Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[sfrench/cifs-2.6.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page = NULL;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59                                                         bool is_meta)
60 {
61         struct address_space *mapping = META_MAPPING(sbi);
62         struct page *page;
63         struct f2fs_io_info fio = {
64                 .sbi = sbi,
65                 .type = META,
66                 .op = REQ_OP_READ,
67                 .op_flags = REQ_META | REQ_PRIO,
68                 .old_blkaddr = index,
69                 .new_blkaddr = index,
70                 .encrypted_page = NULL,
71         };
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         if (f2fs_submit_page_bio(&fio)) {
87                 f2fs_put_page(page, 1);
88                 goto repeat;
89         }
90
91         lock_page(page);
92         if (unlikely(page->mapping != mapping)) {
93                 f2fs_put_page(page, 1);
94                 goto repeat;
95         }
96
97         /*
98          * if there is any IO error when accessing device, make our filesystem
99          * readonly and make sure do not write checkpoint with non-uptodate
100          * meta page.
101          */
102         if (unlikely(!PageUptodate(page)))
103                 f2fs_stop_checkpoint(sbi, false);
104 out:
105         return page;
106 }
107
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110         return __get_meta_page(sbi, index, true);
111 }
112
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116         return __get_meta_page(sbi, index, false);
117 }
118
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121         switch (type) {
122         case META_NAT:
123                 break;
124         case META_SIT:
125                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126                         return false;
127                 break;
128         case META_SSA:
129                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130                         blkaddr < SM_I(sbi)->ssa_blkaddr))
131                         return false;
132                 break;
133         case META_CP:
134                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135                         blkaddr < __start_cp_addr(sbi)))
136                         return false;
137                 break;
138         case META_POR:
139                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140                         blkaddr < MAIN_BLKADDR(sbi)))
141                         return false;
142                 break;
143         default:
144                 BUG();
145         }
146
147         return true;
148 }
149
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154                                                         int type, bool sync)
155 {
156         struct page *page;
157         block_t blkno = start;
158         struct f2fs_io_info fio = {
159                 .sbi = sbi,
160                 .type = META,
161                 .op = REQ_OP_READ,
162                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
163                 .encrypted_page = NULL,
164                 .in_list = false,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 f2fs_submit_page_bio(&fio);
211                 f2fs_put_page(page, 0);
212         }
213 out:
214         blk_finish_plug(&plug);
215         return blkno - start;
216 }
217
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
219 {
220         struct page *page;
221         bool readahead = false;
222
223         page = find_get_page(META_MAPPING(sbi), index);
224         if (!page || !PageUptodate(page))
225                 readahead = true;
226         f2fs_put_page(page, 0);
227
228         if (readahead)
229                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
230 }
231
232 static int __f2fs_write_meta_page(struct page *page,
233                                 struct writeback_control *wbc,
234                                 enum iostat_type io_type)
235 {
236         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237
238         trace_f2fs_writepage(page, META);
239
240         if (unlikely(f2fs_cp_error(sbi))) {
241                 dec_page_count(sbi, F2FS_DIRTY_META);
242                 unlock_page(page);
243                 return 0;
244         }
245         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
246                 goto redirty_out;
247         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
248                 goto redirty_out;
249
250         write_meta_page(sbi, page, io_type);
251         dec_page_count(sbi, F2FS_DIRTY_META);
252
253         if (wbc->for_reclaim)
254                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
255                                                 0, page->index, META);
256
257         unlock_page(page);
258
259         if (unlikely(f2fs_cp_error(sbi)))
260                 f2fs_submit_merged_write(sbi, META);
261
262         return 0;
263
264 redirty_out:
265         redirty_page_for_writepage(wbc, page);
266         return AOP_WRITEPAGE_ACTIVATE;
267 }
268
269 static int f2fs_write_meta_page(struct page *page,
270                                 struct writeback_control *wbc)
271 {
272         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
273 }
274
275 static int f2fs_write_meta_pages(struct address_space *mapping,
