Merge tag 'usercopy-fix-v4.18-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = get_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             (atomic_read(&inode->i_writecount) == 0))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682                                            map->m_len);
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_find_delalloc_range(inode, map->m_lblk,
705                                              map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
734                         else
735                                 ret = ext4_jbd2_inode_add_write(handle, inode);
736                         if (ret)
737                                 return ret;
738                 }
739         }
740         return retval;
741 }
742
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749         unsigned long old_state;
750         unsigned long new_state;
751
752         flags &= EXT4_MAP_FLAGS;
753
754         /* Dummy buffer_head? Set non-atomically. */
755         if (!bh->b_page) {
756                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757                 return;
758         }
759         /*
760          * Someone else may be modifying b_state. Be careful! This is ugly but
761          * once we get rid of using bh as a container for mapping information
762          * to pass to / from get_block functions, this can go away.
763          */
764         do {
765                 old_state = READ_ONCE(bh->b_state);
766                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767         } while (unlikely(
768                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772                            struct buffer_head *bh, int flags)
773 {
774         struct ext4_map_blocks map;
775         int ret = 0;
776
777         if (ext4_has_inline_data(inode))
778                 return -ERANGE;
779
780         map.m_lblk = iblock;
781         map.m_len = bh->b_size >> inode->i_blkbits;
782
783         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784                               flags);
785         if (ret > 0) {
786                 map_bh(bh, inode->i_sb, map.m_pblk);
787                 ext4_update_bh_state(bh, map.m_flags);
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789                 ret = 0;
790         } else if (ret == 0) {
791                 /* hole case, need to fill in bh->b_size */
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793         }
794         return ret;
795 }
796
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798                    struct buffer_head *bh, int create)
799 {
800         return _ext4_get_block(inode, iblock, bh,
801                                create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810                              struct buffer_head *bh_result, int create)
811 {
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         return _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827                                 struct buffer_head *bh_result, int flags)
828 {
829         int dio_credits;
830         handle_t *handle;
831         int retries = 0;
832         int ret;
833
834         /* Trim mapping request to maximum we can map at once for DIO */
835         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837         dio_credits = ext4_chunk_trans_blocks(inode,
838                                       bh_result->b_size >> inode->i_blkbits);
839 retry:
840         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841         if (IS_ERR(handle))
842                 return PTR_ERR(handle);
843
844         ret = _ext4_get_block(inode, iblock, bh_result, flags);
845         ext4_journal_stop(handle);
846
847         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848                 goto retry;
849         return ret;
850 }
851
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854                        struct buffer_head *bh, int create)
855 {
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         if (!create)
860                 return _ext4_get_block(inode, iblock, bh, 0);
861         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870                 sector_t iblock, struct buffer_head *bh_result, int create)
871 {
872         int ret;
873
874         /* We don't expect handle for direct IO */
875         WARN_ON_ONCE(ext4_journal_current_handle());
876
877         ret = ext4_get_block_trans(inode, iblock, bh_result,
878                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880         /*
881          * When doing DIO using unwritten extents, we need io_end to convert
882          * unwritten extents to written on IO completion. We allocate io_end
883          * once we spot unwritten extent and store it in b_private. Generic
884          * DIO code keeps b_private set and furthermore passes the value to
885          * our completion callback in 'private' argument.
886          */
887         if (!ret && buffer_unwritten(bh_result)) {
888                 if (!bh_result->b_private) {
889                         ext4_io_end_t *io_end;
890
891                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
892                         if (!io_end)
893                                 return -ENOMEM;
894                         bh_result->b_private = io_end;
895                         ext4_set_io_unwritten_flag(inode, io_end);
896                 }
897                 set_buffer_defer_completion(bh_result);
898         }
899
900         return ret;
901 }
902
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909                 sector_t iblock, struct buffer_head *bh_result, int create)
910 {
911         int ret;
912
913         /* We don't expect handle for direct IO */
914         WARN_ON_ONCE(ext4_journal_current_handle());
915
916         ret = ext4_get_block_trans(inode, iblock, bh_result,
917                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919         /*
920          * Mark inode as having pending DIO writes to unwritten extents.
921          * ext4_direct_IO_write() checks this flag and converts extents to
922          * written.
923          */
924         if (!ret && buffer_unwritten(bh_result))
925                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927         return ret;
928 }
929
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931                    struct buffer_head *bh_result, int create)
932 {
933         int ret;
934
935         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936                    inode->i_ino, create);
937         /* We don't expect handle for direct IO */
938         WARN_ON_ONCE(ext4_journal_current_handle());
939
940         ret = _ext4_get_block(inode, iblock, bh_result, 0);
941         /*
942          * Blocks should have been preallocated! ext4_file_write_iter() checks
943          * that.
944          */
945         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947         return ret;
948 }
949
950
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955                                 ext4_lblk_t block, int map_flags)
956 {
957         struct ext4_map_blocks map;
958         struct buffer_head *bh;
959         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960         int err;
961
962         J_ASSERT(handle != NULL || create == 0);
963
964         map.m_lblk = block;
965         map.m_len = 1;
966         err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968         if (err == 0)
969                 return create ? ERR_PTR(-ENOSPC) : NULL;
970         if (err < 0)
971                 return ERR_PTR(err);
972
973         bh = sb_getblk(inode->i_sb, map.m_pblk);
974         if (unlikely(!bh))
975                 return ERR_PTR(-ENOMEM);
976         if (map.m_flags & EXT4_MAP_NEW) {
977                 J_ASSERT(create != 0);
978                 J_ASSERT(handle != NULL);
979
980                 /*
981                  * Now that we do not always journal data, we should
982                  * keep in mind whether this should always journal the
983                  * new buffer as metadata.  For now, regular file
984                  * writes use ext4_get_block instead, so it's not a
985                  * problem.
986                  */
987                 lock_buffer(bh);
988                 BUFFER_TRACE(bh, "call get_create_access");
989                 err = ext4_journal_get_create_access(handle, bh);
990                 if (unlikely(err)) {
991                         unlock_buffer(bh);
992                         goto errout;
993                 }
994                 if (!buffer_uptodate(bh)) {
995                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996                         set_buffer_uptodate(bh);
997                 }
998                 unlock_buffer(bh);
999                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                 if (unlikely(err))
1002                         goto errout;
1003         } else
1004                 BUFFER_TRACE(bh, "not a new buffer");
1005         return bh;
1006 errout:
1007         brelse(bh);
1008         return ERR_PTR(err);
1009 }
1010
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                                ext4_lblk_t block, int map_flags)
1013 {
1014         struct buffer_head *bh;
1015
1016         bh = ext4_getblk(handle, inode, block, map_flags);
1017         if (IS_ERR(bh))
1018                 return bh;
1019         if (!bh || buffer_uptodate(bh))
1020                 return bh;
1021         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022         wait_on_buffer(bh);
1023         if (buffer_uptodate(bh))
1024                 return bh;
1025         put_bh(bh);
1026         return ERR_PTR(-EIO);
1027 }
1028
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                      bool wait, struct buffer_head **bhs)
1032 {
1033         int i, err;
1034
1035         for (i = 0; i < bh_count; i++) {
1036                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                 if (IS_ERR(bhs[i])) {
1038                         err = PTR_ERR(bhs[i]);
1039                         bh_count = i;
1040                         goto out_brelse;
1041                 }
1042         }
1043
1044         for (i = 0; i < bh_count; i++)
1045                 /* Note that NULL bhs[i] is valid because of holes. */
1046                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                     &bhs[i]);
1049
1050         if (!wait)
1051                 return 0;
1052
1053         for (i = 0; i < bh_count; i++)
1054                 if (bhs[i])
1055                         wait_on_buffer(bhs[i]);
1056
1057         for (i = 0; i < bh_count; i++) {
1058                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                         err = -EIO;
1060                         goto out_brelse;
1061                 }
1062         }
1063         return 0;
1064
1065 out_brelse:
1066         for (i = 0; i < bh_count; i++) {
1067                 brelse(bhs[i]);
1068                 bhs[i] = NULL;
1069         }
1070         return err;
1071 }
1072
1073 int ext4_walk_page_buffers(handle_t *handle,
1074                            struct buffer_head *head,
1075                            unsigned from,
1076                            unsigned to,
1077                            int *partial,
1078                            int (*fn)(handle_t *handle,
1079                                      struct buffer_head *bh))
1080 {
1081         struct buffer_head *bh;
1082         unsigned block_start, block_end;
1083         unsigned blocksize = head->b_size;
1084         int err, ret = 0;
1085         struct buffer_head *next;
1086
1087         for (bh = head, block_start = 0;
1088              ret == 0 && (bh != head || !block_start);
1089              block_start = block_end, bh = next) {
1090                 next = bh->b_this_page;
1091                 block_end = block_start + blocksize;
1092                 if (block_end <= from || block_start >= to) {
1093                         if (partial && !buffer_uptodate(bh))
1094                                 *partial = 1;
1095                         continue;
1096                 }
1097                 err = (*fn)(handle, bh);
1098                 if (!ret)
1099                         ret = err;
1100         }
1101         return ret;
1102 }
1103
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129                                 struct buffer_head *bh)
1130 {
1131         int dirty = buffer_dirty(bh);
1132         int ret;
1133
1134         if (!buffer_mapped(bh) || buffer_freed(bh))
1135                 return 0;
1136         /*
1137          * __block_write_begin() could have dirtied some buffers. Clean
1138          * the dirty bit as jbd2_journal_get_write_access() could complain
1139          * otherwise about fs integrity issues. Setting of the dirty bit
1140          * by __block_write_begin() isn't a real problem here as we clear
1141          * the bit before releasing a page lock and thus writeback cannot
1142          * ever write the buffer.
1143          */
1144         if (dirty)
1145                 clear_buffer_dirty(bh);
1146         BUFFER_TRACE(bh, "get write access");
1147         ret = ext4_journal_get_write_access(handle, bh);
1148         if (!ret && dirty)
1149                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150         return ret;
1151 }
1152
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                   get_block_t *get_block)
1156 {
1157         unsigned from = pos & (PAGE_SIZE - 1);
1158         unsigned to = from + len;
1159         struct inode *inode = page->mapping->host;
1160         unsigned block_start, block_end;
1161         sector_t block;
1162         int err = 0;
1163         unsigned blocksize = inode->i_sb->s_blocksize;
1164         unsigned bbits;
1165         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166         bool decrypt = false;
1167
1168         BUG_ON(!PageLocked(page));
1169         BUG_ON(from > PAGE_SIZE);
1170         BUG_ON(to > PAGE_SIZE);
1171         BUG_ON(from > to);
1172
1173         if (!page_has_buffers(page))
1174                 create_empty_buffers(page, blocksize, 0);
1175         head = page_buffers(page);
1176         bbits = ilog2(blocksize);
1177         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179         for (bh = head, block_start = 0; bh != head || !block_start;
1180             block++, block_start = block_end, bh = bh->b_this_page) {
1181                 block_end = block_start + blocksize;
1182                 if (block_end <= from || block_start >= to) {
1183                         if (PageUptodate(page)) {
1184                                 if (!buffer_uptodate(bh))
1185                                         set_buffer_uptodate(bh);
1186                         }
1187                         continue;
1188                 }
1189                 if (buffer_new(bh))
1190                         clear_buffer_new(bh);
1191                 if (!buffer_mapped(bh)) {
1192                         WARN_ON(bh->b_size != blocksize);
1193                         err = get_block(inode, block, bh, 1);
1194                         if (err)
1195                                 break;
1196                         if (buffer_new(bh)) {
1197                                 clean_bdev_bh_alias(bh);
1198                                 if (PageUptodate(page)) {
1199                                         clear_buffer_new(bh);
1200                                         set_buffer_uptodate(bh);
1201                                         mark_buffer_dirty(bh);
1202                                         continue;
1203                                 }
1204                                 if (block_end > to || block_start < from)
1205                                         zero_user_segments(page, to, block_end,
1206                                                            block_start, from);
1207                                 continue;
1208                         }
1209                 }
1210                 if (PageUptodate(page)) {
1211                         if (!buffer_uptodate(bh))
1212                                 set_buffer_uptodate(bh);
1213                         continue;
1214                 }
1215                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                     !buffer_unwritten(bh) &&
1217                     (block_start < from || block_end > to)) {
1218                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                         *wait_bh++ = bh;
1220                         decrypt = ext4_encrypted_inode(inode) &&
1221                                 S_ISREG(inode->i_mode);
1222                 }
1223         }
1224         /*
1225          * If we issued read requests, let them complete.
1226          */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh))
1230                         err = -EIO;
1231         }
1232         if (unlikely(err))
1233                 page_zero_new_buffers(page, from, to);
1234         else if (decrypt)
1235                 err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                 PAGE_SIZE, 0, page->index);
1237         return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                             loff_t pos, unsigned len, unsigned flags,
1243                             struct page **pagep, void **fsdata)
1244 {
1245         struct inode *inode = mapping->host;
1246         int ret, needed_blocks;
1247         handle_t *handle;
1248         int retries = 0;
1249         struct page *page;
1250         pgoff_t index;
1251         unsigned from, to;
1252
1253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                 return -EIO;
1255
1256         trace_ext4_write_begin(inode, pos, len, flags);
1257         /*
1258          * Reserve one block more for addition to orphan list in case
1259          * we allocate blocks but write fails for some reason
1260          */
1261         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262         index = pos >> PAGE_SHIFT;
1263         from = pos & (PAGE_SIZE - 1);
1264         to = from + len;
1265
1266         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                     flags, pagep);
1269                 if (ret < 0)
1270                         return ret;
1271                 if (ret == 1)
1272                         return 0;
1273         }
1274
1275         /*
1276          * grab_cache_page_write_begin() can take a long time if the
1277          * system is thrashing due to memory pressure, or if the page
1278          * is being written back.  So grab it first before we start
1279          * the transaction handle.  This also allows us to allocate
1280          * the page (if needed) without using GFP_NOFS.
1281          */
1282 retry_grab:
1283         page = grab_cache_page_write_begin(mapping, index, flags);
1284         if (!page)
1285                 return -ENOMEM;
1286         unlock_page(page);
1287
1288 retry_journal:
1289         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290         if (IS_ERR(handle)) {
1291                 put_page(page);
1292                 return PTR_ERR(handle);
1293         }
1294
1295         lock_page(page);
1296         if (page->mapping != mapping) {
1297                 /* The page got truncated from under us */
1298                 unlock_page(page);
1299                 put_page(page);
1300                 ext4_journal_stop(handle);
1301                 goto retry_grab;
1302         }
1303         /* In case writeback began while the page was unlocked */
1304         wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307         if (ext4_should_dioread_nolock(inode))
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block_unwritten);
1310         else
1311                 ret = ext4_block_write_begin(page, pos, len,
1312                                              ext4_get_block);
1313 #else
1314         if (ext4_should_dioread_nolock(inode))
1315                 ret = __block_write_begin(page, pos, len,
1316                                           ext4_get_block_unwritten);
1317         else
1318                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320         if (!ret && ext4_should_journal_data(inode)) {
1321                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                              from, to, NULL,
1323                                              do_journal_get_write_access);
1324         }
1325
1326         if (ret) {
1327                 unlock_page(page);
1328                 /*
1329                  * __block_write_begin may have instantiated a few blocks
1330                  * outside i_size.  Trim these off again. Don't need
1331                  * i_size_read because we hold i_mutex.
1332                  *
1333                  * Add inode to orphan list in case we crash before
1334                  * truncate finishes
1335                  */
1336                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                         ext4_orphan_add(handle, inode);
1338
1339                 ext4_journal_stop(handle);
1340                 if (pos + len > inode->i_size) {
1341                         ext4_truncate_failed_write(inode);
1342                         /*
1343                          * If truncate failed early the inode might
1344                          * still be on the orphan list; we need to
1345                          * make sure the inode is removed from the
1346                          * orphan list in that case.
1347                          */
1348                         if (inode->i_nlink)
1349                                 ext4_orphan_del(NULL, inode);
1350                 }
1351
1352                 if (ret == -ENOSPC &&
1353                     ext4_should_retry_alloc(inode->i_sb, &retries))
1354                         goto retry_journal;
1355                 put_page(page);
1356                 return ret;
1357         }
1358         *pagep = page;
1359         return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365         int ret;
1366         if (!buffer_mapped(bh) || buffer_freed(bh))
1367                 return 0;
1368         set_buffer_uptodate(bh);
1369         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370         clear_buffer_meta(bh);
1371         clear_buffer_prio(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383                           struct address_space *mapping,
1384                           loff_t pos, unsigned len, unsigned copied,
1385                           struct page *page, void *fsdata)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct inode *inode = mapping->host;
1389         loff_t old_size = inode->i_size;
1390         int ret = 0, ret2;
1391         int i_size_changed = 0;
1392         int inline_data = ext4_has_inline_data(inode);
1393
1394         trace_ext4_write_end(inode, pos, len, copied);
1395         if (inline_data) {
1396                 ret = ext4_write_inline_data_end(inode, pos, len,
1397                                                  copied, page);
1398                 if (ret < 0) {
1399                         unlock_page(page);
1400                         put_page(page);
1401                         goto errout;
1402                 }
1403                 copied = ret;
1404         } else
1405                 copied = block_write_end(file, mapping, pos,
1406                                          len, copied, page, fsdata);
1407         /*
1408          * it's important to update i_size while still holding page lock:
1409          * page writeout could otherwise come in and zero beyond i_size.
1410          */
1411         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412         unlock_page(page);
1413         put_page(page);
1414
1415         if (old_size < pos)
1416                 pagecache_isize_extended(inode, old_size, pos);
1417         /*
1418          * Don't mark the inode dirty under page lock. First, it unnecessarily
1419          * makes the holding time of page lock longer. Second, it forces lock
1420          * ordering of page lock and transaction start for journaling
1421          * filesystems.
1422          */
1423         if (i_size_changed || inline_data)
1424                 ext4_mark_inode_dirty(handle, inode);
1425
1426         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427                 /* if we have allocated more blocks and copied
1428                  * less. We will have blocks allocated outside
1429                  * inode->i_size. So truncate them
1430                  */
1431                 ext4_orphan_add(handle, inode);
1432 errout:
1433         ret2 = ext4_journal_stop(handle);
1434         if (!ret)
1435                 ret = ret2;
1436
1437         if (pos + len > inode->i_size) {
1438                 ext4_truncate_failed_write(inode);
1439                 /*
1440                  * If truncate failed early the inode might still be
1441                  * on the orphan list; we need to make sure the inode
1442                  * is removed from the orphan list in that case.
1443                  */
1444                 if (inode->i_nlink)
1445                         ext4_orphan_del(NULL, inode);
1446         }
1447
1448         return ret ? ret : copied;
1449 }
1450
1451 /*
1452  * This is a private version of page_zero_new_buffers() which doesn't
1453  * set the buffer to be dirty, since in data=journalled mode we need
1454  * to call ext4_handle_dirty_metadata() instead.
1455  */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457                                             struct page *page,
1458                                             unsigned from, unsigned to)
1459 {
1460         unsigned int block_start = 0, block_end;
1461         struct buffer_head *head, *bh;
1462
1463         bh = head = page_buffers(page);
1464         do {
1465                 block_end = block_start + bh->b_size;
1466                 if (buffer_new(bh)) {
1467                         if (block_end > from && block_start < to) {
1468                                 if (!PageUptodate(page)) {
1469                                         unsigned start, size;
1470
1471                                         start = max(from, block_start);
1472                                         size = min(to, block_end) - start;
1473
1474                                         zero_user(page, start, size);
1475                                         write_end_fn(handle, bh);
1476                                 }
1477                                 clear_buffer_new(bh);
1478                         }
1479                 }
1480                 block_start = block_end;
1481                 bh = bh->b_this_page;
1482         } while (bh != head);
1483 }
1484
1485 static int ext4_journalled_write_end(struct file *file,
1486                                      struct address_space *mapping,
1487                                      loff_t pos, unsigned len, unsigned copied,
1488                                      struct page *page, void *fsdata)
1489 {
1490         handle_t *handle = ext4_journal_current_handle();
1491         struct inode *inode = mapping->host;
1492         loff_t old_size = inode->i_size;
1493         int ret = 0, ret2;
1494         int partial = 0;
1495         unsigned from, to;
1496         int size_changed = 0;
1497         int inline_data = ext4_has_inline_data(inode);
1498
1499         trace_ext4_journalled_write_end(inode, pos, len, copied);
1500         from = pos & (PAGE_SIZE - 1);
1501         to = from + len;
1502
1503         BUG_ON(!ext4_handle_valid(handle));
1504
1505         if (inline_data) {
1506                 ret = ext4_write_inline_data_end(inode, pos, len,
1507                                                  copied, page);
1508                 if (ret < 0) {
1509                         unlock_page(page);
1510                         put_page(page);
1511                         goto errout;
1512                 }
1513                 copied = ret;
1514         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515                 copied = 0;
1516                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517         } else {
1518                 if (unlikely(copied < len))
1519                         ext4_journalled_zero_new_buffers(handle, page,
1520                                                          from + copied, to);
1521                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522                                              from + copied, &partial,
1523                                              write_end_fn);
1524                 if (!partial)
1525                         SetPageUptodate(page);
1526         }
1527         size_changed = ext4_update_inode_size(inode, pos + copied);
1528         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530         unlock_page(page);
1531         put_page(page);
1532
1533         if (old_size < pos)
1534                 pagecache_isize_extended(inode, old_size, pos);
1535
1536         if (size_changed || inline_data) {
1537                 ret2 = ext4_mark_inode_dirty(handle, inode);
1538                 if (!ret)
1539                         ret = ret2;
1540         }
1541
1542         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543                 /* if we have allocated more blocks and copied
1544                  * less. We will have blocks allocated outside
1545                  * inode->i_size. So truncate them
1546                  */
1547                 ext4_orphan_add(handle, inode);
1548
1549 errout:
1550         ret2 = ext4_journal_stop(handle);
1551         if (!ret)
1552                 ret = ret2;
1553         if (pos + len > inode->i_size) {
1554                 ext4_truncate_failed_write(inode);
1555                 /*
1556                  * If truncate failed early the inode might still be
1557                  * on the orphan list; we need to make sure the inode
1558                  * is removed from the orphan list in that case.
