5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
46 #define EXTENT_MERGE_SIZE 5
48 static umode_t udf_convert_permissions(struct fileEntry *);
49 static int udf_update_inode(struct inode *, int);
50 static int udf_sync_inode(struct inode *inode);
51 static int udf_alloc_i_data(struct inode *inode, size_t size);
52 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53 static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57 static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60 static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
64 static void __udf_clear_extent_cache(struct inode *inode)
66 struct udf_inode_info *iinfo = UDF_I(inode);
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
74 /* Invalidate extent cache */
75 static void udf_clear_extent_cache(struct inode *inode)
77 struct udf_inode_info *iinfo = UDF_I(inode);
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
84 /* Return contents of extent cache */
85 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
88 struct udf_inode_info *iinfo = UDF_I(inode);
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
102 spin_unlock(&iinfo->i_extent_cache_lock);
106 /* Add extent to extent cache */
107 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
110 struct udf_inode_info *iinfo = UDF_I(inode);
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
127 spin_unlock(&iinfo->i_extent_cache_lock);
130 void udf_evict_inode(struct inode *inode)
132 struct udf_inode_info *iinfo = UDF_I(inode);
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
154 udf_free_inode(inode);
158 static void udf_write_failed(struct address_space *mapping, loff_t to)
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
175 static int udf_writepage(struct page *page, struct writeback_control *wbc)
177 return block_write_full_page(page, udf_get_block, wbc);
180 static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
183 return mpage_writepages(mapping, wbc, udf_get_block);
186 static int udf_readpage(struct file *file, struct page *page)
188 return mpage_readpage(page, udf_get_block);
191 static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
197 static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
205 udf_write_failed(mapping, pos + len);
209 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
223 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
225 return generic_block_bmap(mapping, block, udf_get_block);
228 const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
240 * Expand file stored in ICB to a normal one-block-file
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
245 int udf_expand_file_adinicb(struct inode *inode)
249 struct udf_inode_info *iinfo = UDF_I(inode);
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
272 up_write(&iinfo->i_data_sem);
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
301 /* Restore everything back so that we don't lose data... */
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
307 kunmap_atomic(kaddr);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
314 mark_inode_dirty(inode);
319 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
326 struct extent_position epos;
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
337 alloctype = ICBTAG_FLAG_AD_LONG;
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
356 dbh = udf_tgetblk(inode->i_sb, newblock);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
391 mark_buffer_dirty_inode(dbh, inode);
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
407 mark_inode_dirty(inode);
411 static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
416 struct udf_inode_info *iinfo;
419 phys = udf_block_map(inode, block);
421 map_bh(bh_result, inode->i_sb, phys);
427 iinfo = UDF_I(inode);
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
445 up_write(&iinfo->i_data_sem);
449 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
452 struct buffer_head *bh;
453 struct buffer_head dummy;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
465 mark_buffer_dirty_inode(bh, inode);
473 /* Extend the file by 'blocks' blocks, return the number of extents added */
474 static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
526 last_ext->extLength += add << sb->s_blocksize_bits;
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
534 struct kernel_lb_addr tmploc;
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
546 /* Managed to do everything necessary? */
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
577 /* Do we have some preallocated blocks saved? */
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
599 static int udf_extend_file(struct inode *inode, loff_t newsize)
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
626 if (newsize & (sb->s_blocksize - 1))
628 /* Extended file just to the boundary of the last file block? */
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
650 iinfo->i_lenExtents = newsize;
656 static sector_t inode_getblk(struct inode *inode, sector_t block,
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
689 prev_epos.bh = cur_epos.bh;
691 if (cur_epos.bh != next_epos.bh) {
