Merge tag 'pm-5.4-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[sfrench/cifs-2.6.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         unsigned long *older_than_this;
46         enum writeback_sync_modes sync_mode;
47         unsigned int tagged_writepages:1;
48         unsigned int for_kupdate:1;
49         unsigned int range_cyclic:1;
50         unsigned int for_background:1;
51         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
52         unsigned int auto_free:1;       /* free on completion */
53         enum wb_reason reason;          /* why was writeback initiated? */
54
55         struct list_head list;          /* pending work list */
56         struct wb_completion *done;     /* set if the caller waits */
57 };
58
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73         return list_entry(head, struct inode, i_io_list);
74 }
75
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88         if (wb_has_dirty_io(wb)) {
89                 return false;
90         } else {
91                 set_bit(WB_has_dirty_io, &wb->state);
92                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
93                 atomic_long_add(wb->avg_write_bandwidth,
94                                 &wb->bdi->tot_write_bandwidth);
95                 return true;
96         }
97 }
98
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103                 clear_bit(WB_has_dirty_io, &wb->state);
104                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105                                         &wb->bdi->tot_write_bandwidth) < 0);
106         }
107 }
108
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120                                       struct bdi_writeback *wb,
121                                       struct list_head *head)
122 {
123         assert_spin_locked(&wb->list_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144                                      struct bdi_writeback *wb)
145 {
146         assert_spin_locked(&wb->list_lock);
147
148         list_del_init(&inode->i_io_list);
149         wb_io_lists_depopulated(wb);
150 }
151
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154         spin_lock_bh(&wb->work_lock);
155         if (test_bit(WB_registered, &wb->state))
156                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157         spin_unlock_bh(&wb->work_lock);
158 }
159
160 static void finish_writeback_work(struct bdi_writeback *wb,
161                                   struct wb_writeback_work *work)
162 {
163         struct wb_completion *done = work->done;
164
165         if (work->auto_free)
166                 kfree(work);
167         if (done) {
168                 wait_queue_head_t *waitq = done->waitq;
169
170                 /* @done can't be accessed after the following dec */
171                 if (atomic_dec_and_test(&done->cnt))
172                         wake_up_all(waitq);
173         }
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177                           struct wb_writeback_work *work)
178 {
179         trace_writeback_queue(wb, work);
180
181         if (work->done)
182                 atomic_inc(&work->done->cnt);
183
184         spin_lock_bh(&wb->work_lock);
185
186         if (test_bit(WB_registered, &wb->state)) {
187                 list_add_tail(&work->list, &wb->work_list);
188                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
189         } else
190                 finish_writeback_work(wb, work);
191
192         spin_unlock_bh(&wb->work_lock);
193 }
194
195 /**
196  * wb_wait_for_completion - wait for completion of bdi_writeback_works
197  * @done: target wb_completion
198  *
199  * Wait for one or more work items issued to @bdi with their ->done field
200  * set to @done, which should have been initialized with
201  * DEFINE_WB_COMPLETION().  This function returns after all such work items
202  * are completed.  Work items which are waited upon aren't freed
203  * automatically on completion.
204  */
205 void wb_wait_for_completion(struct wb_completion *done)
206 {
207         atomic_dec(&done->cnt);         /* put down the initial count */
208         wait_event(*done->waitq, !atomic_read(&done->cnt));
209 }
210
211 #ifdef CONFIG_CGROUP_WRITEBACK
212
213 /*
214  * Parameters for foreign inode detection, see wbc_detach_inode() to see
215  * how they're used.
216  *
217  * These paramters are inherently heuristical as the detection target
218  * itself is fuzzy.  All we want to do is detaching an inode from the
219  * current owner if it's being written to by some other cgroups too much.
220  *
221  * The current cgroup writeback is built on the assumption that multiple
222  * cgroups writing to the same inode concurrently is very rare and a mode
223  * of operation which isn't well supported.  As such, the goal is not
224  * taking too long when a different cgroup takes over an inode while
225  * avoiding too aggressive flip-flops from occasional foreign writes.
226  *
227  * We record, very roughly, 2s worth of IO time history and if more than
228  * half of that is foreign, trigger the switch.  The recording is quantized
229  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
230  * writes smaller than 1/8 of avg size are ignored.
231  */
232 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
233 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
234 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
235 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
236
237 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
238 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239                                         /* each slot's duration is 2s / 16 */
240 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
241                                         /* if foreign slots >= 8, switch */
242 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
243                                         /* one round can affect upto 5 slots */
244 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
245
246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247 static struct workqueue_struct *isw_wq;
248
249 void __inode_attach_wb(struct inode *inode, struct page *page)
250 {
251         struct backing_dev_info *bdi = inode_to_bdi(inode);
252         struct bdi_writeback *wb = NULL;
253
254         if (inode_cgwb_enabled(inode)) {
255                 struct cgroup_subsys_state *memcg_css;
256
257                 if (page) {
258                         memcg_css = mem_cgroup_css_from_page(page);
259                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260                 } else {
261                         /* must pin memcg_css, see wb_get_create() */
262                         memcg_css = task_get_css(current, memory_cgrp_id);
263                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264                         css_put(memcg_css);
265                 }
266         }
267
268         if (!wb)
269                 wb = &bdi->wb;
270
271         /*
272          * There may be multiple instances of this function racing to
273          * update the same inode.  Use cmpxchg() to tell the winner.
274          */
275         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276                 wb_put(wb);
277 }
278 EXPORT_SYMBOL_GPL(__inode_attach_wb);
279
280 /**
281  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282  * @inode: inode of interest with i_lock held
283  *
284  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
285  * held on entry and is released on return.  The returned wb is guaranteed
286  * to stay @inode's associated wb until its list_lock is released.
287  */
288 static struct bdi_writeback *
289 locked_inode_to_wb_and_lock_list(struct inode *inode)
290         __releases(&inode->i_lock)
291         __acquires(&wb->list_lock)
292 {
293         while (true) {
294                 struct bdi_writeback *wb = inode_to_wb(inode);
295
296                 /*
297                  * inode_to_wb() association is protected by both
298                  * @inode->i_lock and @wb->list_lock but list_lock nests
299                  * outside i_lock.  Drop i_lock and verify that the
300                  * association hasn't changed after acquiring list_lock.
301                  */
302                 wb_get(wb);
303                 spin_unlock(&inode->i_lock);
304                 spin_lock(&wb->list_lock);
305
306                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
307                 if (likely(wb == inode->i_wb)) {
308                         wb_put(wb);     /* @inode already has ref */
309                         return wb;
310                 }
311
312                 spin_unlock(&wb->list_lock);
313                 wb_put(wb);
314                 cpu_relax();
315                 spin_lock(&inode->i_lock);
316         }
317 }
318
319 /**
320  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321  * @inode: inode of interest
322  *
323  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324  * on entry.
325  */
326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327         __acquires(&wb->list_lock)
328 {
329         spin_lock(&inode->i_lock);
330         return locked_inode_to_wb_and_lock_list(inode);
331 }
332
333 struct inode_switch_wbs_context {
334         struct inode            *inode;
335         struct bdi_writeback    *new_wb;
336
337         struct rcu_head         rcu_head;
338         struct work_struct      work;
339 };
340
341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         down_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347 {
348         up_write(&bdi->wb_switch_rwsem);
349 }
350
351 static void inode_switch_wbs_work_fn(struct work_struct *work)
352 {
353         struct inode_switch_wbs_context *isw =
354                 container_of(work, struct inode_switch_wbs_context, work);
355         struct inode *inode = isw->inode;
356         struct backing_dev_info *bdi = inode_to_bdi(inode);
357         struct address_space *mapping = inode->i_mapping;
358         struct bdi_writeback *old_wb = inode->i_wb;
359         struct bdi_writeback *new_wb = isw->new_wb;
360         XA_STATE(xas, &mapping->i_pages, 0);
361         struct page *page;
362         bool switched = false;
363
364         /*
365          * If @inode switches cgwb membership while sync_inodes_sb() is
366          * being issued, sync_inodes_sb() might miss it.  Synchronize.
367          */
368         down_read(&bdi->wb_switch_rwsem);
369
370         /*
371          * By the time control reaches here, RCU grace period has passed
372          * since I_WB_SWITCH assertion and all wb stat update transactions
373          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
374          * synchronizing against the i_pages lock.
375          *
376          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
377          * gives us exclusion against all wb related operations on @inode
378          * including IO list manipulations and stat updates.
379          */
380         if (old_wb < new_wb) {
381                 spin_lock(&old_wb->list_lock);
382                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383         } else {
384                 spin_lock(&new_wb->list_lock);
385                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386         }
387         spin_lock(&inode->i_lock);
388         xa_lock_irq(&mapping->i_pages);
389
390         /*
391          * Once I_FREEING is visible under i_lock, the eviction path owns
392          * the inode and we shouldn't modify ->i_io_list.
393          */
394         if (unlikely(inode->i_state & I_FREEING))
395                 goto skip_switch;
396
397         trace_inode_switch_wbs(inode, old_wb, new_wb);
398
399         /*
400          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
401          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
402          * pages actually under writeback.
403          */
404         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405                 if (PageDirty(page)) {
406                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
407                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
408                 }
409         }
410
411         xas_set(&xas, 0);
412         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413                 WARN_ON_ONCE(!PageWriteback(page));
414                 dec_wb_stat(old_wb, WB_WRITEBACK);
415                 inc_wb_stat(new_wb, WB_WRITEBACK);
416         }
417
418         wb_get(new_wb);
419
420         /*
421          * Transfer to @new_wb's IO list if necessary.  The specific list
422          * @inode was on is ignored and the inode is put on ->b_dirty which
423          * is always correct including from ->b_dirty_time.  The transfer
424          * preserves @inode->dirtied_when ordering.
