f2fs: introduce mode=lfs mount option
[sfrench/cifs-2.6.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         SetPageUptodate(page);
52         return page;
53 }
54
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59                                                         bool is_meta)
60 {
61         struct address_space *mapping = META_MAPPING(sbi);
62         struct page *page;
63         struct f2fs_io_info fio = {
64                 .sbi = sbi,
65                 .type = META,
66                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
67                 .old_blkaddr = index,
68                 .new_blkaddr = index,
69                 .encrypted_page = NULL,
70         };
71
72         if (unlikely(!is_meta))
73                 fio.rw &= ~REQ_META;
74 repeat:
75         page = f2fs_grab_cache_page(mapping, index, false);
76         if (!page) {
77                 cond_resched();
78                 goto repeat;
79         }
80         if (PageUptodate(page))
81                 goto out;
82
83         fio.page = page;
84
85         if (f2fs_submit_page_bio(&fio)) {
86                 f2fs_put_page(page, 1);
87                 goto repeat;
88         }
89
90         lock_page(page);
91         if (unlikely(page->mapping != mapping)) {
92                 f2fs_put_page(page, 1);
93                 goto repeat;
94         }
95
96         /*
97          * if there is any IO error when accessing device, make our filesystem
98          * readonly and make sure do not write checkpoint with non-uptodate
99          * meta page.
100          */
101         if (unlikely(!PageUptodate(page)))
102                 f2fs_stop_checkpoint(sbi, false);
103 out:
104         return page;
105 }
106
107 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109         return __get_meta_page(sbi, index, true);
110 }
111
112 /* for POR only */
113 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         return __get_meta_page(sbi, index, false);
116 }
117
118 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
119 {
120         switch (type) {
121         case META_NAT:
122                 break;
123         case META_SIT:
124                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
125                         return false;
126                 break;
127         case META_SSA:
128                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
129                         blkaddr < SM_I(sbi)->ssa_blkaddr))
130                         return false;
131                 break;
132         case META_CP:
133                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
134                         blkaddr < __start_cp_addr(sbi)))
135                         return false;
136                 break;
137         case META_POR:
138                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
139                         blkaddr < MAIN_BLKADDR(sbi)))
140                         return false;
141                 break;
142         default:
143                 BUG();
144         }
145
146         return true;
147 }
148
149 /*
150  * Readahead CP/NAT/SIT/SSA pages
151  */
152 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
153                                                         int type, bool sync)
154 {
155         struct page *page;
156         block_t blkno = start;
157         struct f2fs_io_info fio = {
158                 .sbi = sbi,
159                 .type = META,
160                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
161                 .encrypted_page = NULL,
162         };
163         struct blk_plug plug;
164
165         if (unlikely(type == META_POR))
166                 fio.rw &= ~REQ_META;
167
168         blk_start_plug(&plug);
169         for (; nrpages-- > 0; blkno++) {
170
171                 if (!is_valid_blkaddr(sbi, blkno, type))
172                         goto out;
173
174                 switch (type) {
175                 case META_NAT:
176                         if (unlikely(blkno >=
177                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
178                                 blkno = 0;
179                         /* get nat block addr */
180                         fio.new_blkaddr = current_nat_addr(sbi,
181                                         blkno * NAT_ENTRY_PER_BLOCK);
182                         break;
183                 case META_SIT:
184                         /* get sit block addr */
185                         fio.new_blkaddr = current_sit_addr(sbi,
186                                         blkno * SIT_ENTRY_PER_BLOCK);
187                         break;
188                 case META_SSA:
189                 case META_CP:
190                 case META_POR:
191                         fio.new_blkaddr = blkno;
192                         break;
193                 default:
194                         BUG();
195                 }
196
197                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
198                                                 fio.new_blkaddr, false);
199                 if (!page)
200                         continue;
201                 if (PageUptodate(page)) {
202                         f2fs_put_page(page, 1);
203                         continue;
204                 }
205
206                 fio.page = page;
207                 fio.old_blkaddr = fio.new_blkaddr;
208                 f2fs_submit_page_mbio(&fio);
209                 f2fs_put_page(page, 0);
210         }