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
720 } while (lbcount + elen <= b_off);
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
725 * Move prev_epos and cur_epos into indirect extent if we are at
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
745 /* Are we beyond EOF? */
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
760 startnum = (offset > 0);
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
789 endnum = startnum = ((count > 2) ? 2 : count);
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
871 udf_sync_inode(inode);
873 mark_inode_dirty(inode);
875 brelse(prev_epos.bh);
877 brelse(next_epos.bh);
881 static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
945 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
949 int start, length = 0, currlength = 0, i;
951 if (*endnum >= (c + 1)) {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
969 for (i = start + 1; i <= *endnum; i++) {
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
994 if (start == (c + 1))
995 laarr[start].extLength +=
997 inode->i_sb->s_blocksize_bits);
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1009 inode->i_sb->s_blocksize_bits);
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1022 inode->i_sb->s_blocksize_bits);
1026 if (*endnum > (i + 1))
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1041 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1075 UDF_EXTENT_LENGTH_MASK) >>
1078 li->extLength = lip1->extLength +
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1113 li->extLength = lip1->extLength +
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1140 static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1145 struct kernel_lb_addr tmploc;
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos);
1151 } else if (startnum < endnum) {
1152 for (i = 0; i < (endnum - startnum); i++) {
1153 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1154 laarr[i].extLength);
1155 udf_next_aext(inode, epos, &laarr[i].extLocation,
1156 &laarr[i].extLength, 1);
1161 for (i = start; i < endnum; i++) {
1162 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1163 udf_write_aext(inode, epos, &laarr[i].extLocation,
1164 laarr[i].extLength, 1);
1168 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1169 int create, int *err)
1171 struct buffer_head *bh = NULL;
1173 bh = udf_getblk(inode, block, create, err);
1177 if (buffer_uptodate(bh))
1180 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1183 if (buffer_uptodate(bh))
1191 int udf_setsize(struct inode *inode, loff_t newsize)
1194 struct udf_inode_info *iinfo;
1195 unsigned int bsize = i_blocksize(inode);
1197 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1198 S_ISLNK(inode->i_mode)))
1200 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1203 iinfo = UDF_I(inode);
1204 if (newsize > inode->i_size) {
1205 down_write(&iinfo->i_data_sem);
1206 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 (udf_file_entry_alloc_offset(inode) + newsize)) {
1209 err = udf_expand_file_adinicb(inode);
1212 down_write(&iinfo->i_data_sem);
1214 iinfo->i_lenAlloc = newsize;
1218 err = udf_extend_file(inode, newsize);
1220 up_write(&iinfo->i_data_sem);
1224 up_write(&iinfo->i_data_sem);
1225 truncate_setsize(inode, newsize);
1227 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1228 down_write(&iinfo->i_data_sem);
1229 udf_clear_extent_cache(inode);
1230 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1231 0x00, bsize - newsize -
1232 udf_file_entry_alloc_offset(inode));
1233 iinfo->i_lenAlloc = newsize;
1234 truncate_setsize(inode, newsize);
1235 up_write(&iinfo->i_data_sem);
1238 err = block_truncate_page(inode->i_mapping, newsize,
1242 truncate_setsize(inode, newsize);
1243 down_write(&iinfo->i_data_sem);
1244 udf_clear_extent_cache(inode);
1245 udf_truncate_extents(inode);
1246 up_write(&iinfo->i_data_sem);
1249 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 udf_sync_inode(inode);
1253 mark_inode_dirty(inode);
1258 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1259 * arbitrary - just that we hopefully don't limit any real use of rewritten
1260 * inode on write-once media but avoid looping for too long on corrupted media.
1262 #define UDF_MAX_ICB_NESTING 1024
1264 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266 struct buffer_head *bh = NULL;
1267 struct fileEntry *fe;
1268 struct extendedFileEntry *efe;
1270 struct udf_inode_info *iinfo = UDF_I(inode);
1271 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1272 struct kernel_lb_addr *iloc = &iinfo->i_location;
1273 unsigned int link_count;
1274 unsigned int indirections = 0;
1275 int bs = inode->i_sb->s_blocksize;
1280 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1281 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1282 iloc->partitionReferenceNum, sbi->s_partitions);
1286 if (iloc->logicalBlockNum >=
1287 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1288 udf_debug("block=%u, partition=%u out of range\n",
1289 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1294 * Set defaults, but the inode is still incomplete!