425          */
426         if (!list_empty(&inode->i_io_list)) {
427                 struct inode *pos;
428
429                 inode_io_list_del_locked(inode, old_wb);
430                 inode->i_wb = new_wb;
431                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                         if (time_after_eq(inode->dirtied_when,
433                                           pos->dirtied_when))
434                                 break;
435                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436         } else {
437                 inode->i_wb = new_wb;
438         }
439
440         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441         inode->i_wb_frn_winner = 0;
442         inode->i_wb_frn_avg_time = 0;
443         inode->i_wb_frn_history = 0;
444         switched = true;
445 skip_switch:
446         /*
447          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448          * ensures that the new wb is visible if they see !I_WB_SWITCH.
449          */
450         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452         xa_unlock_irq(&mapping->i_pages);
453         spin_unlock(&inode->i_lock);
454         spin_unlock(&new_wb->list_lock);
455         spin_unlock(&old_wb->list_lock);
456
457         up_read(&bdi->wb_switch_rwsem);
458
459         if (switched) {
460                 wb_wakeup(new_wb);
461                 wb_put(old_wb);
462         }
463         wb_put(new_wb);
464
465         iput(inode);
466         kfree(isw);
467
468         atomic_dec(&isw_nr_in_flight);
469 }
470
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473         struct inode_switch_wbs_context *isw = container_of(rcu_head,
474                                 struct inode_switch_wbs_context, rcu_head);
475
476         /* needs to grab bh-unsafe locks, bounce to work item */
477         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478         queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491         struct backing_dev_info *bdi = inode_to_bdi(inode);
492         struct cgroup_subsys_state *memcg_css;
493         struct inode_switch_wbs_context *isw;
494
495         /* noop if seems to be already in progress */
496         if (inode->i_state & I_WB_SWITCH)
497                 return;
498
499         /* avoid queueing a new switch if too many are already in flight */
500         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
501                 return;
502
503         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504         if (!isw)
505                 return;
506
507         /* find and pin the new wb */
508         rcu_read_lock();
509         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510         if (memcg_css)
511                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512         rcu_read_unlock();
513         if (!isw->new_wb)
514                 goto out_free;
515
516         /* while holding I_WB_SWITCH, no one else can update the association */
517         spin_lock(&inode->i_lock);
518         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
519             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520             inode_to_wb(inode) == isw->new_wb) {
521                 spin_unlock(&inode->i_lock);
522                 goto out_free;
523         }
524         inode->i_state |= I_WB_SWITCH;
525         __iget(inode);
526         spin_unlock(&inode->i_lock);
527
528         isw->inode = inode;
529
530         /*
531          * In addition to synchronizing among switchers, I_WB_SWITCH tells
532          * the RCU protected stat update paths to grab the i_page
533          * lock so that stat transfer can synchronize against them.
534          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535          */
536         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
537
538         atomic_inc(&isw_nr_in_flight);
539         return;
540
541 out_free:
542         if (isw->new_wb)
543                 wb_put(isw->new_wb);
544         kfree(isw);
545 }
546
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558                                  struct inode *inode)
559 {
560         if (!inode_cgwb_enabled(inode)) {
561                 spin_unlock(&inode->i_lock);
562                 return;
563         }
564
565         wbc->wb = inode_to_wb(inode);
566         wbc->inode = inode;
567
568         wbc->wb_id = wbc->wb->memcg_css->id;
569         wbc->wb_lcand_id = inode->i_wb_frn_winner;
570         wbc->wb_tcand_id = 0;
571         wbc->wb_bytes = 0;
572         wbc->wb_lcand_bytes = 0;
573         wbc->wb_tcand_bytes = 0;
574
575         wb_get(wbc->wb);
576         spin_unlock(&inode->i_lock);
577
578         /*
579          * A dying wb indicates that the memcg-blkcg mapping has changed
580          * and a new wb is already serving the memcg.  Switch immediately.
581          */
582         if (unlikely(wb_dying(wbc->wb)))
583                 inode_switch_wbs(inode, wbc->wb_id);
584 }
585 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
586
587 /**
588  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
589  * @wbc: writeback_control of the just finished writeback
590  *
591  * To be called after a writeback attempt of an inode finishes and undoes
592  * wbc_attach_and_unlock_inode().  Can be called under any context.
593  *
594  * As concurrent write sharing of an inode is expected to be very rare and
595  * memcg only tracks page ownership on first-use basis severely confining
596  * the usefulness of such sharing, cgroup writeback tracks ownership
597  * per-inode.  While the support for concurrent write sharing of an inode
598  * is deemed unnecessary, an inode being written to by different cgroups at
599  * different points in time is a lot more common, and, more importantly,
600  * charging only by first-use can too readily lead to grossly incorrect
601  * behaviors (single foreign page can lead to gigabytes of writeback to be
602  * incorrectly attributed).
603  *
604  * To resolve this issue, cgroup writeback detects the majority dirtier of
605  * an inode and transfers the ownership to it.  To avoid unnnecessary
606  * oscillation, the detection mechanism keeps track of history and gives
607  * out the switch verdict only if the foreign usage pattern is stable over
608  * a certain amount of time and/or writeback attempts.
609  *
610  * On each writeback attempt, @wbc tries to detect the majority writer
611  * using Boyer-Moore majority vote algorithm.  In addition to the byte
612  * count from the majority voting, it also counts the bytes written for the
613  * current wb and the last round's winner wb (max of last round's current
614  * wb, the winner from two rounds ago, and the last round's majority
615  * candidate).  Keeping track of the historical winner helps the algorithm
616  * to semi-reliably detect the most active writer even when it's not the
617  * absolute majority.
618  *
619  * Once the winner of the round is determined, whether the winner is
620  * foreign or not and how much IO time the round consumed is recorded in
621  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
622  * over a certain threshold, the switch verdict is given.
623  */
624 void wbc_detach_inode(struct writeback_control *wbc)
625 {
626         struct bdi_writeback *wb = wbc->wb;
627         struct inode *inode = wbc->inode;
628         unsigned long avg_time, max_bytes, max_time;
629         u16 history;
630         int max_id;
631
632         if (!wb)
633                 return;
634
635         history = inode->i_wb_frn_history;
636         avg_time = inode->i_wb_frn_avg_time;
637
638         /* pick the winner of this round */
639         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
640             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
641                 max_id = wbc->wb_id;
642                 max_bytes = wbc->wb_bytes;
643         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
644                 max_id = wbc->wb_lcand_id;
645                 max_bytes = wbc->wb_lcand_bytes;
646         } else {
647                 max_id = wbc->wb_tcand_id;
648                 max_bytes = wbc->wb_tcand_bytes;
649         }
650
651         /*
652          * Calculate the amount of IO time the winner consumed and fold it
653          * into the running average kept per inode.  If the consumed IO
654          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
655          * deciding whether to switch or not.  This is to prevent one-off
656          * small dirtiers from skewing the verdict.
657          */
658         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
659                                 wb->avg_write_bandwidth);
660         if (avg_time)
661                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
662                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
663         else
664                 avg_time = max_time;    /* immediate catch up on first run */
665
666         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
667                 int slots;
668
669                 /*
670                  * The switch verdict is reached if foreign wb's consume
671                  * more than a certain proportion of IO time in a
672                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
673                  * history mask where each bit represents one sixteenth of
674                  * the period.  Determine the number of slots to shift into
675                  * history from @max_time.
676                  */
677                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
678                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
679                 history <<= slots;
680                 if (wbc->wb_id != max_id)
681                         history |= (1U << slots) - 1;
682
683                 if (history)
684                         trace_inode_foreign_history(inode, wbc, history);
685
686                 /*
687                  * Switch if the current wb isn't the consistent winner.
688                  * If there are multiple closely competing dirtiers, the
689                  * inode may switch across them repeatedly over time, which
690                  * is okay.  The main goal is avoiding keeping an inode on
691                  * the wrong wb for an extended period of time.
692                  */
693                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
694                         inode_switch_wbs(inode, max_id);
695         }
696
697         /*
698          * Multiple instances of this function may race to update the
699          * following fields but we don't mind occassional inaccuracies.
700          */
701         inode->i_wb_frn_winner = max_id;
702         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
703         inode->i_wb_frn_history = history;
704
705         wb_put(wbc->wb);
706         wbc->wb = NULL;
707 }
708 EXPORT_SYMBOL_GPL(wbc_detach_inode);
709
710 /**
711  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
712  * @wbc: writeback_control of the writeback in progress
713  * @page: page being written out
714  * @bytes: number of bytes being written out
715  *
716  * @bytes from @page are about to written out during the writeback
717  * controlled by @wbc.  Keep the book for foreign inode detection.  See
718  * wbc_detach_inode().
719  */
720 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
721                               size_t bytes)
722 {
723         struct cgroup_subsys_state *css;
724         int id;
725
726         /*
727          * pageout() path doesn't attach @wbc to the inode being written
728          * out.  This is intentional as we don't want the function to block
729          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
730          * regular writeback instead of writing things out itself.
731          */
732         if (!wbc->wb || wbc->no_cgroup_owner)
733                 return;
734
735         css = mem_cgroup_css_from_page(page);
736         /* dead cgroups shouldn't contribute to inode ownership arbitration */
737         if (!(css->flags & CSS_ONLINE))
738                 return;
739
740         id = css->id;
741
742         if (id == wbc->wb_id) {
743                 wbc->wb_bytes += bytes;
744                 return;
745         }
746
747         if (id == wbc->wb_lcand_id)
748                 wbc->wb_lcand_bytes += bytes;
749
750         /* Boyer-Moore majority vote algorithm */
751         if (!wbc->wb_tcand_bytes)
752                 wbc->wb_tcand_id = id;
753         if (id == wbc->wb_tcand_id)
754                 wbc->wb_tcand_bytes += bytes;
755         else
756                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
757 }
758 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
759
760 /**
761  * inode_congested - test whether an inode is congested
762  * @inode: inode to test for congestion (may be NULL)
763  * @cong_bits: mask of WB_[a]sync_congested bits to test
764  *
765  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
766  * bits to test and the return value is the mask of set bits.
767  *
768  * If cgroup writeback is enabled for @inode, the congestion state is
769  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
770  * associated with @inode is congested; otherwise, the root wb's congestion
771  * state is used.
