - 1) {
1190                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1191                           (unsigned long)sbi->s_last_block,
1192                           (unsigned long)blocks - 1);
1193                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1194         }
1195         if (!sbi->s_vat_inode)
1196                 return -EIO;
1197
1198         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1199                 map->s_type_specific.s_virtual.s_start_offset = 0;
1200                 map->s_type_specific.s_virtual.s_num_entries =
1201                         (sbi->s_vat_inode->i_size - 36) >> 2;
1202         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1203                 vati = UDF_I(sbi->s_vat_inode);
1204                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1205                         pos = udf_block_map(sbi->s_vat_inode, 0);
1206                         bh = sb_bread(sb, pos);
1207                         if (!bh)
1208                                 return -EIO;
1209                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1210                 } else {
1211                         vat20 = (struct virtualAllocationTable20 *)
1212                                                         vati->i_ext.i_data;
1213                 }
1214
1215                 map->s_type_specific.s_virtual.s_start_offset =
1216                         le16_to_cpu(vat20->lengthHeader);
1217                 map->s_type_specific.s_virtual.s_num_entries =
1218                         (sbi->s_vat_inode->i_size -
1219                                 map->s_type_specific.s_virtual.
1220                                         s_start_offset) >> 2;
1221                 brelse(bh);
1222         }
1223         return 0;
1224 }
1225
1226 /*
1227  * Load partition descriptor block
1228  *
1229  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1230  * sequence.
1231  */
1232 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1233 {
1234         struct buffer_head *bh;
1235         struct partitionDesc *p;
1236         struct udf_part_map *map;
1237         struct udf_sb_info *sbi = UDF_SB(sb);
1238         int i, type1_idx;
1239         uint16_t partitionNumber;
1240         uint16_t ident;
1241         int ret;
1242
1243         bh = udf_read_tagged(sb, block, block, &ident);
1244         if (!bh)
1245                 return -EAGAIN;
1246         if (ident != TAG_IDENT_PD) {
1247                 ret = 0;
1248                 goto out_bh;
1249         }
1250
1251         p = (struct partitionDesc *)bh->b_data;
1252         partitionNumber = le16_to_cpu(p->partitionNumber);
1253
1254         /* First scan for TYPE1 and SPARABLE partitions */
1255         for (i = 0; i < sbi->s_partitions; i++) {
1256                 map = &sbi->s_partmaps[i];
1257                 udf_debug("Searching map: (%u == %u)\n",
1258                           map->s_partition_num, partitionNumber);
1259                 if (map->s_partition_num == partitionNumber &&
1260                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1261                      map->s_partition_type == UDF_SPARABLE_MAP15))
1262                         break;
1263         }
1264
1265         if (i >= sbi->s_partitions) {
1266                 udf_debug("Partition (%u) not found in partition map\n",
1267                           partitionNumber);
1268                 ret = 0;
1269                 goto out_bh;
1270         }
1271
1272         ret = udf_fill_partdesc_info(sb, p, i);
1273         if (ret < 0)
1274                 goto out_bh;
1275
1276         /*
1277          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1278          * PHYSICAL partitions are already set up
1279          */
1280         type1_idx = i;
1281 #ifdef UDFFS_DEBUG
1282         map = NULL; /* supress 'maybe used uninitialized' warning */
1283 #endif
1284         for (i = 0; i < sbi->s_partitions; i++) {
1285                 map = &sbi->s_partmaps[i];
1286
1287                 if (map->s_partition_num == partitionNumber &&
1288                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290                      map->s_partition_type == UDF_METADATA_MAP25))
1291                         break;
1292         }
1293
1294         if (i >= sbi->s_partitions) {
1295                 ret = 0;
1296                 goto out_bh;
1297         }
1298
1299         ret = udf_fill_partdesc_info(sb, p, i);
1300         if (ret < 0)
1301                 goto out_bh;
1302
1303         if (map->s_partition_type == UDF_METADATA_MAP25) {
1304                 ret = udf_load_metadata_files(sb, i, type1_idx);
1305                 if (ret < 0) {
1306                         udf_err(sb, "error loading MetaData partition map %d\n",
1307                                 i);
1308                         goto out_bh;
1309                 }
1310         } else {
1311                 /*
1312                  * If we have a partition with virtual map, we don't handle
1313                  * writing to it (we overwrite blocks instead of relocating
1314                  * them).
