Linux 6.10-rc3
[sfrench/cifs-2.6.git] / fs / kernfs / mount.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21
22 #include "kernfs-internal.h"
23
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27
28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30         struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31         struct kernfs_syscall_ops *scops = root->syscall_ops;
32
33         if (scops && scops->show_options)
34                 return scops->show_options(sf, root);
35         return 0;
36 }
37
38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40         struct kernfs_node *node = kernfs_dentry_node(dentry);
41         struct kernfs_root *root = kernfs_root(node);
42         struct kernfs_syscall_ops *scops = root->syscall_ops;
43
44         if (scops && scops->show_path)
45                 return scops->show_path(sf, node, root);
46
47         seq_dentry(sf, dentry, " \t\n\\");
48         return 0;
49 }
50
51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53         simple_statfs(dentry, buf);
54         buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55         return 0;
56 }
57
58 const struct super_operations kernfs_sops = {
59         .statfs         = kernfs_statfs,
60         .drop_inode     = generic_delete_inode,
61         .evict_inode    = kernfs_evict_inode,
62
63         .show_options   = kernfs_sop_show_options,
64         .show_path      = kernfs_sop_show_path,
65 };
66
67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68                             struct inode *parent)
69 {
70         struct kernfs_node *kn = inode->i_private;
71
72         if (*max_len < 2) {
73                 *max_len = 2;
74                 return FILEID_INVALID;
75         }
76
77         *max_len = 2;
78         *(u64 *)fh = kn->id;
79         return FILEID_KERNFS;
80 }
81
82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83                                             struct fid *fid, int fh_len,
84                                             int fh_type, bool get_parent)
85 {
86         struct kernfs_super_info *info = kernfs_info(sb);
87         struct kernfs_node *kn;
88         struct inode *inode;
89         u64 id;
90
91         if (fh_len < 2)
92                 return NULL;
93
94         switch (fh_type) {
95         case FILEID_KERNFS:
96                 id = *(u64 *)fid;
97                 break;
98         case FILEID_INO32_GEN:
99         case FILEID_INO32_GEN_PARENT:
100                 /*
101                  * blk_log_action() exposes "LOW32,HIGH32" pair without
102                  * type and userland can call us with generic fid
103                  * constructed from them.  Combine it back to ID.  See
104                  * blk_log_action().
105                  */
106                 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107                 break;
108         default:
109                 return NULL;
110         }
111
112         kn = kernfs_find_and_get_node_by_id(info->root, id);
113         if (!kn)
114                 return ERR_PTR(-ESTALE);
115
116         if (get_parent) {
117                 struct kernfs_node *parent;
118
119                 parent = kernfs_get_parent(kn);
120                 kernfs_put(kn);
121                 kn = parent;
122                 if (!kn)
123                         return ERR_PTR(-ESTALE);
124         }
125
126         inode = kernfs_get_inode(sb, kn);
127         kernfs_put(kn);
128         return d_obtain_alias(inode);
129 }
130
131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132                                           struct fid *fid, int fh_len,
133                                           int fh_type)
134 {
135         return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136 }
137
138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139                                           struct fid *fid, int fh_len,
140                                           int fh_type)
141 {
142         return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143 }
144
145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146 {
147         struct kernfs_node *kn = kernfs_dentry_node(child);
148
149         return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
150 }
151
152 static const struct export_operations kernfs_export_ops = {
153         .encode_fh      = kernfs_encode_fh,
154         .fh_to_dentry   = kernfs_fh_to_dentry,
155         .fh_to_parent   = kernfs_fh_to_parent,
156         .get_parent     = kernfs_get_parent_dentry,
157 };
158
159 /**
160  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
161  * @sb: the super_block in question
162  *
163  * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
164  * %NULL is returned.
165  */
166 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
167 {
168         if (sb->s_op == &kernfs_sops)
169                 return kernfs_info(sb)->root;
170         return NULL;
171 }
172
173 /*
174  * find the next ancestor in the path down to @child, where @parent was the
175  * ancestor whose descendant we want to find.