772  *
773  * @inode is allowed to be NULL as this function is often called on
774  * mapping->host which is NULL for the swapper space.
775  */
776 int inode_congested(struct inode *inode, int cong_bits)
777 {
778         /*
779          * Once set, ->i_wb never becomes NULL while the inode is alive.
780          * Start transaction iff ->i_wb is visible.
781          */
782         if (inode && inode_to_wb_is_valid(inode)) {
783                 struct bdi_writeback *wb;
784                 struct wb_lock_cookie lock_cookie = {};
785                 bool congested;
786
787                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
788                 congested = wb_congested(wb, cong_bits);
789                 unlocked_inode_to_wb_end(inode, &lock_cookie);
790                 return congested;
791         }
792
793         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
794 }
795 EXPORT_SYMBOL_GPL(inode_congested);
796
797 /**
798  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
799  * @wb: target bdi_writeback to split @nr_pages to
800  * @nr_pages: number of pages to write for the whole bdi
801  *
802  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
803  * relation to the total write bandwidth of all wb's w/ dirty inodes on
804  * @wb->bdi.
805  */
806 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
807 {
808         unsigned long this_bw = wb->avg_write_bandwidth;
809         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
810
811         if (nr_pages == LONG_MAX)
812                 return LONG_MAX;
813
814         /*
815          * This may be called on clean wb's and proportional distribution
816          * may not make sense, just use the original @nr_pages in those
817          * cases.  In general, we wanna err on the side of writing more.
818          */
819         if (!tot_bw || this_bw >= tot_bw)
820                 return nr_pages;
821         else
822                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
823 }
824
825 /**
826  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827  * @bdi: target backing_dev_info
828  * @base_work: wb_writeback_work to issue
829  * @skip_if_busy: skip wb's which already have writeback in progress
830  *
831  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
833  * distributed to the busy wbs according to each wb's proportion in the
834  * total active write bandwidth of @bdi.
835  */
836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837                                   struct wb_writeback_work *base_work,
838                                   bool skip_if_busy)
839 {
840         struct bdi_writeback *last_wb = NULL;
841         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
842                                               struct bdi_writeback, bdi_node);
843
844         might_sleep();
845 restart:
846         rcu_read_lock();
847         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
848                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
849                 struct wb_writeback_work fallback_work;
850                 struct wb_writeback_work *work;
851                 long nr_pages;
852
853                 if (last_wb) {
854                         wb_put(last_wb);
855                         last_wb = NULL;
856                 }
857
858                 /* SYNC_ALL writes out I_DIRTY_TIME too */
859                 if (!wb_has_dirty_io(wb) &&
860                     (base_work->sync_mode == WB_SYNC_NONE ||
861                      list_empty(&wb->b_dirty_time)))
862                         continue;
863                 if (skip_if_busy && writeback_in_progress(wb))
864                         continue;
865
866                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
867
868                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
869                 if (work) {
870                         *work = *base_work;
871                         work->nr_pages = nr_pages;
872                         work->auto_free = 1;
873                         wb_queue_work(wb, work);
874                         continue;
875                 }
876
877                 /* alloc failed, execute synchronously using on-stack fallback */
878                 work = &fallback_work;
879                 *work = *base_work;
880                 work->nr_pages = nr_pages;
881                 work->auto_free = 0;
882                 work->done = &fallback_work_done;
883
884                 wb_queue_work(wb, work);
885
886                 /*
887                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
888                  * continuing iteration from @wb after dropping and
889                  * regrabbing rcu read lock.
890                  */
891                 wb_get(wb);
892                 last_wb = wb;
893
894                 rcu_read_unlock();
895                 wb_wait_for_completion(&fallback_work_done);
896                 goto restart;
897         }
898         rcu_read_unlock();
899
900         if (last_wb)
901                 wb_put(last_wb);
902 }
903
904 /**
905  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
906  * @bdi_id: target bdi id
907  * @memcg_id: target memcg css id
908  * @nr: number of pages to write, 0 for best-effort dirty flushing
909  * @reason: reason why some writeback work initiated
910  * @done: target wb_completion
911  *
912  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
913  * with the specified parameters.
914  */
915 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
916                            enum wb_reason reason, struct wb_completion *done)
917 {
918         struct backing_dev_info *bdi;
919         struct cgroup_subsys_state *memcg_css;
920         struct bdi_writeback *wb;
921         struct wb_writeback_work *work;
922         int ret;
923
924         /* lookup bdi and memcg */
925         bdi = bdi_get_by_id(bdi_id);
926         if (!bdi)
927                 return -ENOENT;
928
929         rcu_read_lock();
930         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
931         if (memcg_css && !css_tryget(memcg_css))
932                 memcg_css = NULL;
933         rcu_read_unlock();
934         if (!memcg_css) {
935                 ret = -ENOENT;
936                 goto out_bdi_put;
937         }
938
939         /*
940          * And find the associated wb.  If the wb isn't there already
941          * there's nothing to flush, don't create one.
942          */
943         wb = wb_get_lookup(bdi, memcg_css);
944         if (!wb) {
945                 ret = -ENOENT;
946                 goto out_css_put;
947         }
948
949         /*
950          * If @nr is zero, the caller is attempting to write out most of
951          * the currently dirty pages.  Let's take the current dirty page
952          * count and inflate it by 25% which should be large enough to
953          * flush out most dirty pages while avoiding getting livelocked by
954          * concurrent dirtiers.
955          */
956         if (!nr) {
957                 unsigned long filepages, headroom, dirty, writeback;
958
959                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
960                                       &writeback);
961                 nr = dirty * 10 / 8;
962         }
963
964         /* issue the writeback work */
965         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
966         if (work) {
967                 work->nr_pages = nr;
968                 work->sync_mode = WB_SYNC_NONE;
969                 work->range_cyclic = 1;
970                 work->reason = reason;
971                 work->done = done;
972                 work->auto_free = 1;
973                 wb_queue_work(wb, work);
974                 ret = 0;
975         } else {
976                 ret = -ENOMEM;
977         }
978
979         wb_put(wb);
980 out_css_put:
981         css_put(memcg_css);
982 out_bdi_put:
983         bdi_put(bdi);
984         return ret;
985 }
986
987 /**
988  * cgroup_writeback_umount - flush inode wb switches for umount
989  *
990  * This function is called when a super_block is about to be destroyed and
991  * flushes in-flight inode wb switches.  An inode wb switch goes through
992  * RCU and then workqueue, so the two need to be flushed in order to ensure
993  * that all previously scheduled switches are finished.  As wb switches are
994  * rare occurrences and synchronize_rcu() can take a while, perform
995  * flushing iff wb switches are in flight.
996  */
997 void cgroup_writeback_umount(void)
998 {
999         if (atomic_read(&isw_nr_in_flight)) {
1000                 /*
1001                  * Use rcu_barrier() to wait for all pending callbacks to
1002                  * ensure that all in-flight wb switches are in the workqueue.
1003                  */
1004                 rcu_barrier();
1005                 flush_workqueue(isw_wq);
1006         }
1007 }
1008
1009 static int __init cgroup_writeback_init(void)
1010 {
1011         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1012         if (!isw_wq)
1013                 return -ENOMEM;
1014         return 0;
1015 }
1016 fs_initcall(cgroup_writeback_init);
1017
1018 #else   /* CONFIG_CGROUP_WRITEBACK */
1019
1020 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1021 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1022
1023 static struct bdi_writeback *
1024 locked_inode_to_wb_and_lock_list(struct inode *inode)
1025         __releases(&inode->i_lock)
1026         __acquires(&wb->list_lock)
1027 {
1028         struct bdi_writeback *wb = inode_to_wb(inode);
1029
1030         spin_unlock(&inode->i_lock);
1031         spin_lock(&wb->list_lock);
1032         return wb;
1033 }
1034
1035 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1036         __acquires(&wb->list_lock)
1037 {
1038         struct bdi_writeback *wb = inode_to_wb(inode);
1039
1040         spin_lock(&wb->list_lock);
1041         return wb;
1042 }
1043
1044 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1045 {
1046         return nr_pages;
1047 }
1048
1049 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1050                                   struct wb_writeback_work *base_work,
1051                                   bool skip_if_busy)
1052 {
1053         might_sleep();
1054
1055         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1056                 base_work->auto_free = 0;
1057                 wb_queue_work(&bdi->wb, base_work);
1058         }
1059 }
1060
1061 #endif  /* CONFIG_CGROUP_WRITEBACK */
1062
1063 /*
1064  * Add in the number of potentially dirty inodes, because each inode
1065  * write can dirty pagecache in the underlying blockdev.
1066  */
1067 static unsigned long get_nr_dirty_pages(void)
1068 {
1069         return global_node_page_state(NR_FILE_DIRTY) +
1070                 global_node_page_state(NR_UNSTABLE_NFS) +
1071                 get_nr_dirty_inodes();
1072 }
1073
1074 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1075 {
1076         if (!wb_has_dirty_io(wb))
1077                 return;
1078
1079         /*
1080          * All callers of this function want to start writeback of all
1081          * dirty pages. Places like vmscan can call this at a very
1082          * high frequency, causing pointless allocations of tons of
1083          * work items and keeping the flusher threads busy retrieving
1084          * that work. Ensure that we only allow one of them pending and
1085          * inflight at the time.
1086          */
1087         if (test_bit(WB_start_all, &wb->state) ||
1088             test_and_set_bit(WB_start_all, &wb->state))
1089                 return;
1090
1091         wb->start_all_reason = reason;
1092         wb_wakeup(wb);
1093 }
1094
1095 /**
1096  * wb_start_background_writeback - start background writeback
1097  * @wb: bdi_writback to write from
1098  *
1099  * Description:
1100  *   This makes sure WB_SYNC_NONE background writeback happens. When
1101  *   this function returns, it is only guaranteed that for given wb
1102  *   some IO is happening if we are over background dirty threshold.
