Merge tag 'drm-misc-fixes-2018-12-05' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37
38 static DEFINE_SPINLOCK(dbg_lock);
39
40 static const char *get_key_fmt(int fmt)
41 {
42         switch (fmt) {
43         case UBIFS_SIMPLE_KEY_FMT:
44                 return "simple";
45         default:
46                 return "unknown/invalid format";
47         }
48 }
49
50 static const char *get_key_hash(int hash)
51 {
52         switch (hash) {
53         case UBIFS_KEY_HASH_R5:
54                 return "R5";
55         case UBIFS_KEY_HASH_TEST:
56                 return "test";
57         default:
58                 return "unknown/invalid name hash";
59         }
60 }
61
62 static const char *get_key_type(int type)
63 {
64         switch (type) {
65         case UBIFS_INO_KEY:
66                 return "inode";
67         case UBIFS_DENT_KEY:
68                 return "direntry";
69         case UBIFS_XENT_KEY:
70                 return "xentry";
71         case UBIFS_DATA_KEY:
72                 return "data";
73         case UBIFS_TRUN_KEY:
74                 return "truncate";
75         default:
76                 return "unknown/invalid key";
77         }
78 }
79
80 static const char *get_dent_type(int type)
81 {
82         switch (type) {
83         case UBIFS_ITYPE_REG:
84                 return "file";
85         case UBIFS_ITYPE_DIR:
86                 return "dir";
87         case UBIFS_ITYPE_LNK:
88                 return "symlink";
89         case UBIFS_ITYPE_BLK:
90                 return "blkdev";
91         case UBIFS_ITYPE_CHR:
92                 return "char dev";
93         case UBIFS_ITYPE_FIFO:
94                 return "fifo";
95         case UBIFS_ITYPE_SOCK:
96                 return "socket";
97         default:
98                 return "unknown/invalid type";
99         }
100 }
101
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103                              const union ubifs_key *key, char *buffer, int len)
104 {
105         char *p = buffer;
106         int type = key_type(c, key);
107
108         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109                 switch (type) {
110                 case UBIFS_INO_KEY:
111                         len -= snprintf(p, len, "(%lu, %s)",
112                                         (unsigned long)key_inum(c, key),
113                                         get_key_type(type));
114                         break;
115                 case UBIFS_DENT_KEY:
116                 case UBIFS_XENT_KEY:
117                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
118                                         (unsigned long)key_inum(c, key),
119                                         get_key_type(type), key_hash(c, key));
120                         break;
121                 case UBIFS_DATA_KEY:
122                         len -= snprintf(p, len, "(%lu, %s, %u)",
123                                         (unsigned long)key_inum(c, key),
124                                         get_key_type(type), key_block(c, key));
125                         break;
126                 case UBIFS_TRUN_KEY:
127                         len -= snprintf(p, len, "(%lu, %s)",
128                                         (unsigned long)key_inum(c, key),
129                                         get_key_type(type));
130                         break;
131                 default:
132                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133                                         key->u32[0], key->u32[1]);
134                 }
135         } else
136                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137         ubifs_assert(c, len > 0);
138         return p;
139 }
140
141 const char *dbg_ntype(int type)
142 {
143         switch (type) {
144         case UBIFS_PAD_NODE:
145                 return "padding node";
146         case UBIFS_SB_NODE:
147                 return "superblock node";
148         case UBIFS_MST_NODE:
149                 return "master node";
150         case UBIFS_REF_NODE:
151                 return "reference node";
152         case UBIFS_INO_NODE:
153                 return "inode node";
154         case UBIFS_DENT_NODE:
155                 return "direntry node";
156         case UBIFS_XENT_NODE:
157                 return "xentry node";
158         case UBIFS_DATA_NODE:
159                 return "data node";
160         case UBIFS_TRUN_NODE:
161                 return "truncate node";
162         case UBIFS_IDX_NODE:
163                 return "indexing node";
164         case UBIFS_CS_NODE:
165                 return "commit start node";
166         case UBIFS_ORPH_NODE:
167                 return "orphan node";
168         case UBIFS_AUTH_NODE:
169                 return "auth node";
170         default:
171                 return "unknown node";
172         }
173 }
174
175 static const char *dbg_gtype(int type)
176 {
177         switch (type) {
178         case UBIFS_NO_NODE_GROUP:
179                 return "no node group";
180         case UBIFS_IN_NODE_GROUP:
181                 return "in node group";
182         case UBIFS_LAST_OF_NODE_GROUP:
183                 return "last of node group";
184         default:
185                 return "unknown";
186         }
187 }
188
189 const char *dbg_cstate(int cmt_state)
190 {
191         switch (cmt_state) {
192         case COMMIT_RESTING:
193                 return "commit resting";
194         case COMMIT_BACKGROUND:
195                 return "background commit requested";
196         case COMMIT_REQUIRED:
197                 return "commit required";
198         case COMMIT_RUNNING_BACKGROUND:
199                 return "BACKGROUND commit running";
200         case COMMIT_RUNNING_REQUIRED:
201                 return "commit running and required";
202         case COMMIT_BROKEN:
203                 return "broken commit";
204         default:
205                 return "unknown commit state";
206         }
207 }
208
209 const char *dbg_jhead(int jhead)
210 {
211         switch (jhead) {
212         case GCHD:
213                 return "0 (GC)";
214         case BASEHD:
215                 return "1 (base)";
216         case DATAHD:
217                 return "2 (data)";
218         default:
219                 return "unknown journal head";
220         }
221 }
222
223 static void dump_ch(const struct ubifs_ch *ch)
224 {
225         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
226         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
227         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
228                dbg_ntype(ch->node_type));
229         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
230                dbg_gtype(ch->group_type));
231         pr_err("\tsqnum          %llu\n",
232                (unsigned long long)le64_to_cpu(ch->sqnum));
233         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
234 }
235
236 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
237 {
238         const struct ubifs_inode *ui = ubifs_inode(inode);
239         struct fscrypt_name nm = {0};
240         union ubifs_key key;
241         struct ubifs_dent_node *dent, *pdent = NULL;
242         int count = 2;
243
244         pr_err("Dump in-memory inode:");
245         pr_err("\tinode          %lu\n", inode->i_ino);
246         pr_err("\tsize           %llu\n",
247                (unsigned long long)i_size_read(inode));
248         pr_err("\tnlink          %u\n", inode->i_nlink);
249         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
250         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
251         pr_err("\tatime          %u.%u\n",
252                (unsigned int)inode->i_atime.tv_sec,
253                (unsigned int)inode->i_atime.tv_nsec);
254         pr_err("\tmtime          %u.%u\n",
255                (unsigned int)inode->i_mtime.tv_sec,
256                (unsigned int)inode->i_mtime.tv_nsec);
257         pr_err("\tctime          %u.%u\n",
258                (unsigned int)inode->i_ctime.tv_sec,
259                (unsigned int)inode->i_ctime.tv_nsec);
260         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
261         pr_err("\txattr_size     %u\n", ui->xattr_size);
262         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
263         pr_err("\txattr_names    %u\n", ui->xattr_names);
264         pr_err("\tdirty          %u\n", ui->dirty);
265         pr_err("\txattr          %u\n", ui->xattr);
266         pr_err("\tbulk_read      %u\n", ui->bulk_read);
267         pr_err("\tsynced_i_size  %llu\n",
268                (unsigned long long)ui->synced_i_size);
269         pr_err("\tui_size        %llu\n",
270                (unsigned long long)ui->ui_size);
271         pr_err("\tflags          %d\n", ui->flags);
272         pr_err("\tcompr_type     %d\n", ui->compr_type);
273         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
274         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
275         pr_err("\tdata_len       %d\n", ui->data_len);
276
277         if (!S_ISDIR(inode->i_mode))
278                 return;
279
280         pr_err("List of directory entries:\n");
281         ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
282
283         lowest_dent_key(c, &key, inode->i_ino);
284         while (1) {
285                 dent = ubifs_tnc_next_ent(c, &key, &nm);
286                 if (IS_ERR(dent)) {
287                         if (PTR_ERR(dent) != -ENOENT)
288                                 pr_err("error %ld\n", PTR_ERR(dent));
289                         break;
290                 }
291
292                 pr_err("\t%d: inode %llu, type %s, len %d\n",
293                        count++, (unsigned long long) le64_to_cpu(dent->inum),
294                        get_dent_type(dent->type),
295                        le16_to_cpu(dent->nlen));
296
297                 fname_name(&nm) = dent->name;
298                 fname_len(&nm) = le16_to_cpu(dent->nlen);
299                 kfree(pdent);
300                 pdent = dent;
301                 key_read(c, &dent->key, &key);
302         }
303         kfree(pdent);
304 }
305
306 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
307 {
308         int i, n;
309         union ubifs_key key;
310         const struct ubifs_ch *ch = node;
311         char key_buf[DBG_KEY_BUF_LEN];
312
313         /* If the magic is incorrect, just hexdump the first bytes */
314         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
315                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
316                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
317                                (void *)node, UBIFS_CH_SZ, 1);
318                 return;
319         }
320
321         spin_lock(&dbg_lock);
322         dump_ch(node);
323
324         switch (ch->node_type) {
325         case UBIFS_PAD_NODE:
326         {
327                 const struct ubifs_pad_node *pad = node;
328
329                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
330                 break;
331         }
332         case UBIFS_SB_NODE:
333         {
334                 const struct ubifs_sb_node *sup = node;
335                 unsigned int sup_flags = le32_to_cpu(sup->flags);
336
337                 pr_err("\tkey_hash       %d (%s)\n",
338                        (int)sup->key_hash, get_key_hash(sup->key_hash));
339                 pr_err("\tkey_fmt        %d (%s)\n",
340                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
341                 pr_err("\tflags          %#x\n", sup_flags);
342                 pr_err("\tbig_lpt        %u\n",
343                        !!(sup_flags & UBIFS_FLG_BIGLPT));
344                 pr_err("\tspace_fixup    %u\n",
345                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
346                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
347                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
348                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
349                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
350                 pr_err("\tmax_bud_bytes  %llu\n",
351                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
352                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
353                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
354                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
355                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
356                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
357                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
358                 pr_err("\tdefault_compr  %u\n",
359                        (int)le16_to_cpu(sup->default_compr));
360                 pr_err("\trp_size        %llu\n",
361                        (unsigned long long)le64_to_cpu(sup->rp_size));
362                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
363                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
364                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
365                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
366                 pr_err("\tUUID           %pUB\n", sup->uuid);
367                 break;
368         }
369         case UBIFS_MST_NODE:
370         {
371                 const struct ubifs_mst_node *mst = node;
372
373                 pr_err("\thighest_inum   %llu\n",
374                        (unsigned long long)le64_to_cpu(mst->highest_inum));
375                 pr_err("\tcommit number  %llu\n",
376                        (unsigned long long)le64_to_cpu(mst->cmt_no));
377                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
378                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
379                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
380                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
381                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
382                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
383                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
384                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
385                 pr_err("\tindex_size     %llu\n",
386                        (unsigned long long)le64_to_cpu(mst->index_size));
387                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
388                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
389                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
390                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
391                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
392                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
393                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
394                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
395                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
396                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
397                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
398                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
399                 pr_err("\ttotal_free     %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_free));
401                 pr_err("\ttotal_dirty    %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_dirty));
403                 pr_err("\ttotal_used     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_used));
405                 pr_err("\ttotal_dead     %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->total_dead));
407                 pr_err("\ttotal_dark     %llu\n",
408                        (unsigned long long)le64_to_cpu(mst->total_dark));
409                 break;
410         }
411         case UBIFS_REF_NODE:
412         {
413                 const struct ubifs_ref_node *ref = node;
414
415                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
416                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
417                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
418                 break;
419         }
420         case UBIFS_INO_NODE:
421         {
422                 const struct ubifs_ino_node *ino = node;
423
424                 key_read(c, &ino->key, &key);
425                 pr_err("\tkey            %s\n",
426                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
427                 pr_err("\tcreat_sqnum    %llu\n",
428                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
429                 pr_err("\tsize           %llu\n",
430                        (unsigned long long)le64_to_cpu(ino->size));
431                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
432                 pr_err("\tatime          %lld.%u\n",
433                        (long long)le64_to_cpu(ino->atime_sec),
434                        le32_to_cpu(ino->atime_nsec));
435                 pr_err("\tmtime          %lld.%u\n",
436                        (long long)le64_to_cpu(ino->mtime_sec),
437                        le32_to_cpu(ino->mtime_nsec));
438                 pr_err("\tctime          %lld.%u\n",
439                        (long long)le64_to_cpu(ino->ctime_sec),
440                        le32_to_cpu(ino->ctime_nsec));
441                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
442                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
443                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
444                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
445                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
446                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
447                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
448                 pr_err("\tcompr_type     %#x\n",
449                        (int)le16_to_cpu(ino->compr_type));
450                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
451                 break;
452         }
453         case UBIFS_DENT_NODE:
454         case UBIFS_XENT_NODE:
455         {
456                 const struct ubifs_dent_node *dent = node;
457                 int nlen = le16_to_cpu(dent->nlen);
458
459                 key_read(c, &dent->key, &key);
460                 pr_err("\tkey            %s\n",
461                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
462                 pr_err("\tinum           %llu\n",
463                        (unsigned long long)le64_to_cpu(dent->inum));
464                 pr_err("\ttype           %d\n", (int)dent->type);
465                 pr_err("\tnlen           %d\n", nlen);
466                 pr_err("\tname           ");
467
468                 if (nlen > UBIFS_MAX_NLEN)
469                         pr_err("(bad name length, not printing, bad or corrupted node)");
470                 else {
471                         for (i = 0; i < nlen && dent->name[i]; i++)
472                                 pr_cont("%c", isprint(dent->name[i]) ?