276                                 struct writeback_control *wbc)
277 {
278         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
279         long diff, written;
280
281         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
282                 goto skip_write;
283
284         /* collect a number of dirty meta pages and write together */
285         if (wbc->for_kupdate ||
286                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
287                 goto skip_write;
288
289         /* if locked failed, cp will flush dirty pages instead */
290         if (!mutex_trylock(&sbi->cp_mutex))
291                 goto skip_write;
292
293         trace_f2fs_writepages(mapping->host, wbc, META);
294         diff = nr_pages_to_write(sbi, META, wbc);
295         written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
296         mutex_unlock(&sbi->cp_mutex);
297         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
298         return 0;
299
300 skip_write:
301         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
302         trace_f2fs_writepages(mapping->host, wbc, META);
303         return 0;
304 }
305
306 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
307                                 long nr_to_write, enum iostat_type io_type)
308 {
309         struct address_space *mapping = META_MAPPING(sbi);
310         pgoff_t index = 0, prev = ULONG_MAX;
311         struct pagevec pvec;
312         long nwritten = 0;
313         int nr_pages;
314         struct writeback_control wbc = {
315                 .for_reclaim = 0,
316         };
317         struct blk_plug plug;
318
319         pagevec_init(&pvec);
320
321         blk_start_plug(&plug);
322
323         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
324                                 PAGECACHE_TAG_DIRTY))) {
325                 int i;
326
327                 for (i = 0; i < nr_pages; i++) {
328                         struct page *page = pvec.pages[i];
329
330                         if (prev == ULONG_MAX)
331                                 prev = page->index - 1;
332                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
333                                 pagevec_release(&pvec);
334                                 goto stop;
335                         }
336
337                         lock_page(page);
338
339                         if (unlikely(page->mapping != mapping)) {
340 continue_unlock:
341                                 unlock_page(page);
342                                 continue;
343                         }
344                         if (!PageDirty(page)) {
345                                 /* someone wrote it for us */
346                                 goto continue_unlock;
347                         }
348
349                         f2fs_wait_on_page_writeback(page, META, true);
350
351                         BUG_ON(PageWriteback(page));
352                         if (!clear_page_dirty_for_io(page))
353                                 goto continue_unlock;
354
355                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
356                                 unlock_page(page);
357                                 break;
358                         }
359                         nwritten++;
360                         prev = page->index;
361                         if (unlikely(nwritten >= nr_to_write))
362                                 break;
363                 }
364                 pagevec_release(&pvec);
365                 cond_resched();
366         }
367 stop:
368         if (nwritten)
369                 f2fs_submit_merged_write(sbi, type);
370
371         blk_finish_plug(&plug);
372
373         return nwritten;
374 }
375
376 static int f2fs_set_meta_page_dirty(struct page *page)
377 {
378         trace_f2fs_set_page_dirty(page, META);
379
380         if (!PageUptodate(page))
381                 SetPageUptodate(page);
382         if (!PageDirty(page)) {
383                 f2fs_set_page_dirty_nobuffers(page);
384                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
385                 SetPagePrivate(page);
386                 f2fs_trace_pid(page);
387                 return 1;
388         }
389         return 0;
390 }
391
392 const struct address_space_operations f2fs_meta_aops = {
393         .writepage      = f2fs_write_meta_page,
394         .writepages     = f2fs_write_meta_pages,
395         .set_page_dirty = f2fs_set_meta_page_dirty,
396         .invalidatepage = f2fs_invalidate_page,
397         .releasepage    = f2fs_release_page,
398 #ifdef CONFIG_MIGRATION
399         .migratepage    = f2fs_migrate_page,
400 #endif
401 };
402
403 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
404                                                 unsigned int devidx, int type)
405 {
406         struct inode_management *im = &sbi->im[type];
407         struct ino_entry *e, *tmp;
408
409         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
410
411         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
412
413         spin_lock(&im->ino_lock);
414         e = radix_tree_lookup(&im->ino_root, ino);
415         if (!e) {
416                 e = tmp;
417                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
418                         f2fs_bug_on(sbi, 1);
419
420                 memset(e, 0, sizeof(struct ino_entry));