1103  *   Caller need not hold sb s_umount semaphore.
1104  */
1105 void wb_start_background_writeback(struct bdi_writeback *wb)
1106 {
1107         /*
1108          * We just wake up the flusher thread. It will perform background
1109          * writeback as soon as there is no other work to do.
1110          */
1111         trace_writeback_wake_background(wb);
1112         wb_wakeup(wb);
1113 }
1114
1115 /*
1116  * Remove the inode from the writeback list it is on.
1117  */
1118 void inode_io_list_del(struct inode *inode)
1119 {
1120         struct bdi_writeback *wb;
1121
1122         wb = inode_to_wb_and_lock_list(inode);
1123         inode_io_list_del_locked(inode, wb);
1124         spin_unlock(&wb->list_lock);
1125 }
1126
1127 /*
1128  * mark an inode as under writeback on the sb
1129  */
1130 void sb_mark_inode_writeback(struct inode *inode)
1131 {
1132         struct super_block *sb = inode->i_sb;
1133         unsigned long flags;
1134
1135         if (list_empty(&inode->i_wb_list)) {
1136                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1137                 if (list_empty(&inode->i_wb_list)) {
1138                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1139                         trace_sb_mark_inode_writeback(inode);
1140                 }
1141                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1142         }
1143 }
1144
1145 /*
1146  * clear an inode as under writeback on the sb
1147  */
1148 void sb_clear_inode_writeback(struct inode *inode)
1149 {
1150         struct super_block *sb = inode->i_sb;
1151         unsigned long flags;
1152
1153         if (!list_empty(&inode->i_wb_list)) {
1154                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1155                 if (!list_empty(&inode->i_wb_list)) {
1156                         list_del_init(&inode->i_wb_list);
1157                         trace_sb_clear_inode_writeback(inode);
1158                 }
1159                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1160         }
1161 }
1162
1163 /*
1164  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1165  * furthest end of its superblock's dirty-inode list.
1166  *
1167  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1168  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1169  * the case then the inode must have been redirtied while it was being written
1170  * out and we don't reset its dirtied_when.
1171  */
1172 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1173 {
1174         if (!list_empty(&wb->b_dirty)) {
1175                 struct inode *tail;
1176
1177                 tail = wb_inode(wb->b_dirty.next);
1178                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1179                         inode->dirtied_when = jiffies;
1180         }
1181         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1182 }
1183
1184 /*
1185  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1186  */
1187 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1188 {
1189         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1190 }
1191
1192 static void inode_sync_complete(struct inode *inode)
1193 {
1194         inode->i_state &= ~I_SYNC;
1195         /* If inode is clean an unused, put it into LRU now... */
1196         inode_add_lru(inode);
1197         /* Waiters must see I_SYNC cleared before being woken up */
1198         smp_mb();
1199         wake_up_bit(&inode->i_state, __I_SYNC);
1200 }
1201
1202 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1203 {
1204         bool ret = time_after(inode->dirtied_when, t);
1205 #ifndef CONFIG_64BIT
1206         /*
1207          * For inodes being constantly redirtied, dirtied_when can get stuck.
1208          * It _appears_ to be in the future, but is actually in distant past.
1209          * This test is necessary to prevent such wrapped-around relative times
1210          * from permanently stopping the whole bdi writeback.
1211          */
1212         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1213 #endif
1214         return ret;
1215 }
1216
1217 #define EXPIRE_DIRTY_ATIME 0x0001
1218
1219 /*
1220  * Move expired (dirtied before work->older_than_this) dirty inodes from
1221  * @delaying_queue to @dispatch_queue.
1222  */
1223 static int move_expired_inodes(struct list_head *delaying_queue,
1224                                struct list_head *dispatch_queue,
1225                                int flags,
1226                                struct wb_writeback_work *work)
1227 {
1228         unsigned long *older_than_this = NULL;
1229         unsigned long expire_time;
1230         LIST_HEAD(tmp);
1231         struct list_head *pos, *node;
1232         struct super_block *sb = NULL;
1233         struct inode *inode;
1234         int do_sb_sort = 0;
1235         int moved = 0;
1236
1237         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1238                 older_than_this = work->older_than_this;
1239         else if (!work->for_sync) {
1240                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1241                 older_than_this = &expire_time;
1242         }
1243         while (!list_empty(delaying_queue)) {
1244                 inode = wb_inode(delaying_queue->prev);
1245                 if (older_than_this &&
1246                     inode_dirtied_after(inode, *older_than_this))
1247                         break;
1248                 list_move(&inode->i_io_list, &tmp);
1249                 moved++;
1250                 if (flags & EXPIRE_DIRTY_ATIME)
1251                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1252                 if (sb_is_blkdev_sb(inode->i_sb))
1253                         continue;
1254                 if (sb && sb != inode->i_sb)
1255                         do_sb_sort = 1;
1256                 sb = inode->i_sb;
1257         }
1258
1259         /* just one sb in list, splice to dispatch_queue and we're done */
1260         if (!do_sb_sort) {
1261                 list_splice(&tmp, dispatch_queue);
1262                 goto out;
1263         }
1264
1265         /* Move inodes from one superblock together */
1266         while (!list_empty(&tmp)) {
1267                 sb = wb_inode(tmp.prev)->i_sb;
1268                 list_for_each_prev_safe(pos, node, &tmp) {
1269                         inode = wb_inode(pos);
1270                         if (inode->i_sb == sb)
1271                                 list_move(&inode->i_io_list, dispatch_queue);
1272                 }
1273         }
1274 out:
1275         return moved;
1276 }
1277
1278 /*
1279  * Queue all expired dirty inodes for io, eldest first.
1280  * Before
1281  *         newly dirtied     b_dirty    b_io    b_more_io
1282  *         =============>    gf         edc     BA
1283  * After
1284  *         newly dirtied     b_dirty    b_io    b_more_io
1285  *         =============>    g          fBAedc
1286  *                                           |
1287  *                                           +--> dequeue for IO
1288  */
1289 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1290 {
1291         int moved;
1292
1293         assert_spin_locked(&wb->list_lock);
1294         list_splice_init(&wb->b_more_io, &wb->b_io);
1295         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1296         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1297                                      EXPIRE_DIRTY_ATIME, work);
1298         if (moved)
1299                 wb_io_lists_populated(wb);
1300         trace_writeback_queue_io(wb, work, moved);
1301 }
1302
1303 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1304 {
1305         int ret;
1306
1307         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1308                 trace_writeback_write_inode_start(inode, wbc);
1309                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1310                 trace_writeback_write_inode(inode, wbc);
1311                 return ret;
1312         }
1313         return 0;
1314 }
1315
1316 /*
1317  * Wait for writeback on an inode to complete. Called with i_lock held.
1318  * Caller must make sure inode cannot go away when we drop i_lock.
1319  */
1320 static void __inode_wait_for_writeback(struct inode *inode)
1321         __releases(inode->i_lock)
1322         __acquires(inode->i_lock)
1323 {
1324         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1325         wait_queue_head_t *wqh;
1326
1327         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1328         while (inode->i_state & I_SYNC) {
1329                 spin_unlock(&inode->i_lock);
1330                 __wait_on_bit(wqh, &wq, bit_wait,
1331                               TASK_UNINTERRUPTIBLE);
1332                 spin_lock(&inode->i_lock);
1333         }
1334 }
1335
1336 /*
1337  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1338  */
1339 void inode_wait_for_writeback(struct inode *inode)
1340 {
1341         spin_lock(&inode->i_lock);
1342         __inode_wait_for_writeback(inode);
1343         spin_unlock(&inode->i_lock);
1344 }
1345
1346 /*
1347  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1348  * held and drops it. It is aimed for callers not holding any inode reference
1349  * so once i_lock is dropped, inode can go away.
1350  */
1351 static void inode_sleep_on_writeback(struct inode *inode)
1352         __releases(inode->i_lock)
1353 {
1354         DEFINE_WAIT(wait);
1355         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1356         int sleep;
1357
1358         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1359         sleep = inode->i_state & I_SYNC;
1360         spin_unlock(&inode->i_lock);
1361         if (sleep)
1362                 schedule();
1363         finish_wait(wqh, &wait);
1364 }
1365
1366 /*
1367  * Find proper writeback list for the inode depending on its current state and
1368  * possibly also change of its state while we were doing writeback.  Here we
1369  * handle things such as livelock prevention or fairness of writeback among
1370  * inodes. This function can be called only by flusher thread - noone else
1371  * processes all inodes in writeback lists and requeueing inodes behind flusher
1372  * thread's back can have unexpected consequences.
1373  */
1374 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1375                           struct writeback_control *wbc)
1376 {
1377         if (inode->i_state & I_FREEING)
1378                 return;
1379
1380         /*
1381          * Sync livelock prevention. Each inode is tagged and synced in one
1382          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1383          * the dirty time to prevent enqueue and sync it again.
1384          */
1385         if ((inode->i_state & I_DIRTY) &&
1386             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1387                 inode->dirtied_when = jiffies;
1388
1389         if (wbc->pages_skipped) {
1390                 /*
1391                  * writeback is not making progress due to locked
1392                  * buffers. Skip this inode for now.
1393                  */
1394                 redirty_tail(inode, wb);
1395                 return;
1396         }
1397
1398         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1399                 /*
1400                  * We didn't write back all the pages.  nfs_writepages()
1401                  * sometimes bales out without doing anything.
1402                  */
1403                 if (wbc->nr_to_write <= 0) {
1404                         /* Slice used up. Queue for next turn. */
1405                         requeue_io(inode, wb);
1406                 } else {
1407                         /*
1408                          * Writeback blocked by something other than
1409                          * congestion. Delay the inode for some time to
1410                          * avoid spinning on the CPU (100% iowait)
1411                          * retrying writeback of the dirty page/inode
1412                          * that cannot be performed immediately.
1413                          */
1414                         redirty_tail(inode, wb);
1415                 }
1416         } else if (inode->i_state & I_DIRTY) {
1417                 /*
1418                  * Filesystems can dirty the inode during writeback operations,
1419                  * such as delayed allocation during submission or metadata
1420                  * updates after data IO completion.