1315                  */
1316                 if (!sb_rdonly(sb)) {
1317                         ret = -EACCES;
1318                         goto out_bh;
1319                 }
1320                 ret = udf_load_vat(sb, i, type1_idx);
1321                 if (ret < 0)
1322                         goto out_bh;
1323         }
1324         ret = 0;
1325 out_bh:
1326         /* In case loading failed, we handle cleanup in udf_fill_super */
1327         brelse(bh);
1328         return ret;
1329 }
1330
1331 static int udf_load_sparable_map(struct super_block *sb,
1332                                  struct udf_part_map *map,
1333                                  struct sparablePartitionMap *spm)
1334 {
1335         uint32_t loc;
1336         uint16_t ident;
1337         struct sparingTable *st;
1338         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339         int i;
1340         struct buffer_head *bh;
1341
1342         map->s_partition_type = UDF_SPARABLE_MAP15;
1343         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344         if (!is_power_of_2(sdata->s_packet_len)) {
1345                 udf_err(sb, "error loading logical volume descriptor: "
1346                         "Invalid packet length %u\n",
1347                         (unsigned)sdata->s_packet_len);
1348                 return -EIO;
1349         }
1350         if (spm->numSparingTables > 4) {
1351                 udf_err(sb, "error loading logical volume descriptor: "
1352                         "Too many sparing tables (%d)\n",
1353                         (int)spm->numSparingTables);
1354                 return -EIO;
1355         }
1356
1357         for (i = 0; i < spm->numSparingTables; i++) {
1358                 loc = le32_to_cpu(spm->locSparingTable[i]);
1359                 bh = udf_read_tagged(sb, loc, loc, &ident);
1360                 if (!bh)
1361                         continue;
1362
1363                 st = (struct sparingTable *)bh->b_data;
1364                 if (ident != 0 ||
1365                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366                             strlen(UDF_ID_SPARING)) ||
1367                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368                                                         sb->s_blocksize) {
1369                         brelse(bh);
1370                         continue;
1371                 }
1372
1373                 sdata->s_spar_map[i] = bh;
1374         }
1375         map->s_partition_func = udf_get_pblock_spar15;
1376         return 0;
1377 }
1378
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380                                struct kernel_lb_addr *fileset)
1381 {
1382         struct logicalVolDesc *lvd;
1383         int i, offset;
1384         uint8_t type;
1385         struct udf_sb_info *sbi = UDF_SB(sb);
1386         struct genericPartitionMap *gpm;
1387         uint16_t ident;
1388         struct buffer_head *bh;
1389         unsigned int table_len;
1390         int ret;
1391
1392         bh = udf_read_tagged(sb, block, block, &ident);
1393         if (!bh)
1394                 return -EAGAIN;
1395         BUG_ON(ident != TAG_IDENT_LVD);
1396         lvd = (struct logicalVolDesc *)bh->b_data;
1397         table_len = le32_to_cpu(lvd->mapTableLength);
1398         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399                 udf_err(sb, "error loading logical volume descriptor: "
1400                         "Partition table too long (%u > %lu)\n", table_len,
1401                         sb->s_blocksize - sizeof(*lvd));
1402                 ret = -EIO;
1403                 goto out_bh;
1404         }
1405
1406         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1407         if (ret)
1408                 goto out_bh;
1409
1410         for (i = 0, offset = 0;
1411              i < sbi->s_partitions && offset < table_len;
1412              i++, offset += gpm->partitionMapLength) {
1413                 struct udf_part_map *map = &sbi->s_partmaps[i];
1414                 gpm = (struct genericPartitionMap *)
1415                                 &(lvd->partitionMaps[offset]);
1416                 type = gpm->partitionMapType;
1417                 if (type == 1) {
1418                         struct genericPartitionMap1 *gpm1 =
1419                                 (struct genericPartitionMap1 *)gpm;
1420                         map->s_partition_type = UDF_TYPE1_MAP15;
1421                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1422                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1423                         map->s_partition_func = NULL;
1424                 } else if (type == 2) {
1425                         struct udfPartitionMap2 *upm2 =
1426                                                 (struct udfPartitionMap2 *)gpm;
1427                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1428                                                 strlen(UDF_ID_VIRTUAL))) {
1429                                 u16 suf =
1430                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1431                                                         identSuffix)[0]);
1432                                 if (suf < 0x0200) {
1433                                         map->s_partition_type =
1434                                                         UDF_VIRTUAL_MAP15;
1435                                         map->s_partition_func =
1436                                                         udf_get_pblock_virt15;
1437                                 } else {
1438                                         map->s_partition_type =
1439                                                         UDF_VIRTUAL_MAP20;
1440                                         map->s_partition_func =
1441                                                         udf_get_pblock_virt20;
1442                                 }
1443                         } else if (!strncmp(upm2->partIdent.ident,
1444                                                 UDF_ID_SPARABLE,
1445                                                 strlen(UDF_ID_SPARABLE))) {
1446                                 ret = udf_load_sparable_map(sb, map,
1447                                         (struct sparablePartitionMap *)gpm);
1448                                 if (ret < 0)
1449                                         goto out_bh;
1450                         } else if (!strncmp(upm2->partIdent.ident,
1451                                                 UDF_ID_METADATA,
1452                                                 strlen(UDF_ID_METADATA))) {
1453                                 struct udf_meta_data *mdata =
1454                                         &map->s_type_specific.s_metadata;
1455                                 struct metadataPartitionMap *mdm =
1456                                                 (struct metadataPartitionMap *)
1457                                                 &(lvd->partitionMaps[offset]);
1458                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1459                                           i, type, UDF_ID_METADATA);
1460
1461                                 map->s_partition_type = UDF_METADATA_MAP25;
1462                                 map->s_partition_func = udf_get_pblock_meta25;
1463
1464                                 mdata->s_meta_file_loc   =