211 out:
212         f2fs_submit_merged_bio(sbi, META, READ);
213         blk_finish_plug(&plug);
214         return blkno - start;
215 }
216
217 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
218 {
219         struct page *page;
220         bool readahead = false;
221
222         page = find_get_page(META_MAPPING(sbi), index);
223         if (!page || !PageUptodate(page))
224                 readahead = true;
225         f2fs_put_page(page, 0);
226
227         if (readahead)
228                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
229 }
230
231 static int f2fs_write_meta_page(struct page *page,
232                                 struct writeback_control *wbc)
233 {
234         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
235
236         trace_f2fs_writepage(page, META);
237
238         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
239                 goto redirty_out;
240         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
241                 goto redirty_out;
242         if (unlikely(f2fs_cp_error(sbi)))
243                 goto redirty_out;
244
245         write_meta_page(sbi, page);
246         dec_page_count(sbi, F2FS_DIRTY_META);
247
248         if (wbc->for_reclaim)
249                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
250
251         unlock_page(page);
252
253         if (unlikely(f2fs_cp_error(sbi)))
254                 f2fs_submit_merged_bio(sbi, META, WRITE);
255
256         return 0;
257
258 redirty_out:
259         redirty_page_for_writepage(wbc, page);
260         return AOP_WRITEPAGE_ACTIVATE;
261 }
262
263 static int f2fs_write_meta_pages(struct address_space *mapping,
264                                 struct writeback_control *wbc)
265 {
266         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
267         long diff, written;
268
269         /* collect a number of dirty meta pages and write together */
270         if (wbc->for_kupdate ||
271                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
272                 goto skip_write;
273
274         trace_f2fs_writepages(mapping->host, wbc, META);
275
276         /* if mounting is failed, skip writing node pages */
277         mutex_lock(&sbi->cp_mutex);
278         diff = nr_pages_to_write(sbi, META, wbc);
279         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
280         mutex_unlock(&sbi->cp_mutex);
281         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
282         return 0;
283
284 skip_write:
285         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
286         trace_f2fs_writepages(mapping->host, wbc, META);
287         return 0;
288 }
289
290 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
291                                                 long nr_to_write)
292 {
293         struct address_space *mapping = META_MAPPING(sbi);
294         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
295         struct pagevec pvec;
296         long nwritten = 0;
297         struct writeback_control wbc = {
298                 .for_reclaim = 0,
299         };
300         struct blk_plug plug;
301
302         pagevec_init(&pvec, 0);
303
304         blk_start_plug(&plug);
305
306         while (index <= end) {
307                 int i, nr_pages;
308                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
309                                 PAGECACHE_TAG_DIRTY,
310                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
311                 if (unlikely(nr_pages == 0))
312                         break;
313
314                 for (i = 0; i < nr_pages; i++) {
315                         struct page *page = pvec.pages[i];
316
317                         if (prev == ULONG_MAX)
318                                 prev = page->index - 1;
319                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
320                                 pagevec_release(&pvec);
321                                 goto stop;
322                         }
323
324                         lock_page(page);
325
326                         if (unlikely(page->mapping != mapping)) {
327 continue_unlock:
328                                 unlock_page(page);
329                                 continue;
330                         }
331                         if (!PageDirty(page)) {
332                                 /* someone wrote it for us */
333                                 goto continue_unlock;
334                         }
335
336                         f2fs_wait_on_page_writeback(page, META, true);
337
338                         BUG_ON(PageWriteback(page));
339                         if (!clear_page_dirty_for_io(page))
340                                 goto continue_unlock;
341
342                         if (mapping->a_ops->writepage(page, &wbc)) {
343                                 unlock_page(page);
344                                 break;
345                         }
346                         nwritten++;
347                         prev = page->index;
348                         if (unlikely(nwritten >= nr_to_write))
349                                 break;
350                 }
351                 pagevec_release(&pvec);
352                 cond_resched();
353         }
354 stop:
355         if (nwritten)
356                 f2fs_submit_merged_bio(sbi, type, WRITE);
357
358         blk_finish_plug(&plug);
359
360         return nwritten;
361 }
362
363 static int f2fs_set_meta_page_dirty(struct page *page)