1295 * Note: get_new_inode() sets the following on a new inode:
1298 * i_flags = sb->s_flags
1300 * clean_inode(): zero fills and sets
1305 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1311 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1312 ident != TAG_IDENT_USE) {
1313 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1314 inode->i_ino, ident);
1318 fe = (struct fileEntry *)bh->b_data;
1319 efe = (struct extendedFileEntry *)bh->b_data;
1321 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1322 struct buffer_head *ibh;
1324 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1325 if (ident == TAG_IDENT_IE && ibh) {
1326 struct kernel_lb_addr loc;
1327 struct indirectEntry *ie;
1329 ie = (struct indirectEntry *)ibh->b_data;
1330 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332 if (ie->indirectICB.extLength) {
1334 memcpy(&iinfo->i_location, &loc,
1335 sizeof(struct kernel_lb_addr));
1336 if (++indirections > UDF_MAX_ICB_NESTING) {
1337 udf_err(inode->i_sb,
1338 "too many ICBs in ICB hierarchy"
1339 " (max %d supported)\n",
1340 UDF_MAX_ICB_NESTING);
1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1349 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1350 le16_to_cpu(fe->icbTag.strategyType));
1353 if (fe->icbTag.strategyType == cpu_to_le16(4))
1354 iinfo->i_strat4096 = 0;
1355 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1356 iinfo->i_strat4096 = 1;
1358 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1359 ICBTAG_FLAG_AD_MASK;
1360 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1361 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1362 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1366 iinfo->i_unique = 0;
1367 iinfo->i_lenEAttr = 0;
1368 iinfo->i_lenExtents = 0;
1369 iinfo->i_lenAlloc = 0;
1370 iinfo->i_next_alloc_block = 0;
1371 iinfo->i_next_alloc_goal = 0;
1372 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1375 ret = udf_alloc_i_data(inode, bs -
1376 sizeof(struct extendedFileEntry));
1379 memcpy(iinfo->i_ext.i_data,
1380 bh->b_data + sizeof(struct extendedFileEntry),
1381 bs - sizeof(struct extendedFileEntry));
1382 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1385 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1388 memcpy(iinfo->i_ext.i_data,
1389 bh->b_data + sizeof(struct fileEntry),
1390 bs - sizeof(struct fileEntry));
1391 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1394 iinfo->i_lenAlloc = le32_to_cpu(
1395 ((struct unallocSpaceEntry *)bh->b_data)->
1397 ret = udf_alloc_i_data(inode, bs -
1398 sizeof(struct unallocSpaceEntry));
1401 memcpy(iinfo->i_ext.i_data,
1402 bh->b_data + sizeof(struct unallocSpaceEntry),
1403 bs - sizeof(struct unallocSpaceEntry));
1408 read_lock(&sbi->s_cred_lock);
1409 uid = le32_to_cpu(fe->uid);
1410 if (uid == UDF_INVALID_ID ||
1411 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1412 inode->i_uid = sbi->s_uid;
1414 i_uid_write(inode, uid);
1416 gid = le32_to_cpu(fe->gid);
1417 if (gid == UDF_INVALID_ID ||
1418 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1419 inode->i_gid = sbi->s_gid;
1421 i_gid_write(inode, gid);
1423 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1424 sbi->s_fmode != UDF_INVALID_MODE)
1425 inode->i_mode = sbi->s_fmode;
1426 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1427 sbi->s_dmode != UDF_INVALID_MODE)
1428 inode->i_mode = sbi->s_dmode;
1430 inode->i_mode = udf_convert_permissions(fe);
1431 inode->i_mode &= ~sbi->s_umask;
1432 read_unlock(&sbi->s_cred_lock);
1434 link_count = le16_to_cpu(fe->fileLinkCount);
1436 if (!hidden_inode) {
1442 set_nlink(inode, link_count);
1444 inode->i_size = le64_to_cpu(fe->informationLength);
1445 iinfo->i_lenExtents = inode->i_size;
1447 if (iinfo->i_efe == 0) {
1448 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1449 (inode->i_sb->s_blocksize_bits - 9);
1451 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1452 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1453 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1455 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1456 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1457 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1458 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1460 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1461 (inode->i_sb->s_blocksize_bits - 9);
1463 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1464 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1465 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1466 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1468 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1469 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1470 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1471 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1473 inode->i_generation = iinfo->i_unique;
1476 * Sanity check length of allocation descriptors and extended attrs to
1477 * avoid integer overflows
1479 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1481 /* Now do exact checks */
1482 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1484 /* Sanity checks for files in ICB so that we don't get confused later */
1485 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1487 * For file in ICB data is stored in allocation descriptor
1488 * so sizes should match