1465                                         le32_to_cpu(mdm->metadataFileLoc);
1466                                 mdata->s_mirror_file_loc =
1467                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1468                                 mdata->s_bitmap_file_loc =
1469                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1470                                 mdata->s_alloc_unit_size =
1471                                         le32_to_cpu(mdm->allocUnitSize);
1472                                 mdata->s_align_unit_size =
1473                                         le16_to_cpu(mdm->alignUnitSize);
1474                                 if (mdm->flags & 0x01)
1475                                         mdata->s_flags |= MF_DUPLICATE_MD;
1476
1477                                 udf_debug("Metadata Ident suffix=0x%x\n",
1478                                           le16_to_cpu(*(__le16 *)
1479                                                       mdm->partIdent.identSuffix));
1480                                 udf_debug("Metadata part num=%u\n",
1481                                           le16_to_cpu(mdm->partitionNum));
1482                                 udf_debug("Metadata part alloc unit size=%u\n",
1483                                           le32_to_cpu(mdm->allocUnitSize));
1484                                 udf_debug("Metadata file loc=%u\n",
1485                                           le32_to_cpu(mdm->metadataFileLoc));
1486                                 udf_debug("Mirror file loc=%u\n",
1487                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1488                                 udf_debug("Bitmap file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1490                                 udf_debug("Flags: %d %u\n",
1491                                           mdata->s_flags, mdm->flags);
1492                         } else {
1493                                 udf_debug("Unknown ident: %s\n",
1494                                           upm2->partIdent.ident);
1495                                 continue;
1496                         }
1497                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1498                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1499                 }
1500                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1501                           i, map->s_partition_num, type, map->s_volumeseqnum);
1502         }
1503
1504         if (fileset) {
1505                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1506
1507                 *fileset = lelb_to_cpu(la->extLocation);
1508                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1509                           fileset->logicalBlockNum,
1510                           fileset->partitionReferenceNum);
1511         }
1512         if (lvd->integritySeqExt.extLength)
1513                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1514         ret = 0;
1515 out_bh:
1516         brelse(bh);
1517         return ret;
1518 }
1519
1520 /*
1521  * Find the prevailing Logical Volume Integrity Descriptor.
1522  */
1523 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1524 {
1525         struct buffer_head *bh, *final_bh;
1526         uint16_t ident;
1527         struct udf_sb_info *sbi = UDF_SB(sb);
1528         struct logicalVolIntegrityDesc *lvid;
1529         int indirections = 0;
1530
1531         while (++indirections <= UDF_MAX_LVID_NESTING) {
1532                 final_bh = NULL;
1533                 while (loc.extLength > 0 &&
1534                         (bh = udf_read_tagged(sb, loc.extLocation,
1535                                         loc.extLocation, &ident))) {
1536                         if (ident != TAG_IDENT_LVID) {
1537                                 brelse(bh);
1538                                 break;
1539                         }
1540
1541                         brelse(final_bh);
1542                         final_bh = bh;
1543
1544                         loc.extLength -= sb->s_blocksize;
1545                         loc.extLocation++;
1546                 }
1547
1548                 if (!final_bh)
1549                         return;
1550
1551                 brelse(sbi->s_lvid_bh);
1552                 sbi->s_lvid_bh = final_bh;
1553
1554                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1555                 if (lvid->nextIntegrityExt.extLength == 0)
1556                         return;
1557
1558                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1559         }
1560
1561         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1562                 UDF_MAX_LVID_NESTING);
1563         brelse(sbi->s_lvid_bh);
1564         sbi->s_lvid_bh = NULL;
1565 }
1566
1567 /*
1568  * Step for reallocation of table of partition descriptor sequence numbers.
1569  * Must be power of 2.
1570  */
1571 #define PART_DESC_ALLOC_STEP 32
1572
1573 struct desc_seq_scan_data {
1574         struct udf_vds_record vds[VDS_POS_LENGTH];
1575         unsigned int size_part_descs;
1576         struct udf_vds_record *part_descs_loc;
1577 };
1578
1579 static struct udf_vds_record *handle_partition_descriptor(
1580                                 struct buffer_head *bh,
1581                                 struct desc_seq_scan_data *data)
1582 {
1583         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1584         int partnum;
1585
1586         partnum = le16_to_cpu(desc->partitionNumber);
1587         if (partnum >= data->size_part_descs) {
1588                 struct udf_vds_record *new_loc;
1589                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1590
1591                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1592                 if (!new_loc)
1593                         return ERR_PTR(-ENOMEM);
1594                 memcpy(new_loc, data->part_descs_loc,
1595                        data->size_part_descs * sizeof(*new_loc));
1596                 kfree(data->part_descs_loc);
1597                 data->part_descs_loc = new_loc;
1598                 data->size_part_descs = new_size;
1599         }
1600         return &(data->part_descs_loc[partnum]);
1601 }
1602
1603
1604 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1605                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1606 {
1607         switch (ident) {
1608         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1609                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1610         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1611                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1612         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1613                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1614         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1615                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1616         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1617                 return handle_partition_descriptor(bh, data);
1618         }
1619         return NULL;
1620 }
1621
1622 /*
1623  * Process a main/reserve volume descriptor sequence.
1624  *   @block             First block of first extent of the sequence.
1625  *   @lastblock         Lastblock of first extent of the sequence.