473                                         dent->name[i] : '?');
474                 }
475                 pr_cont("\n");
476
477                 break;
478         }
479         case UBIFS_DATA_NODE:
480         {
481                 const struct ubifs_data_node *dn = node;
482                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
483
484                 key_read(c, &dn->key, &key);
485                 pr_err("\tkey            %s\n",
486                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
487                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
488                 pr_err("\tcompr_typ      %d\n",
489                        (int)le16_to_cpu(dn->compr_type));
490                 pr_err("\tdata size      %d\n", dlen);
491                 pr_err("\tdata:\n");
492                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
493                                (void *)&dn->data, dlen, 0);
494                 break;
495         }
496         case UBIFS_TRUN_NODE:
497         {
498                 const struct ubifs_trun_node *trun = node;
499
500                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
501                 pr_err("\told_size       %llu\n",
502                        (unsigned long long)le64_to_cpu(trun->old_size));
503                 pr_err("\tnew_size       %llu\n",
504                        (unsigned long long)le64_to_cpu(trun->new_size));
505                 break;
506         }
507         case UBIFS_IDX_NODE:
508         {
509                 const struct ubifs_idx_node *idx = node;
510
511                 n = le16_to_cpu(idx->child_cnt);
512                 pr_err("\tchild_cnt      %d\n", n);
513                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
514                 pr_err("\tBranches:\n");
515
516                 for (i = 0; i < n && i < c->fanout - 1; i++) {
517                         const struct ubifs_branch *br;
518
519                         br = ubifs_idx_branch(c, idx, i);
520                         key_read(c, &br->key, &key);
521                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
522                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
523                                le32_to_cpu(br->len),
524                                dbg_snprintf_key(c, &key, key_buf,
525                                                 DBG_KEY_BUF_LEN));
526                 }
527                 break;
528         }
529         case UBIFS_CS_NODE:
530                 break;
531         case UBIFS_ORPH_NODE:
532         {
533                 const struct ubifs_orph_node *orph = node;
534
535                 pr_err("\tcommit number  %llu\n",
536                        (unsigned long long)
537                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
538                 pr_err("\tlast node flag %llu\n",
539                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
540                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
541                 pr_err("\t%d orphan inode numbers:\n", n);
542                 for (i = 0; i < n; i++)
543                         pr_err("\t  ino %llu\n",
544                                (unsigned long long)le64_to_cpu(orph->inos[i]));
545                 break;
546         }
547         case UBIFS_AUTH_NODE:
548         {
549                 break;
550         }
551         default:
552                 pr_err("node type %d was not recognized\n",
553                        (int)ch->node_type);
554         }
555         spin_unlock(&dbg_lock);
556 }
557
558 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
559 {
560         spin_lock(&dbg_lock);
561         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
562                req->new_ino, req->dirtied_ino);
563         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
564                req->new_ino_d, req->dirtied_ino_d);
565         pr_err("\tnew_page    %d, dirtied_page %d\n",
566                req->new_page, req->dirtied_page);
567         pr_err("\tnew_dent    %d, mod_dent     %d\n",
568                req->new_dent, req->mod_dent);
569         pr_err("\tidx_growth  %d\n", req->idx_growth);
570         pr_err("\tdata_growth %d dd_growth     %d\n",
571                req->data_growth, req->dd_growth);
572         spin_unlock(&dbg_lock);
573 }
574
575 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
576 {
577         spin_lock(&dbg_lock);
578         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
579                current->pid, lst->empty_lebs, lst->idx_lebs);
580         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
581                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
582         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
583                lst->total_used, lst->total_dark, lst->total_dead);
584         spin_unlock(&dbg_lock);
585 }
586
587 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
588 {
589         int i;
590         struct rb_node *rb;
591         struct ubifs_bud *bud;
592         struct ubifs_gced_idx_leb *idx_gc;
593         long long available, outstanding, free;
594
595         spin_lock(&c->space_lock);
596         spin_lock(&dbg_lock);
597         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
598                current->pid, bi->data_growth + bi->dd_growth,
599                bi->data_growth + bi->dd_growth + bi->idx_growth);
600         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
601                bi->data_growth, bi->dd_growth, bi->idx_growth);
602         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
603                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
604         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
605                bi->page_budget, bi->inode_budget, bi->dent_budget);
606         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
607         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
608                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
609
610         if (bi != &c->bi)
611                 /*
612                  * If we are dumping saved budgeting data, do not print
613                  * additional information which is about the current state, not
614                  * the old one which corresponded to the saved budgeting data.
615                  */
616                 goto out_unlock;
617
618         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
619                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
620         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
621                atomic_long_read(&c->dirty_pg_cnt),
622                atomic_long_read(&c->dirty_zn_cnt),
623                atomic_long_read(&c->clean_zn_cnt));
624         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
625
626         /* If we are in R/O mode, journal heads do not exist */
627         if (c->jheads)
628                 for (i = 0; i < c->jhead_cnt; i++)
629                         pr_err("\tjhead %s\t LEB %d\n",
630                                dbg_jhead(c->jheads[i].wbuf.jhead),
631                                c->jheads[i].wbuf.lnum);
632         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
633                 bud = rb_entry(rb, struct ubifs_bud, rb);
634                 pr_err("\tbud LEB %d\n", bud->lnum);
635         }
636         list_for_each_entry(bud, &c->old_buds, list)
637                 pr_err("\told bud LEB %d\n", bud->lnum);
638         list_for_each_entry(idx_gc, &c->idx_gc, list)
639                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
640                        idx_gc->lnum, idx_gc->unmap);
641         pr_err("\tcommit state %d\n", c->cmt_state);
642
643         /* Print budgeting predictions */
644         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
645         outstanding = c->bi.data_growth + c->bi.dd_growth;
646         free = ubifs_get_free_space_nolock(c);
647         pr_err("Budgeting predictions:\n");
648         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
649                available, outstanding, free);
650 out_unlock:
651         spin_unlock(&dbg_lock);
652         spin_unlock(&c->space_lock);
653 }
654
655 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
656 {
657         int i, spc, dark = 0, dead = 0;
658         struct rb_node *rb;
659         struct ubifs_bud *bud;
660
661         spc = lp->free + lp->dirty;
662         if (spc < c->dead_wm)
663                 dead = spc;
664         else
665                 dark = ubifs_calc_dark(c, spc);
666
667         if (lp->flags & LPROPS_INDEX)
668                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
669                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670                        lp->flags);
671         else
672                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
673                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
674                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
675
676         if (lp->flags & LPROPS_TAKEN) {
677                 if (lp->flags & LPROPS_INDEX)
678                         pr_cont("index, taken");
679                 else
680                         pr_cont("taken");
681         } else {
682                 const char *s;
683
684                 if (lp->flags & LPROPS_INDEX) {
685                         switch (lp->flags & LPROPS_CAT_MASK) {
686                         case LPROPS_DIRTY_IDX:
687                                 s = "dirty index";
688                                 break;
689                         case LPROPS_FRDI_IDX:
690                                 s = "freeable index";
691                                 break;
692                         default:
693                                 s = "index";
694                         }
695                 } else {
696                         switch (lp->flags & LPROPS_CAT_MASK) {
697                         case LPROPS_UNCAT:
698                                 s = "not categorized";
699                                 break;
700                         case LPROPS_DIRTY:
701                                 s = "dirty";
702                                 break;
703                         case LPROPS_FREE:
704                                 s = "free";
705                                 break;
706                         case LPROPS_EMPTY:
707                                 s = "empty";
708                                 break;
709                         case LPROPS_FREEABLE:
710                                 s = "freeable";
711                                 break;
712                         default:
713                                 s = NULL;
714                                 break;
715                         }
716                 }
717                 pr_cont("%s", s);
718         }
719
720         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
721                 bud = rb_entry(rb, struct ubifs_bud, rb);
722                 if (bud->lnum == lp->lnum) {
723                         int head = 0;
724                         for (i = 0; i < c->jhead_cnt; i++) {
725                                 /*
726                                  * Note, if we are in R/O mode or in the middle
727                                  * of mounting/re-mounting, the write-buffers do
728                                  * not exist.