1490 if (iinfo->i_lenAlloc != inode->i_size)
1492 /* File in ICB has to fit in there... */
1493 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1497 switch (fe->icbTag.fileType) {
1498 case ICBTAG_FILE_TYPE_DIRECTORY:
1499 inode->i_op = &udf_dir_inode_operations;
1500 inode->i_fop = &udf_dir_operations;
1501 inode->i_mode |= S_IFDIR;
1504 case ICBTAG_FILE_TYPE_REALTIME:
1505 case ICBTAG_FILE_TYPE_REGULAR:
1506 case ICBTAG_FILE_TYPE_UNDEF:
1507 case ICBTAG_FILE_TYPE_VAT20:
1508 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1509 inode->i_data.a_ops = &udf_adinicb_aops;
1511 inode->i_data.a_ops = &udf_aops;
1512 inode->i_op = &udf_file_inode_operations;
1513 inode->i_fop = &udf_file_operations;
1514 inode->i_mode |= S_IFREG;
1516 case ICBTAG_FILE_TYPE_BLOCK:
1517 inode->i_mode |= S_IFBLK;
1519 case ICBTAG_FILE_TYPE_CHAR:
1520 inode->i_mode |= S_IFCHR;
1522 case ICBTAG_FILE_TYPE_FIFO:
1523 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1525 case ICBTAG_FILE_TYPE_SOCKET:
1526 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1528 case ICBTAG_FILE_TYPE_SYMLINK:
1529 inode->i_data.a_ops = &udf_symlink_aops;
1530 inode->i_op = &udf_symlink_inode_operations;
1531 inode_nohighmem(inode);
1532 inode->i_mode = S_IFLNK | 0777;
1534 case ICBTAG_FILE_TYPE_MAIN:
1535 udf_debug("METADATA FILE-----\n");
1537 case ICBTAG_FILE_TYPE_MIRROR:
1538 udf_debug("METADATA MIRROR FILE-----\n");
1540 case ICBTAG_FILE_TYPE_BITMAP:
1541 udf_debug("METADATA BITMAP FILE-----\n");
1544 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1545 inode->i_ino, fe->icbTag.fileType);
1548 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1549 struct deviceSpec *dsea =
1550 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1552 init_special_inode(inode, inode->i_mode,
1553 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1554 le32_to_cpu(dsea->minorDeviceIdent)));
1555 /* Developer ID ??? */
1565 static int udf_alloc_i_data(struct inode *inode, size_t size)
1567 struct udf_inode_info *iinfo = UDF_I(inode);
1568 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1569 if (!iinfo->i_ext.i_data)
1574 static umode_t udf_convert_permissions(struct fileEntry *fe)
1577 uint32_t permissions;
1580 permissions = le32_to_cpu(fe->permissions);
1581 flags = le16_to_cpu(fe->icbTag.flags);
1583 mode = ((permissions) & 0007) |
1584 ((permissions >> 2) & 0070) |
1585 ((permissions >> 4) & 0700) |
1586 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1587 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1588 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1593 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1595 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1598 static int udf_sync_inode(struct inode *inode)
1600 return udf_update_inode(inode, 1);
1603 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1605 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1606 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1607 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1608 iinfo->i_crtime = time;
1611 static int udf_update_inode(struct inode *inode, int do_sync)
1613 struct buffer_head *bh = NULL;
1614 struct fileEntry *fe;
1615 struct extendedFileEntry *efe;
1616 uint64_t lb_recorded;
1621 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1622 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1623 struct udf_inode_info *iinfo = UDF_I(inode);
1625 bh = udf_tgetblk(inode->i_sb,
1626 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1628 udf_debug("getblk failure\n");
1633 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1634 fe = (struct fileEntry *)bh->b_data;
1635 efe = (struct extendedFileEntry *)bh->b_data;
1638 struct unallocSpaceEntry *use =
1639 (struct unallocSpaceEntry *)bh->b_data;
1641 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1642 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1643 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1644 sizeof(struct unallocSpaceEntry));
1645 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1646 crclen = sizeof(struct unallocSpaceEntry);
1651 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1652 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1654 fe->uid = cpu_to_le32(i_uid_read(inode));
1656 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1657 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1659 fe->gid = cpu_to_le32(i_gid_read(inode));
1661 udfperms = ((inode->i_mode & 0007)) |
1662 ((inode->i_mode & 0070) << 2) |
1663 ((inode->i_mode & 0700) << 4);
1665 udfperms |= (le32_to_cpu(fe->permissions) &
1666 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1667 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1668 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1669 fe->permissions = cpu_to_le32(udfperms);
1671 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1672 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1674 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1676 fe->informationLength = cpu_to_le64(inode->i_size);
1678 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1680 struct deviceSpec *dsea =
1681 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1683 dsea = (struct deviceSpec *)
1684 udf_add_extendedattr(inode,
1685 sizeof(struct deviceSpec) +
1686 sizeof(struct regid), 12, 0x3);
1687 dsea->attrType = cpu_to_le32(12);
1688 dsea->attrSubtype = 1;