1626  *   @fileset           There we store extent containing root fileset
1627  *
1628  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1629  * sequence
1630  */
1631 static noinline int udf_process_sequence(
1632                 struct super_block *sb,
1633                 sector_t block, sector_t lastblock,
1634                 struct kernel_lb_addr *fileset)
1635 {
1636         struct buffer_head *bh = NULL;
1637         struct udf_vds_record *curr;
1638         struct generic_desc *gd;
1639         struct volDescPtr *vdp;
1640         bool done = false;
1641         uint32_t vdsn;
1642         uint16_t ident;
1643         int ret;
1644         unsigned int indirections = 0;
1645         struct desc_seq_scan_data data;
1646         unsigned int i;
1647
1648         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1649         data.size_part_descs = PART_DESC_ALLOC_STEP;
1650         data.part_descs_loc = kcalloc(data.size_part_descs,
1651                                       sizeof(*data.part_descs_loc),
1652                                       GFP_KERNEL);
1653         if (!data.part_descs_loc)
1654                 return -ENOMEM;
1655
1656         /*
1657          * Read the main descriptor sequence and find which descriptors
1658          * are in it.
1659          */
1660         for (; (!done && block <= lastblock); block++) {
1661
1662                 bh = udf_read_tagged(sb, block, block, &ident);
1663                 if (!bh)
1664                         break;
1665
1666                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1667                 gd = (struct generic_desc *)bh->b_data;
1668                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1669                 switch (ident) {
1670                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1671                         if (++indirections > UDF_MAX_TD_NESTING) {
1672                                 udf_err(sb, "too many Volume Descriptor "
1673                                         "Pointers (max %u supported)\n",
1674                                         UDF_MAX_TD_NESTING);
1675                                 brelse(bh);
1676                                 return -EIO;
1677                         }
1678
1679                         vdp = (struct volDescPtr *)bh->b_data;
1680                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1681                         lastblock = le32_to_cpu(
1682                                 vdp->nextVolDescSeqExt.extLength) >>
1683                                 sb->s_blocksize_bits;
1684                         lastblock += block - 1;
1685                         /* For loop is going to increment 'block' again */
1686                         block--;
1687                         break;
1688                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1689                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1690                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1691                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1692                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1693                         curr = get_volume_descriptor_record(ident, bh, &data);
1694                         if (IS_ERR(curr)) {
1695                                 brelse(bh);
1696                                 return PTR_ERR(curr);
1697                         }
1698                         /* Descriptor we don't care about? */
1699                         if (!curr)
1700                                 break;
1701                         if (vdsn >= curr->volDescSeqNum) {
1702                                 curr->volDescSeqNum = vdsn;
1703                                 curr->block = block;
1704                         }
1705                         break;
1706                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1707                         done = true;
1708                         break;
1709                 }
1710                 brelse(bh);
1711         }
1712         /*
1713          * Now read interesting descriptors again and process them
1714          * in a suitable order
1715          */
1716         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718                 return -EAGAIN;
1719         }
1720         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721         if (ret < 0)
1722                 return ret;
1723
1724         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725                 ret = udf_load_logicalvol(sb,
1726                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727                                 fileset);
1728                 if (ret < 0)
1729                         return ret;
1730         }
1731
1732         /* Now handle prevailing Partition Descriptors */
1733         for (i = 0; i < data.size_part_descs; i++) {
1734                 if (data.part_descs_loc[i].block) {
1735                         ret = udf_load_partdesc(sb,
1736                                                 data.part_descs_loc[i].block);
1737                         if (ret < 0)
1738                                 return ret;
1739                 }
1740         }
1741
1742         return 0;
1743 }
1744
1745 /*
1746  * Load Volume Descriptor Sequence described by anchor in bh
1747  *
1748  * Returns <0 on error, 0 on success
1749  */
1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1751                              struct kernel_lb_addr *fileset)
1752 {
1753         struct anchorVolDescPtr *anchor;
1754         sector_t main_s, main_e, reserve_s, reserve_e;
1755         int ret;
1756
1757         anchor = (struct anchorVolDescPtr *)bh->b_data;
1758
1759         /* Locate the main sequence */
1760         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1761         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1762         main_e = main_e >> sb->s_blocksize_bits;
1763         main_e += main_s - 1;
1764
1765         /* Locate the reserve sequence */
1766         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1767         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1768         reserve_e = reserve_e >> sb->s_blocksize_bits;
1769         reserve_e += reserve_s - 1;
1770
1771         /* Process the main & reserve sequences */
1772         /* responsible for finding the PartitionDesc(s) */
1773         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1774         if (ret != -EAGAIN)
1775                 return ret;
1776         udf_sb_free_partitions(sb);
1777         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1778         if (ret < 0) {
1779                 udf_sb_free_partitions(sb);
1780                 /* No sequence was OK, return -EIO */
1781                 if (ret == -EAGAIN)
1782                         ret = -EIO;
1783         }
1784         return ret;
1785 }
1786
1787 /*
1788  * Check whether there is an anchor block in the given block and
1789  * load Volume Descriptor Sequence if so.
1790  *
1791  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1792  * block
1793  */
1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1795                                   struct kernel_lb_addr *fileset)
1796 {
1797         struct buffer_head *bh;
1798         uint16_t ident;
1799         int ret;
1800
1801         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1802             udf_fixed_to_variable(block) >=
1803             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1804                 return -EAGAIN;
1805
1806         bh = udf_read_tagged(sb, block, block, &ident);
1807         if (!bh)
1808                 return -EAGAIN;
1809         if (ident != TAG_IDENT_AVDP) {
1810                 brelse(bh);
1811                 return -EAGAIN;
1812         }
1813         ret = udf_load_sequence(sb, bh, fileset);
1814         brelse(bh);
1815         return ret;
1816 }
1817
1818 /*
1819  * Search for an anchor volume descriptor pointer.