729                                  */
730                                 if (c->jheads &&
731                                     lp->lnum == c->jheads[i].wbuf.lnum) {
732                                         pr_cont(", jhead %s", dbg_jhead(i));
733                                         head = 1;
734                                 }
735                         }
736                         if (!head)
737                                 pr_cont(", bud of jhead %s",
738                                        dbg_jhead(bud->jhead));
739                 }
740         }
741         if (lp->lnum == c->gc_lnum)
742                 pr_cont(", GC LEB");
743         pr_cont(")\n");
744 }
745
746 void ubifs_dump_lprops(struct ubifs_info *c)
747 {
748         int lnum, err;
749         struct ubifs_lprops lp;
750         struct ubifs_lp_stats lst;
751
752         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
753         ubifs_get_lp_stats(c, &lst);
754         ubifs_dump_lstats(&lst);
755
756         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
757                 err = ubifs_read_one_lp(c, lnum, &lp);
758                 if (err) {
759                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
760                         continue;
761                 }
762
763                 ubifs_dump_lprop(c, &lp);
764         }
765         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
766 }
767
768 void ubifs_dump_lpt_info(struct ubifs_info *c)
769 {
770         int i;
771
772         spin_lock(&dbg_lock);
773         pr_err("(pid %d) dumping LPT information\n", current->pid);
774         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
775         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
776         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
777         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
778         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
779         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
780         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
781         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
782         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
783         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
784         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
785         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
786         pr_err("\tspace_bits:    %d\n", c->space_bits);
787         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
788         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
789         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
790         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
791         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
792         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
793         pr_err("\tLPT head is at %d:%d\n",
794                c->nhead_lnum, c->nhead_offs);
795         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
796         if (c->big_lpt)
797                 pr_err("\tLPT lsave is at %d:%d\n",
798                        c->lsave_lnum, c->lsave_offs);
799         for (i = 0; i < c->lpt_lebs; i++)
800                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
801                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
802                        c->ltab[i].tgc, c->ltab[i].cmt);
803         spin_unlock(&dbg_lock);
804 }
805
806 void ubifs_dump_sleb(const struct ubifs_info *c,
807                      const struct ubifs_scan_leb *sleb, int offs)
808 {
809         struct ubifs_scan_node *snod;
810
811         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
812                current->pid, sleb->lnum, offs);
813
814         list_for_each_entry(snod, &sleb->nodes, list) {
815                 cond_resched();
816                 pr_err("Dumping node at LEB %d:%d len %d\n",
817                        sleb->lnum, snod->offs, snod->len);
818                 ubifs_dump_node(c, snod->node);
819         }
820 }
821
822 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
823 {
824         struct ubifs_scan_leb *sleb;
825         struct ubifs_scan_node *snod;
826         void *buf;
827
828         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
829
830         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
831         if (!buf) {
832                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
833                 return;
834         }
835
836         sleb = ubifs_scan(c, lnum, 0, buf, 0);
837         if (IS_ERR(sleb)) {
838                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
839                 goto out;
840         }
841
842         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
843                sleb->nodes_cnt, sleb->endpt);
844
845         list_for_each_entry(snod, &sleb->nodes, list) {
846                 cond_resched();
847                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
848                        snod->offs, snod->len);
849                 ubifs_dump_node(c, snod->node);
850         }
851
852         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
853         ubifs_scan_destroy(sleb);
854
855 out:
856         vfree(buf);
857         return;
858 }
859
860 void ubifs_dump_znode(const struct ubifs_info *c,
861                       const struct ubifs_znode *znode)
862 {
863         int n;
864         const struct ubifs_zbranch *zbr;
865         char key_buf[DBG_KEY_BUF_LEN];
866
867         spin_lock(&dbg_lock);
868         if (znode->parent)
869                 zbr = &znode->parent->zbranch[znode->iip];
870         else
871                 zbr = &c->zroot;
872
873         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
874                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
875                znode->level, znode->child_cnt, znode->flags);
876
877         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
878                 spin_unlock(&dbg_lock);
879                 return;
880         }
881
882         pr_err("zbranches:\n");
883         for (n = 0; n < znode->child_cnt; n++) {
884                 zbr = &znode->zbranch[n];
885                 if (znode->level > 0)
886                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
887                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
888                                dbg_snprintf_key(c, &zbr->key, key_buf,
889                                                 DBG_KEY_BUF_LEN));
890                 else
891                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
892                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
893                                dbg_snprintf_key(c, &zbr->key, key_buf,
894                                                 DBG_KEY_BUF_LEN));
895         }
896         spin_unlock(&dbg_lock);
897 }
898
899 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
900 {
901         int i;
902
903         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
904                current->pid, cat, heap->cnt);
905         for (i = 0; i < heap->cnt; i++) {
906                 struct ubifs_lprops *lprops = heap->arr[i];
907
908                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
909                        i, lprops->lnum, lprops->hpos, lprops->free,
910                        lprops->dirty, lprops->flags);
911         }
912         pr_err("(pid %d) finish dumping heap\n", current->pid);
913 }
914
915 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
916                       struct ubifs_nnode *parent, int iip)
917 {
918         int i;
919
920         pr_err("(pid %d) dumping pnode:\n", current->pid);
921         pr_err("\taddress %zx parent %zx cnext %zx\n",
922                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
923         pr_err("\tflags %lu iip %d level %d num %d\n",
924                pnode->flags, iip, pnode->level, pnode->num);
925         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
926                 struct ubifs_lprops *lp = &pnode->lprops[i];
927
928                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
929                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
930         }
931 }
932
933 void ubifs_dump_tnc(struct ubifs_info *c)
934 {
935         struct ubifs_znode *znode;
936         int level;
937
938         pr_err("\n");
939         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
940         znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
941         level = znode->level;
942         pr_err("== Level %d ==\n", level);
943         while (znode) {
944                 if (level != znode->level) {
945                         level = znode->level;
946                         pr_err("== Level %d ==\n", level);
947                 }
948                 ubifs_dump_znode(c, znode);
949                 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
950         }
951         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
952 }
953
954 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
955                       void *priv)
956 {
957         ubifs_dump_znode(c, znode);
958         return 0;
959 }
960
961 /**
962  * ubifs_dump_index - dump the on-flash index.
963  * @c: UBIFS file-system description object
964  *
965  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
966  * which dumps only in-memory znodes and does not read znodes which from flash.
967  */
968 void ubifs_dump_index(struct ubifs_info *c)
969 {
970         dbg_walk_index(c, NULL, dump_znode, NULL);
971 }
972
973 /**
974  * dbg_save_space_info - save information about flash space.
975  * @c: UBIFS file-system description object
976  *
977  * This function saves information about UBIFS free space, dirty space, etc, in
978  * order to check it later.
979  */
980 void dbg_save_space_info(struct ubifs_info *c)
981 {
982         struct ubifs_debug_info *d = c->dbg;
983         int freeable_cnt;
984
985         spin_lock(&c->space_lock);
986         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
987         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
988         d->saved_idx_gc_cnt = c->idx_gc_cnt;
989
990         /*
991          * We use a dirty hack here and zero out @c->freeable_cnt, because it
992          * affects the free space calculations, and UBIFS might not know about
993          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
994          * only when we read their lprops, and we do this only lazily, upon the
995          * need. So at any given point of time @c->freeable_cnt might be not
996          * exactly accurate.
997          *
998          * Just one example about the issue we hit when we did not zero
999          * @c->freeable_cnt.
1000          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1001          *    amount of free space in @d->saved_free
1002          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1003          *    information from flash, where we cache LEBs from various
1004          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1005          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1006          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1007          *    -> 'ubifs_add_to_cat()').
1008          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1009          *    becomes %1.
1010          * 4. We calculate the amount of free space when the re-mount is
1011          *    finished in 'dbg_check_space_info()' and it does not match
1012          *    @d->saved_free.
1013          */
1014         freeable_cnt = c->freeable_cnt;
1015         c->freeable_cnt = 0;
1016         d->saved_free = ubifs_get_free_space_nolock(c);
1017         c->freeable_cnt = freeable_cnt;
1018         spin_unlock(&c->space_lock);
1019 }
1020
1021 /**
1022  * dbg_check_space_info - check flash space information.
1023  * @c: UBIFS file-system description object
1024  *
1025  * This function compares current flash space information with the information
1026  * which was saved when the 'dbg_save_space_info()' function was called.
1027  * Returns zero if the information has not changed, and %-EINVAL it it has
1028  * changed.
1029  */
1030 int dbg_check_space_info(struct ubifs_info *c)
1031 {
1032         struct ubifs_debug_info *d = c->dbg;
1033         struct ubifs_lp_stats lst;
1034         long long free;
1035         int freeable_cnt;
1036
1037         spin_lock(&c->space_lock);
1038         freeable_cnt = c->freeable_cnt;
1039         c->freeable_cnt = 0;
1040         free = ubifs_get_free_space_nolock(c);
1041         c->freeable_cnt = freeable_cnt;
1042         spin_unlock(&c->space_lock);
1043
1044         if (free != d->saved_free) {
1045                 ubifs_err(c, "free space changed from %lld to %lld",
1046                           d->saved_free, free);
1047                 goto out;
1048         }
1049
1050         return 0;
1051
1052 out:
1053         ubifs_msg(c, "saved lprops statistics dump");
1054         ubifs_dump_lstats(&d->saved_lst);
1055         ubifs_msg(c, "saved budgeting info dump");
1056         ubifs_dump_budg(c, &d->saved_bi);
1057         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1058         ubifs_msg(c, "current lprops statistics dump");
1059         ubifs_get_lp_stats(c, &lst);
1060         ubifs_dump_lstats(&lst);
1061         ubifs_msg(c, "current budgeting info dump");
1062         ubifs_dump_budg(c, &c->bi);
1063         dump_stack();
1064         return -EINVAL;
1065 }
1066
1067 /**
1068  * dbg_check_synced_i_size - check synchronized inode size.
1069  * @c: UBIFS file-system description object
1070  * @inode: inode to check
1071  *
1072  * If inode is clean, synchronized inode size has to be equivalent to current
1073  * inode size. This function has to be called only for locked inodes (@i_mutex
1074  * has to be locked). Returns %0 if synchronized inode size if correct, and
1075  * %-EINVAL if not.
1076  */
1077 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1078 {
1079         int err = 0;
1080         struct ubifs_inode *ui = ubifs_inode(inode);
1081
1082         if (!dbg_is_chk_gen(c))
1083                 return 0;
1084         if (!S_ISREG(inode->i_mode))
1085                 return 0;
1086
1087         mutex_lock(&ui->ui_mutex);
1088         spin_lock(&ui->ui_lock);
1089         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1090                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1091                           ui->ui_size, ui->synced_i_size);
1092                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1093                           inode->i_mode, i_size_read(inode));
1094                 dump_stack();
1095                 err = -EINVAL;
1096         }
1097         spin_unlock(&ui->ui_lock);
1098         mutex_unlock(&ui->ui_mutex);
1099         return err;
1100 }
1101
1102 /*
1103  * dbg_check_dir - check directory inode size and link count.
1104  * @c: UBIFS file-system description object
1105  * @dir: the directory to calculate size for
1106  * @size: the result is returned here
1107  *
1108  * This function makes sure that directory size and link count are correct.
1109  * Returns zero in case of success and a negative error code in case of
1110  * failure.
1111  *
1112  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1113  * calling this function.
1114  */
1115 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1116 {
1117         unsigned int nlink = 2;
1118         union ubifs_key key;
1119         struct ubifs_dent_node *dent, *pdent = NULL;
1120         struct fscrypt_name nm = {0};
1121         loff_t size = UBIFS_INO_NODE_SZ;
1122
1123         if (!dbg_is_chk_gen(c))
1124                 return 0;
1125
1126         if (!S_ISDIR(dir->i_mode))
1127                 return 0;
1128
1129         lowest_dent_key(c, &key, dir->i_ino);
1130         while (1) {
1131                 int err;
1132
1133                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1134                 if (IS_ERR(dent)) {
1135                         err = PTR_ERR(dent);
1136                         if (err == -ENOENT)
1137                                 break;
1138                         return err;
1139                 }
1140
1141                 fname_name(&nm) = dent->name;
1142                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1143                 size += CALC_DENT_SIZE(fname_len(&nm));
1144                 if (dent->type == UBIFS_ITYPE_DIR)
1145                         nlink += 1;
1146                 kfree(pdent);
1147                 pdent = dent;
1148                 key_read(c, &dent->key, &key);
1149         }
1150         kfree(pdent);
1151
1152         if (i_size_read(dir) != size) {
1153                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1154                           dir->i_ino, (unsigned long long)i_size_read(dir),
1155                           (unsigned long long)size);
1156                 ubifs_dump_inode(c, dir);
1157                 dump_stack();
1158                 return -EINVAL;
1159         }
1160         if (dir->i_nlink != nlink) {
1161                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1162                           dir->i_ino, dir->i_nlink, nlink);
1163                 ubifs_dump_inode(c, dir);
1164                 dump_stack();
1165                 return -EINVAL;
1166         }
1167
1168         return 0;
1169 }
1170
1171 /**
1172  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1173  * @c: UBIFS file-system description object
1174  * @zbr1: first zbranch
1175  * @zbr2: following zbranch
1176  *
1177  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1178  * names of the direntries/xentries which are referred by the keys. This
1179  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1180  * sure the name of direntry/xentry referred by @zbr1 is less than
1181  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1182  * and a negative error code in case of failure.