364 {
365         trace_f2fs_set_page_dirty(page, META);
366
367         SetPageUptodate(page);
368         if (!PageDirty(page)) {
369                 __set_page_dirty_nobuffers(page);
370                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
371                 SetPagePrivate(page);
372                 f2fs_trace_pid(page);
373                 return 1;
374         }
375         return 0;
376 }
377
378 const struct address_space_operations f2fs_meta_aops = {
379         .writepage      = f2fs_write_meta_page,
380         .writepages     = f2fs_write_meta_pages,
381         .set_page_dirty = f2fs_set_meta_page_dirty,
382         .invalidatepage = f2fs_invalidate_page,
383         .releasepage    = f2fs_release_page,
384 };
385
386 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
387 {
388         struct inode_management *im = &sbi->im[type];
389         struct ino_entry *e, *tmp;
390
391         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
392 retry:
393         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
394
395         spin_lock(&im->ino_lock);
396         e = radix_tree_lookup(&im->ino_root, ino);
397         if (!e) {
398                 e = tmp;
399                 if (radix_tree_insert(&im->ino_root, ino, e)) {
400                         spin_unlock(&im->ino_lock);
401                         radix_tree_preload_end();
402                         goto retry;
403                 }
404                 memset(e, 0, sizeof(struct ino_entry));
405                 e->ino = ino;
406
407                 list_add_tail(&e->list, &im->ino_list);
408                 if (type != ORPHAN_INO)
409                         im->ino_num++;
410         }
411         spin_unlock(&im->ino_lock);
412         radix_tree_preload_end();
413
414         if (e != tmp)
415                 kmem_cache_free(ino_entry_slab, tmp);
416 }
417
418 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
419 {
420         struct inode_management *im = &sbi->im[type];
421         struct ino_entry *e;
422
423         spin_lock(&im->ino_lock);
424         e = radix_tree_lookup(&im->ino_root, ino);
425         if (e) {
426                 list_del(&e->list);
427                 radix_tree_delete(&im->ino_root, ino);
428                 im->ino_num--;
429                 spin_unlock(&im->ino_lock);
430                 kmem_cache_free(ino_entry_slab, e);
431                 return;
432         }
433         spin_unlock(&im->ino_lock);
434 }
435
436 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
437 {
438         /* add new dirty ino entry into list */
439         __add_ino_entry(sbi, ino, type);
440 }
441
442 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
443 {
444         /* remove dirty ino entry from list */
445         __remove_ino_entry(sbi, ino, type);
446 }
447
448 /* mode should be APPEND_INO or UPDATE_INO */
449 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
450 {
451         struct inode_management *im = &sbi->im[mode];
452         struct ino_entry *e;
453
454         spin_lock(&im->ino_lock);
455         e = radix_tree_lookup(&im->ino_root, ino);
456         spin_unlock(&im->ino_lock);
457         return e ? true : false;
458 }
459
460 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
461 {
462         struct ino_entry *e, *tmp;
463         int i;
464
465         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
466                 struct inode_management *im = &sbi->im[i];
467
468                 spin_lock(&im->ino_lock);
469                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
470                         list_del(&e->list);
471                         radix_tree_delete(&im->ino_root, e->ino);
472                         kmem_cache_free(ino_entry_slab, e);
473                         im->ino_num--;
474                 }
475                 spin_unlock(&im->ino_lock);
476         }
477 }
478
479 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
480 {
481         struct inode_management *im = &sbi->im[ORPHAN_INO];
482         int err = 0;
483
484         spin_lock(&im->ino_lock);
485
486 #ifdef CONFIG_F2FS_FAULT_INJECTION
487         if (time_to_inject(FAULT_ORPHAN)) {
488                 spin_unlock(&im->ino_lock);
489                 return -ENOSPC;
490         }
491 #endif
492         if (unlikely(im->ino_num >= sbi->max_orphans))
493                 err = -ENOSPC;
494         else
495                 im->ino_num++;
496         spin_unlock(&im->ino_lock);
497
498         return err;
499 }
500
501 void release_orphan_inode(struct f2fs_sb_info *sbi)
502 {
503         struct inode_management *im = &sbi->im[ORPHAN_INO];
504
505         spin_lock(&im->ino_lock);
506         f2fs_bug_on(sbi, im->ino_num == 0);
507         im->ino_num--;
508         spin_unlock(&im->ino_lock);
509 }
510
511 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
512 {
513         /* add new orphan ino entry into list */
514         __add_ino_entry(sbi, ino, ORPHAN_INO);
515 }
516
517 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
518 {
519         /* remove orphan entry from orphan list */
520         __remove_ino_entry(sbi, ino, ORPHAN_INO);
521 }
522
523 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
524 {
525         struct inode *inode;
526
527         inode = f2fs_iget(sbi->sb, ino);
528         if (IS_ERR(inode)) {
529                 /*
530                  * there should be a bug that we can't find the entry
531                  * to orphan inode.