1689 dsea->attrLength = cpu_to_le32(
1690 sizeof(struct deviceSpec) +
1691 sizeof(struct regid));
1692 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1694 eid = (struct regid *)dsea->impUse;
1695 memset(eid, 0, sizeof(*eid));
1696 strcpy(eid->ident, UDF_ID_DEVELOPER);
1697 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1698 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1699 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1700 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1703 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1704 lb_recorded = 0; /* No extents => no blocks! */
1707 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1708 (blocksize_bits - 9);
1710 if (iinfo->i_efe == 0) {
1711 memcpy(bh->b_data + sizeof(struct fileEntry),
1712 iinfo->i_ext.i_data,
1713 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1714 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1716 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1717 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1718 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1719 memset(&(fe->impIdent), 0, sizeof(struct regid));
1720 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1721 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1722 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1723 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1724 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1725 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1726 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1727 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1728 crclen = sizeof(struct fileEntry);
1730 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1731 iinfo->i_ext.i_data,
1732 inode->i_sb->s_blocksize -
1733 sizeof(struct extendedFileEntry));
1734 efe->objectSize = cpu_to_le64(inode->i_size);
1735 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1737 udf_adjust_time(iinfo, inode->i_atime);
1738 udf_adjust_time(iinfo, inode->i_mtime);
1739 udf_adjust_time(iinfo, inode->i_ctime);
1741 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1742 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1743 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1744 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1746 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1747 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1748 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1749 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1750 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1751 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1752 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1753 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1754 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1755 crclen = sizeof(struct extendedFileEntry);
1759 if (iinfo->i_strat4096) {
1760 fe->icbTag.strategyType = cpu_to_le16(4096);
1761 fe->icbTag.strategyParameter = cpu_to_le16(1);
1762 fe->icbTag.numEntries = cpu_to_le16(2);
1764 fe->icbTag.strategyType = cpu_to_le16(4);
1765 fe->icbTag.numEntries = cpu_to_le16(1);
1769 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1770 else if (S_ISDIR(inode->i_mode))
1771 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1772 else if (S_ISREG(inode->i_mode))
1773 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1774 else if (S_ISLNK(inode->i_mode))
1775 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1776 else if (S_ISBLK(inode->i_mode))
1777 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1778 else if (S_ISCHR(inode->i_mode))
1779 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1780 else if (S_ISFIFO(inode->i_mode))
1781 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1782 else if (S_ISSOCK(inode->i_mode))
1783 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1785 icbflags = iinfo->i_alloc_type |
1786 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1787 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1788 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1789 (le16_to_cpu(fe->icbTag.flags) &
1790 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1791 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1793 fe->icbTag.flags = cpu_to_le16(icbflags);
1794 if (sbi->s_udfrev >= 0x0200)
1795 fe->descTag.descVersion = cpu_to_le16(3);
1797 fe->descTag.descVersion = cpu_to_le16(2);
1798 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1799 fe->descTag.tagLocation = cpu_to_le32(
1800 iinfo->i_location.logicalBlockNum);
1801 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1802 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1803 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1805 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1807 set_buffer_uptodate(bh);
1810 /* write the data blocks */
1811 mark_buffer_dirty(bh);
1813 sync_dirty_buffer(bh);
1814 if (buffer_write_io_error(bh)) {
1815 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1828 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1829 struct inode *inode = iget_locked(sb, block);
1833 return ERR_PTR(-ENOMEM);
1835 if (!(inode->i_state & I_NEW))
1838 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1839 err = udf_read_inode(inode, hidden_inode);
1842 return ERR_PTR(err);
1844 unlock_new_inode(inode);