1183  */
1184 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1185                                struct ubifs_zbranch *zbr2)
1186 {
1187         int err, nlen1, nlen2, cmp;
1188         struct ubifs_dent_node *dent1, *dent2;
1189         union ubifs_key key;
1190         char key_buf[DBG_KEY_BUF_LEN];
1191
1192         ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1193         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194         if (!dent1)
1195                 return -ENOMEM;
1196         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1197         if (!dent2) {
1198                 err = -ENOMEM;
1199                 goto out_free;
1200         }
1201
1202         err = ubifs_tnc_read_node(c, zbr1, dent1);
1203         if (err)
1204                 goto out_free;
1205         err = ubifs_validate_entry(c, dent1);
1206         if (err)
1207                 goto out_free;
1208
1209         err = ubifs_tnc_read_node(c, zbr2, dent2);
1210         if (err)
1211                 goto out_free;
1212         err = ubifs_validate_entry(c, dent2);
1213         if (err)
1214                 goto out_free;
1215
1216         /* Make sure node keys are the same as in zbranch */
1217         err = 1;
1218         key_read(c, &dent1->key, &key);
1219         if (keys_cmp(c, &zbr1->key, &key)) {
1220                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1221                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                        DBG_KEY_BUF_LEN));
1223                 ubifs_err(c, "but it should have key %s according to tnc",
1224                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1225                                            DBG_KEY_BUF_LEN));
1226                 ubifs_dump_node(c, dent1);
1227                 goto out_free;
1228         }
1229
1230         key_read(c, &dent2->key, &key);
1231         if (keys_cmp(c, &zbr2->key, &key)) {
1232                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1233                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1234                                                        DBG_KEY_BUF_LEN));
1235                 ubifs_err(c, "but it should have key %s according to tnc",
1236                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1237                                            DBG_KEY_BUF_LEN));
1238                 ubifs_dump_node(c, dent2);
1239                 goto out_free;
1240         }
1241
1242         nlen1 = le16_to_cpu(dent1->nlen);
1243         nlen2 = le16_to_cpu(dent2->nlen);
1244
1245         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1246         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1247                 err = 0;
1248                 goto out_free;
1249         }
1250         if (cmp == 0 && nlen1 == nlen2)
1251                 ubifs_err(c, "2 xent/dent nodes with the same name");
1252         else
1253                 ubifs_err(c, "bad order of colliding key %s",
1254                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1255
1256         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1257         ubifs_dump_node(c, dent1);
1258         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1259         ubifs_dump_node(c, dent2);
1260
1261 out_free:
1262         kfree(dent2);
1263         kfree(dent1);
1264         return err;
1265 }
1266
1267 /**
1268  * dbg_check_znode - check if znode is all right.
1269  * @c: UBIFS file-system description object
1270  * @zbr: zbranch which points to this znode
1271  *
1272  * This function makes sure that znode referred to by @zbr is all right.
1273  * Returns zero if it is, and %-EINVAL if it is not.
1274  */
1275 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1276 {
1277         struct ubifs_znode *znode = zbr->znode;
1278         struct ubifs_znode *zp = znode->parent;
1279         int n, err, cmp;
1280
1281         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1282                 err = 1;
1283                 goto out;
1284         }
1285         if (znode->level < 0) {
1286                 err = 2;
1287                 goto out;
1288         }
1289         if (znode->iip < 0 || znode->iip >= c->fanout) {
1290                 err = 3;
1291                 goto out;
1292         }
1293
1294         if (zbr->len == 0)
1295                 /* Only dirty zbranch may have no on-flash nodes */
1296                 if (!ubifs_zn_dirty(znode)) {
1297                         err = 4;
1298                         goto out;
1299                 }
1300
1301         if (ubifs_zn_dirty(znode)) {
1302                 /*
1303                  * If znode is dirty, its parent has to be dirty as well. The
1304                  * order of the operation is important, so we have to have
1305                  * memory barriers.
1306                  */
1307                 smp_mb();
1308                 if (zp && !ubifs_zn_dirty(zp)) {
1309                         /*
1310                          * The dirty flag is atomic and is cleared outside the
1311                          * TNC mutex, so znode's dirty flag may now have
1312                          * been cleared. The child is always cleared before the
1313                          * parent, so we just need to check again.
1314                          */
1315                         smp_mb();
1316                         if (ubifs_zn_dirty(znode)) {
1317                                 err = 5;
1318                                 goto out;
1319                         }
1320                 }
1321         }
1322
1323         if (zp) {
1324                 const union ubifs_key *min, *max;
1325
1326                 if (znode->level != zp->level - 1) {
1327                         err = 6;
1328                         goto out;
1329                 }
1330
1331                 /* Make sure the 'parent' pointer in our znode is correct */
1332                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1333                 if (!err) {
1334                         /* This zbranch does not exist in the parent */
1335                         err = 7;
1336                         goto out;
1337                 }
1338
1339                 if (znode->iip >= zp->child_cnt) {
1340                         err = 8;
1341                         goto out;
1342                 }
1343
1344                 if (znode->iip != n) {
1345                         /* This may happen only in case of collisions */
1346                         if (keys_cmp(c, &zp->zbranch[n].key,
1347                                      &zp->zbranch[znode->iip].key)) {
1348                                 err = 9;
1349                                 goto out;
1350                         }
1351                         n = znode->iip;
1352                 }
1353
1354                 /*
1355                  * Make sure that the first key in our znode is greater than or
1356                  * equal to the key in the pointing zbranch.
1357                  */
1358                 min = &zbr->key;
1359                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1360                 if (cmp == 1) {
1361                         err = 10;
1362                         goto out;
1363                 }
1364
1365                 if (n + 1 < zp->child_cnt) {
1366                         max = &zp->zbranch[n + 1].key;
1367
1368                         /*
1369                          * Make sure the last key in our znode is less or
1370                          * equivalent than the key in the zbranch which goes
1371                          * after our pointing zbranch.
1372                          */
1373                         cmp = keys_cmp(c, max,
1374                                 &znode->zbranch[znode->child_cnt - 1].key);
1375                         if (cmp == -1) {
1376                                 err = 11;
1377                                 goto out;
1378                         }
1379                 }
1380         } else {
1381                 /* This may only be root znode */
1382                 if (zbr != &c->zroot) {
1383                         err = 12;
1384                         goto out;
1385                 }
1386         }
1387
1388         /*
1389          * Make sure that next key is greater or equivalent then the previous
1390          * one.
1391          */
1392         for (n = 1; n < znode->child_cnt; n++) {
1393                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1394                                &znode->zbranch[n].key);
1395                 if (cmp > 0) {
1396                         err = 13;
1397                         goto out;
1398                 }
1399                 if (cmp == 0) {
1400                         /* This can only be keys with colliding hash */
1401                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1402                                 err = 14;
1403                                 goto out;
1404                         }
1405
1406                         if (znode->level != 0 || c->replaying)
1407                                 continue;
1408
1409                         /*
1410                          * Colliding keys should follow binary order of
1411                          * corresponding xentry/dentry names.
1412                          */
1413                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1414                                                   &znode->zbranch[n]);
1415                         if (err < 0)
1416                                 return err;
1417                         if (err) {
1418                                 err = 15;
1419                                 goto out;
1420                         }
1421                 }
1422         }
1423
1424         for (n = 0; n < znode->child_cnt; n++) {
1425                 if (!znode->zbranch[n].znode &&
1426                     (znode->zbranch[n].lnum == 0 ||
1427                      znode->zbranch[n].len == 0)) {
1428                         err = 16;
1429                         goto out;
1430                 }
1431
1432                 if (znode->zbranch[n].lnum != 0 &&
1433                     znode->zbranch[n].len == 0) {
1434                         err = 17;
1435                         goto out;
1436                 }
1437
1438                 if (znode->zbranch[n].lnum == 0 &&
1439                     znode->zbranch[n].len != 0) {
1440                         err = 18;
1441                         goto out;
1442                 }
1443
1444                 if (znode->zbranch[n].lnum == 0 &&
1445                     znode->zbranch[n].offs != 0) {
1446                         err = 19;
1447                         goto out;
1448                 }
1449
1450                 if (znode->level != 0 && znode->zbranch[n].znode)
1451                         if (znode->zbranch[n].znode->parent != znode) {
1452                                 err = 20;
1453                                 goto out;
1454                         }
1455         }
1456
1457         return 0;
1458
1459 out:
1460         ubifs_err(c, "failed, error %d", err);
1461         ubifs_msg(c, "dump of the znode");
1462         ubifs_dump_znode(c, znode);
1463         if (zp) {
1464                 ubifs_msg(c, "dump of the parent znode");
1465                 ubifs_dump_znode(c, zp);
1466         }
1467         dump_stack();
1468         return -EINVAL;
1469 }
1470
1471 /**
1472  * dbg_check_tnc - check TNC tree.
1473  * @c: UBIFS file-system description object
1474  * @extra: do extra checks that are possible at start commit
1475  *
1476  * This function traverses whole TNC tree and checks every znode. Returns zero
1477  * if everything is all right and %-EINVAL if something is wrong with TNC.
1478  */
1479 int dbg_check_tnc(struct ubifs_info *c, int extra)
1480 {
1481         struct ubifs_znode *znode;
1482         long clean_cnt = 0, dirty_cnt = 0;
1483         int err, last;
1484
1485         if (!dbg_is_chk_index(c))
1486                 return 0;
1487
1488         ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1489         if (!c->zroot.znode)
1490                 return 0;
1491
1492         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1493         while (1) {
1494                 struct ubifs_znode *prev;
1495                 struct ubifs_zbranch *zbr;
1496
1497                 if (!znode->parent)
1498                         zbr = &c->zroot;
1499                 else
1500                         zbr = &znode->parent->zbranch[znode->iip];
1501
1502                 err = dbg_check_znode(c, zbr);
1503                 if (err)
1504                         return err;
1505
1506                 if (extra) {
1507                         if (ubifs_zn_dirty(znode))
1508                                 dirty_cnt += 1;
1509                         else
1510                                 clean_cnt += 1;
1511                 }
1512
1513                 prev = znode;
1514                 znode = ubifs_tnc_postorder_next(c, znode);
1515                 if (!znode)
1516                         break;
1517
1518                 /*
1519                  * If the last key of this znode is equivalent to the first key
1520                  * of the next znode (collision), then check order of the keys.
1521                  */
1522                 last = prev->child_cnt - 1;
1523                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1524                     !keys_cmp(c, &prev->zbranch[last].key,
1525                               &znode->zbranch[0].key)) {
1526                         err = dbg_check_key_order(c, &prev->zbranch[last],
1527                                                   &znode->zbranch[0]);
1528                         if (err < 0)
1529                                 return err;
1530                         if (err) {
1531                                 ubifs_msg(c, "first znode");
1532                                 ubifs_dump_znode(c, prev);
1533                                 ubifs_msg(c, "second znode");
1534                                 ubifs_dump_znode(c, znode);
1535                                 return -EINVAL;
1536                         }
1537                 }
1538         }
1539
1540         if (extra) {
1541                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1542                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1543                                   atomic_long_read(&c->clean_zn_cnt),
1544                                   clean_cnt);
1545                         return -EINVAL;
1546                 }
1547                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1548                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1549                                   atomic_long_read(&c->dirty_zn_cnt),
1550                                   dirty_cnt);
1551                         return -EINVAL;
1552                 }
1553         }
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * dbg_walk_index - walk the on-flash index.
1560  * @c: UBIFS file-system description object
1561  * @leaf_cb: called for each leaf node
1562  * @znode_cb: called for each indexing node
1563  * @priv: private data which is passed to callbacks
1564  *
1565  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1566  * node and @znode_cb for each indexing node. Returns zero in case of success
1567  * and a negative error code in case of failure.
1568  *
1569  * It would be better if this function removed every znode it pulled to into
1570  * the TNC, so that the behavior more closely matched the non-debugging
1571  * behavior.
1572  */
1573 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1574                    dbg_znode_callback znode_cb, void *priv)
1575 {
1576         int err;
1577         struct ubifs_zbranch *zbr;
1578         struct ubifs_znode *znode, *child;
1579
1580         mutex_lock(&c->tnc_mutex);
1581         /* If the root indexing node is not in TNC - pull it */
1582         if (!c->zroot.znode) {
1583                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1584                 if (IS_ERR(c->zroot.znode)) {
1585                         err = PTR_ERR(c->zroot.znode);
1586                         c->zroot.znode = NULL;
1587                         goto out_unlock;
1588                 }
1589         }
1590
1591         /*
1592          * We are going to traverse the indexing tree in the postorder manner.
1593          * Go down and find the leftmost indexing node where we are going to
1594          * start from.