176  *
177  * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
178  * node.  If @parent is b, then we return the node for c.
179  * Passing in d as @parent is not ok.
180  */
181 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
182                                               struct kernfs_node *parent)
183 {
184         if (child == parent) {
185                 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
186                 return NULL;
187         }
188
189         while (child->parent != parent) {
190                 if (!child->parent)
191                         return NULL;
192                 child = child->parent;
193         }
194
195         return child;
196 }
197
198 /**
199  * kernfs_node_dentry - get a dentry for the given kernfs_node
200  * @kn: kernfs_node for which a dentry is needed
201  * @sb: the kernfs super_block
202  *
203  * Return: the dentry pointer
204  */
205 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
206                                   struct super_block *sb)
207 {
208         struct dentry *dentry;
209         struct kernfs_node *knparent;
210
211         BUG_ON(sb->s_op != &kernfs_sops);
212
213         dentry = dget(sb->s_root);
214
215         /* Check if this is the root kernfs_node */
216         if (!kn->parent)
217                 return dentry;
218
219         knparent = find_next_ancestor(kn, NULL);
220         if (WARN_ON(!knparent)) {
221                 dput(dentry);
222                 return ERR_PTR(-EINVAL);
223         }
224
225         do {
226                 struct dentry *dtmp;
227                 struct kernfs_node *kntmp;
228
229                 if (kn == knparent)
230                         return dentry;
231                 kntmp = find_next_ancestor(kn, knparent);
232                 if (WARN_ON(!kntmp)) {
233                         dput(dentry);
234                         return ERR_PTR(-EINVAL);
235                 }
236                 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
237                                                strlen(kntmp->name));
238                 dput(dentry);
239                 if (IS_ERR(dtmp))
240                         return dtmp;
241                 knparent = kntmp;
242                 dentry = dtmp;
243         } while (true);
244 }
245
246 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
247 {
248         struct kernfs_super_info *info = kernfs_info(sb);
249         struct kernfs_root *kf_root = kfc->root;
250         struct inode *inode;
251         struct dentry *root;
252
253         info->sb = sb;
254         /* Userspace would break if executables or devices appear on sysfs */
255         sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
256         sb->s_blocksize = PAGE_SIZE;
257         sb->s_blocksize_bits = PAGE_SHIFT;
258         sb->s_magic = kfc->magic;
259         sb->s_op = &kernfs_sops;
260         sb->s_xattr = kernfs_xattr_handlers;
261         if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
262                 sb->s_export_op = &kernfs_export_ops;
263         sb->s_time_gran = 1;
264
265         /* sysfs dentries and inodes don't require IO to create */
266         sb->s_shrink->seeks = 0;
267
268         /* get root inode, initialize and unlock it */
269         down_read(&kf_root->kernfs_rwsem);
270         inode = kernfs_get_inode(sb, info->root->kn);
271         up_read(&kf_root->kernfs_rwsem);
272         if (!inode) {
273                 pr_debug("kernfs: could not get root inode\n");
274                 return -ENOMEM;
275         }
276
277         /* instantiate and link root dentry */
278         root = d_make_root(inode);
279         if (!root) {
280                 pr_debug("%s: could not get root dentry!\n", __func__);
281                 return -ENOMEM;
282         }
283         sb->s_root = root;
284         sb->s_d_op = &kernfs_dops;
285         return 0;
286 }
287
288 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
289 {
290         struct kernfs_super_info *sb_info = kernfs_info(sb);
291         struct kernfs_super_info *info = fc->s_fs_info;
292
293         return sb_info->root == info->root && sb_info->ns == info->ns;
294 }
295
296 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
297 {
298         struct kernfs_fs_context *kfc = fc->fs_private;
299
300         kfc->ns_tag = NULL;
301         return set_anon_super_fc(sb, fc);
302 }
303
304 /**
305  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
306  * @sb: super_block of interest
307  *
308  * Return: the namespace tag associated with kernfs super_block @sb.