1559                  */
1560                 if (inode->i_nlink)
1561                         ext4_orphan_del(NULL, inode);
1562         }
1563
1564         return ret ? ret : copied;
1565 }
1566
1567 /*
1568  * Reserve space for a single cluster
1569  */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573         struct ext4_inode_info *ei = EXT4_I(inode);
1574         int ret;
1575
1576         /*
1577          * We will charge metadata quota at writeout time; this saves
1578          * us from metadata over-estimation, though we may go over by
1579          * a small amount in the end.  Here we just reserve for data.
1580          */
1581         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582         if (ret)
1583                 return ret;
1584
1585         spin_lock(&ei->i_block_reservation_lock);
1586         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587                 spin_unlock(&ei->i_block_reservation_lock);
1588                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589                 return -ENOSPC;
1590         }
1591         ei->i_reserved_data_blocks++;
1592         trace_ext4_da_reserve_space(inode);
1593         spin_unlock(&ei->i_block_reservation_lock);
1594
1595         return 0;       /* success */
1596 }
1597
1598 static void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601         struct ext4_inode_info *ei = EXT4_I(inode);
1602
1603         if (!to_free)
1604                 return;         /* Nothing to release, exit */
1605
1606         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607
1608         trace_ext4_da_release_space(inode, to_free);
1609         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610                 /*
1611                  * if there aren't enough reserved blocks, then the
1612                  * counter is messed up somewhere.  Since this
1613                  * function is called from invalidate page, it's
1614                  * harmless to return without any action.
1615                  */
1616                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617                          "ino %lu, to_free %d with only %d reserved "
1618                          "data blocks", inode->i_ino, to_free,
1619                          ei->i_reserved_data_blocks);
1620                 WARN_ON(1);
1621                 to_free = ei->i_reserved_data_blocks;
1622         }
1623         ei->i_reserved_data_blocks -= to_free;
1624
1625         /* update fs dirty data blocks counter */
1626         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627
1628         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629
1630         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632
1633 static void ext4_da_page_release_reservation(struct page *page,
1634                                              unsigned int offset,
1635                                              unsigned int length)
1636 {
1637         int to_release = 0, contiguous_blks = 0;
1638         struct buffer_head *head, *bh;
1639         unsigned int curr_off = 0;
1640         struct inode *inode = page->mapping->host;
1641         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1642         unsigned int stop = offset + length;
1643         int num_clusters;
1644         ext4_fsblk_t lblk;
1645
1646         BUG_ON(stop > PAGE_SIZE || stop < length);
1647
1648         head = page_buffers(page);
1649         bh = head;
1650         do {
1651                 unsigned int next_off = curr_off + bh->b_size;
1652
1653                 if (next_off > stop)
1654                         break;
1655
1656                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1657                         to_release++;
1658                         contiguous_blks++;
1659                         clear_buffer_delay(bh);
1660                 } else if (contiguous_blks) {
1661                         lblk = page->index <<
1662                                (PAGE_SHIFT - inode->i_blkbits);
1663                         lblk += (curr_off >> inode->i_blkbits) -
1664                                 contiguous_blks;
1665                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1666                         contiguous_blks = 0;
1667                 }
1668                 curr_off = next_off;
1669         } while ((bh = bh->b_this_page) != head);
1670
1671         if (contiguous_blks) {
1672                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1673                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1674                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1675         }
1676
1677         /* If we have released all the blocks belonging to a cluster, then we
1678          * need to release the reserved space for that cluster. */
1679         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1680         while (num_clusters > 0) {
1681                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1682                         ((num_clusters - 1) << sbi->s_cluster_bits);
1683                 if (sbi->s_cluster_ratio == 1 ||
1684                     !ext4_find_delalloc_cluster(inode, lblk))
1685                         ext4_da_release_space(inode, 1);
1686
1687                 num_clusters--;
1688         }
1689 }
1690
1691 /*
1692  * Delayed allocation stuff
1693  */
1694
1695 struct mpage_da_data {
1696         struct inode *inode;
1697         struct writeback_control *wbc;
1698
1699         pgoff_t first_page;     /* The first page to write */
1700         pgoff_t next_page;      /* Current page to examine */
1701         pgoff_t last_page;      /* Last page to examine */
1702         /*
1703          * Extent to map - this can be after first_page because that can be
1704          * fully mapped. We somewhat abuse m_flags to store whether the extent
1705          * is delalloc or unwritten.
1706          */
1707         struct ext4_map_blocks map;
1708         struct ext4_io_submit io_submit;        /* IO submission data */
1709         unsigned int do_map:1;
1710 };
1711
1712 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1713                                        bool invalidate)
1714 {
1715         int nr_pages, i;
1716         pgoff_t index, end;
1717         struct pagevec pvec;
1718         struct inode *inode = mpd->inode;
1719         struct address_space *mapping = inode->i_mapping;
1720
1721         /* This is necessary when next_page == 0. */
1722         if (mpd->first_page >= mpd->next_page)
1723                 return;
1724
1725         index = mpd->first_page;
1726         end   = mpd->next_page - 1;
1727         if (invalidate) {
1728                 ext4_lblk_t start, last;
1729                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1730                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1731                 ext4_es_remove_extent(inode, start, last - start + 1);
1732         }
1733
1734         pagevec_init(&pvec);
1735         while (index <= end) {
1736                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1737                 if (nr_pages == 0)
1738                         break;
1739                 for (i = 0; i < nr_pages; i++) {
1740                         struct page *page = pvec.pages[i];
1741
1742                         BUG_ON(!PageLocked(page));
1743                         BUG_ON(PageWriteback(page));
1744                         if (invalidate) {
1745                                 if (page_mapped(page))
1746                                         clear_page_dirty_for_io(page);
1747                                 block_invalidatepage(page, 0, PAGE_SIZE);
1748                                 ClearPageUptodate(page);
1749                         }
1750                         unlock_page(page);
1751                 }
1752                 pagevec_release(&pvec);
1753         }
1754 }
1755
1756 static void ext4_print_free_blocks(struct inode *inode)
1757 {
1758         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1759         struct super_block *sb = inode->i_sb;
1760         struct ext4_inode_info *ei = EXT4_I(inode);
1761
1762         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1763                EXT4_C2B(EXT4_SB(inode->i_sb),
1764                         ext4_count_free_clusters(sb)));
1765         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1766         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1767                (long long) EXT4_C2B(EXT4_SB(sb),
1768                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1769         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1770                (long long) EXT4_C2B(EXT4_SB(sb),
1771                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1772         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1773         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1774                  ei->i_reserved_data_blocks);
1775         return;
1776 }
1777
1778 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1779 {
1780         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1781 }
1782
1783 /*
1784  * This function is grabs code from the very beginning of
1785  * ext4_map_blocks, but assumes that the caller is from delayed write
1786  * time. This function looks up the requested blocks and sets the
1787  * buffer delay bit under the protection of i_data_sem.
1788  */
1789 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1790                               struct ext4_map_blocks *map,
1791                               struct buffer_head *bh)
1792 {
1793         struct extent_status es;
1794         int retval;
1795         sector_t invalid_block = ~((sector_t) 0xffff);
1796 #ifdef ES_AGGRESSIVE_TEST
1797         struct ext4_map_blocks orig_map;
1798
1799         memcpy(&orig_map, map, sizeof(*map));
1800 #endif
1801
1802         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1803                 invalid_block = ~0;
1804
1805         map->m_flags = 0;
1806         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1807                   "logical block %lu\n", inode->i_ino, map->m_len,
1808                   (unsigned long) map->m_lblk);
1809
1810         /* Lookup extent status tree firstly */
1811         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1812                 if (ext4_es_is_hole(&es)) {
1813                         retval = 0;
1814                         down_read(&EXT4_I(inode)->i_data_sem);
1815                         goto add_delayed;
1816                 }
1817
1818                 /*
1819                  * Delayed extent could be allocated by fallocate.
1820                  * So we need to check it.
1821                  */
1822                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1823                         map_bh(bh, inode->i_sb, invalid_block);
1824                         set_buffer_new(bh);
1825                         set_buffer_delay(bh);
1826                         return 0;
1827                 }
1828
1829                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1830                 retval = es.es_len - (iblock - es.es_lblk);
1831                 if (retval > map->m_len)
1832                         retval = map->m_len;
1833                 map->m_len = retval;
1834                 if (ext4_es_is_written(&es))
1835                         map->m_flags |= EXT4_MAP_MAPPED;
1836                 else if (ext4_es_is_unwritten(&es))
1837                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1838                 else
1839                         BUG_ON(1);
1840
1841 #ifdef ES_AGGRESSIVE_TEST
1842                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1843 #endif
1844                 return retval;
1845         }
1846
1847         /*
1848          * Try to see if we can get the block without requesting a new
1849          * file system block.
1850          */
1851         down_read(&EXT4_I(inode)->i_data_sem);
1852         if (ext4_has_inline_data(inode))
1853                 retval = 0;
1854         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1855                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1856         else
1857                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1858
1859 add_delayed:
1860         if (retval == 0) {
1861                 int ret;
1862                 /*
1863                  * XXX: __block_prepare_write() unmaps passed block,
1864                  * is it OK?
1865                  */
1866                 /*
1867                  * If the block was allocated from previously allocated cluster,
1868                  * then we don't need to reserve it again. However we still need
1869                  * to reserve metadata for every block we're going to write.
1870                  */
1871                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1872                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1873                         ret = ext4_da_reserve_space(inode);
1874                         if (ret) {
1875                                 /* not enough space to reserve */
1876                                 retval = ret;
1877                                 goto out_unlock;
1878                         }
1879                 }
1880
1881                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1882                                             ~0, EXTENT_STATUS_DELAYED);
1883                 if (ret) {
1884                         retval = ret;
1885                         goto out_unlock;
1886                 }
1887
1888                 map_bh(bh, inode->i_sb, invalid_block);
1889                 set_buffer_new(bh);
1890                 set_buffer_delay(bh);
1891         } else if (retval > 0) {
1892                 int ret;
1893                 unsigned int status;
1894
1895                 if (unlikely(retval != map->m_len)) {
1896                         ext4_warning(inode->i_sb,
1897                                      "ES len assertion failed for inode "
1898                                      "%lu: retval %d != map->m_len %d",
1899                                      inode->i_ino, retval, map->m_len);
1900                         WARN_ON(1);
1901                 }
1902
1903                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1904                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1905                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1906                                             map->m_pblk, status);
1907                 if (ret != 0)
1908                         retval = ret;
1909         }
1910
1911 out_unlock:
1912         up_read((&EXT4_I(inode)->i_data_sem));
1913
1914         return retval;
1915 }
1916
1917 /*
1918  * This is a special get_block_t callback which is used by
1919  * ext4_da_write_begin().  It will either return mapped block or
1920  * reserve space for a single block.
1921  *
1922  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1923  * We also have b_blocknr = -1 and b_bdev initialized properly
1924  *
1925  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1926  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1927  * initialized properly.
1928  */
1929 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1930                            struct buffer_head *bh, int create)
1931 {
1932         struct ext4_map_blocks map;
1933         int ret = 0;
1934
1935         BUG_ON(create == 0);
1936         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1937
1938         map.m_lblk = iblock;
1939         map.m_len = 1;
1940
1941         /*
1942          * first, we need to know whether the block is allocated already
1943          * preallocated blocks are unmapped but should treated
1944          * the same as allocated blocks.
1945          */
1946         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1947         if (ret <= 0)
1948                 return ret;
1949
1950         map_bh(bh, inode->i_sb, map.m_pblk);
1951         ext4_update_bh_state(bh, map.m_flags);
1952
1953         if (buffer_unwritten(bh)) {
1954                 /* A delayed write to unwritten bh should be marked
1955                  * new and mapped.  Mapped ensures that we don't do
1956                  * get_block multiple times when we write to the same
1957                  * offset and new ensures that we do proper zero out
1958                  * for partial write.
1959                  */
1960                 set_buffer_new(bh);
1961                 set_buffer_mapped(bh);
1962         }
1963         return 0;
1964 }
1965
1966 static int bget_one(handle_t *handle, struct buffer_head *bh)
1967 {
1968         get_bh(bh);
1969         return 0;
1970 }
1971
1972 static int bput_one(handle_t *handle, struct buffer_head *bh)
1973 {
1974         put_bh(bh);
1975         return 0;
1976 }
1977
1978 static int __ext4_journalled_writepage(struct page *page,
1979                                        unsigned int len)
1980 {
1981         struct address_space *mapping = page->mapping;
1982         struct inode *inode = mapping->host;
1983         struct buffer_head *page_bufs = NULL;
1984         handle_t *handle = NULL;
1985         int ret = 0, err = 0;
1986         int inline_data = ext4_has_inline_data(inode);
1987         struct buffer_head *inode_bh = NULL;
1988
1989         ClearPageChecked(page);
1990
1991         if (inline_data) {
1992                 BUG_ON(page->index != 0);
1993                 BUG_ON(len > ext4_get_max_inline_size(inode));
1994                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1995                 if (inode_bh == NULL)
1996                         goto out;
1997         } else {
1998                 page_bufs = page_buffers(page);
1999                 if (!page_bufs) {
2000                         BUG();
2001                         goto out;
2002                 }
2003                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2004                                        NULL, bget_one);
2005         }
2006         /*
2007          * We need to release the page lock before we start the
2008          * journal, so grab a reference so the page won't disappear
2009          * out from under us.
2010          */
2011         get_page(page);
2012         unlock_page(page);
2013
2014         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2015                                     ext4_writepage_trans_blocks(inode));
2016         if (IS_ERR(handle)) {
2017                 ret = PTR_ERR(handle);
2018                 put_page(page);
2019                 goto out_no_pagelock;
2020         }
2021         BUG_ON(!ext4_handle_valid(handle));
2022
2023         lock_page(page);
2024         put_page(page);
2025         if (page->mapping != mapping) {
2026                 /* The page got truncated from under us */
2027                 ext4_journal_stop(handle);
2028                 ret = 0;
2029                 goto out;
2030         }
2031
2032         if (inline_data) {
2033                 ret = ext4_mark_inode_dirty(handle, inode);
2034         } else {
2035                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2036                                              do_journal_get_write_access);
2037
2038                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2039                                              write_end_fn);
2040         }
2041         if (ret == 0)
2042                 ret = err;
2043         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2044         err = ext4_journal_stop(handle);
2045         if (!ret)
2046                 ret = err;
2047
2048         if (!ext4_has_inline_data(inode))
2049                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2050                                        NULL, bput_one);
2051         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2052 out:
2053         unlock_page(page);
2054 out_no_pagelock:
2055         brelse(inode_bh);
2056         return ret;
2057 }
2058
2059 /*
2060  * Note that we don't need to start a transaction unless we're journaling data
2061  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2062  * need to file the inode to the transaction's list in ordered mode because if
2063  * we are writing back data added by write(), the inode is already there and if
2064  * we are writing back data modified via mmap(), no one guarantees in which
2065  * transaction the data will hit the disk. In case we are journaling data, we
2066  * cannot start transaction directly because transaction start ranks above page
2067  * lock so we have to do some magic.
2068  *
2069  * This function can get called via...
2070  *   - ext4_writepages after taking page lock (have journal handle)
2071  *   - journal_submit_inode_data_buffers (no journal handle)
2072  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2073  *   - grab_page_cache when doing write_begin (have journal handle)
2074  *
2075  * We don't do any block allocation in this function. If we have page with
2076  * multiple blocks we need to write those buffer_heads that are mapped. This
2077  * is important for mmaped based write. So if we do with blocksize 1K
2078  * truncate(f, 1024);
2079  * a = mmap(f, 0, 4096);
2080  * a[0] = 'a';
2081  * truncate(f, 4096);
2082  * we have in the page first buffer_head mapped via page_mkwrite call back
2083  * but other buffer_heads would be unmapped but dirty (dirty done via the
2084  * do_wp_page). So writepage should write the first block. If we modify
2085  * the mmap area beyond 1024 we will again get a page_fault and the
2086  * page_mkwrite callback will do the block allocation and mark the
2087  * buffer_heads mapped.
2088  *
2089  * We redirty the page if we have any buffer_heads that is either delay or
2090  * unwritten in the page.
2091  *
2092  * We can get recursively called as show below.
2093  *
2094  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2095  *              ext4_writepage()
2096  *
2097  * But since we don't do any block allocation we should not deadlock.
2098  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2099  */
2100 static int ext4_writepage(struct page *page,
2101                           struct writeback_control *wbc)
2102 {
2103         int ret = 0;
2104         loff_t size;
2105         unsigned int len;
2106         struct buffer_head *page_bufs = NULL;
2107         struct inode *inode = page->mapping->host;
2108         struct ext4_io_submit io_submit;
2109         bool keep_towrite = false;
2110
2111         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2112                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2113                 unlock_page(page);
2114                 return -EIO;
2115         }
2116
2117         trace_ext4_writepage(page);
2118         size = i_size_read(inode);
2119         if (page->index == size >> PAGE_SHIFT)
2120                 len = size & ~PAGE_MASK;
2121         else
2122                 len = PAGE_SIZE;
2123
2124         page_bufs = page_buffers(page);
2125         /*
2126          * We cannot do block allocation or other extent handling in this
2127          * function. If there are buffers needing that, we have to redirty
2128          * the page. But we may reach here when we do a journal commit via
2129          * journal_submit_inode_data_buffers() and in that case we must write
2130          * allocated buffers to achieve data=ordered mode guarantees.
2131          *
2132          * Also, if there is only one buffer per page (the fs block
2133          * size == the page size), if one buffer needs block
2134          * allocation or needs to modify the extent tree to clear the
2135          * unwritten flag, we know that the page can't be written at
2136          * all, so we might as well refuse the write immediately.
2137          * Unfortunately if the block size != page size, we can't as
2138          * easily detect this case using ext4_walk_page_buffers(), but
2139          * for the extremely common case, this is an optimization that
2140          * skips a useless round trip through ext4_bio_write_page().
2141          */
2142         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2143                                    ext4_bh_delay_or_unwritten)) {
2144                 redirty_page_for_writepage(wbc, page);
2145                 if ((current->flags & PF_MEMALLOC) ||
2146                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2147                         /*
2148                          * For memory cleaning there's no point in writing only
2149                          * some buffers. So just bail out. Warn if we came here
2150                          * from direct reclaim.
2151                          */
2152                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2153                                                         == PF_MEMALLOC);
2154                         unlock_page(page);
2155                         return 0;
2156                 }
2157                 keep_towrite = true;
2158         }
2159
2160         if (PageChecked(page) && ext4_should_journal_data(inode))
2161                 /*
2162                  * It's mmapped pagecache.  Add buffers and journal it.  There
2163                  * doesn't seem much point in redirtying the page here.
2164                  */
2165                 return __ext4_journalled_writepage(page, len);
2166
2167         ext4_io_submit_init(&io_submit, wbc);
2168         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2169         if (!io_submit.io_end) {
2170                 redirty_page_for_writepage(wbc, page);
2171                 unlock_page(page);
2172                 return -ENOMEM;
2173         }
2174         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2175         ext4_io_submit(&io_submit);
2176         /* Drop io_end reference we got from init */
2177         ext4_put_io_end_defer(io_submit.io_end);
2178         return ret;
2179 }
2180
2181 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2182 {
2183         int len;
2184         loff_t size;
2185         int err;
2186
2187         BUG_ON(page->index != mpd->first_page);
2188         clear_page_dirty_for_io(page);
2189         /*
2190          * We have to be very careful here!  Nothing protects writeback path
2191          * against i_size changes and the page can be writeably mapped into
2192          * page tables. So an application can be growing i_size and writing
2193          * data through mmap while writeback runs. clear_page_dirty_for_io()
2194          * write-protects our page in page tables and the page cannot get
2195          * written to again until we release page lock. So only after
2196          * clear_page_dirty_for_io() we are safe to sample i_size for
2197          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2198          * on the barrier provided by TestClearPageDirty in
2199          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2200          * after page tables are updated.
2201          */
2202         size = i_size_read(mpd->inode);
2203         if (page->index == size >> PAGE_SHIFT)
2204                 len = size & ~PAGE_MASK;
2205         else
2206                 len = PAGE_SIZE;
2207         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2208         if (!err)
2209                 mpd->wbc->nr_to_write--;
2210         mpd->first_page++;
2211
2212         return err;
2213 }
2214
2215 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2216
2217 /*
2218  * mballoc gives us at most this number of blocks...
2219  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2220  * The rest of mballoc seems to handle chunks up to full group size.
2221  */
2222 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2223
2224 /*
2225  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2226  *
2227  * @mpd - extent of blocks
2228  * @lblk - logical number of the block in the file
2229  * @bh - buffer head we want to add to the extent
2230  *
2231  * The function is used to collect contig. blocks in the same state. If the
2232  * buffer doesn't require mapping for writeback and we haven't started the
2233  * extent of buffers to map yet, the function returns 'true' immediately - the
2234  * caller can write the buffer right away. Otherwise the function returns true
2235  * if the block has been added to the extent, false if the block couldn't be
2236  * added.