1595          */
1596         znode = c->zroot.znode;
1597         while (znode->level > 0) {
1598                 zbr = &znode->zbranch[0];
1599                 child = zbr->znode;
1600                 if (!child) {
1601                         child = ubifs_load_znode(c, zbr, znode, 0);
1602                         if (IS_ERR(child)) {
1603                                 err = PTR_ERR(child);
1604                                 goto out_unlock;
1605                         }
1606                         zbr->znode = child;
1607                 }
1608
1609                 znode = child;
1610         }
1611
1612         /* Iterate over all indexing nodes */
1613         while (1) {
1614                 int idx;
1615
1616                 cond_resched();
1617
1618                 if (znode_cb) {
1619                         err = znode_cb(c, znode, priv);
1620                         if (err) {
1621                                 ubifs_err(c, "znode checking function returned error %d",
1622                                           err);
1623                                 ubifs_dump_znode(c, znode);
1624                                 goto out_dump;
1625                         }
1626                 }
1627                 if (leaf_cb && znode->level == 0) {
1628                         for (idx = 0; idx < znode->child_cnt; idx++) {
1629                                 zbr = &znode->zbranch[idx];
1630                                 err = leaf_cb(c, zbr, priv);
1631                                 if (err) {
1632                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1633                                                   err, zbr->lnum, zbr->offs);
1634                                         goto out_dump;
1635                                 }
1636                         }
1637                 }
1638
1639                 if (!znode->parent)
1640                         break;
1641
1642                 idx = znode->iip + 1;
1643                 znode = znode->parent;
1644                 if (idx < znode->child_cnt) {
1645                         /* Switch to the next index in the parent */
1646                         zbr = &znode->zbranch[idx];
1647                         child = zbr->znode;
1648                         if (!child) {
1649                                 child = ubifs_load_znode(c, zbr, znode, idx);
1650                                 if (IS_ERR(child)) {
1651                                         err = PTR_ERR(child);
1652                                         goto out_unlock;
1653                                 }
1654                                 zbr->znode = child;
1655                         }
1656                         znode = child;
1657                 } else
1658                         /*
1659                          * This is the last child, switch to the parent and
1660                          * continue.
1661                          */
1662                         continue;
1663
1664                 /* Go to the lowest leftmost znode in the new sub-tree */
1665                 while (znode->level > 0) {
1666                         zbr = &znode->zbranch[0];
1667                         child = zbr->znode;
1668                         if (!child) {
1669                                 child = ubifs_load_znode(c, zbr, znode, 0);
1670                                 if (IS_ERR(child)) {
1671                                         err = PTR_ERR(child);
1672                                         goto out_unlock;
1673                                 }
1674                                 zbr->znode = child;
1675                         }
1676                         znode = child;
1677                 }
1678         }
1679
1680         mutex_unlock(&c->tnc_mutex);
1681         return 0;
1682
1683 out_dump:
1684         if (znode->parent)
1685                 zbr = &znode->parent->zbranch[znode->iip];
1686         else
1687                 zbr = &c->zroot;
1688         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1689         ubifs_dump_znode(c, znode);
1690 out_unlock:
1691         mutex_unlock(&c->tnc_mutex);
1692         return err;
1693 }
1694
1695 /**
1696  * add_size - add znode size to partially calculated index size.
1697  * @c: UBIFS file-system description object
1698  * @znode: znode to add size for
1699  * @priv: partially calculated index size
1700  *
1701  * This is a helper function for 'dbg_check_idx_size()' which is called for
1702  * every indexing node and adds its size to the 'long long' variable pointed to
1703  * by @priv.
1704  */
1705 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1706 {
1707         long long *idx_size = priv;
1708         int add;
1709
1710         add = ubifs_idx_node_sz(c, znode->child_cnt);
1711         add = ALIGN(add, 8);
1712         *idx_size += add;
1713         return 0;
1714 }
1715
1716 /**
1717  * dbg_check_idx_size - check index size.
1718  * @c: UBIFS file-system description object
1719  * @idx_size: size to check
1720  *
1721  * This function walks the UBIFS index, calculates its size and checks that the
1722  * size is equivalent to @idx_size. Returns zero in case of success and a
1723  * negative error code in case of failure.
1724  */
1725 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1726 {
1727         int err;
1728         long long calc = 0;
1729
1730         if (!dbg_is_chk_index(c))
1731                 return 0;
1732
1733         err = dbg_walk_index(c, NULL, add_size, &calc);
1734         if (err) {
1735                 ubifs_err(c, "error %d while walking the index", err);
1736                 return err;
1737         }
1738
1739         if (calc != idx_size) {
1740                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1741                           calc, idx_size);
1742                 dump_stack();
1743                 return -EINVAL;
1744         }
1745
1746         return 0;
1747 }
1748
1749 /**
1750  * struct fsck_inode - information about an inode used when checking the file-system.
1751  * @rb: link in the RB-tree of inodes
1752  * @inum: inode number
1753  * @mode: inode type, permissions, etc
1754  * @nlink: inode link count
1755  * @xattr_cnt: count of extended attributes
1756  * @references: how many directory/xattr entries refer this inode (calculated
1757  *              while walking the index)
1758  * @calc_cnt: for directory inode count of child directories
1759  * @size: inode size (read from on-flash inode)
1760  * @xattr_sz: summary size of all extended attributes (read from on-flash
1761  *            inode)
1762  * @calc_sz: for directories calculated directory size
1763  * @calc_xcnt: count of extended attributes
1764  * @calc_xsz: calculated summary size of all extended attributes
1765  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1766  *             inode (read from on-flash inode)
1767  * @calc_xnms: calculated sum of lengths of all extended attribute names
1768  */
1769 struct fsck_inode {
1770         struct rb_node rb;
1771         ino_t inum;
1772         umode_t mode;
1773         unsigned int nlink;
1774         unsigned int xattr_cnt;
1775         int references;
1776         int calc_cnt;
1777         long long size;
1778         unsigned int xattr_sz;
1779         long long calc_sz;
1780         long long calc_xcnt;
1781         long long calc_xsz;
1782         unsigned int xattr_nms;
1783         long long calc_xnms;
1784 };
1785
1786 /**
1787  * struct fsck_data - private FS checking information.
1788  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1789  */
1790 struct fsck_data {
1791         struct rb_root inodes;
1792 };
1793
1794 /**
1795  * add_inode - add inode information to RB-tree of inodes.
1796  * @c: UBIFS file-system description object
1797  * @fsckd: FS checking information
1798  * @ino: raw UBIFS inode to add
1799  *
1800  * This is a helper function for 'check_leaf()' which adds information about
1801  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1802  * case of success and a negative error code in case of failure.
1803  */
1804 static struct fsck_inode *add_inode(struct ubifs_info *c,
1805                                     struct fsck_data *fsckd,
1806                                     struct ubifs_ino_node *ino)
1807 {
1808         struct rb_node **p, *parent = NULL;
1809         struct fsck_inode *fscki;
1810         ino_t inum = key_inum_flash(c, &ino->key);
1811         struct inode *inode;
1812         struct ubifs_inode *ui;
1813
1814         p = &fsckd->inodes.rb_node;
1815         while (*p) {
1816                 parent = *p;
1817                 fscki = rb_entry(parent, struct fsck_inode, rb);
1818                 if (inum < fscki->inum)
1819                         p = &(*p)->rb_left;
1820                 else if (inum > fscki->inum)
1821                         p = &(*p)->rb_right;
1822                 else
1823                         return fscki;
1824         }
1825
1826         if (inum > c->highest_inum) {
1827                 ubifs_err(c, "too high inode number, max. is %lu",
1828                           (unsigned long)c->highest_inum);
1829                 return ERR_PTR(-EINVAL);
1830         }
1831
1832         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1833         if (!fscki)
1834                 return ERR_PTR(-ENOMEM);
1835
1836         inode = ilookup(c->vfs_sb, inum);
1837
1838         fscki->inum = inum;
1839         /*
1840          * If the inode is present in the VFS inode cache, use it instead of
1841          * the on-flash inode which might be out-of-date. E.g., the size might
1842          * be out-of-date. If we do not do this, the following may happen, for
1843          * example:
1844          *   1. A power cut happens
1845          *   2. We mount the file-system R/O, the replay process fixes up the
1846          *      inode size in the VFS cache, but on on-flash.
1847          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1848          *      size.
1849          */
1850         if (!inode) {
1851                 fscki->nlink = le32_to_cpu(ino->nlink);
1852                 fscki->size = le64_to_cpu(ino->size);
1853                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1854                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1855                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1856                 fscki->mode = le32_to_cpu(ino->mode);
1857         } else {
1858                 ui = ubifs_inode(inode);
1859                 fscki->nlink = inode->i_nlink;
1860                 fscki->size = inode->i_size;
1861                 fscki->xattr_cnt = ui->xattr_cnt;
1862                 fscki->xattr_sz = ui->xattr_size;
1863                 fscki->xattr_nms = ui->xattr_names;
1864                 fscki->mode = inode->i_mode;
1865                 iput(inode);
1866         }
1867
1868         if (S_ISDIR(fscki->mode)) {
1869                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1870                 fscki->calc_cnt = 2;
1871         }
1872
1873         rb_link_node(&fscki->rb, parent, p);
1874         rb_insert_color(&fscki->rb, &fsckd->inodes);
1875
1876         return fscki;
1877 }
1878
1879 /**
1880  * search_inode - search inode in the RB-tree of inodes.
1881  * @fsckd: FS checking information
1882  * @inum: inode number to search
1883  *
1884  * This is a helper function for 'check_leaf()' which searches inode @inum in
1885  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1886  * the inode was not found.
1887  */
1888 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1889 {
1890         struct rb_node *p;
1891         struct fsck_inode *fscki;
1892
1893         p = fsckd->inodes.rb_node;
1894         while (p) {
1895                 fscki = rb_entry(p, struct fsck_inode, rb);
1896                 if (inum < fscki->inum)
1897                         p = p->rb_left;
1898                 else if (inum > fscki->inum)
1899                         p = p->rb_right;
1900                 else
1901                         return fscki;
1902         }
1903         return NULL;
1904 }
1905
1906 /**
1907  * read_add_inode - read inode node and add it to RB-tree of inodes.
1908  * @c: UBIFS file-system description object
1909  * @fsckd: FS checking information
1910  * @inum: inode number to read
1911  *
1912  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1913  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1914  * information pointer in case of success and a negative error code in case of
1915  * failure.
1916  */
1917 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1918                                          struct fsck_data *fsckd, ino_t inum)
1919 {
1920         int n, err;
1921         union ubifs_key key;
1922         struct ubifs_znode *znode;
1923         struct ubifs_zbranch *zbr;
1924         struct ubifs_ino_node *ino;
1925         struct fsck_inode *fscki;
1926
1927         fscki = search_inode(fsckd, inum);
1928         if (fscki)
1929                 return fscki;
1930
1931         ino_key_init(c, &key, inum);
1932         err = ubifs_lookup_level0(c, &key, &znode, &n);
1933         if (!err) {
1934                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1935                 return ERR_PTR(-ENOENT);
1936         } else if (err < 0) {
1937                 ubifs_err(c, "error %d while looking up inode %lu",
1938                           err, (unsigned long)inum);
1939                 return ERR_PTR(err);
1940         }
1941
1942         zbr = &znode->zbranch[n];
1943         if (zbr->len < UBIFS_INO_NODE_SZ) {
1944                 ubifs_err(c, "bad node %lu node length %d",
1945                           (unsigned long)inum, zbr->len);
1946                 return ERR_PTR(-EINVAL);
1947         }
1948
1949         ino = kmalloc(zbr->len, GFP_NOFS);
1950         if (!ino)
1951                 return ERR_PTR(-ENOMEM);
1952
1953         err = ubifs_tnc_read_node(c, zbr, ino);
1954         if (err) {
1955                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1956                           zbr->lnum, zbr->offs, err);
1957                 kfree(ino);
1958                 return ERR_PTR(err);
1959         }
1960
1961         fscki = add_inode(c, fsckd, ino);
1962         kfree(ino);
1963         if (IS_ERR(fscki)) {
1964                 ubifs_err(c, "error %ld while adding inode %lu node",
1965                           PTR_ERR(fscki), (unsigned long)inum);
1966                 return fscki;
1967         }
1968
1969         return fscki;
1970 }
1971
1972 /**
1973  * check_leaf - check leaf node.