1820  *
1821  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1822  * of anchors.
1823  */
1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1825                             struct kernel_lb_addr *fileset)
1826 {
1827         sector_t last[6];
1828         int i;
1829         struct udf_sb_info *sbi = UDF_SB(sb);
1830         int last_count = 0;
1831         int ret;
1832
1833         /* First try user provided anchor */
1834         if (sbi->s_anchor) {
1835                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1836                 if (ret != -EAGAIN)
1837                         return ret;
1838         }
1839         /*
1840          * according to spec, anchor is in either:
1841          *     block 256
1842          *     lastblock-256
1843          *     lastblock
1844          *  however, if the disc isn't closed, it could be 512.
1845          */
1846         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1847         if (ret != -EAGAIN)
1848                 return ret;
1849         /*
1850          * The trouble is which block is the last one. Drives often misreport
1851          * this so we try various possibilities.
1852          */
1853         last[last_count++] = *lastblock;
1854         if (*lastblock >= 1)
1855                 last[last_count++] = *lastblock - 1;
1856         last[last_count++] = *lastblock + 1;
1857         if (*lastblock >= 2)
1858                 last[last_count++] = *lastblock - 2;
1859         if (*lastblock >= 150)
1860                 last[last_count++] = *lastblock - 150;
1861         if (*lastblock >= 152)
1862                 last[last_count++] = *lastblock - 152;
1863
1864         for (i = 0; i < last_count; i++) {
1865                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1866                                 sb->s_blocksize_bits)
1867                         continue;
1868                 ret = udf_check_anchor_block(sb, last[i], fileset);
1869                 if (ret != -EAGAIN) {
1870                         if (!ret)
1871                                 *lastblock = last[i];
1872                         return ret;
1873                 }
1874                 if (last[i] < 256)
1875                         continue;
1876                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1877                 if (ret != -EAGAIN) {
1878                         if (!ret)
1879                                 *lastblock = last[i];
1880                         return ret;
1881                 }
1882         }
1883
1884         /* Finally try block 512 in case media is open */
1885         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1886 }
1887
1888 /*
1889  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1890  * area specified by it. The function expects sbi->s_lastblock to be the last
1891  * block on the media.
1892  *
1893  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1894  * was not found.
1895  */
1896 static int udf_find_anchor(struct super_block *sb,
1897                            struct kernel_lb_addr *fileset)
1898 {
1899         struct udf_sb_info *sbi = UDF_SB(sb);
1900         sector_t lastblock = sbi->s_last_block;
1901         int ret;
1902
1903         ret = udf_scan_anchors(sb, &lastblock, fileset);
1904         if (ret != -EAGAIN)
1905                 goto out;
1906
1907         /* No anchor found? Try VARCONV conversion of block numbers */
1908         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1909         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1910         /* Firstly, we try to not convert number of the last block */
1911         ret = udf_scan_anchors(sb, &lastblock, fileset);
1912         if (ret != -EAGAIN)
1913                 goto out;
1914
1915         lastblock = sbi->s_last_block;
1916         /* Secondly, we try with converted number of the last block */
1917         ret = udf_scan_anchors(sb, &lastblock, fileset);
1918         if (ret < 0) {
1919                 /* VARCONV didn't help. Clear it. */
1920                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1921         }
1922 out:
1923         if (ret == 0)
1924                 sbi->s_last_block = lastblock;
1925         return ret;
1926 }
1927
1928 /*
1929  * Check Volume Structure Descriptor, find Anchor block and load Volume
1930  * Descriptor Sequence.
1931  *
1932  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1933  * block was not found.
1934  */
1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1936                         int silent, struct kernel_lb_addr *fileset)
1937 {
1938         struct udf_sb_info *sbi = UDF_SB(sb);
1939         loff_t nsr_off;
1940         int ret;
1941
1942         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1943                 if (!silent)
1944                         udf_warn(sb, "Bad block size\n");
1945                 return -EINVAL;
1946         }
1947         sbi->s_last_block = uopt->lastblock;
1948         if (!uopt->novrs) {
1949                 /* Check that it is NSR02 compliant */
1950                 nsr_off = udf_check_vsd(sb);
1951                 if (!nsr_off) {
1952                         if (!silent)
1953                                 udf_warn(sb, "No VRS found\n");
1954                         return -EINVAL;
1955                 }
1956                 if (nsr_off == -1)
1957                         udf_debug("Failed to read sector at offset %d. "
1958                                   "Assuming open disc. Skipping validity "
1959                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1960                 if (!sbi->s_last_block)
1961                         sbi->s_last_block = udf_get_last_block(sb);
1962         } else {
1963                 udf_debug("Validity check skipped because of novrs option\n");
1964         }
1965
1966         /* Look for anchor block and load Volume Descriptor Sequence */
1967         sbi->s_anchor = uopt->anchor;
1968         ret = udf_find_anchor(sb, fileset);
1969         if (ret < 0) {
1970                 if (!silent && ret == -EAGAIN)
1971                         udf_warn(sb, "No anchor found\n");
1972                 return ret;
1973         }
1974         return 0;
1975 }
1976
1977 static void udf_open_lvid(struct super_block *sb)
1978 {
1979         struct udf_sb_info *sbi = UDF_SB(sb);
1980         struct buffer_head *bh = sbi->s_lvid_bh;
1981         struct logicalVolIntegrityDesc *lvid;
1982         struct logicalVolIntegrityDescImpUse *lvidiu;
1983         struct timespec ts;
1984
1985         if (!bh)
1986                 return;
1987         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1988         lvidiu = udf_sb_lvidiu(sb);
1989         if (!lvidiu)
1990                 return;
1991
1992         mutex_lock(&sbi->s_alloc_mutex);
1993         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1994         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1995         ktime_get_real_ts(&ts);