2237  */
2238 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2239                                    struct buffer_head *bh)
2240 {
2241         struct ext4_map_blocks *map = &mpd->map;
2242
2243         /* Buffer that doesn't need mapping for writeback? */
2244         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2245             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2246                 /* So far no extent to map => we write the buffer right away */
2247                 if (map->m_len == 0)
2248                         return true;
2249                 return false;
2250         }
2251
2252         /* First block in the extent? */
2253         if (map->m_len == 0) {
2254                 /* We cannot map unless handle is started... */
2255                 if (!mpd->do_map)
2256                         return false;
2257                 map->m_lblk = lblk;
2258                 map->m_len = 1;
2259                 map->m_flags = bh->b_state & BH_FLAGS;
2260                 return true;
2261         }
2262
2263         /* Don't go larger than mballoc is willing to allocate */
2264         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2265                 return false;
2266
2267         /* Can we merge the block to our big extent? */
2268         if (lblk == map->m_lblk + map->m_len &&
2269             (bh->b_state & BH_FLAGS) == map->m_flags) {
2270                 map->m_len++;
2271                 return true;
2272         }
2273         return false;
2274 }
2275
2276 /*
2277  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2278  *
2279  * @mpd - extent of blocks for mapping
2280  * @head - the first buffer in the page
2281  * @bh - buffer we should start processing from
2282  * @lblk - logical number of the block in the file corresponding to @bh
2283  *
2284  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2285  * the page for IO if all buffers in this page were mapped and there's no
2286  * accumulated extent of buffers to map or add buffers in the page to the
2287  * extent of buffers to map. The function returns 1 if the caller can continue
2288  * by processing the next page, 0 if it should stop adding buffers to the
2289  * extent to map because we cannot extend it anymore. It can also return value
2290  * < 0 in case of error during IO submission.
2291  */
2292 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2293                                    struct buffer_head *head,
2294                                    struct buffer_head *bh,
2295                                    ext4_lblk_t lblk)
2296 {
2297         struct inode *inode = mpd->inode;
2298         int err;
2299         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2300                                                         >> inode->i_blkbits;
2301
2302         do {
2303                 BUG_ON(buffer_locked(bh));
2304
2305                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2306                         /* Found extent to map? */
2307                         if (mpd->map.m_len)
2308                                 return 0;
2309                         /* Buffer needs mapping and handle is not started? */
2310                         if (!mpd->do_map)
2311                                 return 0;
2312                         /* Everything mapped so far and we hit EOF */
2313                         break;
2314                 }
2315         } while (lblk++, (bh = bh->b_this_page) != head);
2316         /* So far everything mapped? Submit the page for IO. */
2317         if (mpd->map.m_len == 0) {
2318                 err = mpage_submit_page(mpd, head->b_page);
2319                 if (err < 0)
2320                         return err;
2321         }
2322         return lblk < blocks;
2323 }
2324
2325 /*
2326  * mpage_map_buffers - update buffers corresponding to changed extent and
2327  *                     submit fully mapped pages for IO
2328  *
2329  * @mpd - description of extent to map, on return next extent to map
2330  *
2331  * Scan buffers corresponding to changed extent (we expect corresponding pages
2332  * to be already locked) and update buffer state according to new extent state.
2333  * We map delalloc buffers to their physical location, clear unwritten bits,
2334  * and mark buffers as uninit when we perform writes to unwritten extents
2335  * and do extent conversion after IO is finished. If the last page is not fully
2336  * mapped, we update @map to the next extent in the last page that needs
2337  * mapping. Otherwise we submit the page for IO.
2338  */
2339 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340 {
2341         struct pagevec pvec;
2342         int nr_pages, i;
2343         struct inode *inode = mpd->inode;
2344         struct buffer_head *head, *bh;
2345         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2346         pgoff_t start, end;
2347         ext4_lblk_t lblk;
2348         sector_t pblock;
2349         int err;
2350
2351         start = mpd->map.m_lblk >> bpp_bits;
2352         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353         lblk = start << bpp_bits;
2354         pblock = mpd->map.m_pblk;
2355
2356         pagevec_init(&pvec);
2357         while (start <= end) {
2358                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2359                                                 &start, end);
2360                 if (nr_pages == 0)
2361                         break;
2362                 for (i = 0; i < nr_pages; i++) {
2363                         struct page *page = pvec.pages[i];
2364
2365                         bh = head = page_buffers(page);
2366                         do {
2367                                 if (lblk < mpd->map.m_lblk)
2368                                         continue;
2369                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2370                                         /*
2371                                          * Buffer after end of mapped extent.
2372                                          * Find next buffer in the page to map.
2373                                          */
2374                                         mpd->map.m_len = 0;
2375                                         mpd->map.m_flags = 0;
2376                                         /*
2377                                          * FIXME: If dioread_nolock supports
2378                                          * blocksize < pagesize, we need to make
2379                                          * sure we add size mapped so far to
2380                                          * io_end->size as the following call
2381                                          * can submit the page for IO.
2382                                          */
2383                                         err = mpage_process_page_bufs(mpd, head,
2384                                                                       bh, lblk);
2385                                         pagevec_release(&pvec);
2386                                         if (err > 0)
2387                                                 err = 0;
2388                                         return err;
2389                                 }
2390                                 if (buffer_delay(bh)) {
2391                                         clear_buffer_delay(bh);
2392                                         bh->b_blocknr = pblock++;
2393                                 }
2394                                 clear_buffer_unwritten(bh);
2395                         } while (lblk++, (bh = bh->b_this_page) != head);
2396
2397                         /*
2398                          * FIXME: This is going to break if dioread_nolock
2399                          * supports blocksize < pagesize as we will try to
2400                          * convert potentially unmapped parts of inode.
2401                          */
2402                         mpd->io_submit.io_end->size += PAGE_SIZE;
2403                         /* Page fully mapped - let IO run! */
2404                         err = mpage_submit_page(mpd, page);
2405                         if (err < 0) {
2406                                 pagevec_release(&pvec);
2407                                 return err;
2408                         }
2409                 }
2410                 pagevec_release(&pvec);
2411         }
2412         /* Extent fully mapped and matches with page boundary. We are done. */
2413         mpd->map.m_len = 0;
2414         mpd->map.m_flags = 0;
2415         return 0;
2416 }
2417
2418 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2419 {
2420         struct inode *inode = mpd->inode;
2421         struct ext4_map_blocks *map = &mpd->map;
2422         int get_blocks_flags;
2423         int err, dioread_nolock;
2424
2425         trace_ext4_da_write_pages_extent(inode, map);
2426         /*
2427          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2428          * to convert an unwritten extent to be initialized (in the case
2429          * where we have written into one or more preallocated blocks).  It is
2430          * possible that we're going to need more metadata blocks than
2431          * previously reserved. However we must not fail because we're in
2432          * writeback and there is nothing we can do about it so it might result
2433          * in data loss.  So use reserved blocks to allocate metadata if
2434          * possible.
2435          *
2436          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2437          * the blocks in question are delalloc blocks.  This indicates
2438          * that the blocks and quotas has already been checked when
2439          * the data was copied into the page cache.
2440          */
2441         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2442                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2443                            EXT4_GET_BLOCKS_IO_SUBMIT;
2444         dioread_nolock = ext4_should_dioread_nolock(inode);
2445         if (dioread_nolock)
2446                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2447         if (map->m_flags & (1 << BH_Delay))
2448                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2449
2450         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2451         if (err < 0)
2452                 return err;
2453         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2454                 if (!mpd->io_submit.io_end->handle &&
2455                     ext4_handle_valid(handle)) {
2456                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2457                         handle->h_rsv_handle = NULL;
2458                 }
2459                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2460         }
2461
2462         BUG_ON(map->m_len == 0);
2463         if (map->m_flags & EXT4_MAP_NEW) {
2464                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2465                                    map->m_len);
2466         }
2467         return 0;
2468 }
2469
2470 /*
2471  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2472  *                               mpd->len and submit pages underlying it for IO
2473  *
2474  * @handle - handle for journal operations
2475  * @mpd - extent to map
2476  * @give_up_on_write - we set this to true iff there is a fatal error and there
2477  *                     is no hope of writing the data. The caller should discard
2478  *                     dirty pages to avoid infinite loops.
2479  *
2480  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2481  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2482  * them to initialized or split the described range from larger unwritten
2483  * extent. Note that we need not map all the described range since allocation
2484  * can return less blocks or the range is covered by more unwritten extents. We
2485  * cannot map more because we are limited by reserved transaction credits. On
2486  * the other hand we always make sure that the last touched page is fully
2487  * mapped so that it can be written out (and thus forward progress is
2488  * guaranteed). After mapping we submit all mapped pages for IO.
2489  */
2490 static int mpage_map_and_submit_extent(handle_t *handle,
2491                                        struct mpage_da_data *mpd,
2492                                        bool *give_up_on_write)
2493 {
2494         struct inode *inode = mpd->inode;
2495         struct ext4_map_blocks *map = &mpd->map;
2496         int err;
2497         loff_t disksize;
2498         int progress = 0;
2499
2500         mpd->io_submit.io_end->offset =
2501                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2502         do {
2503                 err = mpage_map_one_extent(handle, mpd);
2504                 if (err < 0) {
2505                         struct super_block *sb = inode->i_sb;
2506
2507                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2508                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2509                                 goto invalidate_dirty_pages;
2510                         /*
2511                          * Let the uper layers retry transient errors.
2512                          * In the case of ENOSPC, if ext4_count_free_blocks()
2513                          * is non-zero, a commit should free up blocks.
2514                          */
2515                         if ((err == -ENOMEM) ||
2516                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2517                                 if (progress)
2518                                         goto update_disksize;
2519                                 return err;
2520                         }
2521                         ext4_msg(sb, KERN_CRIT,
2522                                  "Delayed block allocation failed for "
2523                                  "inode %lu at logical offset %llu with"
2524                                  " max blocks %u with error %d",
2525                                  inode->i_ino,
2526                                  (unsigned long long)map->m_lblk,
2527                                  (unsigned)map->m_len, -err);
2528                         ext4_msg(sb, KERN_CRIT,
2529                                  "This should not happen!! Data will "
2530                                  "be lost\n");
2531                         if (err == -ENOSPC)
2532                                 ext4_print_free_blocks(inode);
2533                 invalidate_dirty_pages:
2534                         *give_up_on_write = true;
2535                         return err;
2536                 }
2537                 progress = 1;
2538                 /*
2539                  * Update buffer state, submit mapped pages, and get us new
2540                  * extent to map
2541                  */
2542                 err = mpage_map_and_submit_buffers(mpd);
2543                 if (err < 0)
2544                         goto update_disksize;
2545         } while (map->m_len);
2546
2547 update_disksize:
2548         /*
2549          * Update on-disk size after IO is submitted.  Races with
2550          * truncate are avoided by checking i_size under i_data_sem.
2551          */
2552         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2553         if (disksize > EXT4_I(inode)->i_disksize) {
2554                 int err2;
2555                 loff_t i_size;
2556
2557                 down_write(&EXT4_I(inode)->i_data_sem);
2558                 i_size = i_size_read(inode);
2559                 if (disksize > i_size)
2560                         disksize = i_size;
2561                 if (disksize > EXT4_I(inode)->i_disksize)
2562                         EXT4_I(inode)->i_disksize = disksize;
2563                 up_write(&EXT4_I(inode)->i_data_sem);
2564                 err2 = ext4_mark_inode_dirty(handle, inode);
2565                 if (err2)
2566                         ext4_error(inode->i_sb,
2567                                    "Failed to mark inode %lu dirty",
2568                                    inode->i_ino);
2569                 if (!err)
2570                         err = err2;
2571         }
2572         return err;
2573 }
2574
2575 /*
2576  * Calculate the total number of credits to reserve for one writepages
2577  * iteration. This is called from ext4_writepages(). We map an extent of
2578  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2579  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2580  * bpp - 1 blocks in bpp different extents.
2581  */
2582 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2583 {
2584         int bpp = ext4_journal_blocks_per_page(inode);
2585
2586         return ext4_meta_trans_blocks(inode,
2587                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2588 }
2589
2590 /*
2591  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2592  *                               and underlying extent to map
2593  *
2594  * @mpd - where to look for pages
2595  *
2596  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2597  * IO immediately. When we find a page which isn't mapped we start accumulating
2598  * extent of buffers underlying these pages that needs mapping (formed by
2599  * either delayed or unwritten buffers). We also lock the pages containing
2600  * these buffers. The extent found is returned in @mpd structure (starting at
2601  * mpd->lblk with length mpd->len blocks).
2602  *
2603  * Note that this function can attach bios to one io_end structure which are
2604  * neither logically nor physically contiguous. Although it may seem as an
2605  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2606  * case as we need to track IO to all buffers underlying a page in one io_end.
2607  */
2608 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2609 {
2610         struct address_space *mapping = mpd->inode->i_mapping;
2611         struct pagevec pvec;
2612         unsigned int nr_pages;
2613         long left = mpd->wbc->nr_to_write;
2614         pgoff_t index = mpd->first_page;
2615         pgoff_t end = mpd->last_page;
2616         int tag;
2617         int i, err = 0;
2618         int blkbits = mpd->inode->i_blkbits;
2619         ext4_lblk_t lblk;
2620         struct buffer_head *head;
2621
2622         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2623                 tag = PAGECACHE_TAG_TOWRITE;
2624         else
2625                 tag = PAGECACHE_TAG_DIRTY;
2626
2627         pagevec_init(&pvec);
2628         mpd->map.m_len = 0;
2629         mpd->next_page = index;
2630         while (index <= end) {
2631                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2632                                 tag);
2633                 if (nr_pages == 0)
2634                         goto out;
2635
2636                 for (i = 0; i < nr_pages; i++) {
2637                         struct page *page = pvec.pages[i];
2638
2639                         /*
2640                          * Accumulated enough dirty pages? This doesn't apply
2641                          * to WB_SYNC_ALL mode. For integrity sync we have to
2642                          * keep going because someone may be concurrently
2643                          * dirtying pages, and we might have synced a lot of
2644                          * newly appeared dirty pages, but have not synced all
2645                          * of the old dirty pages.
2646                          */
2647                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2648                                 goto out;
2649
2650                         /* If we can't merge this page, we are done. */
2651                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2652                                 goto out;
2653
2654                         lock_page(page);
2655                         /*
2656                          * If the page is no longer dirty, or its mapping no
2657                          * longer corresponds to inode we are writing (which
2658                          * means it has been truncated or invalidated), or the
2659                          * page is already under writeback and we are not doing
2660                          * a data integrity writeback, skip the page
2661                          */
2662                         if (!PageDirty(page) ||
2663                             (PageWriteback(page) &&
2664                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2665                             unlikely(page->mapping != mapping)) {
2666                                 unlock_page(page);
2667                                 continue;
2668                         }
2669
2670                         wait_on_page_writeback(page);
2671                         BUG_ON(PageWriteback(page));
2672
2673                         if (mpd->map.m_len == 0)
2674                                 mpd->first_page = page->index;
2675                         mpd->next_page = page->index + 1;
2676                         /* Add all dirty buffers to mpd */
2677                         lblk = ((ext4_lblk_t)page->index) <<
2678                                 (PAGE_SHIFT - blkbits);
2679                         head = page_buffers(page);
2680                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2681                         if (err <= 0)
2682                                 goto out;
2683                         err = 0;
2684                         left--;
2685                 }
2686                 pagevec_release(&pvec);
2687                 cond_resched();
2688         }
2689         return 0;
2690 out:
2691         pagevec_release(&pvec);
2692         return err;
2693 }
2694
2695 static int ext4_writepages(struct address_space *mapping,
2696                            struct writeback_control *wbc)
2697 {
2698         pgoff_t writeback_index = 0;
2699         long nr_to_write = wbc->nr_to_write;
2700         int range_whole = 0;
2701         int cycled = 1;
2702         handle_t *handle = NULL;
2703         struct mpage_da_data mpd;
2704         struct inode *inode = mapping->host;
2705         int needed_blocks, rsv_blocks = 0, ret = 0;
2706         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2707         bool done;
2708         struct blk_plug plug;
2709         bool give_up_on_write = false;
2710
2711         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2712                 return -EIO;
2713
2714         percpu_down_read(&sbi->s_journal_flag_rwsem);
2715         trace_ext4_writepages(inode, wbc);
2716
2717         /*
2718          * No pages to write? This is mainly a kludge to avoid starting
2719          * a transaction for special inodes like journal inode on last iput()
2720          * because that could violate lock ordering on umount
2721          */
2722         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2723                 goto out_writepages;
2724
2725         if (ext4_should_journal_data(inode)) {
2726                 ret = generic_writepages(mapping, wbc);
2727                 goto out_writepages;
2728         }
2729
2730         /*
2731          * If the filesystem has aborted, it is read-only, so return
2732          * right away instead of dumping stack traces later on that
2733          * will obscure the real source of the problem.  We test
2734          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2735          * the latter could be true if the filesystem is mounted
2736          * read-only, and in that case, ext4_writepages should
2737          * *never* be called, so if that ever happens, we would want
2738          * the stack trace.
2739          */
2740         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2741                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2742                 ret = -EROFS;
2743                 goto out_writepages;
2744         }
2745
2746         if (ext4_should_dioread_nolock(inode)) {
2747                 /*
2748                  * We may need to convert up to one extent per block in
2749                  * the page and we may dirty the inode.
2750                  */
2751                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2752         }
2753
2754         /*
2755          * If we have inline data and arrive here, it means that
2756          * we will soon create the block for the 1st page, so
2757          * we'd better clear the inline data here.
2758          */
2759         if (ext4_has_inline_data(inode)) {
2760                 /* Just inode will be modified... */
2761                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2762                 if (IS_ERR(handle)) {
2763                         ret = PTR_ERR(handle);
2764                         goto out_writepages;
2765                 }
2766                 BUG_ON(ext4_test_inode_state(inode,
2767                                 EXT4_STATE_MAY_INLINE_DATA));
2768                 ext4_destroy_inline_data(handle, inode);
2769                 ext4_journal_stop(handle);
2770         }
2771
2772         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2773                 range_whole = 1;
2774
2775         if (wbc->range_cyclic) {
2776                 writeback_index = mapping->writeback_index;
2777                 if (writeback_index)
2778                         cycled = 0;
2779                 mpd.first_page = writeback_index;
2780                 mpd.last_page = -1;
2781         } else {
2782                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2783                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2784         }
2785
2786         mpd.inode = inode;
2787         mpd.wbc = wbc;
2788         ext4_io_submit_init(&mpd.io_submit, wbc);
2789 retry:
2790         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2791                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2792         done = false;
2793         blk_start_plug(&plug);
2794
2795         /*
2796          * First writeback pages that don't need mapping - we can avoid
2797          * starting a transaction unnecessarily and also avoid being blocked
2798          * in the block layer on device congestion while having transaction
2799          * started.
2800          */
2801         mpd.do_map = 0;
2802         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803         if (!mpd.io_submit.io_end) {
2804                 ret = -ENOMEM;
2805                 goto unplug;
2806         }
2807         ret = mpage_prepare_extent_to_map(&mpd);
2808         /* Submit prepared bio */
2809         ext4_io_submit(&mpd.io_submit);
2810         ext4_put_io_end_defer(mpd.io_submit.io_end);
2811         mpd.io_submit.io_end = NULL;
2812         /* Unlock pages we didn't use */
2813         mpage_release_unused_pages(&mpd, false);
2814         if (ret < 0)
2815                 goto unplug;
2816
2817         while (!done && mpd.first_page <= mpd.last_page) {
2818                 /* For each extent of pages we use new io_end */
2819                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2820                 if (!mpd.io_submit.io_end) {
2821                         ret = -ENOMEM;
2822                         break;
2823                 }
2824
2825                 /*
2826                  * We have two constraints: We find one extent to map and we
2827                  * must always write out whole page (makes a difference when
2828                  * blocksize < pagesize) so that we don't block on IO when we
2829                  * try to write out the rest of the page. Journalled mode is
2830                  * not supported by delalloc.
2831                  */
2832                 BUG_ON(ext4_should_journal_data(inode));
2833                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2834
2835                 /* start a new transaction */
2836                 handle = ext4_journal_start_with_reserve(inode,
2837                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2838                 if (IS_ERR(handle)) {
2839                         ret = PTR_ERR(handle);
2840                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2841                                "%ld pages, ino %lu; err %d", __func__,
2842                                 wbc->nr_to_write, inode->i_ino, ret);
2843                         /* Release allocated io_end */
2844                         ext4_put_io_end(mpd.io_submit.io_end);
2845                         mpd.io_submit.io_end = NULL;
2846                         break;
2847                 }
2848                 mpd.do_map = 1;
2849
2850                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2851                 ret = mpage_prepare_extent_to_map(&mpd);
2852                 if (!ret) {
2853                         if (mpd.map.m_len)
2854                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2855                                         &give_up_on_write);
2856                         else {
2857                                 /*
2858                                  * We scanned the whole range (or exhausted
2859                                  * nr_to_write), submitted what was mapped and
2860                                  * didn't find anything needing mapping. We are
2861                                  * done.
2862                                  */
2863                                 done = true;
2864                         }
2865                 }
2866                 /*
2867                  * Caution: If the handle is synchronous,
2868                  * ext4_journal_stop() can wait for transaction commit
2869                  * to finish which may depend on writeback of pages to
2870                  * complete or on page lock to be released.  In that
2871                  * case, we have to wait until after after we have
2872                  * submitted all the IO, released page locks we hold,
2873                  * and dropped io_end reference (for extent conversion
2874                  * to be able to complete) before stopping the handle.