421                 e->ino = ino;
422
423                 list_add_tail(&e->list, &im->ino_list);
424                 if (type != ORPHAN_INO)
425                         im->ino_num++;
426         }
427
428         if (type == FLUSH_INO)
429                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
430
431         spin_unlock(&im->ino_lock);
432         radix_tree_preload_end();
433
434         if (e != tmp)
435                 kmem_cache_free(ino_entry_slab, tmp);
436 }
437
438 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
439 {
440         struct inode_management *im = &sbi->im[type];
441         struct ino_entry *e;
442
443         spin_lock(&im->ino_lock);
444         e = radix_tree_lookup(&im->ino_root, ino);
445         if (e) {
446                 list_del(&e->list);
447                 radix_tree_delete(&im->ino_root, ino);
448                 im->ino_num--;
449                 spin_unlock(&im->ino_lock);
450                 kmem_cache_free(ino_entry_slab, e);
451                 return;
452         }
453         spin_unlock(&im->ino_lock);
454 }
455
456 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
457 {
458         /* add new dirty ino entry into list */
459         __add_ino_entry(sbi, ino, 0, type);
460 }
461
462 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
463 {
464         /* remove dirty ino entry from list */
465         __remove_ino_entry(sbi, ino, type);
466 }
467
468 /* mode should be APPEND_INO or UPDATE_INO */
469 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
470 {
471         struct inode_management *im = &sbi->im[mode];
472         struct ino_entry *e;
473
474         spin_lock(&im->ino_lock);
475         e = radix_tree_lookup(&im->ino_root, ino);
476         spin_unlock(&im->ino_lock);
477         return e ? true : false;
478 }
479
480 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
481 {
482         struct ino_entry *e, *tmp;
483         int i;
484
485         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
486                 struct inode_management *im = &sbi->im[i];
487
488                 spin_lock(&im->ino_lock);
489                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
490                         list_del(&e->list);
491                         radix_tree_delete(&im->ino_root, e->ino);
492                         kmem_cache_free(ino_entry_slab, e);
493                         im->ino_num--;
494                 }
495                 spin_unlock(&im->ino_lock);
496         }
497 }
498
499 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
500                                         unsigned int devidx, int type)
501 {
502         __add_ino_entry(sbi, ino, devidx, type);
503 }
504
505 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
506                                         unsigned int devidx, int type)
507 {
508         struct inode_management *im = &sbi->im[type];
509         struct ino_entry *e;
510         bool is_dirty = false;
511
512         spin_lock(&im->ino_lock);
513         e = radix_tree_lookup(&im->ino_root, ino);
514         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
515                 is_dirty = true;
516         spin_unlock(&im->ino_lock);
517         return is_dirty;
518 }
519
520 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
521 {
522         struct inode_management *im = &sbi->im[ORPHAN_INO];
523         int err = 0;
524
525         spin_lock(&im->ino_lock);
526
527 #ifdef CONFIG_F2FS_FAULT_INJECTION
528         if (time_to_inject(sbi, FAULT_ORPHAN)) {
529                 spin_unlock(&im->ino_lock);
530                 f2fs_show_injection_info(FAULT_ORPHAN);
531                 return -ENOSPC;
532         }
533 #endif
534         if (unlikely(im->ino_num >= sbi->max_orphans))
535                 err = -ENOSPC;
536         else
537                 im->ino_num++;
538         spin_unlock(&im->ino_lock);
539
540         return err;
541 }
542
543 void release_orphan_inode(struct f2fs_sb_info *sbi)
544 {
545         struct inode_management *im = &sbi->im[ORPHAN_INO];
546
547         spin_lock(&im->ino_lock);
548         f2fs_bug_on(sbi, im->ino_num == 0);
549         im->ino_num--;
550         spin_unlock(&im->ino_lock);
551 }
552
553 void add_orphan_inode(struct inode *inode)
554 {
555         /* add new orphan ino entry into list */
556         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
557         update_inode_page(inode);
558 }
559
560 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
561 {
562         /* remove orphan entry from orphan list */
563         __remove_ino_entry(sbi, ino, ORPHAN_INO);
564 }
565
566 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
567 {
568         struct inode *inode;
569         struct node_info ni;
570         int err = acquire_orphan_inode(sbi);
571
572         if (err) {
573                 set_sbi_flag(sbi, SBI_NEED_FSCK);
574                 f2fs_msg(sbi->sb, KERN_WARNING,
575                                 "%s: orphan failed (ino=%x), run fsck to fix.",
576                                 __func__, ino);
577                 return err;
578         }
579
580         __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
581
582         inode = f2fs_iget_retry(sbi->sb, ino);
583         if (IS_ERR(inode)) {
584                 /*
585                  * there should be a bug that we can't find the entry
586                  * to orphan inode.