1421                  */
1422                 redirty_tail(inode, wb);
1423         } else if (inode->i_state & I_DIRTY_TIME) {
1424                 inode->dirtied_when = jiffies;
1425                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1426         } else {
1427                 /* The inode is clean. Remove from writeback lists. */
1428                 inode_io_list_del_locked(inode, wb);
1429         }
1430 }
1431
1432 /*
1433  * Write out an inode and its dirty pages. Do not update the writeback list
1434  * linkage. That is left to the caller. The caller is also responsible for
1435  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1436  */
1437 static int
1438 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1439 {
1440         struct address_space *mapping = inode->i_mapping;
1441         long nr_to_write = wbc->nr_to_write;
1442         unsigned dirty;
1443         int ret;
1444
1445         WARN_ON(!(inode->i_state & I_SYNC));
1446
1447         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1448
1449         ret = do_writepages(mapping, wbc);
1450
1451         /*
1452          * Make sure to wait on the data before writing out the metadata.
1453          * This is important for filesystems that modify metadata on data
1454          * I/O completion. We don't do it for sync(2) writeback because it has a
1455          * separate, external IO completion path and ->sync_fs for guaranteeing
1456          * inode metadata is written back correctly.
1457          */
1458         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1459                 int err = filemap_fdatawait(mapping);
1460                 if (ret == 0)
1461                         ret = err;
1462         }
1463
1464         /*
1465          * Some filesystems may redirty the inode during the writeback
1466          * due to delalloc, clear dirty metadata flags right before
1467          * write_inode()
1468          */
1469         spin_lock(&inode->i_lock);
1470
1471         dirty = inode->i_state & I_DIRTY;
1472         if (inode->i_state & I_DIRTY_TIME) {
1473                 if ((dirty & I_DIRTY_INODE) ||
1474                     wbc->sync_mode == WB_SYNC_ALL ||
1475                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1476                     unlikely(time_after(jiffies,
1477                                         (inode->dirtied_time_when +
1478                                          dirtytime_expire_interval * HZ)))) {
1479                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1480                         trace_writeback_lazytime(inode);
1481                 }
1482         } else
1483                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1484         inode->i_state &= ~dirty;
1485
1486         /*
1487          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1488          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1489          * either they see the I_DIRTY bits cleared or we see the dirtied
1490          * inode.
1491          *
1492          * I_DIRTY_PAGES is always cleared together above even if @mapping
1493          * still has dirty pages.  The flag is reinstated after smp_mb() if
1494          * necessary.  This guarantees that either __mark_inode_dirty()
1495          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1496          */
1497         smp_mb();
1498
1499         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1500                 inode->i_state |= I_DIRTY_PAGES;
1501
1502         spin_unlock(&inode->i_lock);
1503
1504         if (dirty & I_DIRTY_TIME)
1505                 mark_inode_dirty_sync(inode);
1506         /* Don't write the inode if only I_DIRTY_PAGES was set */
1507         if (dirty & ~I_DIRTY_PAGES) {
1508                 int err = write_inode(inode, wbc);
1509                 if (ret == 0)
1510                         ret = err;
1511         }
1512         trace_writeback_single_inode(inode, wbc, nr_to_write);
1513         return ret;
1514 }
1515
1516 /*
1517  * Write out an inode's dirty pages. Either the caller has an active reference
1518  * on the inode or the inode has I_WILL_FREE set.
1519  *
1520  * This function is designed to be called for writing back one inode which
1521  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1522  * and does more profound writeback list handling in writeback_sb_inodes().
1523  */
1524 static int writeback_single_inode(struct inode *inode,
1525                                   struct writeback_control *wbc)
1526 {
1527         struct bdi_writeback *wb;
1528         int ret = 0;
1529
1530         spin_lock(&inode->i_lock);
1531         if (!atomic_read(&inode->i_count))
1532                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1533         else
1534                 WARN_ON(inode->i_state & I_WILL_FREE);
1535
1536         if (inode->i_state & I_SYNC) {
1537                 if (wbc->sync_mode != WB_SYNC_ALL)
1538                         goto out;
1539                 /*
1540                  * It's a data-integrity sync. We must wait. Since callers hold
1541                  * inode reference or inode has I_WILL_FREE set, it cannot go
1542                  * away under us.
1543                  */
1544                 __inode_wait_for_writeback(inode);
1545         }
1546         WARN_ON(inode->i_state & I_SYNC);
1547         /*
1548          * Skip inode if it is clean and we have no outstanding writeback in
1549          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1550          * function since flusher thread may be doing for example sync in
1551          * parallel and if we move the inode, it could get skipped. So here we
1552          * make sure inode is on some writeback list and leave it there unless
1553          * we have completely cleaned the inode.
1554          */
1555         if (!(inode->i_state & I_DIRTY_ALL) &&
1556             (wbc->sync_mode != WB_SYNC_ALL ||
1557              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1558                 goto out;
1559         inode->i_state |= I_SYNC;
1560         wbc_attach_and_unlock_inode(wbc, inode);
1561
1562         ret = __writeback_single_inode(inode, wbc);
1563
1564         wbc_detach_inode(wbc);
1565
1566         wb = inode_to_wb_and_lock_list(inode);
1567         spin_lock(&inode->i_lock);
1568         /*
1569          * If inode is clean, remove it from writeback lists. Otherwise don't
1570          * touch it. See comment above for explanation.
1571          */
1572         if (!(inode->i_state & I_DIRTY_ALL))
1573                 inode_io_list_del_locked(inode, wb);
1574         spin_unlock(&wb->list_lock);
1575         inode_sync_complete(inode);
1576 out:
1577         spin_unlock(&inode->i_lock);
1578         return ret;
1579 }
1580
1581 static long writeback_chunk_size(struct bdi_writeback *wb,
1582                                  struct wb_writeback_work *work)
1583 {
1584         long pages;
1585
1586         /*
1587          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1588          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1589          * here avoids calling into writeback_inodes_wb() more than once.
1590          *
1591          * The intended call sequence for WB_SYNC_ALL writeback is:
1592          *
1593          *      wb_writeback()
1594          *          writeback_sb_inodes()       <== called only once
1595          *              write_cache_pages()     <== called once for each inode
1596          *                   (quickly) tag currently dirty pages
1597          *                   (maybe slowly) sync all tagged pages
1598          */
1599         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1600                 pages = LONG_MAX;
1601         else {
1602                 pages = min(wb->avg_write_bandwidth / 2,
1603                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1604                 pages = min(pages, work->nr_pages);
1605                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1606                                    MIN_WRITEBACK_PAGES);
1607         }
1608
1609         return pages;
1610 }
1611
1612 /*
1613  * Write a portion of b_io inodes which belong to @sb.
1614  *
1615  * Return the number of pages and/or inodes written.
1616  *
1617  * NOTE! This is called with wb->list_lock held, and will
1618  * unlock and relock that for each inode it ends up doing
1619  * IO for.
1620  */
1621 static long writeback_sb_inodes(struct super_block *sb,
1622                                 struct bdi_writeback *wb,
1623                                 struct wb_writeback_work *work)
1624 {
1625         struct writeback_control wbc = {
1626                 .sync_mode              = work->sync_mode,
1627                 .tagged_writepages      = work->tagged_writepages,
1628                 .for_kupdate            = work->for_kupdate,
1629                 .for_background         = work->for_background,
1630                 .for_sync               = work->for_sync,
1631                 .range_cyclic           = work->range_cyclic,
1632                 .range_start            = 0,
1633                 .range_end              = LLONG_MAX,
1634         };
1635         unsigned long start_time = jiffies;
1636         long write_chunk;
1637         long wrote = 0;  /* count both pages and inodes */
1638
1639         while (!list_empty(&wb->b_io)) {
1640                 struct inode *inode = wb_inode(wb->b_io.prev);
1641                 struct bdi_writeback *tmp_wb;
1642
1643                 if (inode->i_sb != sb) {
1644                         if (work->sb) {
1645                                 /*
1646                                  * We only want to write back data for this
1647                                  * superblock, move all inodes not belonging
1648                                  * to it back onto the dirty list.
1649                                  */
1650                                 redirty_tail(inode, wb);
1651                                 continue;
1652                         }
1653
1654                         /*
1655                          * The inode belongs to a different superblock.
1656                          * Bounce back to the caller to unpin this and
1657                          * pin the next superblock.
1658                          */
1659                         break;
1660                 }
1661
1662                 /*
1663                  * Don't bother with new inodes or inodes being freed, first
1664                  * kind does not need periodic writeout yet, and for the latter
1665                  * kind writeout is handled by the freer.
1666                  */
1667                 spin_lock(&inode->i_lock);
1668                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1669                         spin_unlock(&inode->i_lock);
1670                         redirty_tail(inode, wb);
1671                         continue;
1672                 }
1673                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1674                         /*
1675                          * If this inode is locked for writeback and we are not
1676                          * doing writeback-for-data-integrity, move it to
1677                          * b_more_io so that writeback can proceed with the
1678                          * other inodes on s_io.
1679                          *
1680                          * We'll have another go at writing back this inode
1681                          * when we completed a full scan of b_io.
1682                          */
1683                         spin_unlock(&inode->i_lock);
1684                         requeue_io(inode, wb);
1685                         trace_writeback_sb_inodes_requeue(inode);
1686                         continue;
1687                 }
1688                 spin_unlock(&wb->list_lock);
1689
1690                 /*
1691                  * We already requeued the inode if it had I_SYNC set and we
1692                  * are doing WB_SYNC_NONE writeback. So this catches only the
1693                  * WB_SYNC_ALL case.