1974  * @c: UBIFS file-system description object
1975  * @zbr: zbranch of the leaf node to check
1976  * @priv: FS checking information
1977  *
1978  * This is a helper function for 'dbg_check_filesystem()' which is called for
1979  * every single leaf node while walking the indexing tree. It checks that the
1980  * leaf node referred from the indexing tree exists, has correct CRC, and does
1981  * some other basic validation. This function is also responsible for building
1982  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1983  * calculates reference count, size, etc for each inode in order to later
1984  * compare them to the information stored inside the inodes and detect possible
1985  * inconsistencies. Returns zero in case of success and a negative error code
1986  * in case of failure.
1987  */
1988 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1989                       void *priv)
1990 {
1991         ino_t inum;
1992         void *node;
1993         struct ubifs_ch *ch;
1994         int err, type = key_type(c, &zbr->key);
1995         struct fsck_inode *fscki;
1996
1997         if (zbr->len < UBIFS_CH_SZ) {
1998                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1999                           zbr->len, zbr->lnum, zbr->offs);
2000                 return -EINVAL;
2001         }
2002
2003         node = kmalloc(zbr->len, GFP_NOFS);
2004         if (!node)
2005                 return -ENOMEM;
2006
2007         err = ubifs_tnc_read_node(c, zbr, node);
2008         if (err) {
2009                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2010                           zbr->lnum, zbr->offs, err);
2011                 goto out_free;
2012         }
2013
2014         /* If this is an inode node, add it to RB-tree of inodes */
2015         if (type == UBIFS_INO_KEY) {
2016                 fscki = add_inode(c, priv, node);
2017                 if (IS_ERR(fscki)) {
2018                         err = PTR_ERR(fscki);
2019                         ubifs_err(c, "error %d while adding inode node", err);
2020                         goto out_dump;
2021                 }
2022                 goto out;
2023         }
2024
2025         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2026             type != UBIFS_DATA_KEY) {
2027                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2028                           type, zbr->lnum, zbr->offs);
2029                 err = -EINVAL;
2030                 goto out_free;
2031         }
2032
2033         ch = node;
2034         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2035                 ubifs_err(c, "too high sequence number, max. is %llu",
2036                           c->max_sqnum);
2037                 err = -EINVAL;
2038                 goto out_dump;
2039         }
2040
2041         if (type == UBIFS_DATA_KEY) {
2042                 long long blk_offs;
2043                 struct ubifs_data_node *dn = node;
2044
2045                 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2046
2047                 /*
2048                  * Search the inode node this data node belongs to and insert
2049                  * it to the RB-tree of inodes.
2050                  */
2051                 inum = key_inum_flash(c, &dn->key);
2052                 fscki = read_add_inode(c, priv, inum);
2053                 if (IS_ERR(fscki)) {
2054                         err = PTR_ERR(fscki);
2055                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2056                                   err, (unsigned long)inum);
2057                         goto out_dump;
2058                 }
2059
2060                 /* Make sure the data node is within inode size */
2061                 blk_offs = key_block_flash(c, &dn->key);
2062                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2063                 blk_offs += le32_to_cpu(dn->size);
2064                 if (blk_offs > fscki->size) {
2065                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2066                                   zbr->lnum, zbr->offs, fscki->size);
2067                         err = -EINVAL;
2068                         goto out_dump;
2069                 }
2070         } else {
2071                 int nlen;
2072                 struct ubifs_dent_node *dent = node;
2073                 struct fsck_inode *fscki1;
2074
2075                 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2076
2077                 err = ubifs_validate_entry(c, dent);
2078                 if (err)
2079                         goto out_dump;
2080
2081                 /*
2082                  * Search the inode node this entry refers to and the parent
2083                  * inode node and insert them to the RB-tree of inodes.
2084                  */
2085                 inum = le64_to_cpu(dent->inum);
2086                 fscki = read_add_inode(c, priv, inum);
2087                 if (IS_ERR(fscki)) {
2088                         err = PTR_ERR(fscki);
2089                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2090                                   err, (unsigned long)inum);
2091                         goto out_dump;
2092                 }
2093
2094                 /* Count how many direntries or xentries refers this inode */
2095                 fscki->references += 1;
2096
2097                 inum = key_inum_flash(c, &dent->key);
2098                 fscki1 = read_add_inode(c, priv, inum);
2099                 if (IS_ERR(fscki1)) {
2100                         err = PTR_ERR(fscki1);
2101                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2102                                   err, (unsigned long)inum);
2103                         goto out_dump;
2104                 }
2105
2106                 nlen = le16_to_cpu(dent->nlen);
2107                 if (type == UBIFS_XENT_KEY) {
2108                         fscki1->calc_xcnt += 1;
2109                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2110                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2111                         fscki1->calc_xnms += nlen;
2112                 } else {
2113                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2114                         if (dent->type == UBIFS_ITYPE_DIR)
2115                                 fscki1->calc_cnt += 1;
2116                 }
2117         }
2118
2119 out:
2120         kfree(node);
2121         return 0;
2122
2123 out_dump:
2124         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2125         ubifs_dump_node(c, node);
2126 out_free:
2127         kfree(node);
2128         return err;
2129 }
2130
2131 /**
2132  * free_inodes - free RB-tree of inodes.
2133  * @fsckd: FS checking information
2134  */
2135 static void free_inodes(struct fsck_data *fsckd)
2136 {
2137         struct fsck_inode *fscki, *n;
2138
2139         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2140                 kfree(fscki);
2141 }
2142
2143 /**
2144  * check_inodes - checks all inodes.
2145  * @c: UBIFS file-system description object
2146  * @fsckd: FS checking information
2147  *
2148  * This is a helper function for 'dbg_check_filesystem()' which walks the
2149  * RB-tree of inodes after the index scan has been finished, and checks that
2150  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2151  * %-EINVAL if not, and a negative error code in case of failure.
2152  */
2153 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2154 {
2155         int n, err;
2156         union ubifs_key key;
2157         struct ubifs_znode *znode;
2158         struct ubifs_zbranch *zbr;
2159         struct ubifs_ino_node *ino;
2160         struct fsck_inode *fscki;
2161         struct rb_node *this = rb_first(&fsckd->inodes);
2162
2163         while (this) {
2164                 fscki = rb_entry(this, struct fsck_inode, rb);
2165                 this = rb_next(this);
2166
2167                 if (S_ISDIR(fscki->mode)) {
2168                         /*
2169                          * Directories have to have exactly one reference (they
2170                          * cannot have hardlinks), although root inode is an
2171                          * exception.
2172                          */
2173                         if (fscki->inum != UBIFS_ROOT_INO &&
2174                             fscki->references != 1) {
2175                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2176                                           (unsigned long)fscki->inum,
2177                                           fscki->references);
2178                                 goto out_dump;
2179                         }
2180                         if (fscki->inum == UBIFS_ROOT_INO &&
2181                             fscki->references != 0) {
2182                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2183                                           (unsigned long)fscki->inum,
2184                                           fscki->references);
2185                                 goto out_dump;
2186                         }
2187                         if (fscki->calc_sz != fscki->size) {
2188                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2189                                           (unsigned long)fscki->inum,
2190                                           fscki->size, fscki->calc_sz);
2191                                 goto out_dump;
2192                         }
2193                         if (fscki->calc_cnt != fscki->nlink) {
2194                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2195                                           (unsigned long)fscki->inum,
2196                                           fscki->nlink, fscki->calc_cnt);
2197                                 goto out_dump;
2198                         }
2199                 } else {
2200                         if (fscki->references != fscki->nlink) {
2201                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2202                                           (unsigned long)fscki->inum,
2203                                           fscki->nlink, fscki->references);
2204                                 goto out_dump;
2205                         }
2206                 }
2207                 if (fscki->xattr_sz != fscki->calc_xsz) {
2208                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2209                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2210                                   fscki->calc_xsz);
2211                         goto out_dump;
2212                 }
2213                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2214                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2215                                   (unsigned long)fscki->inum,
2216                                   fscki->xattr_cnt, fscki->calc_xcnt);
2217                         goto out_dump;
2218                 }
2219                 if (fscki->xattr_nms != fscki->calc_xnms) {
2220                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2221                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2222                                   fscki->calc_xnms);
2223                         goto out_dump;
2224                 }
2225         }
2226
2227         return 0;
2228
2229 out_dump:
2230         /* Read the bad inode and dump it */
2231         ino_key_init(c, &key, fscki->inum);
2232         err = ubifs_lookup_level0(c, &key, &znode, &n);
2233         if (!err) {
2234                 ubifs_err(c, "inode %lu not found in index",
2235                           (unsigned long)fscki->inum);
2236                 return -ENOENT;
2237         } else if (err < 0) {
2238                 ubifs_err(c, "error %d while looking up inode %lu",
2239                           err, (unsigned long)fscki->inum);
2240                 return err;
2241         }
2242
2243         zbr = &znode->zbranch[n];
2244         ino = kmalloc(zbr->len, GFP_NOFS);
2245         if (!ino)
2246                 return -ENOMEM;
2247
2248         err = ubifs_tnc_read_node(c, zbr, ino);
2249         if (err) {
2250                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2251                           zbr->lnum, zbr->offs, err);
2252                 kfree(ino);
2253                 return err;
2254         }
2255
2256         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2257                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2258         ubifs_dump_node(c, ino);
2259         kfree(ino);
2260         return -EINVAL;
2261 }
2262
2263 /**
2264  * dbg_check_filesystem - check the file-system.
2265  * @c: UBIFS file-system description object
2266  *
2267  * This function checks the file system, namely:
2268  * o makes sure that all leaf nodes exist and their CRCs are correct;
2269  * o makes sure inode nlink, size, xattr size/count are correct (for all
2270  *   inodes).
2271  *
2272  * The function reads whole indexing tree and all nodes, so it is pretty
2273  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2274  * not, and a negative error code in case of failure.
2275  */
2276 int dbg_check_filesystem(struct ubifs_info *c)
2277 {
2278         int err;
2279         struct fsck_data fsckd;
2280
2281         if (!dbg_is_chk_fs(c))
2282                 return 0;
2283
2284         fsckd.inodes = RB_ROOT;
2285         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2286         if (err)
2287                 goto out_free;
2288
2289         err = check_inodes(c, &fsckd);
2290         if (err)
2291                 goto out_free;
2292
2293         free_inodes(&fsckd);
2294         return 0;
2295
2296 out_free:
2297         ubifs_err(c, "file-system check failed with error %d", err);
2298         dump_stack();
2299         free_inodes(&fsckd);
2300         return err;
2301 }
2302
2303 /**
2304  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2305  * @c: UBIFS file-system description object
2306  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2307  *
2308  * This function returns zero if the list of data nodes is sorted correctly,
2309  * and %-EINVAL if not.
2310  */
2311 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2312 {
2313         struct list_head *cur;
2314         struct ubifs_scan_node *sa, *sb;
2315
2316         if (!dbg_is_chk_gen(c))
2317                 return 0;
2318
2319         for (cur = head->next; cur->next != head; cur = cur->next) {
2320                 ino_t inuma, inumb;
2321                 uint32_t blka, blkb;
2322
2323                 cond_resched();
2324                 sa = container_of(cur, struct ubifs_scan_node, list);
2325                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2326
2327                 if (sa->type != UBIFS_DATA_NODE) {
2328                         ubifs_err(c, "bad node type %d", sa->type);
2329                         ubifs_dump_node(c, sa->node);
2330                         return -EINVAL;
2331                 }
2332                 if (sb->type != UBIFS_DATA_NODE) {
2333                         ubifs_err(c, "bad node type %d", sb->type);
2334                         ubifs_dump_node(c, sb->node);
2335                         return -EINVAL;
2336                 }
2337
2338                 inuma = key_inum(c, &sa->key);
2339                 inumb = key_inum(c, &sb->key);
2340
2341                 if (inuma < inumb)
2342                         continue;
2343                 if (inuma > inumb) {
2344                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2345                                   (unsigned long)inuma, (unsigned long)inumb);
2346                         goto error_dump;
2347                 }
2348
2349                 blka = key_block(c, &sa->key);
2350                 blkb = key_block(c, &sb->key);
2351
2352                 if (blka > blkb) {
2353                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2354                         goto error_dump;
2355                 }
2356                 if (blka == blkb) {
2357                         ubifs_err(c, "two data nodes for the same block");
2358                         goto error_dump;
2359                 }
2360         }
2361
2362         return 0;
2363
2364 error_dump:
2365         ubifs_dump_node(c, sa->node);
2366         ubifs_dump_node(c, sb->node);
2367         return -EINVAL;
2368 }
2369
2370 /**
2371  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2372  * @c: UBIFS file-system description object
2373  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2374  *
2375  * This function returns zero if the list of non-data nodes is sorted correctly,
2376  * and %-EINVAL if not.