1996         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1997         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1998                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1999         else
2000                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2001
2002         lvid->descTag.descCRC = cpu_to_le16(
2003                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004                         le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007         mark_buffer_dirty(bh);
2008         sbi->s_lvid_dirty = 0;
2009         mutex_unlock(&sbi->s_alloc_mutex);
2010         /* Make opening of filesystem visible on the media immediately */
2011         sync_dirty_buffer(bh);
2012 }
2013
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016         struct udf_sb_info *sbi = UDF_SB(sb);
2017         struct buffer_head *bh = sbi->s_lvid_bh;
2018         struct logicalVolIntegrityDesc *lvid;
2019         struct logicalVolIntegrityDescImpUse *lvidiu;
2020         struct timespec ts;
2021
2022         if (!bh)
2023                 return;
2024         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2025         lvidiu = udf_sb_lvidiu(sb);
2026         if (!lvidiu)
2027                 return;
2028
2029         mutex_lock(&sbi->s_alloc_mutex);
2030         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2031         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2032         ktime_get_real_ts(&ts);
2033         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2034         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2041                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2042
2043         lvid->descTag.descCRC = cpu_to_le16(
2044                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2045                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2046
2047         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2048         /*
2049          * We set buffer uptodate unconditionally here to avoid spurious
2050          * warnings from mark_buffer_dirty() when previous EIO has marked
2051          * the buffer as !uptodate
2052          */
2053         set_buffer_uptodate(bh);
2054         mark_buffer_dirty(bh);
2055         sbi->s_lvid_dirty = 0;
2056         mutex_unlock(&sbi->s_alloc_mutex);
2057         /* Make closing of filesystem visible on the media immediately */
2058         sync_dirty_buffer(bh);
2059 }
2060
2061 u64 lvid_get_unique_id(struct super_block *sb)
2062 {
2063         struct buffer_head *bh;
2064         struct udf_sb_info *sbi = UDF_SB(sb);
2065         struct logicalVolIntegrityDesc *lvid;
2066         struct logicalVolHeaderDesc *lvhd;
2067         u64 uniqueID;
2068         u64 ret;
2069
2070         bh = sbi->s_lvid_bh;
2071         if (!bh)
2072                 return 0;
2073
2074         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2075         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2076
2077         mutex_lock(&sbi->s_alloc_mutex);
2078         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2079         if (!(++uniqueID & 0xFFFFFFFF))
2080                 uniqueID += 16;
2081         lvhd->uniqueID = cpu_to_le64(uniqueID);
2082         mutex_unlock(&sbi->s_alloc_mutex);
2083         mark_buffer_dirty(bh);
2084
2085         return ret;
2086 }
2087
2088 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2089 {
2090         int ret = -EINVAL;
2091         struct inode *inode = NULL;
2092         struct udf_options uopt;
2093         struct kernel_lb_addr rootdir, fileset;
2094         struct udf_sb_info *sbi;
2095         bool lvid_open = false;
2096
2097         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2098         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2099         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2100         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2101         uopt.umask = 0;
2102         uopt.fmode = UDF_INVALID_MODE;
2103         uopt.dmode = UDF_INVALID_MODE;
2104         uopt.nls_map = NULL;
2105
2106         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2107         if (!sbi)
2108                 return -ENOMEM;
2109
2110         sb->s_fs_info = sbi;
2111
2112         mutex_init(&sbi->s_alloc_mutex);
2113
2114         if (!udf_parse_options((char *)options, &uopt, false))
2115                 goto parse_options_failure;
2116
2117         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2118             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2119                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2120                 goto parse_options_failure;
2121         }
2122         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2123                 uopt.nls_map = load_nls_default();
2124                 if (!uopt.nls_map)
2125                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2126                 else
2127                         udf_debug("Using default NLS map\n");
2128         }
2129         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132         fileset.logicalBlockNum = 0xFFFFFFFF;
2133         fileset.partitionReferenceNum = 0xFFFF;
2134
2135         sbi->s_flags = uopt.flags;
2136         sbi->s_uid = uopt.uid;
2137         sbi->s_gid = uopt.gid;
2138         sbi->s_umask = uopt.umask;
2139         sbi->s_fmode = uopt.fmode;
2140         sbi->s_dmode = uopt.dmode;
2141         sbi->s_nls_map = uopt.nls_map;
2142         rwlock_init(&sbi->s_cred_lock);
2143
2144         if (uopt.session == 0xFFFFFFFF)
2145                 sbi->s_session = udf_get_last_session(sb);
2146         else
2147                 sbi->s_session = uopt.session;
2148
2149         udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151         /* Fill in the rest of the superblock */
2152         sb->s_op = &udf_sb_ops;
2153         sb->s_export_op = &udf_export_ops;
2154
2155         sb->s_magic = UDF_SUPER_MAGIC;
2156         sb->s_time_gran = 1000;
2157
2158         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160         } else {
2161                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162                 while (uopt.blocksize <= 4096) {
2163                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164                         if (ret < 0) {
2165                                 if (!silent && ret != -EACCES) {
2166                                         pr_notice("Scanning with blocksize %u failed\n",
2167                                                   uopt.blocksize);
2168                                 }
2169                                 brelse(sbi->s_lvid_bh);
2170                                 sbi->s_lvid_bh = NULL;
2171                                 /*
2172                                  * EACCES is special - we want to propagate to
2173                                  * upper layers that we cannot handle RW mount.