1849 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1850 struct extent_position *epos)
1852 struct super_block *sb = inode->i_sb;
1853 struct buffer_head *bh;
1854 struct allocExtDesc *aed;
1855 struct extent_position nepos;
1856 struct kernel_lb_addr neloc;
1859 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1860 adsize = sizeof(struct short_ad);
1861 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1862 adsize = sizeof(struct long_ad);
1866 neloc.logicalBlockNum = block;
1867 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1869 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1873 memset(bh->b_data, 0x00, sb->s_blocksize);
1874 set_buffer_uptodate(bh);
1876 mark_buffer_dirty_inode(bh, inode);
1878 aed = (struct allocExtDesc *)(bh->b_data);
1879 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1880 aed->previousAllocExtLocation =
1881 cpu_to_le32(epos->block.logicalBlockNum);
1883 aed->lengthAllocDescs = cpu_to_le32(0);
1884 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1888 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1889 sizeof(struct tag));
1891 nepos.block = neloc;
1892 nepos.offset = sizeof(struct allocExtDesc);
1896 * Do we have to copy current last extent to make space for indirect
1899 if (epos->offset + adsize > sb->s_blocksize) {
1900 struct kernel_lb_addr cp_loc;
1904 epos->offset -= adsize;
1905 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1906 cp_len |= ((uint32_t)cp_type) << 30;
1908 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1909 udf_write_aext(inode, epos, &nepos.block,
1910 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1912 __udf_add_aext(inode, epos, &nepos.block,
1913 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923 * Append extent at the given position - should be the first free one in inode
1924 * / indirect extent. This function assumes there is enough space in the inode
1925 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1927 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1928 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1930 struct udf_inode_info *iinfo = UDF_I(inode);
1931 struct allocExtDesc *aed;
1934 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1935 adsize = sizeof(struct short_ad);
1936 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1937 adsize = sizeof(struct long_ad);
1942 WARN_ON(iinfo->i_lenAlloc !=
1943 epos->offset - udf_file_entry_alloc_offset(inode));
1945 aed = (struct allocExtDesc *)epos->bh->b_data;
1946 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1947 epos->offset - sizeof(struct allocExtDesc));
1948 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1951 udf_write_aext(inode, epos, eloc, elen, inc);
1954 iinfo->i_lenAlloc += adsize;
1955 mark_inode_dirty(inode);
1957 aed = (struct allocExtDesc *)epos->bh->b_data;
1958 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1959 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1960 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1961 udf_update_tag(epos->bh->b_data,
1962 epos->offset + (inc ? 0 : adsize));
1964 udf_update_tag(epos->bh->b_data,
1965 sizeof(struct allocExtDesc));
1966 mark_buffer_dirty_inode(epos->bh, inode);
1973 * Append extent at given position - should be the first free one in inode
1974 * / indirect extent. Takes care of allocating and linking indirect blocks.
1976 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1977 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1980 struct super_block *sb = inode->i_sb;
1982 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1983 adsize = sizeof(struct short_ad);
1984 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1985 adsize = sizeof(struct long_ad);
1989 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1991 udf_pblk_t new_block;
1993 new_block = udf_new_block(sb, NULL,
1994 epos->block.partitionReferenceNum,
1995 epos->block.logicalBlockNum, &err);
1999 err = udf_setup_indirect_aext(inode, new_block, epos);
2004 return __udf_add_aext(inode, epos, eloc, elen, inc);
2007 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2008 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2012 struct short_ad *sad;
2013 struct long_ad *lad;
2014 struct udf_inode_info *iinfo = UDF_I(inode);
2017 ptr = iinfo->i_ext.i_data + epos->offset -
2018 udf_file_entry_alloc_offset(inode) +
2021 ptr = epos->bh->b_data + epos->offset;
2023 switch (iinfo->i_alloc_type) {
2024 case ICBTAG_FLAG_AD_SHORT:
2025 sad = (struct short_ad *)ptr;
2026 sad->extLength = cpu_to_le32(elen);
2027 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2028 adsize = sizeof(struct short_ad);
2030 case ICBTAG_FLAG_AD_LONG:
2031 lad = (struct long_ad *)ptr;
2032 lad->extLength = cpu_to_le32(elen);
2033 lad->extLocation = cpu_to_lelb(*eloc);
2034 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2035 adsize = sizeof(struct long_ad);
2042 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2043 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2044 struct allocExtDesc *aed =
2045 (struct allocExtDesc *)epos->bh->b_data;
2046 udf_update_tag(epos->bh->b_data,
2047 le32_to_cpu(aed->lengthAllocDescs) +
2048 sizeof(struct allocExtDesc));
2050 mark_buffer_dirty_inode(epos->bh, inode);
2052 mark_inode_dirty(inode);
2056 epos->offset += adsize;
2060 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2061 * someone does some weird stuff.