587                  */
588                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
589                 return PTR_ERR(inode);
590         }
591
592         clear_nlink(inode);
593
594         /* truncate all the data during iput */
595         iput(inode);
596
597         get_node_info(sbi, ino, &ni);
598
599         /* ENOMEM was fully retried in f2fs_evict_inode. */
600         if (ni.blk_addr != NULL_ADDR) {
601                 set_sbi_flag(sbi, SBI_NEED_FSCK);
602                 f2fs_msg(sbi->sb, KERN_WARNING,
603                         "%s: orphan failed (ino=%x) by kernel, retry mount.",
604                                 __func__, ino);
605                 return -EIO;
606         }
607         __remove_ino_entry(sbi, ino, ORPHAN_INO);
608         return 0;
609 }
610
611 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
612 {
613         block_t start_blk, orphan_blocks, i, j;
614         unsigned int s_flags = sbi->sb->s_flags;
615         int err = 0;
616 #ifdef CONFIG_QUOTA
617         int quota_enabled;
618 #endif
619
620         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
621                 return 0;
622
623         if (s_flags & SB_RDONLY) {
624                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
625                 sbi->sb->s_flags &= ~SB_RDONLY;
626         }
627
628 #ifdef CONFIG_QUOTA
629         /* Needed for iput() to work correctly and not trash data */
630         sbi->sb->s_flags |= SB_ACTIVE;
631
632         /* Turn on quotas so that they are updated correctly */
633         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
634 #endif
635
636         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
637         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
638
639         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
640
641         for (i = 0; i < orphan_blocks; i++) {
642                 struct page *page = get_meta_page(sbi, start_blk + i);
643                 struct f2fs_orphan_block *orphan_blk;
644
645                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
646                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
647                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
648                         err = recover_orphan_inode(sbi, ino);
649                         if (err) {
650                                 f2fs_put_page(page, 1);
651                                 goto out;
652                         }
653                 }
654                 f2fs_put_page(page, 1);
655         }
656         /* clear Orphan Flag */
657         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
658 out:
659 #ifdef CONFIG_QUOTA
660         /* Turn quotas off */
661         if (quota_enabled)
662                 f2fs_quota_off_umount(sbi->sb);
663 #endif
664         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
665
666         return err;
667 }
668
669 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
670 {
671         struct list_head *head;
672         struct f2fs_orphan_block *orphan_blk = NULL;
673         unsigned int nentries = 0;
674         unsigned short index = 1;
675         unsigned short orphan_blocks;
676         struct page *page = NULL;
677         struct ino_entry *orphan = NULL;
678         struct inode_management *im = &sbi->im[ORPHAN_INO];
679
680         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
681
682         /*
683          * we don't need to do spin_lock(&im->ino_lock) here, since all the
684          * orphan inode operations are covered under f2fs_lock_op().
685          * And, spin_lock should be avoided due to page operations below.
686          */
687         head = &im->ino_list;
688
689         /* loop for each orphan inode entry and write them in Jornal block */
690         list_for_each_entry(orphan, head, list) {
691                 if (!page) {
692                         page = grab_meta_page(sbi, start_blk++);
693                         orphan_blk =
694                                 (struct f2fs_orphan_block *)page_address(page);
695                         memset(orphan_blk, 0, sizeof(*orphan_blk));
696                 }
697
698                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
699
700                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
701                         /*
702                          * an orphan block is full of 1020 entries,
703                          * then we need to flush current orphan blocks
704                          * and bring another one in memory
705                          */
706                         orphan_blk->blk_addr = cpu_to_le16(index);
707                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
708                         orphan_blk->entry_count = cpu_to_le32(nentries);
709                         set_page_dirty(page);
710                         f2fs_put_page(page, 1);
711                         index++;
712                         nentries = 0;
713                         page = NULL;
714                 }
715         }
716
717         if (page) {
718                 orphan_blk->blk_addr = cpu_to_le16(index);
719                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
720                 orphan_blk->entry_count = cpu_to_le32(nentries);
721                 set_page_dirty(page);
722                 f2fs_put_page(page, 1);
723         }
724 }
725
726 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
727                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
728                 unsigned long long *version)
729 {
730         unsigned long blk_size = sbi->blocksize;
731         size_t crc_offset = 0;
732         __u32 crc = 0;
733
734         *cp_page = get_meta_page(sbi, cp_addr);
735         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
736
737         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
738         if (crc_offset > (blk_size - sizeof(__le32))) {
739                 f2fs_msg(sbi->sb, KERN_WARNING,
740                         "invalid crc_offset: %zu", crc_offset);
741                 return -EINVAL;
742         }
743
744         crc = cur_cp_crc(*cp_block);
745         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
746                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
747                 return -EINVAL;
748         }
749
750         *version = cur_cp_version(*cp_block);
751         return 0;
752 }
753
754 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
755                                 block_t cp_addr, unsigned long long *version)
756 {
757         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
758         struct f2fs_checkpoint *cp_block = NULL;
759         unsigned long long cur_version = 0, pre_version = 0;
760         int err;
761
762         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
763                                         &cp_page_1, version);
764         if (err)
765                 goto invalid_cp1;
766         pre_version = *version;
767
768         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
769         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
770                                         &cp_page_2, version);
771         if (err)
772                 goto invalid_cp2;
773         cur_version = *version;
774
775         if (cur_version == pre_version) {