2875                  */
2876                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2877                         ext4_journal_stop(handle);
2878                         handle = NULL;
2879                         mpd.do_map = 0;
2880                 }
2881                 /* Submit prepared bio */
2882                 ext4_io_submit(&mpd.io_submit);
2883                 /* Unlock pages we didn't use */
2884                 mpage_release_unused_pages(&mpd, give_up_on_write);
2885                 /*
2886                  * Drop our io_end reference we got from init. We have
2887                  * to be careful and use deferred io_end finishing if
2888                  * we are still holding the transaction as we can
2889                  * release the last reference to io_end which may end
2890                  * up doing unwritten extent conversion.
2891                  */
2892                 if (handle) {
2893                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2894                         ext4_journal_stop(handle);
2895                 } else
2896                         ext4_put_io_end(mpd.io_submit.io_end);
2897                 mpd.io_submit.io_end = NULL;
2898
2899                 if (ret == -ENOSPC && sbi->s_journal) {
2900                         /*
2901                          * Commit the transaction which would
2902                          * free blocks released in the transaction
2903                          * and try again
2904                          */
2905                         jbd2_journal_force_commit_nested(sbi->s_journal);
2906                         ret = 0;
2907                         continue;
2908                 }
2909                 /* Fatal error - ENOMEM, EIO... */
2910                 if (ret)
2911                         break;
2912         }
2913 unplug:
2914         blk_finish_plug(&plug);
2915         if (!ret && !cycled && wbc->nr_to_write > 0) {
2916                 cycled = 1;
2917                 mpd.last_page = writeback_index - 1;
2918                 mpd.first_page = 0;
2919                 goto retry;
2920         }
2921
2922         /* Update index */
2923         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2924                 /*
2925                  * Set the writeback_index so that range_cyclic
2926                  * mode will write it back later
2927                  */
2928                 mapping->writeback_index = mpd.first_page;
2929
2930 out_writepages:
2931         trace_ext4_writepages_result(inode, wbc, ret,
2932                                      nr_to_write - wbc->nr_to_write);
2933         percpu_up_read(&sbi->s_journal_flag_rwsem);
2934         return ret;
2935 }
2936
2937 static int ext4_dax_writepages(struct address_space *mapping,
2938                                struct writeback_control *wbc)
2939 {
2940         int ret;
2941         long nr_to_write = wbc->nr_to_write;
2942         struct inode *inode = mapping->host;
2943         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2944
2945         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2946                 return -EIO;
2947
2948         percpu_down_read(&sbi->s_journal_flag_rwsem);
2949         trace_ext4_writepages(inode, wbc);
2950
2951         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2952         trace_ext4_writepages_result(inode, wbc, ret,
2953                                      nr_to_write - wbc->nr_to_write);
2954         percpu_up_read(&sbi->s_journal_flag_rwsem);
2955         return ret;
2956 }
2957
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960         s64 free_clusters, dirty_clusters;
2961         struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963         /*
2964          * switch to non delalloc mode if we are running low
2965          * on free block. The free block accounting via percpu
2966          * counters can get slightly wrong with percpu_counter_batch getting
2967          * accumulated on each CPU without updating global counters
2968          * Delalloc need an accurate free block accounting. So switch
2969          * to non delalloc when we are near to error range.
2970          */
2971         free_clusters =
2972                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973         dirty_clusters =
2974                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975         /*
2976          * Start pushing delalloc when 1/2 of free blocks are dirty.
2977          */
2978         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981         if (2 * free_clusters < 3 * dirty_clusters ||
2982             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983                 /*
2984                  * free block count is less than 150% of dirty blocks
2985                  * or free blocks is less than watermark
2986                  */
2987                 return 1;
2988         }
2989         return 0;
2990 }
2991
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 {
2995         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996                 return 1;
2997
2998         if (pos + len <= 0x7fffffffULL)
2999                 return 1;
3000
3001         /* We might need to update the superblock to set LARGE_FILE */
3002         return 2;
3003 }
3004
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006                                loff_t pos, unsigned len, unsigned flags,
3007                                struct page **pagep, void **fsdata)
3008 {
3009         int ret, retries = 0;
3010         struct page *page;
3011         pgoff_t index;
3012         struct inode *inode = mapping->host;
3013         handle_t *handle;
3014
3015         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016                 return -EIO;
3017
3018         index = pos >> PAGE_SHIFT;
3019
3020         if (ext4_nonda_switch(inode->i_sb) ||
3021             S_ISLNK(inode->i_mode)) {
3022                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023                 return ext4_write_begin(file, mapping, pos,
3024                                         len, flags, pagep, fsdata);
3025         }
3026         *fsdata = (void *)0;
3027         trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031                                                       pos, len, flags,
3032                                                       pagep, fsdata);
3033                 if (ret < 0)
3034                         return ret;
3035                 if (ret == 1)
3036                         return 0;
3037         }
3038
3039         /*
3040          * grab_cache_page_write_begin() can take a long time if the
3041          * system is thrashing due to memory pressure, or if the page
3042          * is being written back.  So grab it first before we start
3043          * the transaction handle.  This also allows us to allocate
3044          * the page (if needed) without using GFP_NOFS.
3045          */
3046 retry_grab:
3047         page = grab_cache_page_write_begin(mapping, index, flags);
3048         if (!page)
3049                 return -ENOMEM;
3050         unlock_page(page);
3051
3052         /*
3053          * With delayed allocation, we don't log the i_disksize update
3054          * if there is delayed block allocation. But we still need
3055          * to journalling the i_disksize update if writes to the end
3056          * of file which has an already mapped buffer.
3057          */
3058 retry_journal:
3059         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060                                 ext4_da_write_credits(inode, pos, len));
3061         if (IS_ERR(handle)) {
3062                 put_page(page);
3063                 return PTR_ERR(handle);
3064         }
3065
3066         lock_page(page);
3067         if (page->mapping != mapping) {
3068                 /* The page got truncated from under us */
3069                 unlock_page(page);
3070                 put_page(page);
3071                 ext4_journal_stop(handle);
3072                 goto retry_grab;
3073         }
3074         /* In case writeback began while the page was unlocked */
3075         wait_for_stable_page(page);
3076
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078         ret = ext4_block_write_begin(page, pos, len,
3079                                      ext4_da_get_block_prep);
3080 #else
3081         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083         if (ret < 0) {
3084                 unlock_page(page);
3085                 ext4_journal_stop(handle);
3086                 /*
3087                  * block_write_begin may have instantiated a few blocks
3088                  * outside i_size.  Trim these off again. Don't need
3089                  * i_size_read because we hold i_mutex.
3090                  */
3091                 if (pos + len > inode->i_size)
3092                         ext4_truncate_failed_write(inode);
3093
3094                 if (ret == -ENOSPC &&
3095                     ext4_should_retry_alloc(inode->i_sb, &retries))
3096                         goto retry_journal;
3097
3098                 put_page(page);
3099                 return ret;
3100         }
3101
3102         *pagep = page;
3103         return ret;
3104 }
3105
3106 /*
3107  * Check if we should update i_disksize
3108  * when write to the end of file but not require block allocation
3109  */
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111                                             unsigned long offset)
3112 {
3113         struct buffer_head *bh;
3114         struct inode *inode = page->mapping->host;
3115         unsigned int idx;
3116         int i;
3117
3118         bh = page_buffers(page);
3119         idx = offset >> inode->i_blkbits;
3120
3121         for (i = 0; i < idx; i++)
3122                 bh = bh->b_this_page;
3123
3124         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125                 return 0;
3126         return 1;
3127 }
3128
3129 static int ext4_da_write_end(struct file *file,
3130                              struct address_space *mapping,
3131                              loff_t pos, unsigned len, unsigned copied,
3132                              struct page *page, void *fsdata)
3133 {
3134         struct inode *inode = mapping->host;
3135         int ret = 0, ret2;
3136         handle_t *handle = ext4_journal_current_handle();
3137         loff_t new_i_size;
3138         unsigned long start, end;
3139         int write_mode = (int)(unsigned long)fsdata;
3140
3141         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142                 return ext4_write_end(file, mapping, pos,
3143                                       len, copied, page, fsdata);
3144
3145         trace_ext4_da_write_end(inode, pos, len, copied);
3146         start = pos & (PAGE_SIZE - 1);
3147         end = start + copied - 1;
3148
3149         /*
3150          * generic_write_end() will run mark_inode_dirty() if i_size
3151          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3152          * into that.
3153          */
3154         new_i_size = pos + copied;
3155         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156                 if (ext4_has_inline_data(inode) ||
3157                     ext4_da_should_update_i_disksize(page, end)) {
3158                         ext4_update_i_disksize(inode, new_i_size);
3159                         /* We need to mark inode dirty even if
3160                          * new_i_size is less that inode->i_size
3161                          * bu greater than i_disksize.(hint delalloc)
3162                          */
3163                         ext4_mark_inode_dirty(handle, inode);
3164                 }
3165         }
3166
3167         if (write_mode != CONVERT_INLINE_DATA &&
3168             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169             ext4_has_inline_data(inode))
3170                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171                                                      page);
3172         else
3173                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174                                                         page, fsdata);
3175
3176         copied = ret2;
3177         if (ret2 < 0)
3178                 ret = ret2;
3179         ret2 = ext4_journal_stop(handle);
3180         if (!ret)
3181                 ret = ret2;
3182
3183         return ret ? ret : copied;
3184 }
3185
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187                                    unsigned int length)
3188 {
3189         /*
3190          * Drop reserved blocks
3191          */
3192         BUG_ON(!PageLocked(page));
3193         if (!page_has_buffers(page))
3194                 goto out;
3195
3196         ext4_da_page_release_reservation(page, offset, length);
3197
3198 out:
3199         ext4_invalidatepage(page, offset, length);
3200
3201         return;
3202 }
3203
3204 /*
3205  * Force all delayed allocation blocks to be allocated for a given inode.
3206  */
3207 int ext4_alloc_da_blocks(struct inode *inode)
3208 {
3209         trace_ext4_alloc_da_blocks(inode);
3210
3211         if (!EXT4_I(inode)->i_reserved_data_blocks)
3212                 return 0;
3213
3214         /*
3215          * We do something simple for now.  The filemap_flush() will
3216          * also start triggering a write of the data blocks, which is
3217          * not strictly speaking necessary (and for users of
3218          * laptop_mode, not even desirable).  However, to do otherwise
3219          * would require replicating code paths in:
3220          *
3221          * ext4_writepages() ->
3222          *    write_cache_pages() ---> (via passed in callback function)
3223          *        __mpage_da_writepage() -->
3224          *           mpage_add_bh_to_extent()
3225          *           mpage_da_map_blocks()
3226          *
3227          * The problem is that write_cache_pages(), located in
3228          * mm/page-writeback.c, marks pages clean in preparation for
3229          * doing I/O, which is not desirable if we're not planning on
3230          * doing I/O at all.
3231          *
3232          * We could call write_cache_pages(), and then redirty all of
3233          * the pages by calling redirty_page_for_writepage() but that
3234          * would be ugly in the extreme.  So instead we would need to
3235          * replicate parts of the code in the above functions,
3236          * simplifying them because we wouldn't actually intend to
3237          * write out the pages, but rather only collect contiguous
3238          * logical block extents, call the multi-block allocator, and
3239          * then update the buffer heads with the block allocations.
3240          *
3241          * For now, though, we'll cheat by calling filemap_flush(),
3242          * which will map the blocks, and start the I/O, but not
3243          * actually wait for the I/O to complete.
3244          */
3245         return filemap_flush(inode->i_mapping);
3246 }
3247
3248 /*
3249  * bmap() is special.  It gets used by applications such as lilo and by
3250  * the swapper to find the on-disk block of a specific piece of data.
3251  *
3252  * Naturally, this is dangerous if the block concerned is still in the
3253  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3254  * filesystem and enables swap, then they may get a nasty shock when the
3255  * data getting swapped to that swapfile suddenly gets overwritten by
3256  * the original zero's written out previously to the journal and
3257  * awaiting writeback in the kernel's buffer cache.
3258  *
3259  * So, if we see any bmap calls here on a modified, data-journaled file,
3260  * take extra steps to flush any blocks which might be in the cache.
3261  */
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 {
3264         struct inode *inode = mapping->host;
3265         journal_t *journal;
3266         int err;
3267
3268         /*
3269          * We can get here for an inline file via the FIBMAP ioctl
3270          */
3271         if (ext4_has_inline_data(inode))
3272                 return 0;
3273
3274         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275                         test_opt(inode->i_sb, DELALLOC)) {
3276                 /*
3277                  * With delalloc we want to sync the file
3278                  * so that we can make sure we allocate
3279                  * blocks for file
3280                  */
3281                 filemap_write_and_wait(mapping);
3282         }
3283
3284         if (EXT4_JOURNAL(inode) &&
3285             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286                 /*
3287                  * This is a REALLY heavyweight approach, but the use of
3288                  * bmap on dirty files is expected to be extremely rare:
3289                  * only if we run lilo or swapon on a freshly made file
3290                  * do we expect this to happen.
3291                  *
3292                  * (bmap requires CAP_SYS_RAWIO so this does not
3293                  * represent an unprivileged user DOS attack --- we'd be
3294                  * in trouble if mortal users could trigger this path at
3295                  * will.)
3296                  *
3297                  * NB. EXT4_STATE_JDATA is not set on files other than
3298                  * regular files.  If somebody wants to bmap a directory
3299                  * or symlink and gets confused because the buffer
3300                  * hasn't yet been flushed to disk, they deserve
3301                  * everything they get.
3302                  */
3303
3304                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305                 journal = EXT4_JOURNAL(inode);
3306                 jbd2_journal_lock_updates(journal);
3307                 err = jbd2_journal_flush(journal);
3308                 jbd2_journal_unlock_updates(journal);
3309
3310                 if (err)
3311                         return 0;
3312         }
3313
3314         return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319         int ret = -EAGAIN;
3320         struct inode *inode = page->mapping->host;
3321
3322         trace_ext4_readpage(page);
3323
3324         if (ext4_has_inline_data(inode))
3325                 ret = ext4_readpage_inline(inode, page);
3326
3327         if (ret == -EAGAIN)
3328                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330         return ret;
3331 }
3332
3333 static int
3334 ext4_readpages(struct file *file, struct address_space *mapping,
3335                 struct list_head *pages, unsigned nr_pages)
3336 {
3337         struct inode *inode = mapping->host;
3338
3339         /* If the file has inline data, no need to do readpages. */
3340         if (ext4_has_inline_data(inode))
3341                 return 0;
3342
3343         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344 }
3345
3346 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347                                 unsigned int length)
3348 {
3349         trace_ext4_invalidatepage(page, offset, length);
3350
3351         /* No journalling happens on data buffers when this function is used */
3352         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354         block_invalidatepage(page, offset, length);
3355 }
3356
3357 static int __ext4_journalled_invalidatepage(struct page *page,
3358                                             unsigned int offset,
3359                                             unsigned int length)
3360 {
3361         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363         trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365         /*
3366          * If it's a full truncate we just forget about the pending dirtying
3367          */
3368         if (offset == 0 && length == PAGE_SIZE)
3369                 ClearPageChecked(page);
3370
3371         return jbd2_journal_invalidatepage(journal, page, offset, length);
3372 }
3373
3374 /* Wrapper for aops... */
3375 static void ext4_journalled_invalidatepage(struct page *page,
3376                                            unsigned int offset,
3377                                            unsigned int length)
3378 {
3379         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380 }
3381
3382 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 {
3384         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386         trace_ext4_releasepage(page);
3387
3388         /* Page has dirty journalled data -> cannot release */
3389         if (PageChecked(page))
3390                 return 0;
3391         if (journal)
3392                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393         else
3394                 return try_to_free_buffers(page);
3395 }
3396
3397 static bool ext4_inode_datasync_dirty(struct inode *inode)
3398 {
3399         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3400
3401         if (journal)
3402                 return !jbd2_transaction_committed(journal,
3403                                         EXT4_I(inode)->i_datasync_tid);
3404         /* Any metadata buffers to write? */
3405         if (!list_empty(&inode->i_mapping->private_list))
3406                 return true;
3407         return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409
3410 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3411                             unsigned flags, struct iomap *iomap)
3412 {
3413         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414         unsigned int blkbits = inode->i_blkbits;
3415         unsigned long first_block = offset >> blkbits;
3416         unsigned long last_block = (offset + length - 1) >> blkbits;
3417         struct ext4_map_blocks map;
3418         bool delalloc = false;
3419         int ret;
3420
3421
3422         if (flags & IOMAP_REPORT) {
3423                 if (ext4_has_inline_data(inode)) {
3424                         ret = ext4_inline_data_iomap(inode, iomap);
3425                         if (ret != -EAGAIN) {
3426                                 if (ret == 0 && offset >= iomap->length)
3427                                         ret = -ENOENT;
3428                                 return ret;
3429                         }
3430                 }
3431         } else {
3432                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3433                         return -ERANGE;
3434         }
3435
3436         map.m_lblk = first_block;
3437         map.m_len = last_block - first_block + 1;
3438
3439         if (flags & IOMAP_REPORT) {
3440                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3441                 if (ret < 0)
3442                         return ret;
3443
3444                 if (ret == 0) {
3445                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3446                         struct extent_status es;
3447
3448                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3449
3450                         if (!es.es_len || es.es_lblk > end) {
3451                                 /* entire range is a hole */
3452                         } else if (es.es_lblk > map.m_lblk) {
3453                                 /* range starts with a hole */
3454                                 map.m_len = es.es_lblk - map.m_lblk;
3455                         } else {
3456                                 ext4_lblk_t offs = 0;
3457
3458                                 if (es.es_lblk < map.m_lblk)
3459                                         offs = map.m_lblk - es.es_lblk;
3460                                 map.m_lblk = es.es_lblk + offs;
3461                                 map.m_len = es.es_len - offs;
3462                                 delalloc = true;
3463                         }
3464                 }
3465         } else if (flags & IOMAP_WRITE) {
3466                 int dio_credits;
3467                 handle_t *handle;
3468                 int retries = 0;
3469
3470                 /* Trim mapping request to maximum we can map at once for DIO */
3471                 if (map.m_len > DIO_MAX_BLOCKS)
3472                         map.m_len = DIO_MAX_BLOCKS;
3473                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3474 retry:
3475                 /*
3476                  * Either we allocate blocks and then we don't get unwritten
3477                  * extent so we have reserved enough credits, or the blocks
3478                  * are already allocated and unwritten and in that case
3479                  * extent conversion fits in the credits as well.
3480                  */
3481                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3482                                             dio_credits);
3483                 if (IS_ERR(handle))
3484                         return PTR_ERR(handle);
3485
3486                 ret = ext4_map_blocks(handle, inode, &map,
3487                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3488                 if (ret < 0) {
3489                         ext4_journal_stop(handle);
3490                         if (ret == -ENOSPC &&
3491                             ext4_should_retry_alloc(inode->i_sb, &retries))
3492                                 goto retry;
3493                         return ret;
3494                 }
3495
3496                 /*
3497                  * If we added blocks beyond i_size, we need to make sure they
3498                  * will get truncated if we crash before updating i_size in
3499                  * ext4_iomap_end(). For faults we don't need to do that (and
3500                  * even cannot because for orphan list operations inode_lock is
3501                  * required) - if we happen to instantiate block beyond i_size,
3502                  * it is because we race with truncate which has already added
3503                  * the inode to the orphan list.
3504                  */
3505                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3506                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3507                         int err;
3508
3509                         err = ext4_orphan_add(handle, inode);
3510                         if (err < 0) {
3511                                 ext4_journal_stop(handle);
3512                                 return err;
3513                         }
3514                 }
3515                 ext4_journal_stop(handle);
3516         } else {
3517                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3518                 if (ret < 0)
3519                         return ret;
3520         }
3521
3522         iomap->flags = 0;
3523         if (ext4_inode_datasync_dirty(inode))
3524                 iomap->flags |= IOMAP_F_DIRTY;
3525         iomap->bdev = inode->i_sb->s_bdev;
3526         iomap->dax_dev = sbi->s_daxdev;
3527         iomap->offset = (u64)first_block << blkbits;
3528         iomap->length = (u64)map.m_len << blkbits;
3529
3530         if (ret == 0) {
3531                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3532                 iomap->addr = IOMAP_NULL_ADDR;
3533         } else {
3534                 if (map.m_flags & EXT4_MAP_MAPPED) {
3535                         iomap->type = IOMAP_MAPPED;
3536                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3537                         iomap->type = IOMAP_UNWRITTEN;
3538                 } else {
3539                         WARN_ON_ONCE(1);
3540                         return -EIO;
3541                 }
3542                 iomap->addr = (u64)map.m_pblk << blkbits;
3543         }
3544
3545         if (map.m_flags & EXT4_MAP_NEW)
3546                 iomap->flags |= IOMAP_F_NEW;
3547
3548         return 0;
3549 }
3550
3551 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3552                           ssize_t written, unsigned flags, struct iomap *iomap)
3553 {
3554         int ret = 0;
3555         handle_t *handle;
3556         int blkbits = inode->i_blkbits;
3557         bool truncate = false;
3558
3559         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3560                 return 0;
3561
3562         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3563         if (IS_ERR(handle)) {
3564                 ret = PTR_ERR(handle);
3565                 goto orphan_del;
3566         }
3567         if (ext4_update_inode_size(inode, offset + written))
3568                 ext4_mark_inode_dirty(handle, inode);
3569         /*
3570          * We may need to truncate allocated but not written blocks beyond EOF.