532                  */
533                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
534                 return PTR_ERR(inode);
535         }
536
537         clear_nlink(inode);
538         mark_inode_dirty_sync(inode);
539
540         /* truncate all the data during iput */
541         iput(inode);
542         return 0;
543 }
544
545 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
546 {
547         block_t start_blk, orphan_blocks, i, j;
548         int err;
549
550         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
551                 return 0;
552
553         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
554         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
555
556         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
557
558         for (i = 0; i < orphan_blocks; i++) {
559                 struct page *page = get_meta_page(sbi, start_blk + i);
560                 struct f2fs_orphan_block *orphan_blk;
561
562                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
563                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
564                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
565                         err = recover_orphan_inode(sbi, ino);
566                         if (err) {
567                                 f2fs_put_page(page, 1);
568                                 return err;
569                         }
570                 }
571                 f2fs_put_page(page, 1);
572         }
573         /* clear Orphan Flag */
574         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
575         return 0;
576 }
577
578 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
579 {
580         struct list_head *head;
581         struct f2fs_orphan_block *orphan_blk = NULL;
582         unsigned int nentries = 0;
583         unsigned short index = 1;
584         unsigned short orphan_blocks;
585         struct page *page = NULL;
586         struct ino_entry *orphan = NULL;
587         struct inode_management *im = &sbi->im[ORPHAN_INO];
588
589         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
590
591         /*
592          * we don't need to do spin_lock(&im->ino_lock) here, since all the
593          * orphan inode operations are covered under f2fs_lock_op().
594          * And, spin_lock should be avoided due to page operations below.
595          */
596         head = &im->ino_list;
597
598         /* loop for each orphan inode entry and write them in Jornal block */
599         list_for_each_entry(orphan, head, list) {
600                 if (!page) {
601                         page = grab_meta_page(sbi, start_blk++);
602                         orphan_blk =
603                                 (struct f2fs_orphan_block *)page_address(page);
604                         memset(orphan_blk, 0, sizeof(*orphan_blk));
605                 }
606
607                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
608
609                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
610                         /*
611                          * an orphan block is full of 1020 entries,
612                          * then we need to flush current orphan blocks
613                          * and bring another one in memory
614                          */
615                         orphan_blk->blk_addr = cpu_to_le16(index);
616                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
617                         orphan_blk->entry_count = cpu_to_le32(nentries);
618                         set_page_dirty(page);
619                         f2fs_put_page(page, 1);
620                         index++;
621                         nentries = 0;
622                         page = NULL;
623                 }
624         }
625
626         if (page) {
627                 orphan_blk->blk_addr = cpu_to_le16(index);
628                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
629                 orphan_blk->entry_count = cpu_to_le32(nentries);
630                 set_page_dirty(page);
631                 f2fs_put_page(page, 1);
632         }
633 }
634
635 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
636                                 block_t cp_addr, unsigned long long *version)
637 {
638         struct page *cp_page_1, *cp_page_2 = NULL;
639         unsigned long blk_size = sbi->blocksize;
640         struct f2fs_checkpoint *cp_block;
641         unsigned long long cur_version = 0, pre_version = 0;
642         size_t crc_offset;
643         __u32 crc = 0;
644
645         /* Read the 1st cp block in this CP pack */
646         cp_page_1 = get_meta_page(sbi, cp_addr);
647
648         /* get the version number */
649         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
650         crc_offset = le32_to_cpu(cp_block->checksum_offset);
651         if (crc_offset >= blk_size)
652                 goto invalid_cp1;
653
654         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
655         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
656                 goto invalid_cp1;
657
658         pre_version = cur_cp_version(cp_block);
659
660         /* Read the 2nd cp block in this CP pack */
661         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
662         cp_page_2 = get_meta_page(sbi, cp_addr);
663
664         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
665         crc_offset = le32_to_cpu(cp_block->checksum_offset);
666         if (crc_offset >= blk_size)
667                 goto invalid_cp2;
668
669         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