776                 *version = cur_version;
777                 f2fs_put_page(cp_page_2, 1);
778                 return cp_page_1;
779         }
780 invalid_cp2:
781         f2fs_put_page(cp_page_2, 1);
782 invalid_cp1:
783         f2fs_put_page(cp_page_1, 1);
784         return NULL;
785 }
786
787 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
788 {
789         struct f2fs_checkpoint *cp_block;
790         struct f2fs_super_block *fsb = sbi->raw_super;
791         struct page *cp1, *cp2, *cur_page;
792         unsigned long blk_size = sbi->blocksize;
793         unsigned long long cp1_version = 0, cp2_version = 0;
794         unsigned long long cp_start_blk_no;
795         unsigned int cp_blks = 1 + __cp_payload(sbi);
796         block_t cp_blk_no;
797         int i;
798
799         sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
800         if (!sbi->ckpt)
801                 return -ENOMEM;
802         /*
803          * Finding out valid cp block involves read both
804          * sets( cp pack1 and cp pack 2)
805          */
806         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
807         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
808
809         /* The second checkpoint pack should start at the next segment */
810         cp_start_blk_no += ((unsigned long long)1) <<
811                                 le32_to_cpu(fsb->log_blocks_per_seg);
812         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
813
814         if (cp1 && cp2) {
815                 if (ver_after(cp2_version, cp1_version))
816                         cur_page = cp2;
817                 else
818                         cur_page = cp1;
819         } else if (cp1) {
820                 cur_page = cp1;
821         } else if (cp2) {
822                 cur_page = cp2;
823         } else {
824                 goto fail_no_cp;
825         }
826
827         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
828         memcpy(sbi->ckpt, cp_block, blk_size);
829
830         /* Sanity checking of checkpoint */
831         if (sanity_check_ckpt(sbi))
832                 goto free_fail_no_cp;
833
834         if (cur_page == cp1)
835                 sbi->cur_cp_pack = 1;
836         else
837                 sbi->cur_cp_pack = 2;
838
839         if (cp_blks <= 1)
840                 goto done;
841
842         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
843         if (cur_page == cp2)
844                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
845
846         for (i = 1; i < cp_blks; i++) {
847                 void *sit_bitmap_ptr;
848                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
849
850                 cur_page = get_meta_page(sbi, cp_blk_no + i);
851                 sit_bitmap_ptr = page_address(cur_page);
852                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
853                 f2fs_put_page(cur_page, 1);
854         }
855 done:
856         f2fs_put_page(cp1, 1);
857         f2fs_put_page(cp2, 1);
858         return 0;
859
860 free_fail_no_cp:
861         f2fs_put_page(cp1, 1);
862         f2fs_put_page(cp2, 1);
863 fail_no_cp:
864         kfree(sbi->ckpt);
865         return -EINVAL;
866 }
867
868 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
869 {
870         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
871         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
872
873         if (is_inode_flag_set(inode, flag))
874                 return;
875
876         set_inode_flag(inode, flag);
877         if (!f2fs_is_volatile_file(inode))
878                 list_add_tail(&F2FS_I(inode)->dirty_list,
879                                                 &sbi->inode_list[type]);
880         stat_inc_dirty_inode(sbi, type);
881 }
882
883 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
884 {
885         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
886
887         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
888                 return;
889
890         list_del_init(&F2FS_I(inode)->dirty_list);
891         clear_inode_flag(inode, flag);
892         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
893 }
894
895 void update_dirty_page(struct inode *inode, struct page *page)
896 {
897         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
898         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
899
900         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
901                         !S_ISLNK(inode->i_mode))
902                 return;
903
904         spin_lock(&sbi->inode_lock[type]);
905         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
906                 __add_dirty_inode(inode, type);
907         inode_inc_dirty_pages(inode);
908         spin_unlock(&sbi->inode_lock[type]);
909
910         SetPagePrivate(page);
911         f2fs_trace_pid(page);
912 }
913
914 void remove_dirty_inode(struct inode *inode)
915 {
916         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
918
919         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
920                         !S_ISLNK(inode->i_mode))
921                 return;
922
923         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
924                 return;
925
926         spin_lock(&sbi->inode_lock[type]);
927         __remove_dirty_inode(inode, type);
928         spin_unlock(&sbi->inode_lock[type]);
929 }
930
931 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
932 {
933         struct list_head *head;
934         struct inode *inode;
935         struct f2fs_inode_info *fi;
936         bool is_dir = (type == DIR_INODE);
937         unsigned long ino = 0;
938
939         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
940                                 get_pages(sbi, is_dir ?
941                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
942 retry:
943         if (unlikely(f2fs_cp_error(sbi)))
944                 return -EIO;
945
946         spin_lock(&sbi->inode_lock[type]);
947
948         head = &sbi->inode_list[type];
949         if (list_empty(head)) {
950                 spin_unlock(&sbi->inode_lock[type]);
951                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
952                                 get_pages(sbi, is_dir ?
953                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
954                 return 0;
955         }
956         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
957         inode = igrab(&fi->vfs_inode);
958         spin_unlock(&sbi->inode_lock[type]);
959         if (inode) {
960                 unsigned long cur_ino = inode->i_ino;
961
962                 if (is_dir)
963                         F2FS_I(inode)->cp_task = current;
964
965                 filemap_fdatawrite(inode->i_mapping);
966
967                 if (is_dir)
968                         F2FS_I(inode)->cp_task = NULL;
969
970                 iput(inode);
971                 /* We need to give cpu to another writers. */
972                 if (ino == cur_ino) {
973                         congestion_wait(BLK_RW_ASYNC, HZ/50);
974                         cond_resched();
975                 } else {
976                         ino = cur_ino;
977                 }
978         } else {
979                 /*
980                  * We should submit bio, since it exists several
981                  * wribacking dentry pages in the freeing inode.