2063 #define UDF_MAX_INDIR_EXTS 16
2065 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2066 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2069 unsigned int indirections = 0;
2071 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2072 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2075 if (++indirections > UDF_MAX_INDIR_EXTS) {
2076 udf_err(inode->i_sb,
2077 "too many indirect extents in inode %lu\n",
2082 epos->block = *eloc;
2083 epos->offset = sizeof(struct allocExtDesc);
2085 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2086 epos->bh = udf_tread(inode->i_sb, block);
2088 udf_debug("reading block %u failed!\n", block);
2096 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2097 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2102 struct short_ad *sad;
2103 struct long_ad *lad;
2104 struct udf_inode_info *iinfo = UDF_I(inode);
2108 epos->offset = udf_file_entry_alloc_offset(inode);
2109 ptr = iinfo->i_ext.i_data + epos->offset -
2110 udf_file_entry_alloc_offset(inode) +
2112 alen = udf_file_entry_alloc_offset(inode) +
2116 epos->offset = sizeof(struct allocExtDesc);
2117 ptr = epos->bh->b_data + epos->offset;
2118 alen = sizeof(struct allocExtDesc) +
2119 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2123 switch (iinfo->i_alloc_type) {
2124 case ICBTAG_FLAG_AD_SHORT:
2125 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2128 etype = le32_to_cpu(sad->extLength) >> 30;
2129 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2130 eloc->partitionReferenceNum =
2131 iinfo->i_location.partitionReferenceNum;
2132 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2134 case ICBTAG_FLAG_AD_LONG:
2135 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2138 etype = le32_to_cpu(lad->extLength) >> 30;
2139 *eloc = lelb_to_cpu(lad->extLocation);
2140 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2143 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2150 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2151 struct kernel_lb_addr neloc, uint32_t nelen)
2153 struct kernel_lb_addr oeloc;
2160 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2161 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2163 nelen = (etype << 30) | oelen;
2165 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2168 return (nelen >> 30);
2171 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2173 struct extent_position oepos;
2176 struct allocExtDesc *aed;
2177 struct udf_inode_info *iinfo;
2178 struct kernel_lb_addr eloc;
2186 iinfo = UDF_I(inode);
2187 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2188 adsize = sizeof(struct short_ad);
2189 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2190 adsize = sizeof(struct long_ad);
2195 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2198 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2199 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2200 if (oepos.bh != epos.bh) {
2201 oepos.block = epos.block;
2205 oepos.offset = epos.offset - adsize;
2208 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2211 if (epos.bh != oepos.bh) {
2212 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2213 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2214 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2216 iinfo->i_lenAlloc -= (adsize * 2);
2217 mark_inode_dirty(inode);
2219 aed = (struct allocExtDesc *)oepos.bh->b_data;
2220 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2221 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2222 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2223 udf_update_tag(oepos.bh->b_data,
2224 oepos.offset - (2 * adsize));
2226 udf_update_tag(oepos.bh->b_data,
2227 sizeof(struct allocExtDesc));
2228 mark_buffer_dirty_inode(oepos.bh, inode);
2231 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2233 iinfo->i_lenAlloc -= adsize;
2234 mark_inode_dirty(inode);
2236 aed = (struct allocExtDesc *)oepos.bh->b_data;
2237 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2238 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2239 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2240 udf_update_tag(oepos.bh->b_data,
2241 epos.offset - adsize);
2243 udf_update_tag(oepos.bh->b_data,
2244 sizeof(struct allocExtDesc));
2245 mark_buffer_dirty_inode(oepos.bh, inode);
2252 return (elen >> 30);
2255 int8_t inode_bmap(struct inode *inode, sector_t block,
2256 struct extent_position *pos, struct kernel_lb_addr *eloc,
2257 uint32_t *elen, sector_t *offset)
2259 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2260 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2262 struct udf_inode_info *iinfo;
2264 iinfo = UDF_I(inode);
2265 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2267 pos->block = iinfo->i_location;
2272 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2274 *offset = (bcount - lbcount) >> blocksize_bits;
2275 iinfo->i_lenExtents = lbcount;
2279 } while (lbcount <= bcount);
2280 /* update extent cache */
2281 udf_update_extent_cache(inode, lbcount - *elen, pos);
2282 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2287 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2289 struct kernel_lb_addr eloc;
2292 struct extent_position epos = {};
2295 down_read(&UDF_I(inode)->i_data_sem);
2297 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2298 (EXT_RECORDED_ALLOCATED >> 30))
2299 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2303 up_read(&UDF_I(inode)->i_data_sem);
2306 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2307 return udf_fixed_to_variable(ret);