2377  */
2378 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2379 {
2380         struct list_head *cur;
2381         struct ubifs_scan_node *sa, *sb;
2382
2383         if (!dbg_is_chk_gen(c))
2384                 return 0;
2385
2386         for (cur = head->next; cur->next != head; cur = cur->next) {
2387                 ino_t inuma, inumb;
2388                 uint32_t hasha, hashb;
2389
2390                 cond_resched();
2391                 sa = container_of(cur, struct ubifs_scan_node, list);
2392                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2393
2394                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395                     sa->type != UBIFS_XENT_NODE) {
2396                         ubifs_err(c, "bad node type %d", sa->type);
2397                         ubifs_dump_node(c, sa->node);
2398                         return -EINVAL;
2399                 }
2400                 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2401                     sb->type != UBIFS_XENT_NODE) {
2402                         ubifs_err(c, "bad node type %d", sb->type);
2403                         ubifs_dump_node(c, sb->node);
2404                         return -EINVAL;
2405                 }
2406
2407                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408                         ubifs_err(c, "non-inode node goes before inode node");
2409                         goto error_dump;
2410                 }
2411
2412                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2413                         continue;
2414
2415                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2416                         /* Inode nodes are sorted in descending size order */
2417                         if (sa->len < sb->len) {
2418                                 ubifs_err(c, "smaller inode node goes first");
2419                                 goto error_dump;
2420                         }
2421                         continue;
2422                 }
2423
2424                 /*
2425                  * This is either a dentry or xentry, which should be sorted in
2426                  * ascending (parent ino, hash) order.
2427                  */
2428                 inuma = key_inum(c, &sa->key);
2429                 inumb = key_inum(c, &sb->key);
2430
2431                 if (inuma < inumb)
2432                         continue;
2433                 if (inuma > inumb) {
2434                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2435                                   (unsigned long)inuma, (unsigned long)inumb);
2436                         goto error_dump;
2437                 }
2438
2439                 hasha = key_block(c, &sa->key);
2440                 hashb = key_block(c, &sb->key);
2441
2442                 if (hasha > hashb) {
2443                         ubifs_err(c, "larger hash %u goes before %u",
2444                                   hasha, hashb);
2445                         goto error_dump;
2446                 }
2447         }
2448
2449         return 0;
2450
2451 error_dump:
2452         ubifs_msg(c, "dumping first node");
2453         ubifs_dump_node(c, sa->node);
2454         ubifs_msg(c, "dumping second node");
2455         ubifs_dump_node(c, sb->node);
2456         return -EINVAL;
2457         return 0;
2458 }
2459
2460 static inline int chance(unsigned int n, unsigned int out_of)
2461 {
2462         return !!((prandom_u32() % out_of) + 1 <= n);
2463
2464 }
2465
2466 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2467 {
2468         struct ubifs_debug_info *d = c->dbg;
2469
2470         ubifs_assert(c, dbg_is_tst_rcvry(c));
2471
2472         if (!d->pc_cnt) {
2473                 /* First call - decide delay to the power cut */
2474                 if (chance(1, 2)) {
2475                         unsigned long delay;
2476
2477                         if (chance(1, 2)) {
2478                                 d->pc_delay = 1;
2479                                 /* Fail within 1 minute */
2480                                 delay = prandom_u32() % 60000;
2481                                 d->pc_timeout = jiffies;
2482                                 d->pc_timeout += msecs_to_jiffies(delay);
2483                                 ubifs_warn(c, "failing after %lums", delay);
2484                         } else {
2485                                 d->pc_delay = 2;
2486                                 delay = prandom_u32() % 10000;
2487                                 /* Fail within 10000 operations */
2488                                 d->pc_cnt_max = delay;
2489                                 ubifs_warn(c, "failing after %lu calls", delay);
2490                         }
2491                 }
2492
2493                 d->pc_cnt += 1;
2494         }
2495
2496         /* Determine if failure delay has expired */
2497         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2498                         return 0;
2499         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2500                         return 0;
2501
2502         if (lnum == UBIFS_SB_LNUM) {
2503                 if (write && chance(1, 2))
2504                         return 0;
2505                 if (chance(19, 20))
2506                         return 0;
2507                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2508         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2509                 if (chance(19, 20))
2510                         return 0;
2511                 ubifs_warn(c, "failing in master LEB %d", lnum);
2512         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2513                 if (write && chance(99, 100))
2514                         return 0;
2515                 if (chance(399, 400))
2516                         return 0;
2517                 ubifs_warn(c, "failing in log LEB %d", lnum);
2518         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2519                 if (write && chance(7, 8))
2520                         return 0;
2521                 if (chance(19, 20))
2522                         return 0;
2523                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2524         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2525                 if (write && chance(1, 2))
2526                         return 0;
2527                 if (chance(9, 10))
2528                         return 0;
2529                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2530         } else if (lnum == c->ihead_lnum) {
2531                 if (chance(99, 100))
2532                         return 0;
2533                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2534         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2535                 if (chance(9, 10))
2536                         return 0;
2537                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2538         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2539                    !ubifs_search_bud(c, lnum)) {
2540                 if (chance(19, 20))
2541                         return 0;
2542                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2543         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2544                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2545                 if (chance(999, 1000))
2546                         return 0;
2547                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2548         } else {
2549                 if (chance(9999, 10000))
2550                         return 0;
2551                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2552         }
2553
2554         d->pc_happened = 1;
2555         ubifs_warn(c, "========== Power cut emulated ==========");
2556         dump_stack();
2557         return 1;
2558 }
2559
2560 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2561                         unsigned int len)
2562 {
2563         unsigned int from, to, ffs = chance(1, 2);
2564         unsigned char *p = (void *)buf;
2565
2566         from = prandom_u32() % len;
2567         /* Corruption span max to end of write unit */
2568         to = min(len, ALIGN(from + 1, c->max_write_size));
2569
2570         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2571                    ffs ? "0xFFs" : "random data");
2572
2573         if (ffs)
2574                 memset(p + from, 0xFF, to - from);
2575         else
2576                 prandom_bytes(p + from, to - from);
2577
2578         return to;
2579 }
2580
2581 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2582                   int offs, int len)
2583 {
2584         int err, failing;
2585
2586         if (dbg_is_power_cut(c))
2587                 return -EROFS;
2588
2589         failing = power_cut_emulated(c, lnum, 1);
2590         if (failing) {
2591                 len = corrupt_data(c, buf, len);
2592                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2593                            len, lnum, offs);
2594         }
2595         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2596         if (err)
2597                 return err;
2598         if (failing)
2599                 return -EROFS;
2600         return 0;
2601 }
2602
2603 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2604                    int len)
2605 {
2606         int err;
2607
2608         if (dbg_is_power_cut(c))
2609                 return -EROFS;
2610         if (power_cut_emulated(c, lnum, 1))
2611                 return -EROFS;
2612         err = ubi_leb_change(c->ubi, lnum, buf, len);
2613         if (err)
2614                 return err;
2615         if (power_cut_emulated(c, lnum, 1))
2616                 return -EROFS;
2617         return 0;
2618 }
2619
2620 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2621 {
2622         int err;
2623
2624         if (dbg_is_power_cut(c))
2625                 return -EROFS;
2626         if (power_cut_emulated(c, lnum, 0))
2627                 return -EROFS;
2628         err = ubi_leb_unmap(c->ubi, lnum);
2629         if (err)
2630                 return err;
2631         if (power_cut_emulated(c, lnum, 0))
2632                 return -EROFS;
2633         return 0;
2634 }
2635
2636 int dbg_leb_map(struct ubifs_info *c, int lnum)
2637 {
2638         int err;
2639
2640         if (dbg_is_power_cut(c))
2641                 return -EROFS;
2642         if (power_cut_emulated(c, lnum, 0))
2643                 return -EROFS;
2644         err = ubi_leb_map(c->ubi, lnum);
2645         if (err)
2646                 return err;
2647         if (power_cut_emulated(c, lnum, 0))
2648                 return -EROFS;
2649         return 0;
2650 }
2651
2652 /*
2653  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2654  * contain the stuff specific to particular file-system mounts.
2655  */
2656 static struct dentry *dfs_rootdir;
2657
2658 static int dfs_file_open(struct inode *inode, struct file *file)
2659 {
2660         file->private_data = inode->i_private;
2661         return nonseekable_open(inode, file);
2662 }
2663
2664 /**
2665  * provide_user_output - provide output to the user reading a debugfs file.
2666  * @val: boolean value for the answer
2667  * @u: the buffer to store the answer at
2668  * @count: size of the buffer
2669  * @ppos: position in the @u output buffer
2670  *
2671  * This is a simple helper function which stores @val boolean value in the user
2672  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2673  * bytes written to @u in case of success and a negative error code in case of
2674  * failure.
2675  */
2676 static int provide_user_output(int val, char __user *u, size_t count,
2677                                loff_t *ppos)
2678 {
2679         char buf[3];
2680
2681         if (val)
2682                 buf[0] = '1';
2683         else
2684                 buf[0] = '0';
2685         buf[1] = '\n';
2686         buf[2] = 0x00;
2687
2688         return simple_read_from_buffer(u, count, ppos, buf, 2);
2689 }
2690
2691 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2692                              loff_t *ppos)
2693 {
2694         struct dentry *dent = file->f_path.dentry;
2695         struct ubifs_info *c = file->private_data;
2696         struct ubifs_debug_info *d = c->dbg;
2697         int val;
2698
2699         if (dent == d->dfs_chk_gen)
2700                 val = d->chk_gen;
2701         else if (dent == d->dfs_chk_index)
2702                 val = d->chk_index;
2703         else if (dent == d->dfs_chk_orph)
2704                 val = d->chk_orph;
2705         else if (dent == d->dfs_chk_lprops)
2706                 val = d->chk_lprops;
2707         else if (dent == d->dfs_chk_fs)
2708                 val = d->chk_fs;
2709         else if (dent == d->dfs_tst_rcvry)
2710                 val = d->tst_rcvry;
2711         else if (dent == d->dfs_ro_error)
2712                 val = c->ro_error;
2713         else
2714                 return -EINVAL;
2715
2716         return provide_user_output(val, u, count, ppos);
2717 }
2718
2719 /**
2720  * interpret_user_input - interpret user debugfs file input.
2721  * @u: user-provided buffer with the input
2722  * @count: buffer size
2723  *
2724  * This is a helper function which interpret user input to a boolean UBIFS
2725  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2726  * in case of failure.
2727  */
2728 static int interpret_user_input(const char __user *u, size_t count)
2729 {
2730         size_t buf_size;
2731         char buf[8];
2732
2733         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2734         if (copy_from_user(buf, u, buf_size))
2735                 return -EFAULT;
2736
2737         if (buf[0] == '1')
2738                 return 1;
2739         else if (buf[0] == '0')
2740                 return 0;
2741
2742         return -EINVAL;
2743 }
2744
2745 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2746                               size_t count, loff_t *ppos)
2747 {
2748         struct ubifs_info *c = file->private_data;
2749         struct ubifs_debug_info *d = c->dbg;
2750         struct dentry *dent = file->f_path.dentry;
2751         int val;
2752
2753         /*
2754          * TODO: this is racy - the file-system might have already been
2755          * unmounted and we'd oops in this case. The plan is to fix it with
2756          * help of 'iterate_supers_type()' which we should have in v3.0: when
2757          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2758          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2759          * superblocks and fine the one with the same UUID, and take the
2760          * locking right.