2174                                  */
2175                                 if (ret == -EACCES)
2176                                         break;
2177                         } else
2178                                 break;
2179
2180                         uopt.blocksize <<= 1;
2181                 }
2182         }
2183         if (ret < 0) {
2184                 if (ret == -EAGAIN) {
2185                         udf_warn(sb, "No partition found (1)\n");
2186                         ret = -EINVAL;
2187                 }
2188                 goto error_out;
2189         }
2190
2191         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193         if (sbi->s_lvid_bh) {
2194                 struct logicalVolIntegrityDescImpUse *lvidiu =
2195                                                         udf_sb_lvidiu(sb);
2196                 uint16_t minUDFReadRev;
2197                 uint16_t minUDFWriteRev;
2198
2199                 if (!lvidiu) {
2200                         ret = -EINVAL;
2201                         goto error_out;
2202                 }
2203                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207                                 minUDFReadRev,
2208                                 UDF_MAX_READ_VERSION);
2209                         ret = -EINVAL;
2210                         goto error_out;
2211                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212                            !sb_rdonly(sb)) {
2213                         ret = -EACCES;
2214                         goto error_out;
2215                 }
2216
2217                 sbi->s_udfrev = minUDFWriteRev;
2218
2219                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223         }
2224
2225         if (!sbi->s_partitions) {
2226                 udf_warn(sb, "No partition found (2)\n");
2227                 ret = -EINVAL;
2228                 goto error_out;
2229         }
2230
2231         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232                         UDF_PART_FLAG_READ_ONLY &&
2233             !sb_rdonly(sb)) {
2234                 ret = -EACCES;
2235                 goto error_out;
2236         }
2237
2238         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239                 udf_warn(sb, "No fileset found\n");
2240                 ret = -EINVAL;
2241                 goto error_out;
2242         }
2243
2244         if (!silent) {
2245                 struct timestamp ts;
2246                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248                          sbi->s_volume_ident,
2249                          le16_to_cpu(ts.year), ts.month, ts.day,
2250                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251         }
2252         if (!sb_rdonly(sb)) {
2253                 udf_open_lvid(sb);
2254                 lvid_open = true;
2255         }
2256
2257         /* Assign the root inode */
2258         /* assign inodes by physical block number */
2259         /* perhaps it's not extensible enough, but for now ... */
2260         inode = udf_iget(sb, &rootdir);
2261         if (IS_ERR(inode)) {
2262                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264                 ret = PTR_ERR(inode);
2265                 goto error_out;
2266         }
2267
2268         /* Allocate a dentry for the root inode */
2269         sb->s_root = d_make_root(inode);
2270         if (!sb->s_root) {
2271                 udf_err(sb, "Couldn't allocate root dentry\n");
2272                 ret = -ENOMEM;
2273                 goto error_out;
2274         }
2275         sb->s_maxbytes = MAX_LFS_FILESIZE;
2276         sb->s_max_links = UDF_MAX_LINKS;
2277         return 0;
2278
2279 error_out:
2280         iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282         if (uopt.nls_map)
2283                 unload_nls(uopt.nls_map);
2284         if (lvid_open)
2285                 udf_close_lvid(sb);
2286         brelse(sbi->s_lvid_bh);
2287         udf_sb_free_partitions(sb);
2288         kfree(sbi);
2289         sb->s_fs_info = NULL;
2290
2291         return ret;
2292 }
2293
2294 void _udf_err(struct super_block *sb, const char *function,
2295               const char *fmt, ...)
2296 {
2297         struct va_format vaf;
2298         va_list args;
2299
2300         va_start(args, fmt);
2301
2302         vaf.fmt = fmt;
2303         vaf.va = &args;
2304
2305         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2306
2307         va_end(args);
2308 }
2309
2310 void _udf_warn(struct super_block *sb, const char *function,
2311                const char *fmt, ...)