982                  */
983                 f2fs_submit_merged_write(sbi, DATA);
984                 cond_resched();
985         }
986         goto retry;
987 }
988
989 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
990 {
991         struct list_head *head = &sbi->inode_list[DIRTY_META];
992         struct inode *inode;
993         struct f2fs_inode_info *fi;
994         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
995
996         while (total--) {
997                 if (unlikely(f2fs_cp_error(sbi)))
998                         return -EIO;
999
1000                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1001                 if (list_empty(head)) {
1002                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1003                         return 0;
1004                 }
1005                 fi = list_first_entry(head, struct f2fs_inode_info,
1006                                                         gdirty_list);
1007                 inode = igrab(&fi->vfs_inode);
1008                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009                 if (inode) {
1010                         sync_inode_metadata(inode, 0);
1011
1012                         /* it's on eviction */
1013                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1014                                 update_inode_page(inode);
1015                         iput(inode);
1016                 }
1017         }
1018         return 0;
1019 }
1020
1021 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1022 {
1023         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1024         struct f2fs_nm_info *nm_i = NM_I(sbi);
1025         nid_t last_nid = nm_i->next_scan_nid;
1026
1027         next_free_nid(sbi, &last_nid);
1028         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1029         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1030         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1031         ckpt->next_free_nid = cpu_to_le32(last_nid);
1032 }
1033
1034 /*
1035  * Freeze all the FS-operations for checkpoint.
1036  */
1037 static int block_operations(struct f2fs_sb_info *sbi)
1038 {
1039         struct writeback_control wbc = {
1040                 .sync_mode = WB_SYNC_ALL,
1041                 .nr_to_write = LONG_MAX,
1042                 .for_reclaim = 0,
1043         };
1044         struct blk_plug plug;
1045         int err = 0;
1046
1047         blk_start_plug(&plug);
1048
1049 retry_flush_dents:
1050         f2fs_lock_all(sbi);
1051         /* write all the dirty dentry pages */
1052         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1053                 f2fs_unlock_all(sbi);
1054                 err = sync_dirty_inodes(sbi, DIR_INODE);
1055                 if (err)
1056                         goto out;
1057                 cond_resched();
1058                 goto retry_flush_dents;
1059         }
1060
1061         /*
1062          * POR: we should ensure that there are no dirty node pages
1063          * until finishing nat/sit flush. inode->i_blocks can be updated.
1064          */
1065         down_write(&sbi->node_change);
1066
1067         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1068                 up_write(&sbi->node_change);
1069                 f2fs_unlock_all(sbi);
1070                 err = f2fs_sync_inode_meta(sbi);
1071                 if (err)
1072                         goto out;
1073                 cond_resched();
1074                 goto retry_flush_dents;
1075         }
1076
1077 retry_flush_nodes:
1078         down_write(&sbi->node_write);
1079
1080         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1081                 up_write(&sbi->node_write);
1082                 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1083                 if (err) {
1084                         up_write(&sbi->node_change);
1085                         f2fs_unlock_all(sbi);
1086                         goto out;
1087                 }
1088                 cond_resched();
1089                 goto retry_flush_nodes;
1090         }
1091
1092         /*
1093          * sbi->node_change is used only for AIO write_begin path which produces
1094          * dirty node blocks and some checkpoint values by block allocation.