1694                  */
1695                 if (inode->i_state & I_SYNC) {
1696                         /* Wait for I_SYNC. This function drops i_lock... */
1697                         inode_sleep_on_writeback(inode);
1698                         /* Inode may be gone, start again */
1699                         spin_lock(&wb->list_lock);
1700                         continue;
1701                 }
1702                 inode->i_state |= I_SYNC;
1703                 wbc_attach_and_unlock_inode(&wbc, inode);
1704
1705                 write_chunk = writeback_chunk_size(wb, work);
1706                 wbc.nr_to_write = write_chunk;
1707                 wbc.pages_skipped = 0;
1708
1709                 /*
1710                  * We use I_SYNC to pin the inode in memory. While it is set
1711                  * evict_inode() will wait so the inode cannot be freed.
1712                  */
1713                 __writeback_single_inode(inode, &wbc);
1714
1715                 wbc_detach_inode(&wbc);
1716                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1717                 wrote += write_chunk - wbc.nr_to_write;
1718
1719                 if (need_resched()) {
1720                         /*
1721                          * We're trying to balance between building up a nice
1722                          * long list of IOs to improve our merge rate, and
1723                          * getting those IOs out quickly for anyone throttling
1724                          * in balance_dirty_pages().  cond_resched() doesn't
1725                          * unplug, so get our IOs out the door before we
1726                          * give up the CPU.
1727                          */
1728                         blk_flush_plug(current);
1729                         cond_resched();
1730                 }
1731
1732                 /*
1733                  * Requeue @inode if still dirty.  Be careful as @inode may
1734                  * have been switched to another wb in the meantime.
1735                  */
1736                 tmp_wb = inode_to_wb_and_lock_list(inode);
1737                 spin_lock(&inode->i_lock);
1738                 if (!(inode->i_state & I_DIRTY_ALL))
1739                         wrote++;
1740                 requeue_inode(inode, tmp_wb, &wbc);
1741                 inode_sync_complete(inode);
1742                 spin_unlock(&inode->i_lock);
1743
1744                 if (unlikely(tmp_wb != wb)) {
1745                         spin_unlock(&tmp_wb->list_lock);
1746                         spin_lock(&wb->list_lock);
1747                 }
1748
1749                 /*
1750                  * bail out to wb_writeback() often enough to check
1751                  * background threshold and other termination conditions.
1752                  */
1753                 if (wrote) {
1754                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1755                                 break;
1756                         if (work->nr_pages <= 0)
1757                                 break;
1758                 }
1759         }
1760         return wrote;
1761 }
1762
1763 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1764                                   struct wb_writeback_work *work)
1765 {
1766         unsigned long start_time = jiffies;
1767         long wrote = 0;
1768
1769         while (!list_empty(&wb->b_io)) {
1770                 struct inode *inode = wb_inode(wb->b_io.prev);
1771                 struct super_block *sb = inode->i_sb;
1772
1773                 if (!trylock_super(sb)) {
1774                         /*
1775                          * trylock_super() may fail consistently due to
1776                          * s_umount being grabbed by someone else. Don't use
1777                          * requeue_io() to avoid busy retrying the inode/sb.
1778                          */
1779                         redirty_tail(inode, wb);
1780                         continue;
1781                 }
1782                 wrote += writeback_sb_inodes(sb, wb, work);
1783                 up_read(&sb->s_umount);
1784
1785                 /* refer to the same tests at the end of writeback_sb_inodes */
1786                 if (wrote) {
1787                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1788                                 break;
1789                         if (work->nr_pages <= 0)
1790                                 break;
1791                 }
1792         }
1793         /* Leave any unwritten inodes on b_io */
1794         return wrote;
1795 }
1796
1797 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1798                                 enum wb_reason reason)
1799 {
1800         struct wb_writeback_work work = {
1801                 .nr_pages       = nr_pages,
1802                 .sync_mode      = WB_SYNC_NONE,
1803                 .range_cyclic   = 1,
1804                 .reason         = reason,
1805         };
1806         struct blk_plug plug;
1807
1808         blk_start_plug(&plug);
1809         spin_lock(&wb->list_lock);
1810         if (list_empty(&wb->b_io))
1811                 queue_io(wb, &work);
1812         __writeback_inodes_wb(wb, &work);
1813         spin_unlock(&wb->list_lock);
1814         blk_finish_plug(&plug);
1815
1816         return nr_pages - work.nr_pages;
1817 }
1818
1819 /*
1820  * Explicit flushing or periodic writeback of "old" data.
1821  *
1822  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1823  * dirtying-time in the inode's address_space.  So this periodic writeback code
1824  * just walks the superblock inode list, writing back any inodes which are
1825  * older than a specific point in time.
1826  *
1827  * Try to run once per dirty_writeback_interval.  But if a writeback event
1828  * takes longer than a dirty_writeback_interval interval, then leave a
1829  * one-second gap.
1830  *
1831  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1832  * all dirty pages if they are all attached to "old" mappings.
1833  */
1834 static long wb_writeback(struct bdi_writeback *wb,
1835                          struct wb_writeback_work *work)
1836 {
1837         unsigned long wb_start = jiffies;
1838         long nr_pages = work->nr_pages;
1839         unsigned long oldest_jif;
1840         struct inode *inode;
1841         long progress;
1842         struct blk_plug plug;
1843
1844         oldest_jif = jiffies;
1845         work->older_than_this = &oldest_jif;
1846
1847         blk_start_plug(&plug);
1848         spin_lock(&wb->list_lock);
1849         for (;;) {
1850                 /*
1851                  * Stop writeback when nr_pages has been consumed
1852                  */
1853                 if (work->nr_pages <= 0)
1854                         break;
1855
1856                 /*
1857                  * Background writeout and kupdate-style writeback may
1858                  * run forever. Stop them if there is other work to do
1859                  * so that e.g. sync can proceed. They'll be restarted
1860                  * after the other works are all done.
1861                  */
1862                 if ((work->for_background || work->for_kupdate) &&
1863                     !list_empty(&wb->work_list))
1864                         break;
1865
1866                 /*
1867                  * For background writeout, stop when we are below the
1868                  * background dirty threshold
1869                  */
1870                 if (work->for_background && !wb_over_bg_thresh(wb))
1871                         break;
1872
1873                 /*
1874                  * Kupdate and background works are special and we want to
1875                  * include all inodes that need writing. Livelock avoidance is
1876                  * handled by these works yielding to any other work so we are
1877                  * safe.
1878                  */
1879                 if (work->for_kupdate) {
1880                         oldest_jif = jiffies -
1881                                 msecs_to_jiffies(dirty_expire_interval * 10);
1882                 } else if (work->for_background)
1883                         oldest_jif = jiffies;
1884
1885                 trace_writeback_start(wb, work);
1886                 if (list_empty(&wb->b_io))
1887                         queue_io(wb, work);
1888                 if (work->sb)
1889                         progress = writeback_sb_inodes(work->sb, wb, work);
1890                 else
1891                         progress = __writeback_inodes_wb(wb, work);
1892                 trace_writeback_written(wb, work);
1893
1894                 wb_update_bandwidth(wb, wb_start);
1895
1896                 /*
1897                  * Did we write something? Try for more
1898                  *
1899                  * Dirty inodes are moved to b_io for writeback in batches.
1900                  * The completion of the current batch does not necessarily
1901                  * mean the overall work is done. So we keep looping as long
1902                  * as made some progress on cleaning pages or inodes.
1903                  */
1904                 if (progress)
1905                         continue;
1906                 /*
1907                  * No more inodes for IO, bail
1908                  */
1909                 if (list_empty(&wb->b_more_io))
1910                         break;
1911                 /*
1912                  * Nothing written. Wait for some inode to
1913                  * become available for writeback. Otherwise
1914                  * we'll just busyloop.
1915                  */
1916                 trace_writeback_wait(wb, work);
1917                 inode = wb_inode(wb->b_more_io.prev);
1918                 spin_lock(&inode->i_lock);
1919                 spin_unlock(&wb->list_lock);
1920                 /* This function drops i_lock... */
1921                 inode_sleep_on_writeback(inode);
1922                 spin_lock(&wb->list_lock);
1923         }
1924         spin_unlock(&wb->list_lock);
1925         blk_finish_plug(&plug);
1926
1927         return nr_pages - work->nr_pages;
1928 }
1929
1930 /*
1931  * Return the next wb_writeback_work struct that hasn't been processed yet.