670         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
671                 goto invalid_cp2;
672
673         cur_version = cur_cp_version(cp_block);
674
675         if (cur_version == pre_version) {
676                 *version = cur_version;
677                 f2fs_put_page(cp_page_2, 1);
678                 return cp_page_1;
679         }
680 invalid_cp2:
681         f2fs_put_page(cp_page_2, 1);
682 invalid_cp1:
683         f2fs_put_page(cp_page_1, 1);
684         return NULL;
685 }
686
687 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
688 {
689         struct f2fs_checkpoint *cp_block;
690         struct f2fs_super_block *fsb = sbi->raw_super;
691         struct page *cp1, *cp2, *cur_page;
692         unsigned long blk_size = sbi->blocksize;
693         unsigned long long cp1_version = 0, cp2_version = 0;
694         unsigned long long cp_start_blk_no;
695         unsigned int cp_blks = 1 + __cp_payload(sbi);
696         block_t cp_blk_no;
697         int i;
698
699         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
700         if (!sbi->ckpt)
701                 return -ENOMEM;
702         /*
703          * Finding out valid cp block involves read both
704          * sets( cp pack1 and cp pack 2)
705          */
706         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
707         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
708
709         /* The second checkpoint pack should start at the next segment */
710         cp_start_blk_no += ((unsigned long long)1) <<
711                                 le32_to_cpu(fsb->log_blocks_per_seg);
712         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
713
714         if (cp1 && cp2) {
715                 if (ver_after(cp2_version, cp1_version))
716                         cur_page = cp2;
717                 else
718                         cur_page = cp1;
719         } else if (cp1) {
720                 cur_page = cp1;
721         } else if (cp2) {
722                 cur_page = cp2;
723         } else {
724                 goto fail_no_cp;
725         }
726
727         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
728         memcpy(sbi->ckpt, cp_block, blk_size);
729
730         /* Sanity checking of checkpoint */
731         if (sanity_check_ckpt(sbi))
732                 goto fail_no_cp;
733
734         if (cp_blks <= 1)
735                 goto done;
736
737         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
738         if (cur_page == cp2)
739                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
740
741         for (i = 1; i < cp_blks; i++) {
742                 void *sit_bitmap_ptr;
743                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
744
745                 cur_page = get_meta_page(sbi, cp_blk_no + i);
746                 sit_bitmap_ptr = page_address(cur_page);
747                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
748                 f2fs_put_page(cur_page, 1);
749         }
750 done:
751         f2fs_put_page(cp1, 1);
752         f2fs_put_page(cp2, 1);
753         return 0;
754
755 fail_no_cp:
756         kfree(sbi->ckpt);
757         return -EINVAL;
758 }
759
760 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
761 {
762         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
763         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
764
765         if (is_inode_flag_set(inode, flag))
766                 return;
767
768         set_inode_flag(inode, flag);
769         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
770         stat_inc_dirty_inode(sbi, type);
771 }
772
773 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
774 {
775         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
776
777         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
778                 return;
779
780         list_del_init(&F2FS_I(inode)->dirty_list);
781         clear_inode_flag(inode, flag);
782         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
783 }
784
785 void update_dirty_page(struct inode *inode, struct page *page)
786 {
787         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
788         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
789
790         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
791                         !S_ISLNK(inode->i_mode))
792                 return;
793
794         spin_lock(&sbi->inode_lock[type]);
795         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
796                 __add_dirty_inode(inode, type);
797         inode_inc_dirty_pages(inode);
798         spin_unlock(&sbi->inode_lock[type]);
799
800         SetPagePrivate(page);
801         f2fs_trace_pid(page);
802 }
803
804 void remove_dirty_inode(struct inode *inode)
805 {
806         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
807         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
808
809         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
810                         !S_ISLNK(inode->i_mode))
811                 return;
812
813         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
814                 return;
815
816         spin_lock(&sbi->inode_lock[type]);
817         __remove_dirty_inode(inode, type);
818         spin_unlock(&sbi->inode_lock[type]);
819 }
820
821 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
822 {
823         struct list_head *head;
824         struct inode *inode;
825         struct f2fs_inode_info *fi;
826         bool is_dir = (type == DIR_INODE);
827
828         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
829                                 get_pages(sbi, is_dir ?