1095          */
1096         __prepare_cp_block(sbi);
1097         up_write(&sbi->node_change);
1098 out:
1099         blk_finish_plug(&plug);
1100         return err;
1101 }
1102
1103 static void unblock_operations(struct f2fs_sb_info *sbi)
1104 {
1105         up_write(&sbi->node_write);
1106         f2fs_unlock_all(sbi);
1107 }
1108
1109 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1110 {
1111         DEFINE_WAIT(wait);
1112
1113         for (;;) {
1114                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1115
1116                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1117                         break;
1118
1119                 io_schedule_timeout(5*HZ);
1120         }
1121         finish_wait(&sbi->cp_wait, &wait);
1122 }
1123
1124 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1125 {
1126         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1127         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1128         unsigned long flags;
1129
1130         spin_lock_irqsave(&sbi->cp_lock, flags);
1131
1132         if ((cpc->reason & CP_UMOUNT) &&
1133                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1134                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1135                 disable_nat_bits(sbi, false);
1136
1137         if (cpc->reason & CP_TRIMMED)
1138                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1139
1140         if (cpc->reason & CP_UMOUNT)
1141                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1142         else
1143                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1144
1145         if (cpc->reason & CP_FASTBOOT)
1146                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1147         else
1148                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1149
1150         if (orphan_num)
1151                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1152         else
1153                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1154
1155         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1156                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1157
1158         /* set this flag to activate crc|cp_ver for recovery */
1159         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1160         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1161
1162         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1163 }
1164
1165 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1166 {
1167         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1168         struct f2fs_nm_info *nm_i = NM_I(sbi);
1169         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1170         block_t start_blk;
1171         unsigned int data_sum_blocks, orphan_blocks;
1172         __u32 crc32 = 0;
1173         int i;
1174         int cp_payload_blks = __cp_payload(sbi);
1175         struct super_block *sb = sbi->sb;
1176         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1177         u64 kbytes_written;
1178         int err;
1179
1180         /* Flush all the NAT/SIT pages */
1181         while (get_pages(sbi, F2FS_DIRTY_META)) {
1182                 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1183                 if (unlikely(f2fs_cp_error(sbi)))
1184                         return -EIO;
1185         }
1186
1187         /*
1188          * modify checkpoint
1189          * version number is already updated
1190          */
1191         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1192         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1193         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1194                 ckpt->cur_node_segno[i] =
1195                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1196                 ckpt->cur_node_blkoff[i] =
1197                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1198                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1199                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1200         }
1201         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1202                 ckpt->cur_data_segno[i] =
1203                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1204                 ckpt->cur_data_blkoff[i] =
1205                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1206                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1207                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1208         }
1209
1210         /* 2 cp  + n data seg summary + orphan inode blocks */
1211         data_sum_blocks = npages_for_summary_flush(sbi, false);
1212         spin_lock_irqsave(&sbi->cp_lock, flags);
1213         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1214                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1215         else
1216                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1217         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1218
1219         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1220         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1221                         orphan_blocks);
1222
1223         if (__remain_node_summaries(cpc->reason))
1224                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1225                                 cp_payload_blks + data_sum_blocks +
1226                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1227         else
1228                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1229                                 cp_payload_blks + data_sum_blocks +
1230                                 orphan_blocks);
1231
1232         /* update ckpt flag for checkpoint */
1233         update_ckpt_flags(sbi, cpc);
1234
1235         /* update SIT/NAT bitmap */
1236         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1237         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1238
1239         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1240         *((__le32 *)((unsigned char *)ckpt +
1241                                 le32_to_cpu(ckpt->checksum_offset)))
1242                                 = cpu_to_le32(crc32);
1243
1244         start_blk = __start_cp_next_addr(sbi);
1245
1246         /* write nat bits */
1247         if (enabled_nat_bits(sbi, cpc)) {
1248                 __u64 cp_ver = cur_cp_version(ckpt);
1249                 block_t blk;
1250
1251                 cp_ver |= ((__u64)crc32 << 32);
1252                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1253
1254                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1255                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1256                         update_meta_page(sbi, nm_i->nat_bits +
1257                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1258
1259                 /* Flush all the NAT BITS pages */
1260                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1261                         sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1262                         if (unlikely(f2fs_cp_error(sbi)))
1263                                 return -EIO;
1264                 }
1265         }
1266
1267         /* need to wait for end_io results */
1268         wait_on_all_pages_writeback(sbi);
1269         if (unlikely(f2fs_cp_error(sbi)))
1270                 return -EIO;
1271
1272         /* flush all device cache */
1273         err = f2fs_flush_device_cache(sbi);
1274         if (err)
1275                 return err;
1276
1277         /* write out checkpoint buffer at block 0 */
1278         update_meta_page(sbi, ckpt, start_blk++);
1279
1280         for (i = 1; i < 1 + cp_payload_blks; i++)
1281                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1282                                                         start_blk++);
1283
1284         if (orphan_num) {
1285                 write_orphan_inodes(sbi, start_blk);
1286                 start_blk += orphan_blocks;
1287         }
1288
1289         write_data_summaries(sbi, start_blk);
1290         start_blk += data_sum_blocks;
1291
1292         /* Record write statistics in the hot node summary */
1293         kbytes_written = sbi->kbytes_written;
1294         if (sb->s_bdev->bd_part)
1295                 kbytes_written += BD_PART_WRITTEN(sbi);
1296
1297         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1298
1299         if (__remain_node_summaries(cpc->reason)) {
1300                 write_node_summaries(sbi, start_blk);
1301                 start_blk += NR_CURSEG_NODE_TYPE;
1302         }
1303
1304         /* writeout checkpoint block */
1305         update_meta_page(sbi, ckpt, start_blk);
1306
1307         /* wait for previous submitted node/meta pages writeback */
1308         wait_on_all_pages_writeback(sbi);
1309
1310         if (unlikely(f2fs_cp_error(sbi)))
1311                 return -EIO;
1312
1313         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1314         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1315
1316         /* update user_block_counts */
1317         sbi->last_valid_block_count = sbi->total_valid_block_count;
1318         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1319
1320         /* Here, we only have one bio having CP pack */
1321         sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1322
1323         /* wait for previous submitted meta pages writeback */
1324         wait_on_all_pages_writeback(sbi);
1325
1326         release_ino_entry(sbi, false);
1327
1328         if (unlikely(f2fs_cp_error(sbi)))
1329                 return -EIO;
1330
1331         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1332         clear_sbi_flag(sbi, SBI_NEED_CP);
1333         __set_cp_next_pack(sbi);
1334
1335         /*
1336          * redirty superblock if metadata like node page or inode cache is
1337          * updated during writing checkpoint.