3571          */
3572         if (iomap->offset + iomap->length > 
3573             ALIGN(inode->i_size, 1 << blkbits)) {
3574                 ext4_lblk_t written_blk, end_blk;
3575
3576                 written_blk = (offset + written) >> blkbits;
3577                 end_blk = (offset + length) >> blkbits;
3578                 if (written_blk < end_blk && ext4_can_truncate(inode))
3579                         truncate = true;
3580         }
3581         /*
3582          * Remove inode from orphan list if we were extending a inode and
3583          * everything went fine.
3584          */
3585         if (!truncate && inode->i_nlink &&
3586             !list_empty(&EXT4_I(inode)->i_orphan))
3587                 ext4_orphan_del(handle, inode);
3588         ext4_journal_stop(handle);
3589         if (truncate) {
3590                 ext4_truncate_failed_write(inode);
3591 orphan_del:
3592                 /*
3593                  * If truncate failed early the inode might still be on the
3594                  * orphan list; we need to make sure the inode is removed from
3595                  * the orphan list in that case.
3596                  */
3597                 if (inode->i_nlink)
3598                         ext4_orphan_del(NULL, inode);
3599         }
3600         return ret;
3601 }
3602
3603 const struct iomap_ops ext4_iomap_ops = {
3604         .iomap_begin            = ext4_iomap_begin,
3605         .iomap_end              = ext4_iomap_end,
3606 };
3607
3608 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3609                             ssize_t size, void *private)
3610 {
3611         ext4_io_end_t *io_end = private;
3612
3613         /* if not async direct IO just return */
3614         if (!io_end)
3615                 return 0;
3616
3617         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3618                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3619                   io_end, io_end->inode->i_ino, iocb, offset, size);
3620
3621         /*
3622          * Error during AIO DIO. We cannot convert unwritten extents as the
3623          * data was not written. Just clear the unwritten flag and drop io_end.
3624          */
3625         if (size <= 0) {
3626                 ext4_clear_io_unwritten_flag(io_end);
3627                 size = 0;
3628         }
3629         io_end->offset = offset;
3630         io_end->size = size;
3631         ext4_put_io_end(io_end);
3632
3633         return 0;
3634 }
3635
3636 /*
3637  * Handling of direct IO writes.
3638  *
3639  * For ext4 extent files, ext4 will do direct-io write even to holes,
3640  * preallocated extents, and those write extend the file, no need to
3641  * fall back to buffered IO.
3642  *
3643  * For holes, we fallocate those blocks, mark them as unwritten
3644  * If those blocks were preallocated, we mark sure they are split, but
3645  * still keep the range to write as unwritten.
3646  *
3647  * The unwritten extents will be converted to written when DIO is completed.
3648  * For async direct IO, since the IO may still pending when return, we
3649  * set up an end_io call back function, which will do the conversion
3650  * when async direct IO completed.
3651  *
3652  * If the O_DIRECT write will extend the file then add this inode to the
3653  * orphan list.  So recovery will truncate it back to the original size
3654  * if the machine crashes during the write.
3655  *
3656  */
3657 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3658 {
3659         struct file *file = iocb->ki_filp;
3660         struct inode *inode = file->f_mapping->host;
3661         struct ext4_inode_info *ei = EXT4_I(inode);
3662         ssize_t ret;
3663         loff_t offset = iocb->ki_pos;
3664         size_t count = iov_iter_count(iter);
3665         int overwrite = 0;
3666         get_block_t *get_block_func = NULL;
3667         int dio_flags = 0;
3668         loff_t final_size = offset + count;
3669         int orphan = 0;
3670         handle_t *handle;
3671
3672         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3673                 /* Credits for sb + inode write */
3674                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3675                 if (IS_ERR(handle)) {
3676                         ret = PTR_ERR(handle);
3677                         goto out;
3678                 }
3679                 ret = ext4_orphan_add(handle, inode);
3680                 if (ret) {
3681                         ext4_journal_stop(handle);
3682                         goto out;
3683                 }
3684                 orphan = 1;
3685                 ext4_update_i_disksize(inode, inode->i_size);
3686                 ext4_journal_stop(handle);
3687         }
3688
3689         BUG_ON(iocb->private == NULL);
3690
3691         /*
3692          * Make all waiters for direct IO properly wait also for extent
3693          * conversion. This also disallows race between truncate() and
3694          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3695          */
3696         inode_dio_begin(inode);
3697
3698         /* If we do a overwrite dio, i_mutex locking can be released */
3699         overwrite = *((int *)iocb->private);
3700
3701         if (overwrite)
3702                 inode_unlock(inode);
3703
3704         /*
3705          * For extent mapped files we could direct write to holes and fallocate.
3706          *
3707          * Allocated blocks to fill the hole are marked as unwritten to prevent
3708          * parallel buffered read to expose the stale data before DIO complete
3709          * the data IO.
3710          *
3711          * As to previously fallocated extents, ext4 get_block will just simply
3712          * mark the buffer mapped but still keep the extents unwritten.
3713          *
3714          * For non AIO case, we will convert those unwritten extents to written
3715          * after return back from blockdev_direct_IO. That way we save us from
3716          * allocating io_end structure and also the overhead of offloading
3717          * the extent convertion to a workqueue.
3718          *
3719          * For async DIO, the conversion needs to be deferred when the
3720          * IO is completed. The ext4 end_io callback function will be
3721          * called to take care of the conversion work.  Here for async
3722          * case, we allocate an io_end structure to hook to the iocb.
3723          */
3724         iocb->private = NULL;
3725         if (overwrite)
3726                 get_block_func = ext4_dio_get_block_overwrite;
3727         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3728                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3729                 get_block_func = ext4_dio_get_block;
3730                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3731         } else if (is_sync_kiocb(iocb)) {
3732                 get_block_func = ext4_dio_get_block_unwritten_sync;
3733                 dio_flags = DIO_LOCKING;
3734         } else {
3735                 get_block_func = ext4_dio_get_block_unwritten_async;
3736                 dio_flags = DIO_LOCKING;
3737         }
3738         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3739                                    get_block_func, ext4_end_io_dio, NULL,
3740                                    dio_flags);
3741
3742         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3743                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3744                 int err;
3745                 /*
3746                  * for non AIO case, since the IO is already
3747                  * completed, we could do the conversion right here
3748                  */
3749                 err = ext4_convert_unwritten_extents(NULL, inode,
3750                                                      offset, ret);
3751                 if (err < 0)
3752                         ret = err;
3753                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3754         }
3755
3756         inode_dio_end(inode);
3757         /* take i_mutex locking again if we do a ovewrite dio */
3758         if (overwrite)
3759                 inode_lock(inode);
3760
3761         if (ret < 0 && final_size > inode->i_size)
3762                 ext4_truncate_failed_write(inode);
3763
3764         /* Handle extending of i_size after direct IO write */
3765         if (orphan) {
3766                 int err;
3767
3768                 /* Credits for sb + inode write */
3769                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3770                 if (IS_ERR(handle)) {
3771                         /*
3772                          * We wrote the data but cannot extend
3773                          * i_size. Bail out. In async io case, we do
3774                          * not return error here because we have
3775                          * already submmitted the corresponding
3776                          * bio. Returning error here makes the caller
3777                          * think that this IO is done and failed
3778                          * resulting in race with bio's completion
3779                          * handler.
3780                          */
3781                         if (!ret)
3782                                 ret = PTR_ERR(handle);
3783                         if (inode->i_nlink)
3784                                 ext4_orphan_del(NULL, inode);
3785
3786                         goto out;
3787                 }
3788                 if (inode->i_nlink)
3789                         ext4_orphan_del(handle, inode);
3790                 if (ret > 0) {
3791                         loff_t end = offset + ret;
3792                         if (end > inode->i_size || end > ei->i_disksize) {
3793                                 ext4_update_i_disksize(inode, end);
3794                                 if (end > inode->i_size)
3795                                         i_size_write(inode, end);
3796                                 /*
3797                                  * We're going to return a positive `ret'
3798                                  * here due to non-zero-length I/O, so there's
3799                                  * no way of reporting error returns from
3800                                  * ext4_mark_inode_dirty() to userspace.  So
3801                                  * ignore it.
3802                                  */
3803                                 ext4_mark_inode_dirty(handle, inode);
3804                         }
3805                 }
3806                 err = ext4_journal_stop(handle);
3807                 if (ret == 0)
3808                         ret = err;
3809         }
3810 out:
3811         return ret;
3812 }
3813
3814 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3815 {
3816         struct address_space *mapping = iocb->ki_filp->f_mapping;
3817         struct inode *inode = mapping->host;
3818         size_t count = iov_iter_count(iter);
3819         ssize_t ret;
3820
3821         /*
3822          * Shared inode_lock is enough for us - it protects against concurrent
3823          * writes & truncates and since we take care of writing back page cache,
3824          * we are protected against page writeback as well.
3825          */
3826         inode_lock_shared(inode);
3827         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3828                                            iocb->ki_pos + count - 1);
3829         if (ret)
3830                 goto out_unlock;
3831         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3832                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3833 out_unlock:
3834         inode_unlock_shared(inode);
3835         return ret;
3836 }
3837
3838 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3839 {
3840         struct file *file = iocb->ki_filp;
3841         struct inode *inode = file->f_mapping->host;
3842         size_t count = iov_iter_count(iter);
3843         loff_t offset = iocb->ki_pos;
3844         ssize_t ret;
3845
3846 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3847         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3848                 return 0;
3849 #endif
3850
3851         /*
3852          * If we are doing data journalling we don't support O_DIRECT
3853          */
3854         if (ext4_should_journal_data(inode))
3855                 return 0;
3856
3857         /* Let buffer I/O handle the inline data case. */
3858         if (ext4_has_inline_data(inode))
3859                 return 0;
3860
3861         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3862         if (iov_iter_rw(iter) == READ)
3863                 ret = ext4_direct_IO_read(iocb, iter);
3864         else
3865                 ret = ext4_direct_IO_write(iocb, iter);
3866         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3867         return ret;
3868 }
3869
3870 /*
3871  * Pages can be marked dirty completely asynchronously from ext4's journalling
3872  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3873  * much here because ->set_page_dirty is called under VFS locks.  The page is
3874  * not necessarily locked.
3875  *
3876  * We cannot just dirty the page and leave attached buffers clean, because the
3877  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3878  * or jbddirty because all the journalling code will explode.
3879  *
3880  * So what we do is to mark the page "pending dirty" and next time writepage
3881  * is called, propagate that into the buffers appropriately.
3882  */
3883 static int ext4_journalled_set_page_dirty(struct page *page)
3884 {
3885         SetPageChecked(page);
3886         return __set_page_dirty_nobuffers(page);
3887 }
3888
3889 static int ext4_set_page_dirty(struct page *page)
3890 {
3891         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3892         WARN_ON_ONCE(!page_has_buffers(page));
3893         return __set_page_dirty_buffers(page);
3894 }
3895
3896 static const struct address_space_operations ext4_aops = {
3897         .readpage               = ext4_readpage,
3898         .readpages              = ext4_readpages,
3899         .writepage              = ext4_writepage,
3900         .writepages             = ext4_writepages,
3901         .write_begin            = ext4_write_begin,
3902         .write_end              = ext4_write_end,
3903         .set_page_dirty         = ext4_set_page_dirty,
3904         .bmap                   = ext4_bmap,
3905         .invalidatepage         = ext4_invalidatepage,
3906         .releasepage            = ext4_releasepage,
3907         .direct_IO              = ext4_direct_IO,
3908         .migratepage            = buffer_migrate_page,
3909         .is_partially_uptodate  = block_is_partially_uptodate,
3910         .error_remove_page      = generic_error_remove_page,
3911 };
3912
3913 static const struct address_space_operations ext4_journalled_aops = {
3914         .readpage               = ext4_readpage,
3915         .readpages              = ext4_readpages,
3916         .writepage              = ext4_writepage,
3917         .writepages             = ext4_writepages,
3918         .write_begin            = ext4_write_begin,
3919         .write_end              = ext4_journalled_write_end,
3920         .set_page_dirty         = ext4_journalled_set_page_dirty,
3921         .bmap                   = ext4_bmap,
3922         .invalidatepage         = ext4_journalled_invalidatepage,
3923         .releasepage            = ext4_releasepage,
3924         .direct_IO              = ext4_direct_IO,
3925         .is_partially_uptodate  = block_is_partially_uptodate,
3926         .error_remove_page      = generic_error_remove_page,
3927 };
3928
3929 static const struct address_space_operations ext4_da_aops = {
3930         .readpage               = ext4_readpage,
3931         .readpages              = ext4_readpages,
3932         .writepage              = ext4_writepage,
3933         .writepages             = ext4_writepages,
3934         .write_begin            = ext4_da_write_begin,
3935         .write_end              = ext4_da_write_end,
3936         .set_page_dirty         = ext4_set_page_dirty,
3937         .bmap                   = ext4_bmap,
3938         .invalidatepage         = ext4_da_invalidatepage,
3939         .releasepage            = ext4_releasepage,
3940         .direct_IO              = ext4_direct_IO,
3941         .migratepage            = buffer_migrate_page,
3942         .is_partially_uptodate  = block_is_partially_uptodate,
3943         .error_remove_page      = generic_error_remove_page,
3944 };
3945
3946 static const struct address_space_operations ext4_dax_aops = {
3947         .writepages             = ext4_dax_writepages,
3948         .direct_IO              = noop_direct_IO,
3949         .set_page_dirty         = noop_set_page_dirty,
3950         .invalidatepage         = noop_invalidatepage,
3951 };
3952
3953 void ext4_set_aops(struct inode *inode)
3954 {
3955         switch (ext4_inode_journal_mode(inode)) {
3956         case EXT4_INODE_ORDERED_DATA_MODE:
3957         case EXT4_INODE_WRITEBACK_DATA_MODE:
3958                 break;
3959         case EXT4_INODE_JOURNAL_DATA_MODE:
3960                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3961                 return;
3962         default:
3963                 BUG();
3964         }
3965         if (IS_DAX(inode))
3966                 inode->i_mapping->a_ops = &ext4_dax_aops;
3967         else if (test_opt(inode->i_sb, DELALLOC))
3968                 inode->i_mapping->a_ops = &ext4_da_aops;
3969         else
3970                 inode->i_mapping->a_ops = &ext4_aops;
3971 }
3972
3973 static int __ext4_block_zero_page_range(handle_t *handle,
3974                 struct address_space *mapping, loff_t from, loff_t length)
3975 {
3976         ext4_fsblk_t index = from >> PAGE_SHIFT;
3977         unsigned offset = from & (PAGE_SIZE-1);
3978         unsigned blocksize, pos;
3979         ext4_lblk_t iblock;
3980         struct inode *inode = mapping->host;
3981         struct buffer_head *bh;
3982         struct page *page;
3983         int err = 0;
3984
3985         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3986                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3987         if (!page)
3988                 return -ENOMEM;
3989
3990         blocksize = inode->i_sb->s_blocksize;
3991
3992         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3993
3994         if (!page_has_buffers(page))
3995                 create_empty_buffers(page, blocksize, 0);
3996
3997         /* Find the buffer that contains "offset" */
3998         bh = page_buffers(page);
3999         pos = blocksize;
4000         while (offset >= pos) {
4001                 bh = bh->b_this_page;
4002                 iblock++;
4003                 pos += blocksize;
4004         }
4005         if (buffer_freed(bh)) {
4006                 BUFFER_TRACE(bh, "freed: skip");
4007                 goto unlock;
4008         }
4009         if (!buffer_mapped(bh)) {
4010                 BUFFER_TRACE(bh, "unmapped");
4011                 ext4_get_block(inode, iblock, bh, 0);
4012                 /* unmapped? It's a hole - nothing to do */
4013                 if (!buffer_mapped(bh)) {
4014                         BUFFER_TRACE(bh, "still unmapped");
4015                         goto unlock;
4016                 }
4017         }
4018
4019         /* Ok, it's mapped. Make sure it's up-to-date */
4020         if (PageUptodate(page))
4021                 set_buffer_uptodate(bh);
4022
4023         if (!buffer_uptodate(bh)) {
4024                 err = -EIO;
4025                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4026                 wait_on_buffer(bh);
4027                 /* Uhhuh. Read error. Complain and punt. */
4028                 if (!buffer_uptodate(bh))
4029                         goto unlock;
4030                 if (S_ISREG(inode->i_mode) &&
4031                     ext4_encrypted_inode(inode)) {
4032                         /* We expect the key to be set. */
4033                         BUG_ON(!fscrypt_has_encryption_key(inode));
4034                         BUG_ON(blocksize != PAGE_SIZE);
4035                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4036                                                 page, PAGE_SIZE, 0, page->index));
4037                 }
4038         }
4039         if (ext4_should_journal_data(inode)) {
4040                 BUFFER_TRACE(bh, "get write access");
4041                 err = ext4_journal_get_write_access(handle, bh);
4042                 if (err)
4043                         goto unlock;
4044         }
4045         zero_user(page, offset, length);
4046         BUFFER_TRACE(bh, "zeroed end of block");
4047
4048         if (ext4_should_journal_data(inode)) {
4049                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4050         } else {
4051                 err = 0;
4052                 mark_buffer_dirty(bh);
4053                 if (ext4_should_order_data(inode))
4054                         err = ext4_jbd2_inode_add_write(handle, inode);
4055         }
4056
4057 unlock:
4058         unlock_page(page);
4059         put_page(page);
4060         return err;
4061 }
4062
4063 /*
4064  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4065  * starting from file offset 'from'.  The range to be zero'd must
4066  * be contained with in one block.  If the specified range exceeds
4067  * the end of the block it will be shortened to end of the block
4068  * that cooresponds to 'from'
4069  */
4070 static int ext4_block_zero_page_range(handle_t *handle,
4071                 struct address_space *mapping, loff_t from, loff_t length)
4072 {
4073         struct inode *inode = mapping->host;
4074         unsigned offset = from & (PAGE_SIZE-1);
4075         unsigned blocksize = inode->i_sb->s_blocksize;
4076         unsigned max = blocksize - (offset & (blocksize - 1));
4077
4078         /*
4079          * correct length if it does not fall between
4080          * 'from' and the end of the block
4081          */
4082         if (length > max || length < 0)
4083                 length = max;
4084
4085         if (IS_DAX(inode)) {
4086                 return iomap_zero_range(inode, from, length, NULL,
4087                                         &ext4_iomap_ops);
4088         }
4089         return __ext4_block_zero_page_range(handle, mapping, from, length);
4090 }
4091
4092 /*
4093  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4094  * up to the end of the block which corresponds to `from'.
4095  * This required during truncate. We need to physically zero the tail end
4096  * of that block so it doesn't yield old data if the file is later grown.
4097  */
4098 static int ext4_block_truncate_page(handle_t *handle,
4099                 struct address_space *mapping, loff_t from)
4100 {
4101         unsigned offset = from & (PAGE_SIZE-1);
4102         unsigned length;
4103         unsigned blocksize;
4104         struct inode *inode = mapping->host;
4105
4106         /* If we are processing an encrypted inode during orphan list handling */
4107         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4108                 return 0;
4109
4110         blocksize = inode->i_sb->s_blocksize;
4111         length = blocksize - (offset & (blocksize - 1));
4112
4113         return ext4_block_zero_page_range(handle, mapping, from, length);
4114 }
4115
4116 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4117                              loff_t lstart, loff_t length)
4118 {
4119         struct super_block *sb = inode->i_sb;
4120         struct address_space *mapping = inode->i_mapping;
4121         unsigned partial_start, partial_end;
4122         ext4_fsblk_t start, end;
4123         loff_t byte_end = (lstart + length - 1);
4124         int err = 0;
4125
4126         partial_start = lstart & (sb->s_blocksize - 1);
4127         partial_end = byte_end & (sb->s_blocksize - 1);
4128
4129         start = lstart >> sb->s_blocksize_bits;
4130         end = byte_end >> sb->s_blocksize_bits;
4131
4132         /* Handle partial zero within the single block */
4133         if (start == end &&
4134             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4135                 err = ext4_block_zero_page_range(handle, mapping,
4136                                                  lstart, length);
4137                 return err;
4138         }
4139         /* Handle partial zero out on the start of the range */
4140         if (partial_start) {
4141                 err = ext4_block_zero_page_range(handle, mapping,
4142                                                  lstart, sb->s_blocksize);
4143                 if (err)
4144                         return err;
4145         }
4146         /* Handle partial zero out on the end of the range */
4147         if (partial_end != sb->s_blocksize - 1)
4148                 err = ext4_block_zero_page_range(handle, mapping,
4149                                                  byte_end - partial_end,
4150                                                  partial_end + 1);
4151         return err;
4152 }
4153
4154 int ext4_can_truncate(struct inode *inode)
4155 {
4156         if (S_ISREG(inode->i_mode))
4157                 return 1;
4158         if (S_ISDIR(inode->i_mode))
4159                 return 1;
4160         if (S_ISLNK(inode->i_mode))
4161                 return !ext4_inode_is_fast_symlink(inode);
4162         return 0;
4163 }
4164
4165 /*
4166  * We have to make sure i_disksize gets properly updated before we truncate
4167  * page cache due to hole punching or zero range. Otherwise i_disksize update
4168  * can get lost as it may have been postponed to submission of writeback but
4169  * that will never happen after we truncate page cache.