830                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
831 retry:
832         if (unlikely(f2fs_cp_error(sbi)))
833                 return -EIO;
834
835         spin_lock(&sbi->inode_lock[type]);
836
837         head = &sbi->inode_list[type];
838         if (list_empty(head)) {
839                 spin_unlock(&sbi->inode_lock[type]);
840                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
841                                 get_pages(sbi, is_dir ?
842                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
843                 return 0;
844         }
845         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
846         inode = igrab(&fi->vfs_inode);
847         spin_unlock(&sbi->inode_lock[type]);
848         if (inode) {
849                 filemap_fdatawrite(inode->i_mapping);
850                 iput(inode);
851         } else {
852                 /*
853                  * We should submit bio, since it exists several
854                  * wribacking dentry pages in the freeing inode.
855                  */
856                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
857                 cond_resched();
858         }
859         goto retry;
860 }
861
862 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
863 {
864         struct list_head *head = &sbi->inode_list[DIRTY_META];
865         struct inode *inode;
866         struct f2fs_inode_info *fi;
867         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
868
869         while (total--) {
870                 if (unlikely(f2fs_cp_error(sbi)))
871                         return -EIO;
872
873                 spin_lock(&sbi->inode_lock[DIRTY_META]);
874                 if (list_empty(head)) {
875                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
876                         return 0;
877                 }
878                 fi = list_entry(head->next, struct f2fs_inode_info,
879                                                         gdirty_list);
880                 inode = igrab(&fi->vfs_inode);
881                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
882                 if (inode) {
883                         update_inode_page(inode);
884                         iput(inode);
885                 }
886         };
887         return 0;
888 }
889
890 /*
891  * Freeze all the FS-operations for checkpoint.
892  */
893 static int block_operations(struct f2fs_sb_info *sbi)
894 {
895         struct writeback_control wbc = {
896                 .sync_mode = WB_SYNC_ALL,
897                 .nr_to_write = LONG_MAX,
898                 .for_reclaim = 0,
899         };
900         int err = 0;
901
902 retry_flush_dents:
903         f2fs_lock_all(sbi);
904         /* write all the dirty dentry pages */
905         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
906                 f2fs_unlock_all(sbi);
907                 err = sync_dirty_inodes(sbi, DIR_INODE);
908                 if (err)
909                         goto out;
910                 goto retry_flush_dents;
911         }
912
913         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
914                 f2fs_unlock_all(sbi);
915                 err = f2fs_sync_inode_meta(sbi);
916                 if (err)
917                         goto out;
918                 goto retry_flush_dents;
919         }
920
921         /*
922          * POR: we should ensure that there are no dirty node pages
923          * until finishing nat/sit flush.