1338          */
1339         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1340                         get_pages(sbi, F2FS_DIRTY_IMETA))
1341                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1342
1343         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1344
1345         return 0;
1346 }
1347
1348 /*
1349  * We guarantee that this checkpoint procedure will not fail.
1350  */
1351 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1352 {
1353         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354         unsigned long long ckpt_ver;
1355         int err = 0;
1356
1357         mutex_lock(&sbi->cp_mutex);
1358
1359         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1360                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1361                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1362                 goto out;
1363         if (unlikely(f2fs_cp_error(sbi))) {
1364                 err = -EIO;
1365                 goto out;
1366         }
1367         if (f2fs_readonly(sbi->sb)) {
1368                 err = -EROFS;
1369                 goto out;
1370         }
1371
1372         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1373
1374         err = block_operations(sbi);
1375         if (err)
1376                 goto out;
1377
1378         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1379
1380         f2fs_flush_merged_writes(sbi);
1381
1382         /* this is the case of multiple fstrims without any changes */
1383         if (cpc->reason & CP_DISCARD) {
1384                 if (!exist_trim_candidates(sbi, cpc)) {
1385                         unblock_operations(sbi);
1386                         goto out;
1387                 }
1388
1389                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1390                                 SIT_I(sbi)->dirty_sentries == 0 &&
1391                                 prefree_segments(sbi) == 0) {
1392                         flush_sit_entries(sbi, cpc);
1393                         clear_prefree_segments(sbi, cpc);
1394                         unblock_operations(sbi);
1395                         goto out;
1396                 }
1397         }
1398
1399         /*
1400          * update checkpoint pack index
1401          * Increase the version number so that
1402          * SIT entries and seg summaries are written at correct place
1403          */
1404         ckpt_ver = cur_cp_version(ckpt);
1405         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1406
1407         /* write cached NAT/SIT entries to NAT/SIT area */
1408         flush_nat_entries(sbi, cpc);
1409         flush_sit_entries(sbi, cpc);
1410
1411         /* unlock all the fs_lock[] in do_checkpoint() */
1412         err = do_checkpoint(sbi, cpc);
1413         if (err)
1414                 release_discard_addrs(sbi);
1415         else
1416                 clear_prefree_segments(sbi, cpc);
1417
1418         unblock_operations(sbi);
1419         stat_inc_cp_count(sbi->stat_info);
1420
1421         if (cpc->reason & CP_RECOVERY)
1422                 f2fs_msg(sbi->sb, KERN_NOTICE,
1423                         "checkpoint: version = %llx", ckpt_ver);
1424
1425         /* do checkpoint periodically */
1426         f2fs_update_time(sbi, CP_TIME);
1427         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1428 out:
1429         mutex_unlock(&sbi->cp_mutex);
1430         return err;
1431 }
1432
1433 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1434 {
1435         int i;
1436
1437         for (i = 0; i < MAX_INO_ENTRY; i++) {
1438                 struct inode_management *im = &sbi->im[i];
1439
1440                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1441                 spin_lock_init(&im->ino_lock);
1442                 INIT_LIST_HEAD(&im->ino_list);
1443                 im->ino_num = 0;
1444         }
1445
1446         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1447                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1448                                 F2FS_ORPHANS_PER_BLOCK;
1449 }
1450
1451 int __init create_checkpoint_caches(void)
1452 {
1453         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1454                         sizeof(struct ino_entry));
1455         if (!ino_entry_slab)
1456                 return -ENOMEM;
1457         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1458                         sizeof(struct inode_entry));
1459         if (!inode_entry_slab) {
1460                 kmem_cache_destroy(ino_entry_slab);
1461                 return -ENOMEM;
1462         }
1463         return 0;
1464 }
1465
1466 void destroy_checkpoint_caches(void)
1467 {
1468         kmem_cache_destroy(ino_entry_slab);
1469         kmem_cache_destroy(inode_entry_slab);
1470 }