4170  */
4171 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4172                                       loff_t len)
4173 {
4174         handle_t *handle;
4175         loff_t size = i_size_read(inode);
4176
4177         WARN_ON(!inode_is_locked(inode));
4178         if (offset > size || offset + len < size)
4179                 return 0;
4180
4181         if (EXT4_I(inode)->i_disksize >= size)
4182                 return 0;
4183
4184         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4185         if (IS_ERR(handle))
4186                 return PTR_ERR(handle);
4187         ext4_update_i_disksize(inode, size);
4188         ext4_mark_inode_dirty(handle, inode);
4189         ext4_journal_stop(handle);
4190
4191         return 0;
4192 }
4193
4194 /*
4195  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4196  * associated with the given offset and length
4197  *
4198  * @inode:  File inode
4199  * @offset: The offset where the hole will begin
4200  * @len:    The length of the hole
4201  *
4202  * Returns: 0 on success or negative on failure
4203  */
4204
4205 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4206 {
4207         struct super_block *sb = inode->i_sb;
4208         ext4_lblk_t first_block, stop_block;
4209         struct address_space *mapping = inode->i_mapping;
4210         loff_t first_block_offset, last_block_offset;
4211         handle_t *handle;
4212         unsigned int credits;
4213         int ret = 0;
4214
4215         if (!S_ISREG(inode->i_mode))
4216                 return -EOPNOTSUPP;
4217
4218         trace_ext4_punch_hole(inode, offset, length, 0);
4219
4220         /*
4221          * Write out all dirty pages to avoid race conditions
4222          * Then release them.
4223          */
4224         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4225                 ret = filemap_write_and_wait_range(mapping, offset,
4226                                                    offset + length - 1);
4227                 if (ret)
4228                         return ret;
4229         }
4230
4231         inode_lock(inode);
4232
4233         /* No need to punch hole beyond i_size */
4234         if (offset >= inode->i_size)
4235                 goto out_mutex;
4236
4237         /*
4238          * If the hole extends beyond i_size, set the hole
4239          * to end after the page that contains i_size
4240          */
4241         if (offset + length > inode->i_size) {
4242                 length = inode->i_size +
4243                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4244                    offset;
4245         }
4246
4247         if (offset & (sb->s_blocksize - 1) ||
4248             (offset + length) & (sb->s_blocksize - 1)) {
4249                 /*
4250                  * Attach jinode to inode for jbd2 if we do any zeroing of
4251                  * partial block
4252                  */
4253                 ret = ext4_inode_attach_jinode(inode);
4254                 if (ret < 0)
4255                         goto out_mutex;
4256
4257         }
4258
4259         /* Wait all existing dio workers, newcomers will block on i_mutex */
4260         inode_dio_wait(inode);
4261
4262         /*
4263          * Prevent page faults from reinstantiating pages we have released from
4264          * page cache.
4265          */
4266         down_write(&EXT4_I(inode)->i_mmap_sem);
4267         first_block_offset = round_up(offset, sb->s_blocksize);
4268         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4269
4270         /* Now release the pages and zero block aligned part of pages*/
4271         if (last_block_offset > first_block_offset) {
4272                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4273                 if (ret)
4274                         goto out_dio;
4275                 truncate_pagecache_range(inode, first_block_offset,
4276                                          last_block_offset);
4277         }
4278
4279         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4280                 credits = ext4_writepage_trans_blocks(inode);
4281         else
4282                 credits = ext4_blocks_for_truncate(inode);
4283         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4284         if (IS_ERR(handle)) {
4285                 ret = PTR_ERR(handle);
4286                 ext4_std_error(sb, ret);
4287                 goto out_dio;
4288         }
4289
4290         ret = ext4_zero_partial_blocks(handle, inode, offset,
4291                                        length);
4292         if (ret)
4293                 goto out_stop;
4294
4295         first_block = (offset + sb->s_blocksize - 1) >>
4296                 EXT4_BLOCK_SIZE_BITS(sb);
4297         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4298
4299         /* If there are blocks to remove, do it */
4300         if (stop_block > first_block) {
4301
4302                 down_write(&EXT4_I(inode)->i_data_sem);
4303                 ext4_discard_preallocations(inode);
4304
4305                 ret = ext4_es_remove_extent(inode, first_block,
4306                                             stop_block - first_block);
4307                 if (ret) {
4308                         up_write(&EXT4_I(inode)->i_data_sem);
4309                         goto out_stop;
4310                 }
4311
4312                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4313                         ret = ext4_ext_remove_space(inode, first_block,
4314                                                     stop_block - 1);
4315                 else
4316                         ret = ext4_ind_remove_space(handle, inode, first_block,
4317                                                     stop_block);
4318
4319                 up_write(&EXT4_I(inode)->i_data_sem);
4320         }
4321         if (IS_SYNC(inode))
4322                 ext4_handle_sync(handle);
4323
4324         inode->i_mtime = inode->i_ctime = current_time(inode);
4325         ext4_mark_inode_dirty(handle, inode);
4326         if (ret >= 0)
4327                 ext4_update_inode_fsync_trans(handle, inode, 1);
4328 out_stop:
4329         ext4_journal_stop(handle);
4330 out_dio:
4331         up_write(&EXT4_I(inode)->i_mmap_sem);
4332 out_mutex:
4333         inode_unlock(inode);
4334         return ret;
4335 }
4336
4337 int ext4_inode_attach_jinode(struct inode *inode)
4338 {
4339         struct ext4_inode_info *ei = EXT4_I(inode);
4340         struct jbd2_inode *jinode;
4341
4342         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4343                 return 0;
4344
4345         jinode = jbd2_alloc_inode(GFP_KERNEL);
4346         spin_lock(&inode->i_lock);
4347         if (!ei->jinode) {
4348                 if (!jinode) {
4349                         spin_unlock(&inode->i_lock);
4350                         return -ENOMEM;
4351                 }
4352                 ei->jinode = jinode;
4353                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4354                 jinode = NULL;
4355         }
4356         spin_unlock(&inode->i_lock);
4357         if (unlikely(jinode != NULL))
4358                 jbd2_free_inode(jinode);
4359         return 0;
4360 }
4361
4362 /*
4363  * ext4_truncate()
4364  *
4365  * We block out ext4_get_block() block instantiations across the entire
4366  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4367  * simultaneously on behalf of the same inode.
4368  *
4369  * As we work through the truncate and commit bits of it to the journal there
4370  * is one core, guiding principle: the file's tree must always be consistent on
4371  * disk.  We must be able to restart the truncate after a crash.
4372  *
4373  * The file's tree may be transiently inconsistent in memory (although it
4374  * probably isn't), but whenever we close off and commit a journal transaction,
4375  * the contents of (the filesystem + the journal) must be consistent and
4376  * restartable.  It's pretty simple, really: bottom up, right to left (although
4377  * left-to-right works OK too).
4378  *
4379  * Note that at recovery time, journal replay occurs *before* the restart of
4380  * truncate against the orphan inode list.
4381  *
4382  * The committed inode has the new, desired i_size (which is the same as
4383  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4384  * that this inode's truncate did not complete and it will again call
4385  * ext4_truncate() to have another go.  So there will be instantiated blocks
4386  * to the right of the truncation point in a crashed ext4 filesystem.  But
4387  * that's fine - as long as they are linked from the inode, the post-crash
4388  * ext4_truncate() run will find them and release them.
4389  */
4390 int ext4_truncate(struct inode *inode)
4391 {
4392         struct ext4_inode_info *ei = EXT4_I(inode);
4393         unsigned int credits;
4394         int err = 0;
4395         handle_t *handle;
4396         struct address_space *mapping = inode->i_mapping;
4397
4398         /*
4399          * There is a possibility that we're either freeing the inode
4400          * or it's a completely new inode. In those cases we might not
4401          * have i_mutex locked because it's not necessary.
4402          */
4403         if (!(inode->i_state & (I_NEW|I_FREEING)))
4404                 WARN_ON(!inode_is_locked(inode));
4405         trace_ext4_truncate_enter(inode);
4406
4407         if (!ext4_can_truncate(inode))
4408                 return 0;
4409
4410         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4411
4412         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4413                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4414
4415         if (ext4_has_inline_data(inode)) {
4416                 int has_inline = 1;
4417
4418                 err = ext4_inline_data_truncate(inode, &has_inline);
4419                 if (err)
4420                         return err;
4421                 if (has_inline)
4422                         return 0;
4423         }
4424
4425         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4426         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4427                 if (ext4_inode_attach_jinode(inode) < 0)
4428                         return 0;
4429         }
4430
4431         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4432                 credits = ext4_writepage_trans_blocks(inode);
4433         else
4434                 credits = ext4_blocks_for_truncate(inode);
4435
4436         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4437         if (IS_ERR(handle))
4438                 return PTR_ERR(handle);
4439
4440         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4441                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4442
4443         /*
4444          * We add the inode to the orphan list, so that if this
4445          * truncate spans multiple transactions, and we crash, we will
4446          * resume the truncate when the filesystem recovers.  It also
4447          * marks the inode dirty, to catch the new size.
4448          *
4449          * Implication: the file must always be in a sane, consistent
4450          * truncatable state while each transaction commits.
4451          */
4452         err = ext4_orphan_add(handle, inode);
4453         if (err)
4454                 goto out_stop;
4455
4456         down_write(&EXT4_I(inode)->i_data_sem);
4457
4458         ext4_discard_preallocations(inode);
4459
4460         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4461                 err = ext4_ext_truncate(handle, inode);
4462         else
4463                 ext4_ind_truncate(handle, inode);
4464
4465         up_write(&ei->i_data_sem);
4466         if (err)
4467                 goto out_stop;
4468
4469         if (IS_SYNC(inode))
4470                 ext4_handle_sync(handle);
4471
4472 out_stop:
4473         /*
4474          * If this was a simple ftruncate() and the file will remain alive,
4475          * then we need to clear up the orphan record which we created above.
4476          * However, if this was a real unlink then we were called by
4477          * ext4_evict_inode(), and we allow that function to clean up the
4478          * orphan info for us.
4479          */
4480         if (inode->i_nlink)
4481                 ext4_orphan_del(handle, inode);
4482
4483         inode->i_mtime = inode->i_ctime = current_time(inode);
4484         ext4_mark_inode_dirty(handle, inode);
4485         ext4_journal_stop(handle);
4486
4487         trace_ext4_truncate_exit(inode);
4488         return err;
4489 }
4490
4491 /*
4492  * ext4_get_inode_loc returns with an extra refcount against the inode's
4493  * underlying buffer_head on success. If 'in_mem' is true, we have all
4494  * data in memory that is needed to recreate the on-disk version of this
4495  * inode.
4496  */
4497 static int __ext4_get_inode_loc(struct inode *inode,
4498                                 struct ext4_iloc *iloc, int in_mem)
4499 {
4500         struct ext4_group_desc  *gdp;
4501         struct buffer_head      *bh;
4502         struct super_block      *sb = inode->i_sb;
4503         ext4_fsblk_t            block;
4504         int                     inodes_per_block, inode_offset;
4505
4506         iloc->bh = NULL;
4507         if (inode->i_ino < EXT4_ROOT_INO ||
4508             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4509                 return -EFSCORRUPTED;
4510
4511         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4512         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4513         if (!gdp)
4514                 return -EIO;
4515
4516         /*
4517          * Figure out the offset within the block group inode table
4518          */
4519         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4520         inode_offset = ((inode->i_ino - 1) %
4521                         EXT4_INODES_PER_GROUP(sb));
4522         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4523         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4524
4525         bh = sb_getblk(sb, block);
4526         if (unlikely(!bh))
4527                 return -ENOMEM;
4528         if (!buffer_uptodate(bh)) {
4529                 lock_buffer(bh);
4530
4531                 /*
4532                  * If the buffer has the write error flag, we have failed
4533                  * to write out another inode in the same block.  In this
4534                  * case, we don't have to read the block because we may
4535                  * read the old inode data successfully.
4536                  */
4537                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4538                         set_buffer_uptodate(bh);
4539
4540                 if (buffer_uptodate(bh)) {
4541                         /* someone brought it uptodate while we waited */
4542                         unlock_buffer(bh);
4543                         goto has_buffer;
4544                 }
4545
4546                 /*
4547                  * If we have all information of the inode in memory and this
4548                  * is the only valid inode in the block, we need not read the
4549                  * block.
4550                  */
4551                 if (in_mem) {
4552                         struct buffer_head *bitmap_bh;
4553                         int i, start;
4554
4555                         start = inode_offset & ~(inodes_per_block - 1);
4556
4557                         /* Is the inode bitmap in cache? */
4558                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4559                         if (unlikely(!bitmap_bh))
4560                                 goto make_io;
4561
4562                         /*
4563                          * If the inode bitmap isn't in cache then the
4564                          * optimisation may end up performing two reads instead
4565                          * of one, so skip it.
4566                          */
4567                         if (!buffer_uptodate(bitmap_bh)) {
4568                                 brelse(bitmap_bh);
4569                                 goto make_io;
4570                         }
4571                         for (i = start; i < start + inodes_per_block; i++) {
4572                                 if (i == inode_offset)
4573                                         continue;
4574                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4575                                         break;
4576                         }
4577                         brelse(bitmap_bh);
4578                         if (i == start + inodes_per_block) {
4579                                 /* all other inodes are free, so skip I/O */
4580                                 memset(bh->b_data, 0, bh->b_size);
4581                                 set_buffer_uptodate(bh);
4582                                 unlock_buffer(bh);
4583                                 goto has_buffer;
4584                         }
4585                 }
4586
4587 make_io:
4588                 /*
4589                  * If we need to do any I/O, try to pre-readahead extra
4590                  * blocks from the inode table.
4591                  */
4592                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4593                         ext4_fsblk_t b, end, table;
4594                         unsigned num;
4595                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4596
4597                         table = ext4_inode_table(sb, gdp);
4598                         /* s_inode_readahead_blks is always a power of 2 */
4599                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4600                         if (table > b)
4601                                 b = table;
4602                         end = b + ra_blks;
4603                         num = EXT4_INODES_PER_GROUP(sb);
4604                         if (ext4_has_group_desc_csum(sb))
4605                                 num -= ext4_itable_unused_count(sb, gdp);
4606                         table += num / inodes_per_block;
4607                         if (end > table)
4608                                 end = table;
4609                         while (b <= end)
4610                                 sb_breadahead(sb, b++);
4611                 }
4612
4613                 /*
4614                  * There are other valid inodes in the buffer, this inode
4615                  * has in-inode xattrs, or we don't have this inode in memory.
4616                  * Read the block from disk.
4617                  */
4618                 trace_ext4_load_inode(inode);
4619                 get_bh(bh);
4620                 bh->b_end_io = end_buffer_read_sync;
4621                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4622                 wait_on_buffer(bh);
4623                 if (!buffer_uptodate(bh)) {
4624                         EXT4_ERROR_INODE_BLOCK(inode, block,
4625                                                "unable to read itable block");
4626                         brelse(bh);
4627                         return -EIO;
4628                 }
4629         }
4630 has_buffer:
4631         iloc->bh = bh;
4632         return 0;
4633 }
4634
4635 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4636 {
4637         /* We have all inode data except xattrs in memory here. */
4638         return __ext4_get_inode_loc(inode, iloc,
4639                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4640 }
4641
4642 static bool ext4_should_use_dax(struct inode *inode)
4643 {
4644         if (!test_opt(inode->i_sb, DAX))
4645                 return false;
4646         if (!S_ISREG(inode->i_mode))
4647                 return false;
4648         if (ext4_should_journal_data(inode))
4649                 return false;
4650         if (ext4_has_inline_data(inode))
4651                 return false;
4652         if (ext4_encrypted_inode(inode))
4653                 return false;
4654         return true;
4655 }
4656
4657 void ext4_set_inode_flags(struct inode *inode)
4658 {
4659         unsigned int flags = EXT4_I(inode)->i_flags;
4660         unsigned int new_fl = 0;
4661
4662         if (flags & EXT4_SYNC_FL)
4663                 new_fl |= S_SYNC;
4664         if (flags & EXT4_APPEND_FL)
4665                 new_fl |= S_APPEND;
4666         if (flags & EXT4_IMMUTABLE_FL)
4667                 new_fl |= S_IMMUTABLE;
4668         if (flags & EXT4_NOATIME_FL)
4669                 new_fl |= S_NOATIME;
4670         if (flags & EXT4_DIRSYNC_FL)
4671                 new_fl |= S_DIRSYNC;
4672         if (ext4_should_use_dax(inode))
4673                 new_fl |= S_DAX;
4674         if (flags & EXT4_ENCRYPT_FL)
4675                 new_fl |= S_ENCRYPTED;
4676         inode_set_flags(inode, new_fl,
4677                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4678                         S_ENCRYPTED);
4679 }
4680
4681 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4682                                   struct ext4_inode_info *ei)
4683 {
4684         blkcnt_t i_blocks ;
4685         struct inode *inode = &(ei->vfs_inode);
4686         struct super_block *sb = inode->i_sb;
4687
4688         if (ext4_has_feature_huge_file(sb)) {
4689                 /* we are using combined 48 bit field */
4690                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4691                                         le32_to_cpu(raw_inode->i_blocks_lo);
4692                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4693                         /* i_blocks represent file system block size */
4694                         return i_blocks  << (inode->i_blkbits - 9);
4695                 } else {
4696                         return i_blocks;
4697                 }
4698         } else {
4699                 return le32_to_cpu(raw_inode->i_blocks_lo);
4700         }
4701 }
4702
4703 static inline int ext4_iget_extra_inode(struct inode *inode,
4704                                          struct ext4_inode *raw_inode,
4705                                          struct ext4_inode_info *ei)
4706 {
4707         __le32 *magic = (void *)raw_inode +
4708                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4709
4710         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4711             EXT4_INODE_SIZE(inode->i_sb) &&
4712             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4713                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4714                 return ext4_find_inline_data_nolock(inode);
4715         } else
4716                 EXT4_I(inode)->i_inline_off = 0;
4717         return 0;
4718 }
4719
4720 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4721 {
4722         if (!ext4_has_feature_project(inode->i_sb))
4723                 return -EOPNOTSUPP;
4724         *projid = EXT4_I(inode)->i_projid;
4725         return 0;
4726 }
4727
4728 /*
4729  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4730  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4731  * set.
4732  */
4733 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4734 {
4735         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4736                 inode_set_iversion_raw(inode, val);
4737         else
4738                 inode_set_iversion_queried(inode, val);
4739 }
4740 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4741 {
4742         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4743                 return inode_peek_iversion_raw(inode);
4744         else
4745                 return inode_peek_iversion(inode);
4746 }
4747
4748 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4749 {
4750         struct ext4_iloc iloc;
4751         struct ext4_inode *raw_inode;
4752         struct ext4_inode_info *ei;
4753         struct inode *inode;
4754         journal_t *journal = EXT4_SB(sb)->s_journal;
4755         long ret;
4756         loff_t size;
4757         int block;
4758         uid_t i_uid;
4759         gid_t i_gid;
4760         projid_t i_projid;
4761
4762         inode = iget_locked(sb, ino);
4763         if (!inode)
4764                 return ERR_PTR(-ENOMEM);
4765         if (!(inode->i_state & I_NEW))
4766                 return inode;
4767
4768         ei = EXT4_I(inode);
4769         iloc.bh = NULL;
4770
4771         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4772         if (ret < 0)
4773                 goto bad_inode;
4774         raw_inode = ext4_raw_inode(&iloc);
4775
4776         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4777                 EXT4_ERROR_INODE(inode, "root inode unallocated");
4778                 ret = -EFSCORRUPTED;
4779                 goto bad_inode;
4780         }
4781
4782         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4783                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4784                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4785                         EXT4_INODE_SIZE(inode->i_sb) ||
4786                     (ei->i_extra_isize & 3)) {
4787                         EXT4_ERROR_INODE(inode,
4788                                          "bad extra_isize %u (inode size %u)",
4789                                          ei->i_extra_isize,
4790                                          EXT4_INODE_SIZE(inode->i_sb));
4791                         ret = -EFSCORRUPTED;
4792                         goto bad_inode;
4793                 }
4794         } else
4795                 ei->i_extra_isize = 0;
4796
4797         /* Precompute checksum seed for inode metadata */
4798         if (ext4_has_metadata_csum(sb)) {
4799                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4800                 __u32 csum;
4801                 __le32 inum = cpu_to_le32(inode->i_ino);
4802                 __le32 gen = raw_inode->i_generation;
4803                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4804                                    sizeof(inum));
4805                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4806                                               sizeof(gen));
4807         }
4808
4809         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4810                 EXT4_ERROR_INODE(inode, "checksum invalid");
4811                 ret = -EFSBADCRC;
4812                 goto bad_inode;
4813         }
4814
4815         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4816         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4817         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4818         if (ext4_has_feature_project(sb) &&
4819             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4820             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4821                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4822         else
4823                 i_projid = EXT4_DEF_PROJID;
4824
4825         if (!(test_opt(inode->i_sb, NO_UID32))) {
4826                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4827                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4828         }
4829         i_uid_write(inode, i_uid);
4830         i_gid_write(inode, i_gid);
4831         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4832         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4833
4834         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4835         ei->i_inline_off = 0;
4836         ei->i_dir_start_lookup = 0;
4837         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4838         /* We now have enough fields to check if the inode was active or not.
4839          * This is needed because nfsd might try to access dead inodes
4840          * the test is that same one that e2fsck uses
4841          * NeilBrown 1999oct15
4842          */
4843         if (inode->i_nlink == 0) {
4844                 if ((inode->i_mode == 0 ||
4845                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4846                     ino != EXT4_BOOT_LOADER_INO) {
4847                         /* this inode is deleted */
4848                         ret = -ESTALE;
4849                         goto bad_inode;
4850                 }
4851                 /* The only unlinked inodes we let through here have
4852                  * valid i_mode and are being read by the orphan
4853                  * recovery code: that's fine, we're about to complete
4854                  * the process of deleting those.