924          */
925 retry_flush_nodes:
926         down_write(&sbi->node_write);
927
928         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
929                 up_write(&sbi->node_write);
930                 err = sync_node_pages(sbi, &wbc);
931                 if (err) {
932                         f2fs_unlock_all(sbi);
933                         goto out;
934                 }
935                 goto retry_flush_nodes;
936         }
937 out:
938         return err;
939 }
940
941 static void unblock_operations(struct f2fs_sb_info *sbi)
942 {
943         up_write(&sbi->node_write);
944         f2fs_unlock_all(sbi);
945 }
946
947 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
948 {
949         DEFINE_WAIT(wait);
950
951         for (;;) {
952                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
953
954                 if (!atomic_read(&sbi->nr_wb_bios))
955                         break;
956
957                 io_schedule_timeout(5*HZ);
958         }
959         finish_wait(&sbi->cp_wait, &wait);
960 }
961
962 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
963 {
964         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
965         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
966         struct f2fs_nm_info *nm_i = NM_I(sbi);
967         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
968         nid_t last_nid = nm_i->next_scan_nid;
969         block_t start_blk;
970         unsigned int data_sum_blocks, orphan_blocks;
971         __u32 crc32 = 0;
972         int i;
973         int cp_payload_blks = __cp_payload(sbi);
974         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
975         bool invalidate = false;
976         struct super_block *sb = sbi->sb;
977         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
978         u64 kbytes_written;
979
980         /*
981          * This avoids to conduct wrong roll-forward operations and uses
982          * metapages, so should be called prior to sync_meta_pages below.
983          */
984         if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk))
985                 invalidate = true;
986
987         /* Flush all the NAT/SIT pages */
988         while (get_pages(sbi, F2FS_DIRTY_META)) {
989                 sync_meta_pages(sbi, META, LONG_MAX);
990                 if (unlikely(f2fs_cp_error(sbi)))
991                         return -EIO;
992         }
993
994         next_free_nid(sbi, &last_nid);
995
996         /*
997          * modify checkpoint
998          * version number is already updated
999          */
1000         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1001         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1002         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1003         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1004                 ckpt->cur_node_segno[i] =
1005                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1006                 ckpt->cur_node_blkoff[i] =
1007                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1008                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1009                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1010         }
1011         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1012                 ckpt->cur_data_segno[i] =
1013                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1014                 ckpt->cur_data_blkoff[i] =
1015                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1016                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1017                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1018         }
1019
1020         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1021         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1022         ckpt->next_free_nid = cpu_to_le32(last_nid);
1023
1024         /* 2 cp  + n data seg summary + orphan inode blocks */
1025         data_sum_blocks = npages_for_summary_flush(sbi, false);
1026         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1027                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1028         else
1029                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1030
1031         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1032         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1033                         orphan_blocks);
1034
1035         if (__remain_node_summaries(cpc->reason))
1036                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1037                                 cp_payload_blks + data_sum_blocks +
1038                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1039         else
1040                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1041                                 cp_payload_blks + data_sum_blocks +
1042                                 orphan_blocks);
1043
1044         if (cpc->reason == CP_UMOUNT)
1045                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1046         else
1047                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1048
1049         if (cpc->reason == CP_FASTBOOT)
1050                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1051         else
1052                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1053
1054         if (orphan_num)
1055                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1056         else
1057                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1058
1059         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1060                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1061
1062         /* update SIT/NAT bitmap */
1063         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1064         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1065
1066         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1067         *((__le32 *)((unsigned char *)ckpt +
1068                                 le32_to_cpu(ckpt->checksum_offset)))
1069                                 = cpu_to_le32(crc32);
1070
1071         start_blk = __start_cp_addr(sbi);
1072
1073         /* need to wait for end_io results */
1074         wait_on_all_pages_writeback(sbi);
1075         if (unlikely(f2fs_cp_error(sbi)))
1076                 return -EIO;
1077
1078         /* write out checkpoint buffer at block 0 */
1079         update_meta_page(sbi, ckpt, start_blk++);
1080
1081         for (i = 1; i < 1 + cp_payload_blks; i++)
1082                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1083                                                         start_blk++);
1084
1085         if (orphan_num) {
1086                 write_orphan_inodes(sbi, start_blk);
1087                 start_blk += orphan_blocks;
1088         }
1089
1090         write_data_summaries(sbi, start_blk);
1091         start_blk += data_sum_blocks;
1092
1093         /* Record write statistics in the hot node summary */
1094         kbytes_written = sbi->kbytes_written;
1095         if (sb->s_bdev->bd_part)
1096                 kbytes_written += BD_PART_WRITTEN(sbi);
1097
1098         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1099
1100         if (__remain_node_summaries(cpc->reason)) {
1101                 write_node_summaries(sbi, start_blk);
1102                 start_blk += NR_CURSEG_NODE_TYPE;
1103         }
1104
1105         /* writeout checkpoint block */
1106         update_meta_page(sbi, ckpt, start_blk);
1107
1108         /* wait for previous submitted node/meta pages writeback */
1109         wait_on_all_pages_writeback(sbi);
1110
1111         if (unlikely(f2fs_cp_error(sbi)))
1112                 return -EIO;
1113
1114         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1115         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1116
1117         /* update user_block_counts */
1118         sbi->last_valid_block_count = sbi->total_valid_block_count;
1119         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1120
1121         /* Here, we only have one bio having CP pack */
1122         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1123
1124         /* wait for previous submitted meta pages writeback */
1125         wait_on_all_pages_writeback(sbi);
1126
1127         /*
1128          * invalidate meta page which is used temporarily for zeroing out
1129          * block at the end of warm node chain.