1932  */
1933 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1934 {
1935         struct wb_writeback_work *work = NULL;
1936
1937         spin_lock_bh(&wb->work_lock);
1938         if (!list_empty(&wb->work_list)) {
1939                 work = list_entry(wb->work_list.next,
1940                                   struct wb_writeback_work, list);
1941                 list_del_init(&work->list);
1942         }
1943         spin_unlock_bh(&wb->work_lock);
1944         return work;
1945 }
1946
1947 static long wb_check_background_flush(struct bdi_writeback *wb)
1948 {
1949         if (wb_over_bg_thresh(wb)) {
1950
1951                 struct wb_writeback_work work = {
1952                         .nr_pages       = LONG_MAX,
1953                         .sync_mode      = WB_SYNC_NONE,
1954                         .for_background = 1,
1955                         .range_cyclic   = 1,
1956                         .reason         = WB_REASON_BACKGROUND,
1957                 };
1958
1959                 return wb_writeback(wb, &work);
1960         }
1961
1962         return 0;
1963 }
1964
1965 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1966 {
1967         unsigned long expired;
1968         long nr_pages;
1969
1970         /*
1971          * When set to zero, disable periodic writeback
1972          */
1973         if (!dirty_writeback_interval)
1974                 return 0;
1975
1976         expired = wb->last_old_flush +
1977                         msecs_to_jiffies(dirty_writeback_interval * 10);
1978         if (time_before(jiffies, expired))
1979                 return 0;
1980
1981         wb->last_old_flush = jiffies;
1982         nr_pages = get_nr_dirty_pages();
1983
1984         if (nr_pages) {
1985                 struct wb_writeback_work work = {
1986                         .nr_pages       = nr_pages,
1987                         .sync_mode      = WB_SYNC_NONE,
1988                         .for_kupdate    = 1,
1989                         .range_cyclic   = 1,
1990                         .reason         = WB_REASON_PERIODIC,
1991                 };
1992
1993                 return wb_writeback(wb, &work);
1994         }
1995
1996         return 0;
1997 }
1998
1999 static long wb_check_start_all(struct bdi_writeback *wb)
2000 {
2001         long nr_pages;
2002
2003         if (!test_bit(WB_start_all, &wb->state))
2004                 return 0;
2005
2006         nr_pages = get_nr_dirty_pages();
2007         if (nr_pages) {
2008                 struct wb_writeback_work work = {
2009                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2010                         .sync_mode      = WB_SYNC_NONE,
2011                         .range_cyclic   = 1,
2012                         .reason         = wb->start_all_reason,
2013                 };
2014
2015                 nr_pages = wb_writeback(wb, &work);
2016         }
2017
2018         clear_bit(WB_start_all, &wb->state);
2019         return nr_pages;
2020 }
2021
2022
2023 /*
2024  * Retrieve work items and do the writeback they describe
2025  */
2026 static long wb_do_writeback(struct bdi_writeback *wb)
2027 {
2028         struct wb_writeback_work *work;
2029         long wrote = 0;
2030
2031         set_bit(WB_writeback_running, &wb->state);
2032         while ((work = get_next_work_item(wb)) != NULL) {
2033                 trace_writeback_exec(wb, work);
2034                 wrote += wb_writeback(wb, work);
2035                 finish_writeback_work(wb, work);
2036         }
2037
2038         /*
2039          * Check for a flush-everything request
2040          */
2041         wrote += wb_check_start_all(wb);
2042
2043         /*
2044          * Check for periodic writeback, kupdated() style
2045          */
2046         wrote += wb_check_old_data_flush(wb);
2047         wrote += wb_check_background_flush(wb);
2048         clear_bit(WB_writeback_running, &wb->state);
2049
2050         return wrote;
2051 }
2052
2053 /*
2054  * Handle writeback of dirty data for the device backed by this bdi. Also
2055  * reschedules periodically and does kupdated style flushing.
2056  */
2057 void wb_workfn(struct work_struct *work)
2058 {
2059         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2060                                                 struct bdi_writeback, dwork);
2061         long pages_written;
2062
2063         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2064         current->flags |= PF_SWAPWRITE;
2065
2066         if (likely(!current_is_workqueue_rescuer() ||
2067                    !test_bit(WB_registered, &wb->state))) {
2068                 /*
2069                  * The normal path.  Keep writing back @wb until its
2070                  * work_list is empty.  Note that this path is also taken
2071                  * if @wb is shutting down even when we're running off the
2072                  * rescuer as work_list needs to be drained.
2073                  */
2074                 do {
2075                         pages_written = wb_do_writeback(wb);
2076                         trace_writeback_pages_written(pages_written);
2077                 } while (!list_empty(&wb->work_list));
2078         } else {
2079                 /*
2080                  * bdi_wq can't get enough workers and we're running off
2081                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2082                  * enough for efficient IO.
2083                  */
2084                 pages_written = writeback_inodes_wb(wb, 1024,
2085                                                     WB_REASON_FORKER_THREAD);
2086                 trace_writeback_pages_written(pages_written);
2087         }
2088
2089         if (!list_empty(&wb->work_list))
2090                 wb_wakeup(wb);
2091         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2092                 wb_wakeup_delayed(wb);
2093
2094         current->flags &= ~PF_SWAPWRITE;
2095 }
2096
2097 /*
2098  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2099  * write back the whole world.
2100  */
2101 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2102                                          enum wb_reason reason)
2103 {
2104         struct bdi_writeback *wb;
2105
2106         if (!bdi_has_dirty_io(bdi))
2107                 return;
2108
2109         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2110                 wb_start_writeback(wb, reason);
2111 }
2112
2113 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2114                                 enum wb_reason reason)
2115 {
2116         rcu_read_lock();
2117         __wakeup_flusher_threads_bdi(bdi, reason);
2118         rcu_read_unlock();
2119 }
2120
2121 /*
2122  * Wakeup the flusher threads to start writeback of all currently dirty pages
2123  */
2124 void wakeup_flusher_threads(enum wb_reason reason)
2125 {
2126         struct backing_dev_info *bdi;
2127
2128         /*
2129          * If we are expecting writeback progress we must submit plugged IO.
2130          */
2131         if (blk_needs_flush_plug(current))
2132                 blk_schedule_flush_plug(current);
2133
2134         rcu_read_lock();
2135         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2136                 __wakeup_flusher_threads_bdi(bdi, reason);
2137         rcu_read_unlock();
2138 }
2139
2140 /*
2141  * Wake up bdi's periodically to make sure dirtytime inodes gets
2142  * written back periodically.  We deliberately do *not* check the
2143  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2144  * kernel to be constantly waking up once there are any dirtytime
2145  * inodes on the system.  So instead we define a separate delayed work
2146  * function which gets called much more rarely.  (By default, only
2147  * once every 12 hours.)
2148  *
2149  * If there is any other write activity going on in the file system,
2150  * this function won't be necessary.  But if the only thing that has
2151  * happened on the file system is a dirtytime inode caused by an atime
2152  * update, we need this infrastructure below to make sure that inode
2153  * eventually gets pushed out to disk.
2154  */
2155 static void wakeup_dirtytime_writeback(struct work_struct *w);
2156 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2157
2158 static void wakeup_dirtytime_writeback(struct work_struct *w)
2159 {
2160         struct backing_dev_info *bdi;
2161
2162         rcu_read_lock();
2163         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2164                 struct bdi_writeback *wb;
2165
2166                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2167                         if (!list_empty(&wb->b_dirty_time))
2168                                 wb_wakeup(wb);
2169         }
2170         rcu_read_unlock();
2171         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172 }
2173
2174 static int __init start_dirtytime_writeback(void)
2175 {
2176         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2177         return 0;
2178 }
2179 __initcall(start_dirtytime_writeback);
2180
2181 int dirtytime_interval_handler(struct ctl_table *table, int write,
2182                                void __user *buffer, size_t *lenp, loff_t *ppos)
2183 {
2184         int ret;
2185
2186         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2187         if (ret == 0 && write)
2188                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2189         return ret;
2190 }
2191
2192 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2193 {
2194         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2195                 struct dentry *dentry;
2196                 const char *name = "?";
2197
2198                 dentry = d_find_alias(inode);
2199                 if (dentry) {
2200                         spin_lock(&dentry->d_lock);
2201                         name = (const char *) dentry->d_name.name;
2202                 }
2203                 printk(KERN_DEBUG
2204                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2205                        current->comm, task_pid_nr(current), inode->i_ino,
2206                        name, inode->i_sb->s_id);
2207                 if (dentry) {
2208                         spin_unlock(&dentry->d_lock);
2209                         dput(dentry);
2210                 }
2211         }
2212 }
2213
2214 /**
2215  * __mark_inode_dirty - internal function
2216  *
2217  * @inode: inode to mark
2218  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2219  *
2220  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2221  * mark_inode_dirty_sync.
2222  *
2223  * Put the inode on the super block's dirty list.
2224  *
2225  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2226  * dirty list only if it is hashed or if it refers to a blockdev.
2227  * If it was not hashed, it will never be added to the dirty list
2228  * even if it is later hashed, as it will have been marked dirty already.
2229  *
2230  * In short, make sure you hash any inodes _before_ you start marking
2231  * them dirty.
2232  *
2233  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2234  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2235  * the kernel-internal blockdev inode represents the dirtying time of the
2236  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2237  * page->mapping->host, so the page-dirtying time is recorded in the internal
2238  * blockdev inode.
2239  */
2240 void __mark_inode_dirty(struct inode *inode, int flags)
2241 {
2242         struct super_block *sb = inode->i_sb;
2243         int dirtytime;
2244
2245         trace_writeback_mark_inode_dirty(inode, flags);
2246
2247         /*
2248          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2249          * dirty the inode itself
2250          */
2251         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2252                 trace_writeback_dirty_inode_start(inode, flags);
2253
2254                 if (sb->s_op->dirty_inode)
2255                         sb->s_op->dirty_inode(inode, flags);
2256
2257                 trace_writeback_dirty_inode(inode, flags);
2258         }
2259         if (flags & I_DIRTY_INODE)
2260                 flags &= ~I_DIRTY_TIME;
2261         dirtytime = flags & I_DIRTY_TIME;
2262
2263         /*
2264          * Paired with smp_mb() in __writeback_single_inode() for the
2265          * following lockless i_state test.  See there for details.
2266          */
2267         smp_mb();
2268
2269         if (((inode->i_state & flags) == flags) ||
2270             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2271                 return;
2272
2273         if (unlikely(block_dump))
2274                 block_dump___mark_inode_dirty(inode);
2275
2276         spin_lock(&inode->i_lock);
2277         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2278                 goto out_unlock_inode;
2279         if ((inode->i_state & flags) != flags) {
2280                 const int was_dirty = inode->i_state & I_DIRTY;
2281
2282                 inode_attach_wb(inode, NULL);
2283
2284                 if (flags & I_DIRTY_INODE)
2285                         inode->i_state &= ~I_DIRTY_TIME;
2286                 inode->i_state |= flags;
2287
2288                 /*
2289                  * If the inode is being synced, just update its dirty state.
2290                  * The unlocker will place the inode on the appropriate
2291                  * superblock list, based upon its state.
2292                  */
2293                 if (inode->i_state & I_SYNC)
2294                         goto out_unlock_inode;
2295
2296                 /*
2297                  * Only add valid (hashed) inodes to the superblock's
2298                  * dirty list.  Add blockdev inodes as well.
2299                  */
2300                 if (!S_ISBLK(inode->i_mode)) {
2301                         if (inode_unhashed(inode))
2302                                 goto out_unlock_inode;
2303                 }
2304                 if (inode->i_state & I_FREEING)
2305                         goto out_unlock_inode;
2306
2307                 /*
2308                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2309                  * reposition it (that would break b_dirty time-ordering).