4855                  * OR it is the EXT4_BOOT_LOADER_INO which is
4856                  * not initialized on a new filesystem. */
4857         }
4858         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4859         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4860         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4861         if (ext4_has_feature_64bit(sb))
4862                 ei->i_file_acl |=
4863                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4864         inode->i_size = ext4_isize(sb, raw_inode);
4865         if ((size = i_size_read(inode)) < 0) {
4866                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4867                 ret = -EFSCORRUPTED;
4868                 goto bad_inode;
4869         }
4870         ei->i_disksize = inode->i_size;
4871 #ifdef CONFIG_QUOTA
4872         ei->i_reserved_quota = 0;
4873 #endif
4874         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4875         ei->i_block_group = iloc.block_group;
4876         ei->i_last_alloc_group = ~0;
4877         /*
4878          * NOTE! The in-memory inode i_data array is in little-endian order
4879          * even on big-endian machines: we do NOT byteswap the block numbers!
4880          */
4881         for (block = 0; block < EXT4_N_BLOCKS; block++)
4882                 ei->i_data[block] = raw_inode->i_block[block];
4883         INIT_LIST_HEAD(&ei->i_orphan);
4884
4885         /*
4886          * Set transaction id's of transactions that have to be committed
4887          * to finish f[data]sync. We set them to currently running transaction
4888          * as we cannot be sure that the inode or some of its metadata isn't
4889          * part of the transaction - the inode could have been reclaimed and
4890          * now it is reread from disk.
4891          */
4892         if (journal) {
4893                 transaction_t *transaction;
4894                 tid_t tid;
4895
4896                 read_lock(&journal->j_state_lock);
4897                 if (journal->j_running_transaction)
4898                         transaction = journal->j_running_transaction;
4899                 else
4900                         transaction = journal->j_committing_transaction;
4901                 if (transaction)
4902                         tid = transaction->t_tid;
4903                 else
4904                         tid = journal->j_commit_sequence;
4905                 read_unlock(&journal->j_state_lock);
4906                 ei->i_sync_tid = tid;
4907                 ei->i_datasync_tid = tid;
4908         }
4909
4910         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911                 if (ei->i_extra_isize == 0) {
4912                         /* The extra space is currently unused. Use it. */
4913                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4914                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4915                                             EXT4_GOOD_OLD_INODE_SIZE;
4916                 } else {
4917                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4918                         if (ret)
4919                                 goto bad_inode;
4920                 }
4921         }
4922
4923         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4924         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4925         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4926         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4927
4928         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4929                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4930
4931                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4932                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4933                                 ivers |=
4934                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4935                 }
4936                 ext4_inode_set_iversion_queried(inode, ivers);
4937         }
4938
4939         ret = 0;
4940         if (ei->i_file_acl &&
4941             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4942                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4943                                  ei->i_file_acl);
4944                 ret = -EFSCORRUPTED;
4945                 goto bad_inode;
4946         } else if (!ext4_has_inline_data(inode)) {
4947                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4948                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4949                             (S_ISLNK(inode->i_mode) &&
4950                              !ext4_inode_is_fast_symlink(inode))))
4951                                 /* Validate extent which is part of inode */
4952                                 ret = ext4_ext_check_inode(inode);
4953                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4954                            (S_ISLNK(inode->i_mode) &&
4955                             !ext4_inode_is_fast_symlink(inode))) {
4956                         /* Validate block references which are part of inode */
4957                         ret = ext4_ind_check_inode(inode);
4958                 }
4959         }
4960         if (ret)
4961                 goto bad_inode;
4962
4963         if (S_ISREG(inode->i_mode)) {
4964                 inode->i_op = &ext4_file_inode_operations;
4965                 inode->i_fop = &ext4_file_operations;
4966                 ext4_set_aops(inode);
4967         } else if (S_ISDIR(inode->i_mode)) {
4968                 inode->i_op = &ext4_dir_inode_operations;
4969                 inode->i_fop = &ext4_dir_operations;
4970         } else if (S_ISLNK(inode->i_mode)) {
4971                 /* VFS does not allow setting these so must be corruption */
4972                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4973                         EXT4_ERROR_INODE(inode,
4974                           "immutable or append flags not allowed on symlinks");
4975                         ret = -EFSCORRUPTED;
4976                         goto bad_inode;
4977                 }
4978                 if (ext4_encrypted_inode(inode)) {
4979                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4980                         ext4_set_aops(inode);
4981                 } else if (ext4_inode_is_fast_symlink(inode)) {
4982                         inode->i_link = (char *)ei->i_data;
4983                         inode->i_op = &ext4_fast_symlink_inode_operations;
4984                         nd_terminate_link(ei->i_data, inode->i_size,
4985                                 sizeof(ei->i_data) - 1);
4986                 } else {
4987                         inode->i_op = &ext4_symlink_inode_operations;
4988                         ext4_set_aops(inode);
4989                 }
4990                 inode_nohighmem(inode);
4991         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4992               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4993                 inode->i_op = &ext4_special_inode_operations;
4994                 if (raw_inode->i_block[0])
4995                         init_special_inode(inode, inode->i_mode,
4996                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4997                 else
4998                         init_special_inode(inode, inode->i_mode,
4999                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5000         } else if (ino == EXT4_BOOT_LOADER_INO) {
5001                 make_bad_inode(inode);
5002         } else {
5003                 ret = -EFSCORRUPTED;
5004                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5005                 goto bad_inode;
5006         }
5007         brelse(iloc.bh);
5008         ext4_set_inode_flags(inode);
5009
5010         unlock_new_inode(inode);
5011         return inode;
5012
5013 bad_inode:
5014         brelse(iloc.bh);
5015         iget_failed(inode);
5016         return ERR_PTR(ret);
5017 }
5018
5019 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5020 {
5021         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5022                 return ERR_PTR(-EFSCORRUPTED);
5023         return ext4_iget(sb, ino);
5024 }
5025
5026 static int ext4_inode_blocks_set(handle_t *handle,
5027                                 struct ext4_inode *raw_inode,
5028                                 struct ext4_inode_info *ei)
5029 {
5030         struct inode *inode = &(ei->vfs_inode);
5031         u64 i_blocks = inode->i_blocks;
5032         struct super_block *sb = inode->i_sb;
5033
5034         if (i_blocks <= ~0U) {
5035                 /*
5036                  * i_blocks can be represented in a 32 bit variable
5037                  * as multiple of 512 bytes
5038                  */
5039                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5040                 raw_inode->i_blocks_high = 0;
5041                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5042                 return 0;
5043         }
5044         if (!ext4_has_feature_huge_file(sb))
5045                 return -EFBIG;
5046
5047         if (i_blocks <= 0xffffffffffffULL) {
5048                 /*
5049                  * i_blocks can be represented in a 48 bit variable
5050                  * as multiple of 512 bytes
5051                  */
5052                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5053                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5054                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5055         } else {
5056                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5057                 /* i_block is stored in file system block size */
5058                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5059                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5060                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5061         }
5062         return 0;
5063 }
5064
5065 struct other_inode {
5066         unsigned long           orig_ino;
5067         struct ext4_inode       *raw_inode;
5068 };
5069
5070 static int other_inode_match(struct inode * inode, unsigned long ino,
5071                              void *data)
5072 {
5073         struct other_inode *oi = (struct other_inode *) data;
5074
5075         if ((inode->i_ino != ino) ||
5076             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5077                                I_DIRTY_INODE)) ||
5078             ((inode->i_state & I_DIRTY_TIME) == 0))
5079                 return 0;
5080         spin_lock(&inode->i_lock);
5081         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5082                                 I_DIRTY_INODE)) == 0) &&
5083             (inode->i_state & I_DIRTY_TIME)) {
5084                 struct ext4_inode_info  *ei = EXT4_I(inode);
5085
5086                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5087                 spin_unlock(&inode->i_lock);
5088
5089                 spin_lock(&ei->i_raw_lock);
5090                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5091                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5092                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5093                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5094                 spin_unlock(&ei->i_raw_lock);
5095                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5096                 return -1;
5097         }
5098         spin_unlock(&inode->i_lock);
5099         return -1;
5100 }
5101
5102 /*
5103  * Opportunistically update the other time fields for other inodes in
5104  * the same inode table block.
5105  */
5106 static void ext4_update_other_inodes_time(struct super_block *sb,
5107                                           unsigned long orig_ino, char *buf)
5108 {
5109         struct other_inode oi;
5110         unsigned long ino;
5111         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5112         int inode_size = EXT4_INODE_SIZE(sb);
5113
5114         oi.orig_ino = orig_ino;
5115         /*
5116          * Calculate the first inode in the inode table block.  Inode
5117          * numbers are one-based.  That is, the first inode in a block
5118          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5119          */
5120         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5121         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5122                 if (ino == orig_ino)
5123                         continue;
5124                 oi.raw_inode = (struct ext4_inode *) buf;
5125                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5126         }
5127 }
5128
5129 /*
5130  * Post the struct inode info into an on-disk inode location in the
5131  * buffer-cache.  This gobbles the caller's reference to the
5132  * buffer_head in the inode location struct.
5133  *
5134  * The caller must have write access to iloc->bh.
5135  */
5136 static int ext4_do_update_inode(handle_t *handle,
5137                                 struct inode *inode,
5138                                 struct ext4_iloc *iloc)
5139 {
5140         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5141         struct ext4_inode_info *ei = EXT4_I(inode);
5142         struct buffer_head *bh = iloc->bh;
5143         struct super_block *sb = inode->i_sb;
5144         int err = 0, rc, block;
5145         int need_datasync = 0, set_large_file = 0;
5146         uid_t i_uid;
5147         gid_t i_gid;
5148         projid_t i_projid;
5149
5150         spin_lock(&ei->i_raw_lock);
5151
5152         /* For fields not tracked in the in-memory inode,
5153          * initialise them to zero for new inodes. */
5154         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5155                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5156
5157         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5158         i_uid = i_uid_read(inode);
5159         i_gid = i_gid_read(inode);
5160         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5161         if (!(test_opt(inode->i_sb, NO_UID32))) {
5162                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5163                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5164 /*
5165  * Fix up interoperability with old kernels. Otherwise, old inodes get
5166  * re-used with the upper 16 bits of the uid/gid intact
5167  */
5168                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5169                         raw_inode->i_uid_high = 0;
5170                         raw_inode->i_gid_high = 0;
5171                 } else {
5172                         raw_inode->i_uid_high =
5173                                 cpu_to_le16(high_16_bits(i_uid));
5174                         raw_inode->i_gid_high =
5175                                 cpu_to_le16(high_16_bits(i_gid));
5176                 }
5177         } else {
5178                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5179                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5180                 raw_inode->i_uid_high = 0;
5181                 raw_inode->i_gid_high = 0;
5182         }
5183         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5184
5185         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5186         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5187         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5188         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5189
5190         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5191         if (err) {
5192                 spin_unlock(&ei->i_raw_lock);
5193                 goto out_brelse;
5194         }
5195         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5196         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5197         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5198                 raw_inode->i_file_acl_high =
5199                         cpu_to_le16(ei->i_file_acl >> 32);
5200         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5201         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5202                 ext4_isize_set(raw_inode, ei->i_disksize);
5203                 need_datasync = 1;
5204         }
5205         if (ei->i_disksize > 0x7fffffffULL) {
5206                 if (!ext4_has_feature_large_file(sb) ||
5207                                 EXT4_SB(sb)->s_es->s_rev_level ==
5208                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5209                         set_large_file = 1;
5210         }
5211         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5212         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5213                 if (old_valid_dev(inode->i_rdev)) {
5214                         raw_inode->i_block[0] =
5215                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5216                         raw_inode->i_block[1] = 0;
5217                 } else {
5218                         raw_inode->i_block[0] = 0;
5219                         raw_inode->i_block[1] =
5220                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5221                         raw_inode->i_block[2] = 0;
5222                 }
5223         } else if (!ext4_has_inline_data(inode)) {
5224                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5225                         raw_inode->i_block[block] = ei->i_data[block];
5226         }
5227
5228         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5229                 u64 ivers = ext4_inode_peek_iversion(inode);
5230
5231                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5232                 if (ei->i_extra_isize) {
5233                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5234                                 raw_inode->i_version_hi =
5235                                         cpu_to_le32(ivers >> 32);
5236                         raw_inode->i_extra_isize =
5237                                 cpu_to_le16(ei->i_extra_isize);
5238                 }
5239         }
5240
5241         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5242                i_projid != EXT4_DEF_PROJID);
5243
5244         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5245             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5246                 raw_inode->i_projid = cpu_to_le32(i_projid);
5247
5248         ext4_inode_csum_set(inode, raw_inode, ei);
5249         spin_unlock(&ei->i_raw_lock);
5250         if (inode->i_sb->s_flags & SB_LAZYTIME)
5251                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5252                                               bh->b_data);
5253
5254         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5255         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5256         if (!err)
5257                 err = rc;
5258         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5259         if (set_large_file) {
5260                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5261                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5262                 if (err)
5263                         goto out_brelse;
5264                 ext4_update_dynamic_rev(sb);
5265                 ext4_set_feature_large_file(sb);
5266                 ext4_handle_sync(handle);
5267                 err = ext4_handle_dirty_super(handle, sb);
5268         }
5269         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5270 out_brelse:
5271         brelse(bh);
5272         ext4_std_error(inode->i_sb, err);
5273         return err;
5274 }
5275
5276 /*
5277  * ext4_write_inode()
5278  *
5279  * We are called from a few places:
5280  *
5281  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5282  *   Here, there will be no transaction running. We wait for any running
5283  *   transaction to commit.
5284  *
5285  * - Within flush work (sys_sync(), kupdate and such).
5286  *   We wait on commit, if told to.
5287  *
5288  * - Within iput_final() -> write_inode_now()
5289  *   We wait on commit, if told to.
5290  *
5291  * In all cases it is actually safe for us to return without doing anything,
5292  * because the inode has been copied into a raw inode buffer in
5293  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5294  * writeback.
5295  *
5296  * Note that we are absolutely dependent upon all inode dirtiers doing the
5297  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5298  * which we are interested.
5299  *
5300  * It would be a bug for them to not do this.  The code:
5301  *
5302  *      mark_inode_dirty(inode)
5303  *      stuff();
5304  *      inode->i_size = expr;
5305  *
5306  * is in error because write_inode() could occur while `stuff()' is running,
5307  * and the new i_size will be lost.  Plus the inode will no longer be on the
5308  * superblock's dirty inode list.
5309  */
5310 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5311 {
5312         int err;
5313
5314         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5315                 return 0;
5316
5317         if (EXT4_SB(inode->i_sb)->s_journal) {
5318                 if (ext4_journal_current_handle()) {
5319                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5320                         dump_stack();
5321                         return -EIO;
5322                 }
5323
5324                 /*
5325                  * No need to force transaction in WB_SYNC_NONE mode. Also
5326                  * ext4_sync_fs() will force the commit after everything is
5327                  * written.
5328                  */
5329                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5330                         return 0;
5331
5332                 err = ext4_force_commit(inode->i_sb);
5333         } else {
5334                 struct ext4_iloc iloc;
5335
5336                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5337                 if (err)
5338                         return err;
5339                 /*
5340                  * sync(2) will flush the whole buffer cache. No need to do
5341                  * it here separately for each inode.
5342                  */
5343                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5344                         sync_dirty_buffer(iloc.bh);
5345                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5346                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5347                                          "IO error syncing inode");
5348                         err = -EIO;
5349                 }
5350                 brelse(iloc.bh);
5351         }
5352         return err;
5353 }
5354
5355 /*
5356  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5357  * buffers that are attached to a page stradding i_size and are undergoing
5358  * commit. In that case we have to wait for commit to finish and try again.
5359  */
5360 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5361 {
5362         struct page *page;
5363         unsigned offset;
5364         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5365         tid_t commit_tid = 0;
5366         int ret;
5367
5368         offset = inode->i_size & (PAGE_SIZE - 1);
5369         /*
5370          * All buffers in the last page remain valid? Then there's nothing to
5371          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5372          * blocksize case
5373          */
5374         if (offset > PAGE_SIZE - i_blocksize(inode))
5375                 return;
5376         while (1) {
5377                 page = find_lock_page(inode->i_mapping,
5378                                       inode->i_size >> PAGE_SHIFT);
5379                 if (!page)
5380                         return;
5381                 ret = __ext4_journalled_invalidatepage(page, offset,
5382                                                 PAGE_SIZE - offset);
5383                 unlock_page(page);
5384                 put_page(page);
5385                 if (ret != -EBUSY)
5386                         return;
5387                 commit_tid = 0;
5388                 read_lock(&journal->j_state_lock);
5389                 if (journal->j_committing_transaction)
5390                         commit_tid = journal->j_committing_transaction->t_tid;
5391                 read_unlock(&journal->j_state_lock);
5392                 if (commit_tid)
5393                         jbd2_log_wait_commit(journal, commit_tid);
5394         }
5395 }
5396
5397 /*
5398  * ext4_setattr()
5399  *
5400  * Called from notify_change.
5401  *
5402  * We want to trap VFS attempts to truncate the file as soon as
5403  * possible.  In particular, we want to make sure that when the VFS
5404  * shrinks i_size, we put the inode on the orphan list and modify
5405  * i_disksize immediately, so that during the subsequent flushing of
5406  * dirty pages and freeing of disk blocks, we can guarantee that any
5407  * commit will leave the blocks being flushed in an unused state on
5408  * disk.  (On recovery, the inode will get truncated and the blocks will
5409  * be freed, so we have a strong guarantee that no future commit will
5410  * leave these blocks visible to the user.)
5411  *
5412  * Another thing we have to assure is that if we are in ordered mode
5413  * and inode is still attached to the committing transaction, we must
5414  * we start writeout of all the dirty pages which are being truncated.
5415  * This way we are sure that all the data written in the previous
5416  * transaction are already on disk (truncate waits for pages under
5417  * writeback).
5418  *
5419  * Called with inode->i_mutex down.
5420  */
5421 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5422 {
5423         struct inode *inode = d_inode(dentry);
5424         int error, rc = 0;
5425         int orphan = 0;
5426         const unsigned int ia_valid = attr->ia_valid;
5427
5428         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5429                 return -EIO;
5430
5431         error = setattr_prepare(dentry, attr);
5432         if (error)
5433                 return error;
5434
5435         error = fscrypt_prepare_setattr(dentry, attr);
5436         if (error)
5437                 return error;
5438
5439         if (is_quota_modification(inode, attr)) {
5440                 error = dquot_initialize(inode);
5441                 if (error)
5442                         return error;
5443         }
5444         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5445             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5446                 handle_t *handle;
5447
5448                 /* (user+group)*(old+new) structure, inode write (sb,
5449                  * inode block, ? - but truncate inode update has it) */
5450                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5451                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5452                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5453                 if (IS_ERR(handle)) {
5454                         error = PTR_ERR(handle);
5455                         goto err_out;
5456                 }
5457
5458                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5459                  * counts xattr inode references.
5460                  */
5461                 down_read(&EXT4_I(inode)->xattr_sem);
5462                 error = dquot_transfer(inode, attr);
5463                 up_read(&EXT4_I(inode)->xattr_sem);
5464
5465                 if (error) {
5466                         ext4_journal_stop(handle);
5467                         return error;
5468                 }
5469                 /* Update corresponding info in inode so that everything is in
5470                  * one transaction */
5471                 if (attr->ia_valid & ATTR_UID)
5472                         inode->i_uid = attr->ia_uid;
5473                 if (attr->ia_valid & ATTR_GID)
5474                         inode->i_gid = attr->ia_gid;
5475                 error = ext4_mark_inode_dirty(handle, inode);
5476                 ext4_journal_stop(handle);
5477         }
5478
5479         if (attr->ia_valid & ATTR_SIZE) {
5480                 handle_t *handle;
5481                 loff_t oldsize = inode->i_size;
5482                 int shrink = (attr->ia_size <= inode->i_size);
5483
5484                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5485                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5486
5487                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5488                                 return -EFBIG;
5489                 }
5490                 if (!S_ISREG(inode->i_mode))
5491                         return -EINVAL;
5492
5493                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5494                         inode_inc_iversion(inode);
5495
5496                 if (ext4_should_order_data(inode) &&
5497                     (attr->ia_size < inode->i_size)) {
5498                         error = ext4_begin_ordered_truncate(inode,
5499                                                             attr->ia_size);
5500                         if (error)
5501                                 goto err_out;
5502                 }
5503                 if (attr->ia_size != inode->i_size) {
5504                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5505                         if (IS_ERR(handle)) {
5506                                 error = PTR_ERR(handle);
5507                                 goto err_out;
5508                         }
5509                         if (ext4_handle_valid(handle) && shrink) {
5510                                 error = ext4_orphan_add(handle, inode);
5511                                 orphan = 1;
5512                         }
5513                         /*
5514                          * Update c/mtime on truncate up, ext4_truncate() will
5515                          * update c/mtime in shrink case below
5516                          */
5517                         if (!shrink) {
5518                                 inode->i_mtime = current_time(inode);
5519                                 inode->i_ctime = inode->i_mtime;
5520                         }
5521                         down_write(&EXT4_I(inode)->i_data_sem);
5522                         EXT4_I(inode)->i_disksize = attr->ia_size;
5523                         rc = ext4_mark_inode_dirty(handle, inode);
5524                         if (!error)
5525                                 error = rc;
5526                         /*
5527                          * We have to update i_size under i_data_sem together
5528                          * with i_disksize to avoid races with writeback code
5529                          * running ext4_wb_update_i_disksize().