1130          */
1131         if (invalidate)
1132                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1133                                                                 discard_blk);
1134
1135         release_ino_entry(sbi, false);
1136
1137         if (unlikely(f2fs_cp_error(sbi)))
1138                 return -EIO;
1139
1140         clear_prefree_segments(sbi, cpc);
1141         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1142
1143         return 0;
1144 }
1145
1146 /*
1147  * We guarantee that this checkpoint procedure will not fail.
1148  */
1149 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1150 {
1151         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1152         unsigned long long ckpt_ver;
1153         int err = 0;
1154
1155         mutex_lock(&sbi->cp_mutex);
1156
1157         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1158                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1159                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1160                 goto out;
1161         if (unlikely(f2fs_cp_error(sbi))) {
1162                 err = -EIO;
1163                 goto out;
1164         }
1165         if (f2fs_readonly(sbi->sb)) {
1166                 err = -EROFS;
1167                 goto out;
1168         }
1169
1170         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1171
1172         err = block_operations(sbi);
1173         if (err)
1174                 goto out;
1175
1176         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1177
1178         f2fs_flush_merged_bios(sbi);
1179
1180         /*
1181          * update checkpoint pack index
1182          * Increase the version number so that
1183          * SIT entries and seg summaries are written at correct place
1184          */
1185         ckpt_ver = cur_cp_version(ckpt);
1186         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1187
1188         /* write cached NAT/SIT entries to NAT/SIT area */
1189         flush_nat_entries(sbi);
1190         flush_sit_entries(sbi, cpc);
1191
1192         /* unlock all the fs_lock[] in do_checkpoint() */
1193         err = do_checkpoint(sbi, cpc);
1194
1195         unblock_operations(sbi);
1196         stat_inc_cp_count(sbi->stat_info);
1197
1198         if (cpc->reason == CP_RECOVERY)
1199                 f2fs_msg(sbi->sb, KERN_NOTICE,
1200                         "checkpoint: version = %llx", ckpt_ver);
1201
1202         /* do checkpoint periodically */
1203         f2fs_update_time(sbi, CP_TIME);
1204         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1205 out:
1206         mutex_unlock(&sbi->cp_mutex);
1207         return err;
1208 }
1209
1210 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1211 {
1212         int i;
1213
1214         for (i = 0; i < MAX_INO_ENTRY; i++) {
1215                 struct inode_management *im = &sbi->im[i];
1216
1217                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1218                 spin_lock_init(&im->ino_lock);
1219                 INIT_LIST_HEAD(&im->ino_list);
1220                 im->ino_num = 0;
1221         }
1222
1223         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1224                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1225                                 F2FS_ORPHANS_PER_BLOCK;
1226 }
1227
1228 int __init create_checkpoint_caches(void)
1229 {
1230         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1231                         sizeof(struct ino_entry));
1232         if (!ino_entry_slab)
1233                 return -ENOMEM;
1234         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1235                         sizeof(struct inode_entry));
1236         if (!inode_entry_slab) {
1237                 kmem_cache_destroy(ino_entry_slab);
1238                 return -ENOMEM;
1239         }
1240         return 0;
1241 }
1242
1243 void destroy_checkpoint_caches(void)
1244 {
1245         kmem_cache_destroy(ino_entry_slab);
1246         kmem_cache_destroy(inode_entry_slab);
1247 }