2761          *
2762          * The other way to go suggested by Al Viro is to create a separate
2763          * 'ubifs-debug' file-system instead.
2764          */
2765         if (file->f_path.dentry == d->dfs_dump_lprops) {
2766                 ubifs_dump_lprops(c);
2767                 return count;
2768         }
2769         if (file->f_path.dentry == d->dfs_dump_budg) {
2770                 ubifs_dump_budg(c, &c->bi);
2771                 return count;
2772         }
2773         if (file->f_path.dentry == d->dfs_dump_tnc) {
2774                 mutex_lock(&c->tnc_mutex);
2775                 ubifs_dump_tnc(c);
2776                 mutex_unlock(&c->tnc_mutex);
2777                 return count;
2778         }
2779
2780         val = interpret_user_input(u, count);
2781         if (val < 0)
2782                 return val;
2783
2784         if (dent == d->dfs_chk_gen)
2785                 d->chk_gen = val;
2786         else if (dent == d->dfs_chk_index)
2787                 d->chk_index = val;
2788         else if (dent == d->dfs_chk_orph)
2789                 d->chk_orph = val;
2790         else if (dent == d->dfs_chk_lprops)
2791                 d->chk_lprops = val;
2792         else if (dent == d->dfs_chk_fs)
2793                 d->chk_fs = val;
2794         else if (dent == d->dfs_tst_rcvry)
2795                 d->tst_rcvry = val;
2796         else if (dent == d->dfs_ro_error)
2797                 c->ro_error = !!val;
2798         else
2799                 return -EINVAL;
2800
2801         return count;
2802 }
2803
2804 static const struct file_operations dfs_fops = {
2805         .open = dfs_file_open,
2806         .read = dfs_file_read,
2807         .write = dfs_file_write,
2808         .owner = THIS_MODULE,
2809         .llseek = no_llseek,
2810 };
2811
2812 /**
2813  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2814  * @c: UBIFS file-system description object
2815  *
2816  * This function creates all debugfs files for this instance of UBIFS. Returns
2817  * zero in case of success and a negative error code in case of failure.
2818  *
2819  * Note, the only reason we have not merged this function with the
2820  * 'ubifs_debugging_init()' function is because it is better to initialize
2821  * debugfs interfaces at the very end of the mount process, and remove them at
2822  * the very beginning of the mount process.
2823  */
2824 int dbg_debugfs_init_fs(struct ubifs_info *c)
2825 {
2826         int err, n;
2827         const char *fname;
2828         struct dentry *dent;
2829         struct ubifs_debug_info *d = c->dbg;
2830
2831         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2832                 return 0;
2833
2834         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2835                      c->vi.ubi_num, c->vi.vol_id);
2836         if (n == UBIFS_DFS_DIR_LEN) {
2837                 /* The array size is too small */
2838                 fname = UBIFS_DFS_DIR_NAME;
2839                 dent = ERR_PTR(-EINVAL);
2840                 goto out;
2841         }
2842
2843         fname = d->dfs_dir_name;
2844         dent = debugfs_create_dir(fname, dfs_rootdir);
2845         if (IS_ERR_OR_NULL(dent))
2846                 goto out;
2847         d->dfs_dir = dent;
2848
2849         fname = "dump_lprops";
2850         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2851         if (IS_ERR_OR_NULL(dent))
2852                 goto out_remove;
2853         d->dfs_dump_lprops = dent;
2854
2855         fname = "dump_budg";
2856         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2857         if (IS_ERR_OR_NULL(dent))
2858                 goto out_remove;
2859         d->dfs_dump_budg = dent;
2860
2861         fname = "dump_tnc";
2862         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2863         if (IS_ERR_OR_NULL(dent))
2864                 goto out_remove;
2865         d->dfs_dump_tnc = dent;
2866
2867         fname = "chk_general";
2868         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2869                                    &dfs_fops);
2870         if (IS_ERR_OR_NULL(dent))
2871                 goto out_remove;
2872         d->dfs_chk_gen = dent;
2873
2874         fname = "chk_index";
2875         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2876                                    &dfs_fops);
2877         if (IS_ERR_OR_NULL(dent))
2878                 goto out_remove;
2879         d->dfs_chk_index = dent;
2880
2881         fname = "chk_orphans";
2882         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2883                                    &dfs_fops);
2884         if (IS_ERR_OR_NULL(dent))
2885                 goto out_remove;
2886         d->dfs_chk_orph = dent;
2887
2888         fname = "chk_lprops";
2889         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2890                                    &dfs_fops);
2891         if (IS_ERR_OR_NULL(dent))
2892                 goto out_remove;
2893         d->dfs_chk_lprops = dent;
2894
2895         fname = "chk_fs";
2896         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2897                                    &dfs_fops);
2898         if (IS_ERR_OR_NULL(dent))
2899                 goto out_remove;
2900         d->dfs_chk_fs = dent;
2901
2902         fname = "tst_recovery";
2903         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2904                                    &dfs_fops);
2905         if (IS_ERR_OR_NULL(dent))
2906                 goto out_remove;
2907         d->dfs_tst_rcvry = dent;
2908
2909         fname = "ro_error";
2910         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2911                                    &dfs_fops);
2912         if (IS_ERR_OR_NULL(dent))
2913                 goto out_remove;
2914         d->dfs_ro_error = dent;
2915
2916         return 0;
2917
2918 out_remove:
2919         debugfs_remove_recursive(d->dfs_dir);
2920 out:
2921         err = dent ? PTR_ERR(dent) : -ENODEV;
2922         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2923                   fname, err);
2924         return err;
2925 }
2926
2927 /**
2928  * dbg_debugfs_exit_fs - remove all debugfs files.
2929  * @c: UBIFS file-system description object
2930  */
2931 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2932 {
2933         if (IS_ENABLED(CONFIG_DEBUG_FS))
2934                 debugfs_remove_recursive(c->dbg->dfs_dir);
2935 }
2936
2937 struct ubifs_global_debug_info ubifs_dbg;
2938
2939 static struct dentry *dfs_chk_gen;
2940 static struct dentry *dfs_chk_index;
2941 static struct dentry *dfs_chk_orph;
2942 static struct dentry *dfs_chk_lprops;
2943 static struct dentry *dfs_chk_fs;
2944 static struct dentry *dfs_tst_rcvry;
2945
2946 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2947                                     size_t count, loff_t *ppos)
2948 {
2949         struct dentry *dent = file->f_path.dentry;
2950         int val;
2951
2952         if (dent == dfs_chk_gen)
2953                 val = ubifs_dbg.chk_gen;
2954         else if (dent == dfs_chk_index)
2955                 val = ubifs_dbg.chk_index;
2956         else if (dent == dfs_chk_orph)
2957                 val = ubifs_dbg.chk_orph;
2958         else if (dent == dfs_chk_lprops)
2959                 val = ubifs_dbg.chk_lprops;
2960         else if (dent == dfs_chk_fs)
2961                 val = ubifs_dbg.chk_fs;
2962         else if (dent == dfs_tst_rcvry)
2963                 val = ubifs_dbg.tst_rcvry;
2964         else
2965                 return -EINVAL;
2966
2967         return provide_user_output(val, u, count, ppos);
2968 }
2969
2970 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2971                                      size_t count, loff_t *ppos)
2972 {
2973         struct dentry *dent = file->f_path.dentry;
2974         int val;
2975
2976         val = interpret_user_input(u, count);
2977         if (val < 0)
2978                 return val;
2979
2980         if (dent == dfs_chk_gen)
2981                 ubifs_dbg.chk_gen = val;
2982         else if (dent == dfs_chk_index)
2983                 ubifs_dbg.chk_index = val;
2984         else if (dent == dfs_chk_orph)
2985                 ubifs_dbg.chk_orph = val;
2986         else if (dent == dfs_chk_lprops)
2987                 ubifs_dbg.chk_lprops = val;
2988         else if (dent == dfs_chk_fs)
2989                 ubifs_dbg.chk_fs = val;
2990         else if (dent == dfs_tst_rcvry)
2991                 ubifs_dbg.tst_rcvry = val;
2992         else
2993                 return -EINVAL;
2994
2995         return count;
2996 }
2997
2998 static const struct file_operations dfs_global_fops = {
2999         .read = dfs_global_file_read,
3000         .write = dfs_global_file_write,
3001         .owner = THIS_MODULE,
3002         .llseek = no_llseek,
3003 };
3004
3005 /**
3006  * dbg_debugfs_init - initialize debugfs file-system.
3007  *
3008  * UBIFS uses debugfs file-system to expose various debugging knobs to
3009  * user-space. This function creates "ubifs" directory in the debugfs
3010  * file-system. Returns zero in case of success and a negative error code in
3011  * case of failure.
3012  */
3013 int dbg_debugfs_init(void)
3014 {
3015         int err;
3016         const char *fname;
3017         struct dentry *dent;
3018
3019         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3020                 return 0;
3021
3022         fname = "ubifs";
3023         dent = debugfs_create_dir(fname, NULL);
3024         if (IS_ERR_OR_NULL(dent))
3025                 goto out;
3026         dfs_rootdir = dent;
3027
3028         fname = "chk_general";
3029         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3030                                    &dfs_global_fops);
3031         if (IS_ERR_OR_NULL(dent))
3032                 goto out_remove;
3033         dfs_chk_gen = dent;
3034
3035         fname = "chk_index";
3036         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3037                                    &dfs_global_fops);
3038         if (IS_ERR_OR_NULL(dent))
3039                 goto out_remove;
3040         dfs_chk_index = dent;
3041
3042         fname = "chk_orphans";
3043         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3044                                    &dfs_global_fops);
3045         if (IS_ERR_OR_NULL(dent))
3046                 goto out_remove;
3047         dfs_chk_orph = dent;
3048
3049         fname = "chk_lprops";
3050         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3051                                    &dfs_global_fops);
3052         if (IS_ERR_OR_NULL(dent))
3053                 goto out_remove;
3054         dfs_chk_lprops = dent;
3055
3056         fname = "chk_fs";
3057         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3058                                    &dfs_global_fops);
3059         if (IS_ERR_OR_NULL(dent))
3060                 goto out_remove;
3061         dfs_chk_fs = dent;
3062
3063         fname = "tst_recovery";
3064         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3065                                    &dfs_global_fops);
3066         if (IS_ERR_OR_NULL(dent))
3067                 goto out_remove;
3068         dfs_tst_rcvry = dent;
3069
3070         return 0;
3071
3072 out_remove:
3073         debugfs_remove_recursive(dfs_rootdir);
3074 out:
3075         err = dent ? PTR_ERR(dent) : -ENODEV;
3076         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3077                current->pid, fname, err);
3078         return err;
3079 }
3080
3081 /**
3082  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3083  */
3084 void dbg_debugfs_exit(void)
3085 {
3086         if (IS_ENABLED(CONFIG_DEBUG_FS))
3087                 debugfs_remove_recursive(dfs_rootdir);
3088 }
3089
3090 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3091                          const char *file, int line)
3092 {
3093         ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3094
3095         switch (c->assert_action) {
3096                 case ASSACT_PANIC:
3097                 BUG();
3098                 break;
3099
3100                 case ASSACT_RO:
3101                 ubifs_ro_mode(c, -EINVAL);
3102                 break;
3103
3104                 case ASSACT_REPORT:
3105                 default:
3106                 dump_stack();
3107                 break;
3108
3109         }
3110 }
3111
3112 /**
3113  * ubifs_debugging_init - initialize UBIFS debugging.
3114  * @c: UBIFS file-system description object
3115  *
3116  * This function initializes debugging-related data for the file system.
3117  * Returns zero in case of success and a negative error code in case of
3118  * failure.
3119  */
3120 int ubifs_debugging_init(struct ubifs_info *c)
3121 {
3122         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3123         if (!c->dbg)
3124                 return -ENOMEM;
3125
3126         return 0;
3127 }
3128
3129 /**
3130  * ubifs_debugging_exit - free debugging data.
3131  * @c: UBIFS file-system description object
3132  */
3133 void ubifs_debugging_exit(struct ubifs_info *c)
3134 {
3135         kfree(c->dbg);
3136 }