5530                          */
5531                         if (!error)
5532                                 i_size_write(inode, attr->ia_size);
5533                         up_write(&EXT4_I(inode)->i_data_sem);
5534                         ext4_journal_stop(handle);
5535                         if (error) {
5536                                 if (orphan)
5537                                         ext4_orphan_del(NULL, inode);
5538                                 goto err_out;
5539                         }
5540                 }
5541                 if (!shrink)
5542                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5543
5544                 /*
5545                  * Blocks are going to be removed from the inode. Wait
5546                  * for dio in flight.  Temporarily disable
5547                  * dioread_nolock to prevent livelock.
5548                  */
5549                 if (orphan) {
5550                         if (!ext4_should_journal_data(inode)) {
5551                                 inode_dio_wait(inode);
5552                         } else
5553                                 ext4_wait_for_tail_page_commit(inode);
5554                 }
5555                 down_write(&EXT4_I(inode)->i_mmap_sem);
5556                 /*
5557                  * Truncate pagecache after we've waited for commit
5558                  * in data=journal mode to make pages freeable.
5559                  */
5560                 truncate_pagecache(inode, inode->i_size);
5561                 if (shrink) {
5562                         rc = ext4_truncate(inode);
5563                         if (rc)
5564                                 error = rc;
5565                 }
5566                 up_write(&EXT4_I(inode)->i_mmap_sem);
5567         }
5568
5569         if (!error) {
5570                 setattr_copy(inode, attr);
5571                 mark_inode_dirty(inode);
5572         }
5573
5574         /*
5575          * If the call to ext4_truncate failed to get a transaction handle at
5576          * all, we need to clean up the in-core orphan list manually.
5577          */
5578         if (orphan && inode->i_nlink)
5579                 ext4_orphan_del(NULL, inode);
5580
5581         if (!error && (ia_valid & ATTR_MODE))
5582                 rc = posix_acl_chmod(inode, inode->i_mode);
5583
5584 err_out:
5585         ext4_std_error(inode->i_sb, error);
5586         if (!error)
5587                 error = rc;
5588         return error;
5589 }
5590
5591 int ext4_getattr(const struct path *path, struct kstat *stat,
5592                  u32 request_mask, unsigned int query_flags)
5593 {
5594         struct inode *inode = d_inode(path->dentry);
5595         struct ext4_inode *raw_inode;
5596         struct ext4_inode_info *ei = EXT4_I(inode);
5597         unsigned int flags;
5598
5599         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600                 stat->result_mask |= STATX_BTIME;
5601                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603         }
5604
5605         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5606         if (flags & EXT4_APPEND_FL)
5607                 stat->attributes |= STATX_ATTR_APPEND;
5608         if (flags & EXT4_COMPR_FL)
5609                 stat->attributes |= STATX_ATTR_COMPRESSED;
5610         if (flags & EXT4_ENCRYPT_FL)
5611                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5612         if (flags & EXT4_IMMUTABLE_FL)
5613                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5614         if (flags & EXT4_NODUMP_FL)
5615                 stat->attributes |= STATX_ATTR_NODUMP;
5616
5617         stat->attributes_mask |= (STATX_ATTR_APPEND |
5618                                   STATX_ATTR_COMPRESSED |
5619                                   STATX_ATTR_ENCRYPTED |
5620                                   STATX_ATTR_IMMUTABLE |
5621                                   STATX_ATTR_NODUMP);
5622
5623         generic_fillattr(inode, stat);
5624         return 0;
5625 }
5626
5627 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5628                       u32 request_mask, unsigned int query_flags)
5629 {
5630         struct inode *inode = d_inode(path->dentry);
5631         u64 delalloc_blocks;
5632
5633         ext4_getattr(path, stat, request_mask, query_flags);
5634
5635         /*
5636          * If there is inline data in the inode, the inode will normally not
5637          * have data blocks allocated (it may have an external xattr block).
5638          * Report at least one sector for such files, so tools like tar, rsync,
5639          * others don't incorrectly think the file is completely sparse.
5640          */
5641         if (unlikely(ext4_has_inline_data(inode)))
5642                 stat->blocks += (stat->size + 511) >> 9;
5643
5644         /*
5645          * We can't update i_blocks if the block allocation is delayed
5646          * otherwise in the case of system crash before the real block
5647          * allocation is done, we will have i_blocks inconsistent with
5648          * on-disk file blocks.
5649          * We always keep i_blocks updated together with real
5650          * allocation. But to not confuse with user, stat
5651          * will return the blocks that include the delayed allocation
5652          * blocks for this file.
5653          */
5654         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5655                                    EXT4_I(inode)->i_reserved_data_blocks);
5656         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5657         return 0;
5658 }
5659
5660 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5661                                    int pextents)
5662 {
5663         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5664                 return ext4_ind_trans_blocks(inode, lblocks);
5665         return ext4_ext_index_trans_blocks(inode, pextents);
5666 }
5667
5668 /*
5669  * Account for index blocks, block groups bitmaps and block group
5670  * descriptor blocks if modify datablocks and index blocks
5671  * worse case, the indexs blocks spread over different block groups
5672  *
5673  * If datablocks are discontiguous, they are possible to spread over
5674  * different block groups too. If they are contiguous, with flexbg,
5675  * they could still across block group boundary.
5676  *
5677  * Also account for superblock, inode, quota and xattr blocks
5678  */
5679 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5680                                   int pextents)
5681 {
5682         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5683         int gdpblocks;
5684         int idxblocks;
5685         int ret = 0;
5686
5687         /*
5688          * How many index blocks need to touch to map @lblocks logical blocks
5689          * to @pextents physical extents?
5690          */
5691         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5692
5693         ret = idxblocks;
5694
5695         /*
5696          * Now let's see how many group bitmaps and group descriptors need
5697          * to account
5698          */
5699         groups = idxblocks + pextents;
5700         gdpblocks = groups;
5701         if (groups > ngroups)
5702                 groups = ngroups;
5703         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5704                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5705
5706         /* bitmaps and block group descriptor blocks */
5707         ret += groups + gdpblocks;
5708
5709         /* Blocks for super block, inode, quota and xattr blocks */
5710         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5711
5712         return ret;
5713 }
5714
5715 /*
5716  * Calculate the total number of credits to reserve to fit
5717  * the modification of a single pages into a single transaction,
5718  * which may include multiple chunks of block allocations.
5719  *
5720  * This could be called via ext4_write_begin()
5721  *
5722  * We need to consider the worse case, when
5723  * one new block per extent.
5724  */
5725 int ext4_writepage_trans_blocks(struct inode *inode)
5726 {
5727         int bpp = ext4_journal_blocks_per_page(inode);
5728         int ret;
5729
5730         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5731
5732         /* Account for data blocks for journalled mode */
5733         if (ext4_should_journal_data(inode))
5734                 ret += bpp;
5735         return ret;
5736 }
5737
5738 /*
5739  * Calculate the journal credits for a chunk of data modification.
5740  *
5741  * This is called from DIO, fallocate or whoever calling
5742  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5743  *
5744  * journal buffers for data blocks are not included here, as DIO
5745  * and fallocate do no need to journal data buffers.
5746  */
5747 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5748 {
5749         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5750 }
5751
5752 /*
5753  * The caller must have previously called ext4_reserve_inode_write().
5754  * Give this, we know that the caller already has write access to iloc->bh.
5755  */
5756 int ext4_mark_iloc_dirty(handle_t *handle,
5757                          struct inode *inode, struct ext4_iloc *iloc)
5758 {
5759         int err = 0;
5760
5761         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5762                 return -EIO;
5763
5764         if (IS_I_VERSION(inode))
5765                 inode_inc_iversion(inode);
5766
5767         /* the do_update_inode consumes one bh->b_count */
5768         get_bh(iloc->bh);
5769
5770         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5771         err = ext4_do_update_inode(handle, inode, iloc);
5772         put_bh(iloc->bh);
5773         return err;
5774 }
5775
5776 /*
5777  * On success, We end up with an outstanding reference count against
5778  * iloc->bh.  This _must_ be cleaned up later.
5779  */
5780
5781 int
5782 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5783                          struct ext4_iloc *iloc)
5784 {
5785         int err;
5786
5787         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5788                 return -EIO;
5789
5790         err = ext4_get_inode_loc(inode, iloc);
5791         if (!err) {
5792                 BUFFER_TRACE(iloc->bh, "get_write_access");
5793                 err = ext4_journal_get_write_access(handle, iloc->bh);
5794                 if (err) {
5795                         brelse(iloc->bh);
5796                         iloc->bh = NULL;
5797                 }
5798         }
5799         ext4_std_error(inode->i_sb, err);
5800         return err;
5801 }
5802
5803 static int __ext4_expand_extra_isize(struct inode *inode,
5804                                      unsigned int new_extra_isize,
5805                                      struct ext4_iloc *iloc,
5806                                      handle_t *handle, int *no_expand)
5807 {
5808         struct ext4_inode *raw_inode;
5809         struct ext4_xattr_ibody_header *header;
5810         int error;
5811
5812         raw_inode = ext4_raw_inode(iloc);
5813
5814         header = IHDR(inode, raw_inode);
5815
5816         /* No extended attributes present */
5817         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5818             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5819                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5820                        EXT4_I(inode)->i_extra_isize, 0,
5821                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5822                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5823                 return 0;
5824         }
5825
5826         /* try to expand with EAs present */
5827         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5828                                            raw_inode, handle);
5829         if (error) {
5830                 /*
5831                  * Inode size expansion failed; don't try again
5832                  */
5833                 *no_expand = 1;
5834         }
5835
5836         return error;
5837 }
5838
5839 /*
5840  * Expand an inode by new_extra_isize bytes.
5841  * Returns 0 on success or negative error number on failure.
5842  */
5843 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5844                                           unsigned int new_extra_isize,
5845                                           struct ext4_iloc iloc,
5846                                           handle_t *handle)
5847 {
5848         int no_expand;
5849         int error;
5850
5851         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5852                 return -EOVERFLOW;
5853
5854         /*
5855          * In nojournal mode, we can immediately attempt to expand
5856          * the inode.  When journaled, we first need to obtain extra
5857          * buffer credits since we may write into the EA block
5858          * with this same handle. If journal_extend fails, then it will
5859          * only result in a minor loss of functionality for that inode.
5860          * If this is felt to be critical, then e2fsck should be run to
5861          * force a large enough s_min_extra_isize.
5862          */
5863         if (ext4_handle_valid(handle) &&
5864             jbd2_journal_extend(handle,
5865                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5866                 return -ENOSPC;
5867
5868         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5869                 return -EBUSY;
5870
5871         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5872                                           handle, &no_expand);
5873         ext4_write_unlock_xattr(inode, &no_expand);
5874
5875         return error;
5876 }
5877
5878 int ext4_expand_extra_isize(struct inode *inode,
5879                             unsigned int new_extra_isize,
5880                             struct ext4_iloc *iloc)
5881 {
5882         handle_t *handle;
5883         int no_expand;
5884         int error, rc;
5885
5886         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5887                 brelse(iloc->bh);
5888                 return -EOVERFLOW;
5889         }
5890
5891         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5892                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5893         if (IS_ERR(handle)) {
5894                 error = PTR_ERR(handle);
5895                 brelse(iloc->bh);
5896                 return error;
5897         }
5898
5899         ext4_write_lock_xattr(inode, &no_expand);
5900
5901         BUFFER_TRACE(iloc.bh, "get_write_access");
5902         error = ext4_journal_get_write_access(handle, iloc->bh);
5903         if (error) {
5904                 brelse(iloc->bh);
5905                 goto out_stop;
5906         }
5907
5908         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5909                                           handle, &no_expand);
5910
5911         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5912         if (!error)
5913                 error = rc;
5914
5915         ext4_write_unlock_xattr(inode, &no_expand);
5916 out_stop:
5917         ext4_journal_stop(handle);
5918         return error;
5919 }
5920
5921 /*
5922  * What we do here is to mark the in-core inode as clean with respect to inode
5923  * dirtiness (it may still be data-dirty).
5924  * This means that the in-core inode may be reaped by prune_icache
5925  * without having to perform any I/O.  This is a very good thing,
5926  * because *any* task may call prune_icache - even ones which
5927  * have a transaction open against a different journal.
5928  *
5929  * Is this cheating?  Not really.  Sure, we haven't written the
5930  * inode out, but prune_icache isn't a user-visible syncing function.
5931  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5932  * we start and wait on commits.
5933  */
5934 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5935 {
5936         struct ext4_iloc iloc;
5937         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5938         int err;
5939
5940         might_sleep();
5941         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5942         err = ext4_reserve_inode_write(handle, inode, &iloc);
5943         if (err)
5944                 return err;
5945
5946         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5947                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5948                                                iloc, handle);
5949
5950         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5951 }
5952
5953 /*
5954  * ext4_dirty_inode() is called from __mark_inode_dirty()
5955  *
5956  * We're really interested in the case where a file is being extended.
5957  * i_size has been changed by generic_commit_write() and we thus need
5958  * to include the updated inode in the current transaction.
5959  *
5960  * Also, dquot_alloc_block() will always dirty the inode when blocks
5961  * are allocated to the file.
5962  *
5963  * If the inode is marked synchronous, we don't honour that here - doing
5964  * so would cause a commit on atime updates, which we don't bother doing.
5965  * We handle synchronous inodes at the highest possible level.
5966  *
5967  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5968  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5969  * to copy into the on-disk inode structure are the timestamp files.
5970  */
5971 void ext4_dirty_inode(struct inode *inode, int flags)
5972 {
5973         handle_t *handle;
5974
5975         if (flags == I_DIRTY_TIME)
5976                 return;
5977         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5978         if (IS_ERR(handle))
5979                 goto out;
5980
5981         ext4_mark_inode_dirty(handle, inode);
5982
5983         ext4_journal_stop(handle);
5984 out:
5985         return;
5986 }
5987
5988 #if 0
5989 /*
5990  * Bind an inode's backing buffer_head into this transaction, to prevent
5991  * it from being flushed to disk early.  Unlike
5992  * ext4_reserve_inode_write, this leaves behind no bh reference and
5993  * returns no iloc structure, so the caller needs to repeat the iloc
5994  * lookup to mark the inode dirty later.
5995  */
5996 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5997 {
5998         struct ext4_iloc iloc;
5999
6000         int err = 0;
6001         if (handle) {
6002                 err = ext4_get_inode_loc(inode, &iloc);
6003                 if (!err) {
6004                         BUFFER_TRACE(iloc.bh, "get_write_access");
6005                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6006                         if (!err)
6007                                 err = ext4_handle_dirty_metadata(handle,
6008                                                                  NULL,
6009                                                                  iloc.bh);
6010                         brelse(iloc.bh);
6011                 }
6012         }
6013         ext4_std_error(inode->i_sb, err);
6014         return err;
6015 }
6016 #endif
6017
6018 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6019 {
6020         journal_t *journal;
6021         handle_t *handle;
6022         int err;
6023         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6024
6025         /*
6026          * We have to be very careful here: changing a data block's
6027          * journaling status dynamically is dangerous.  If we write a
6028          * data block to the journal, change the status and then delete
6029          * that block, we risk forgetting to revoke the old log record
6030          * from the journal and so a subsequent replay can corrupt data.
6031          * So, first we make sure that the journal is empty and that
6032          * nobody is changing anything.
6033          */
6034
6035         journal = EXT4_JOURNAL(inode);
6036         if (!journal)
6037                 return 0;
6038         if (is_journal_aborted(journal))
6039                 return -EROFS;
6040
6041         /* Wait for all existing dio workers */
6042         inode_dio_wait(inode);
6043
6044         /*
6045          * Before flushing the journal and switching inode's aops, we have
6046          * to flush all dirty data the inode has. There can be outstanding
6047          * delayed allocations, there can be unwritten extents created by
6048          * fallocate or buffered writes in dioread_nolock mode covered by
6049          * dirty data which can be converted only after flushing the dirty
6050          * data (and journalled aops don't know how to handle these cases).
6051          */
6052         if (val) {
6053                 down_write(&EXT4_I(inode)->i_mmap_sem);
6054                 err = filemap_write_and_wait(inode->i_mapping);
6055                 if (err < 0) {
6056                         up_write(&EXT4_I(inode)->i_mmap_sem);
6057                         return err;
6058                 }
6059         }
6060
6061         percpu_down_write(&sbi->s_journal_flag_rwsem);
6062         jbd2_journal_lock_updates(journal);
6063
6064         /*
6065          * OK, there are no updates running now, and all cached data is
6066          * synced to disk.  We are now in a completely consistent state
6067          * which doesn't have anything in the journal, and we know that
6068          * no filesystem updates are running, so it is safe to modify
6069          * the inode's in-core data-journaling state flag now.
6070          */
6071
6072         if (val)
6073                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6074         else {
6075                 err = jbd2_journal_flush(journal);
6076                 if (err < 0) {
6077                         jbd2_journal_unlock_updates(journal);
6078                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6079                         return err;
6080                 }
6081                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6082         }
6083         ext4_set_aops(inode);
6084
6085         jbd2_journal_unlock_updates(journal);
6086         percpu_up_write(&sbi->s_journal_flag_rwsem);
6087
6088         if (val)
6089                 up_write(&EXT4_I(inode)->i_mmap_sem);
6090
6091         /* Finally we can mark the inode as dirty. */
6092
6093         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6094         if (IS_ERR(handle))
6095                 return PTR_ERR(handle);
6096
6097         err = ext4_mark_inode_dirty(handle, inode);
6098         ext4_handle_sync(handle);
6099         ext4_journal_stop(handle);
6100         ext4_std_error(inode->i_sb, err);
6101
6102         return err;
6103 }
6104
6105 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6106 {
6107         return !buffer_mapped(bh);
6108 }
6109
6110 int ext4_page_mkwrite(struct vm_fault *vmf)
6111 {
6112         struct vm_area_struct *vma = vmf->vma;
6113         struct page *page = vmf->page;
6114         loff_t size;
6115         unsigned long len;
6116         int ret;
6117         struct file *file = vma->vm_file;
6118         struct inode *inode = file_inode(file);
6119         struct address_space *mapping = inode->i_mapping;
6120         handle_t *handle;
6121         get_block_t *get_block;
6122         int retries = 0;
6123
6124         sb_start_pagefault(inode->i_sb);
6125         file_update_time(vma->vm_file);
6126
6127         down_read(&EXT4_I(inode)->i_mmap_sem);
6128
6129         ret = ext4_convert_inline_data(inode);
6130         if (ret)
6131                 goto out_ret;
6132
6133         /* Delalloc case is easy... */
6134         if (test_opt(inode->i_sb, DELALLOC) &&
6135             !ext4_should_journal_data(inode) &&
6136             !ext4_nonda_switch(inode->i_sb)) {
6137                 do {
6138                         ret = block_page_mkwrite(vma, vmf,
6139                                                    ext4_da_get_block_prep);
6140                 } while (ret == -ENOSPC &&
6141                        ext4_should_retry_alloc(inode->i_sb, &retries));
6142                 goto out_ret;
6143         }
6144
6145         lock_page(page);
6146         size = i_size_read(inode);
6147         /* Page got truncated from under us? */
6148         if (page->mapping != mapping || page_offset(page) > size) {
6149                 unlock_page(page);
6150                 ret = VM_FAULT_NOPAGE;
6151                 goto out;
6152         }
6153
6154         if (page->index == size >> PAGE_SHIFT)
6155                 len = size & ~PAGE_MASK;
6156         else
6157                 len = PAGE_SIZE;
6158         /*
6159          * Return if we have all the buffers mapped. This avoids the need to do
6160          * journal_start/journal_stop which can block and take a long time
6161          */
6162         if (page_has_buffers(page)) {
6163                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6164                                             0, len, NULL,
6165                                             ext4_bh_unmapped)) {
6166                         /* Wait so that we don't change page under IO */
6167                         wait_for_stable_page(page);
6168                         ret = VM_FAULT_LOCKED;
6169                         goto out;
6170                 }
6171         }
6172         unlock_page(page);
6173         /* OK, we need to fill the hole... */
6174         if (ext4_should_dioread_nolock(inode))
6175                 get_block = ext4_get_block_unwritten;
6176         else
6177                 get_block = ext4_get_block;
6178 retry_alloc:
6179         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6180                                     ext4_writepage_trans_blocks(inode));
6181         if (IS_ERR(handle)) {
6182                 ret = VM_FAULT_SIGBUS;
6183                 goto out;
6184         }
6185         ret = block_page_mkwrite(vma, vmf, get_block);
6186         if (!ret && ext4_should_journal_data(inode)) {
6187                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6188                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6189                         unlock_page(page);
6190                         ret = VM_FAULT_SIGBUS;
6191                         ext4_journal_stop(handle);
6192                         goto out;
6193                 }
6194                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6195         }
6196         ext4_journal_stop(handle);
6197         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6198                 goto retry_alloc;
6199 out_ret:
6200         ret = block_page_mkwrite_return(ret);
6201 out:
6202         up_read(&EXT4_I(inode)->i_mmap_sem);
6203         sb_end_pagefault(inode->i_sb);
6204         return ret;
6205 }
6206
6207 int ext4_filemap_fault(struct vm_fault *vmf)
6208 {
6209         struct inode *inode = file_inode(vmf->vma->vm_file);
6210         int err;
6211
6212         down_read(&EXT4_I(inode)->i_mmap_sem);
6213         err = filemap_fault(vmf);
6214         up_read(&EXT4_I(inode)->i_mmap_sem);
6215
6216         return err;
6217 }