2310                  */
2311                 if (!was_dirty) {
2312                         struct bdi_writeback *wb;
2313                         struct list_head *dirty_list;
2314                         bool wakeup_bdi = false;
2315
2316                         wb = locked_inode_to_wb_and_lock_list(inode);
2317
2318                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2319                              !test_bit(WB_registered, &wb->state),
2320                              "bdi-%s not registered\n", wb->bdi->name);
2321
2322                         inode->dirtied_when = jiffies;
2323                         if (dirtytime)
2324                                 inode->dirtied_time_when = jiffies;
2325
2326                         if (inode->i_state & I_DIRTY)
2327                                 dirty_list = &wb->b_dirty;
2328                         else
2329                                 dirty_list = &wb->b_dirty_time;
2330
2331                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2332                                                                dirty_list);
2333
2334                         spin_unlock(&wb->list_lock);
2335                         trace_writeback_dirty_inode_enqueue(inode);
2336
2337                         /*
2338                          * If this is the first dirty inode for this bdi,
2339                          * we have to wake-up the corresponding bdi thread
2340                          * to make sure background write-back happens
2341                          * later.
2342                          */
2343                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2344                                 wb_wakeup_delayed(wb);
2345                         return;
2346                 }
2347         }
2348 out_unlock_inode:
2349         spin_unlock(&inode->i_lock);
2350 }
2351 EXPORT_SYMBOL(__mark_inode_dirty);
2352
2353 /*
2354  * The @s_sync_lock is used to serialise concurrent sync operations
2355  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2356  * Concurrent callers will block on the s_sync_lock rather than doing contending
2357  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2358  * has been issued up to the time this function is enter is guaranteed to be
2359  * completed by the time we have gained the lock and waited for all IO that is
2360  * in progress regardless of the order callers are granted the lock.
2361  */
2362 static void wait_sb_inodes(struct super_block *sb)
2363 {
2364         LIST_HEAD(sync_list);
2365
2366         /*
2367          * We need to be protected against the filesystem going from
2368          * r/o to r/w or vice versa.
2369          */
2370         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2371
2372         mutex_lock(&sb->s_sync_lock);
2373
2374         /*
2375          * Splice the writeback list onto a temporary list to avoid waiting on
2376          * inodes that have started writeback after this point.
2377          *
2378          * Use rcu_read_lock() to keep the inodes around until we have a
2379          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2380          * the local list because inodes can be dropped from either by writeback
2381          * completion.
2382          */
2383         rcu_read_lock();
2384         spin_lock_irq(&sb->s_inode_wblist_lock);
2385         list_splice_init(&sb->s_inodes_wb, &sync_list);
2386
2387         /*
2388          * Data integrity sync. Must wait for all pages under writeback, because
2389          * there may have been pages dirtied before our sync call, but which had
2390          * writeout started before we write it out.  In which case, the inode
2391          * may not be on the dirty list, but we still have to wait for that
2392          * writeout.
2393          */
2394         while (!list_empty(&sync_list)) {
2395                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2396                                                        i_wb_list);
2397                 struct address_space *mapping = inode->i_mapping;
2398
2399                 /*
2400                  * Move each inode back to the wb list before we drop the lock
2401                  * to preserve consistency between i_wb_list and the mapping
2402                  * writeback tag. Writeback completion is responsible to remove
2403                  * the inode from either list once the writeback tag is cleared.
2404                  */
2405                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2406
2407                 /*
2408                  * The mapping can appear untagged while still on-list since we
2409                  * do not have the mapping lock. Skip it here, wb completion
2410                  * will remove it.
2411                  */
2412                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2413                         continue;
2414
2415                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2416
2417                 spin_lock(&inode->i_lock);
2418                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2419                         spin_unlock(&inode->i_lock);
2420
2421                         spin_lock_irq(&sb->s_inode_wblist_lock);
2422                         continue;
2423                 }
2424                 __iget(inode);
2425                 spin_unlock(&inode->i_lock);
2426                 rcu_read_unlock();
2427
2428                 /*
2429                  * We keep the error status of individual mapping so that
2430                  * applications can catch the writeback error using fsync(2).
2431                  * See filemap_fdatawait_keep_errors() for details.
2432                  */
2433                 filemap_fdatawait_keep_errors(mapping);
2434
2435                 cond_resched();
2436
2437                 iput(inode);
2438
2439                 rcu_read_lock();
2440                 spin_lock_irq(&sb->s_inode_wblist_lock);
2441         }
2442         spin_unlock_irq(&sb->s_inode_wblist_lock);
2443         rcu_read_unlock();
2444         mutex_unlock(&sb->s_sync_lock);
2445 }
2446
2447 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2448                                      enum wb_reason reason, bool skip_if_busy)
2449 {
2450         struct backing_dev_info *bdi = sb->s_bdi;
2451         DEFINE_WB_COMPLETION(done, bdi);
2452         struct wb_writeback_work work = {
2453                 .sb                     = sb,
2454                 .sync_mode              = WB_SYNC_NONE,
2455                 .tagged_writepages      = 1,
2456                 .done                   = &done,
2457                 .nr_pages               = nr,
2458                 .reason                 = reason,
2459         };
2460
2461         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2462                 return;
2463         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2464
2465         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2466         wb_wait_for_completion(&done);
2467 }
2468
2469 /**
2470  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2471  * @sb: the superblock
2472  * @nr: the number of pages to write
2473  * @reason: reason why some writeback work initiated
2474  *
2475  * Start writeback on some inodes on this super_block. No guarantees are made
2476  * on how many (if any) will be written, and this function does not wait
2477  * for IO completion of submitted IO.
2478  */
2479 void writeback_inodes_sb_nr(struct super_block *sb,
2480                             unsigned long nr,
2481                             enum wb_reason reason)
2482 {
2483         __writeback_inodes_sb_nr(sb, nr, reason, false);
2484 }
2485 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2486
2487 /**
2488  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2489  * @sb: the superblock
2490  * @reason: reason why some writeback work was initiated
2491  *
2492  * Start writeback on some inodes on this super_block. No guarantees are made
2493  * on how many (if any) will be written, and this function does not wait
2494  * for IO completion of submitted IO.
2495  */
2496 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2497 {
2498         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2499 }
2500 EXPORT_SYMBOL(writeback_inodes_sb);
2501
2502 /**
2503  * try_to_writeback_inodes_sb - try to start writeback if none underway
2504  * @sb: the superblock
2505  * @reason: reason why some writeback work was initiated
2506  *
2507  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2508  */
2509 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2510 {
2511         if (!down_read_trylock(&sb->s_umount))
2512                 return;
2513
2514         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2515         up_read(&sb->s_umount);
2516 }
2517 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2518
2519 /**
2520  * sync_inodes_sb       -       sync sb inode pages
2521  * @sb: the superblock
2522  *
2523  * This function writes and waits on any dirty inode belonging to this
2524  * super_block.
2525  */
2526 void sync_inodes_sb(struct super_block *sb)
2527 {
2528         struct backing_dev_info *bdi = sb->s_bdi;
2529         DEFINE_WB_COMPLETION(done, bdi);
2530         struct wb_writeback_work work = {
2531                 .sb             = sb,
2532                 .sync_mode      = WB_SYNC_ALL,
2533                 .nr_pages       = LONG_MAX,
2534                 .range_cyclic   = 0,
2535                 .done           = &done,
2536                 .reason         = WB_REASON_SYNC,
2537                 .for_sync       = 1,
2538         };
2539
2540         /*
2541          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2542          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2543          * bdi_has_dirty() need to be written out too.
2544          */
2545         if (bdi == &noop_backing_dev_info)
2546                 return;
2547         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2548
2549         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2550         bdi_down_write_wb_switch_rwsem(bdi);
2551         bdi_split_work_to_wbs(bdi, &work, false);
2552         wb_wait_for_completion(&done);
2553         bdi_up_write_wb_switch_rwsem(bdi);
2554
2555         wait_sb_inodes(sb);
2556 }
2557 EXPORT_SYMBOL(sync_inodes_sb);
2558
2559 /**
2560  * write_inode_now      -       write an inode to disk
2561  * @inode: inode to write to disk
2562  * @sync: whether the write should be synchronous or not
2563  *
2564  * This function commits an inode to disk immediately if it is dirty. This is
2565  * primarily needed by knfsd.
2566  *
2567  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2568  */
2569 int write_inode_now(struct inode *inode, int sync)
2570 {
2571         struct writeback_control wbc = {
2572                 .nr_to_write = LONG_MAX,
2573                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2574                 .range_start = 0,
2575                 .range_end = LLONG_MAX,
2576         };
2577
2578         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2579                 wbc.nr_to_write = 0;
2580
2581         might_sleep();
2582         return writeback_single_inode(inode, &wbc);
2583 }
2584 EXPORT_SYMBOL(write_inode_now);
2585
2586 /**
2587  * sync_inode - write an inode and its pages to disk.
2588  * @inode: the inode to sync
2589  * @wbc: controls the writeback mode
2590  *
2591  * sync_inode() will write an inode and its pages to disk.  It will also
2592  * correctly update the inode on its superblock's dirty inode lists and will
2593  * update inode->i_state.
2594  *
2595  * The caller must have a ref on the inode.
2596  */
2597 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2598 {
2599         return writeback_single_inode(inode, wbc);
2600 }
2601 EXPORT_SYMBOL(sync_inode);
2602
2603 /**
2604  * sync_inode_metadata - write an inode to disk
2605  * @inode: the inode to sync
2606  * @wait: wait for I/O to complete.
2607  *
2608  * Write an inode to disk and adjust its dirty state after completion.
2609  *
2610  * Note: only writes the actual inode, no associated data or other metadata.
2611  */
2612 int sync_inode_metadata(struct inode *inode, int wait)
2613 {
2614         struct writeback_control wbc = {
2615                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2616                 .nr_to_write = 0, /* metadata-only */
2617         };
2618
2619         return sync_inode(inode, &wbc);
2620 }
2621 EXPORT_SYMBOL(sync_inode_metadata);