2312 {
2313         struct va_format vaf;
2314         va_list args;
2315
2316         va_start(args, fmt);
2317
2318         vaf.fmt = fmt;
2319         vaf.va = &args;
2320
2321         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2322
2323         va_end(args);
2324 }
2325
2326 static void udf_put_super(struct super_block *sb)
2327 {
2328         struct udf_sb_info *sbi;
2329
2330         sbi = UDF_SB(sb);
2331
2332         iput(sbi->s_vat_inode);
2333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2334                 unload_nls(sbi->s_nls_map);
2335         if (!sb_rdonly(sb))
2336                 udf_close_lvid(sb);
2337         brelse(sbi->s_lvid_bh);
2338         udf_sb_free_partitions(sb);
2339         mutex_destroy(&sbi->s_alloc_mutex);
2340         kfree(sb->s_fs_info);
2341         sb->s_fs_info = NULL;
2342 }
2343
2344 static int udf_sync_fs(struct super_block *sb, int wait)
2345 {
2346         struct udf_sb_info *sbi = UDF_SB(sb);
2347
2348         mutex_lock(&sbi->s_alloc_mutex);
2349         if (sbi->s_lvid_dirty) {
2350                 /*
2351                  * Blockdevice will be synced later so we don't have to submit
2352                  * the buffer for IO
2353                  */
2354                 mark_buffer_dirty(sbi->s_lvid_bh);
2355                 sbi->s_lvid_dirty = 0;
2356         }
2357         mutex_unlock(&sbi->s_alloc_mutex);
2358
2359         return 0;
2360 }
2361
2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2363 {
2364         struct super_block *sb = dentry->d_sb;
2365         struct udf_sb_info *sbi = UDF_SB(sb);
2366         struct logicalVolIntegrityDescImpUse *lvidiu;
2367         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2368
2369         lvidiu = udf_sb_lvidiu(sb);
2370         buf->f_type = UDF_SUPER_MAGIC;
2371         buf->f_bsize = sb->s_blocksize;
2372         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2373         buf->f_bfree = udf_count_free(sb);
2374         buf->f_bavail = buf->f_bfree;
2375         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2376                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2377                         + buf->f_bfree;
2378         buf->f_ffree = buf->f_bfree;
2379         buf->f_namelen = UDF_NAME_LEN;
2380         buf->f_fsid.val[0] = (u32)id;
2381         buf->f_fsid.val[1] = (u32)(id >> 32);
2382
2383         return 0;
2384 }
2385
2386 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2387                                           struct udf_bitmap *bitmap)
2388 {
2389         struct buffer_head *bh = NULL;
2390         unsigned int accum = 0;
2391         int index;
2392         udf_pblk_t block = 0, newblock;
2393         struct kernel_lb_addr loc;
2394         uint32_t bytes;
2395         uint8_t *ptr;
2396         uint16_t ident;
2397         struct spaceBitmapDesc *bm;
2398
2399         loc.logicalBlockNum = bitmap->s_extPosition;
2400         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2401         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2402
2403         if (!bh) {
2404                 udf_err(sb, "udf_count_free failed\n");
2405                 goto out;
2406         } else if (ident != TAG_IDENT_SBD) {
2407                 brelse(bh);
2408                 udf_err(sb, "udf_count_free failed\n");
2409                 goto out;
2410         }
2411
2412         bm = (struct spaceBitmapDesc *)bh->b_data;
2413         bytes = le32_to_cpu(bm->numOfBytes);
2414         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2415         ptr = (uint8_t *)bh->b_data;
2416
2417         while (bytes > 0) {
2418                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2419                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2420                                         cur_bytes * 8);
2421                 bytes -= cur_bytes;
2422                 if (bytes) {
2423                         brelse(bh);
2424                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2425                         bh = udf_tread(sb, newblock);
2426                         if (!bh) {
2427                                 udf_debug("read failed\n");
2428                                 goto out;
2429                         }
2430                         index = 0;
2431                         ptr = (uint8_t *)bh->b_data;
2432                 }
2433         }
2434         brelse(bh);
2435 out:
2436         return accum;
2437 }
2438
2439 static unsigned int udf_count_free_table(struct super_block *sb,
2440                                          struct inode *table)
2441 {
2442         unsigned int accum = 0;
2443         uint32_t elen;
2444         struct kernel_lb_addr eloc;
2445         int8_t etype;
2446         struct extent_position epos;
2447
2448         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2449         epos.block = UDF_I(table)->i_location;
2450         epos.offset = sizeof(struct unallocSpaceEntry);
2451         epos.bh = NULL;
2452
2453         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2454                 accum += (elen >> table->i_sb->s_blocksize_bits);
2455
2456         brelse(epos.bh);
2457         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2458
2459         return accum;
2460 }
2461
2462 static unsigned int udf_count_free(struct super_block *sb)
2463 {
2464         unsigned int accum = 0;
2465         struct udf_sb_info *sbi;
2466         struct udf_part_map *map;
2467
2468         sbi = UDF_SB(sb);
2469         if (sbi->s_lvid_bh) {
2470                 struct logicalVolIntegrityDesc *lvid =
2471                         (struct logicalVolIntegrityDesc *)
2472                         sbi->s_lvid_bh->b_data;
2473                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2474                         accum = le32_to_cpu(
2475                                         lvid->freeSpaceTable[sbi->s_partition]);
2476                         if (accum == 0xFFFFFFFF)
2477                                 accum = 0;
2478                 }
2479         }
2480
2481         if (accum)
2482                 return accum;
2483
2484         map = &sbi->s_partmaps[sbi->s_partition];
2485         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2486                 accum += udf_count_free_bitmap(sb,
2487                                                map->s_uspace.s_bitmap);
2488         }
2489         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2490                 accum += udf_count_free_bitmap(sb,
2491                                                map->s_fspace.s_bitmap);
2492         }
2493         if (accum)
2494                 return accum;
2495
2496         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2497                 accum += udf_count_free_table(sb,
2498                                               map->s_uspace.s_table);
2499         }
2500         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2501                 accum += udf_count_free_table(sb,
2502                                               map->s_fspace.s_table);
2503         }
2504
2505         return accum;
2506 }
2507
2508 MODULE_AUTHOR("Ben Fennema");
2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2510 MODULE_LICENSE("GPL");
2511 module_init(init_udf_fs)
2512 module_exit(exit_udf_fs)