309  */
310 const void *kernfs_super_ns(struct super_block *sb)
311 {
312         struct kernfs_super_info *info = kernfs_info(sb);
313
314         return info->ns;
315 }
316
317 /**
318  * kernfs_get_tree - kernfs filesystem access/retrieval helper
319  * @fc: The filesystem context.
320  *
321  * This is to be called from each kernfs user's fs_context->ops->get_tree()
322  * implementation, which should set the specified ->@fs_type and ->@flags, and
323  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
324  * respectively.
325  *
326  * Return: %0 on success, -errno on failure.
327  */
328 int kernfs_get_tree(struct fs_context *fc)
329 {
330         struct kernfs_fs_context *kfc = fc->fs_private;
331         struct super_block *sb;
332         struct kernfs_super_info *info;
333         int error;
334
335         info = kzalloc(sizeof(*info), GFP_KERNEL);
336         if (!info)
337                 return -ENOMEM;
338
339         info->root = kfc->root;
340         info->ns = kfc->ns_tag;
341         INIT_LIST_HEAD(&info->node);
342
343         fc->s_fs_info = info;
344         sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
345         if (IS_ERR(sb))
346                 return PTR_ERR(sb);
347
348         if (!sb->s_root) {
349                 struct kernfs_super_info *info = kernfs_info(sb);
350                 struct kernfs_root *root = kfc->root;
351
352                 kfc->new_sb_created = true;
353
354                 error = kernfs_fill_super(sb, kfc);
355                 if (error) {
356                         deactivate_locked_super(sb);
357                         return error;
358                 }
359                 sb->s_flags |= SB_ACTIVE;
360
361                 uuid_t uuid;
362                 uuid_gen(&uuid);
363                 super_set_uuid(sb, uuid.b, sizeof(uuid));
364
365                 down_write(&root->kernfs_supers_rwsem);
366                 list_add(&info->node, &info->root->supers);
367                 up_write(&root->kernfs_supers_rwsem);
368         }
369
370         fc->root = dget(sb->s_root);
371         return 0;
372 }
373
374 void kernfs_free_fs_context(struct fs_context *fc)
375 {
376         /* Note that we don't deal with kfc->ns_tag here. */
377         kfree(fc->s_fs_info);
378         fc->s_fs_info = NULL;
379 }
380
381 /**
382  * kernfs_kill_sb - kill_sb for kernfs
383  * @sb: super_block being killed
384  *
385  * This can be used directly for file_system_type->kill_sb().  If a kernfs
386  * user needs extra cleanup, it can implement its own kill_sb() and call
387  * this function at the end.
388  */
389 void kernfs_kill_sb(struct super_block *sb)
390 {
391         struct kernfs_super_info *info = kernfs_info(sb);
392         struct kernfs_root *root = info->root;
393
394         down_write(&root->kernfs_supers_rwsem);
395         list_del(&info->node);
396         up_write(&root->kernfs_supers_rwsem);
397
398         /*
399          * Remove the superblock from fs_supers/s_instances
400          * so we can't find it, before freeing kernfs_super_info.
401          */
402         kill_anon_super(sb);
403         kfree(info);
404 }
405
406 static void __init kernfs_mutex_init(void)
407 {
408         int count;
409
410         for (count = 0; count < NR_KERNFS_LOCKS; count++)
411                 mutex_init(&kernfs_locks->open_file_mutex[count]);
412 }
413
414 static void __init kernfs_lock_init(void)
415 {
416         kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417         WARN_ON(!kernfs_locks);
418
419         kernfs_mutex_init();
420 }
421
422 void __init kernfs_init(void)
423 {
424         kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425                                               sizeof(struct kernfs_node),
426                                               0, SLAB_PANIC, NULL);
427
428         /* Creates slab cache for kernfs inode attributes */
429         kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
430                                               sizeof(struct kernfs_iattrs),
431                                               0, SLAB_PANIC, NULL);
432
433         kernfs_lock_init();
434 }