Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = get_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             (atomic_read(&inode->i_writecount) == 0))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_find_delalloc_range(inode, map->m_lblk,
581                                              map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
682                                            map->m_len);
683                         ret = ext4_issue_zeroout(inode, map->m_lblk,
684                                                  map->m_pblk, map->m_len);
685                         if (ret) {
686                                 retval = ret;
687                                 goto out_sem;
688                         }
689                 }
690
691                 /*
692                  * If the extent has been zeroed out, we don't need to update
693                  * extent status tree.
694                  */
695                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
697                         if (ext4_es_is_written(&es))
698                                 goto out_sem;
699                 }
700                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703                     !(status & EXTENT_STATUS_WRITTEN) &&
704                     ext4_find_delalloc_range(inode, map->m_lblk,
705                                              map->m_lblk + map->m_len - 1))
706                         status |= EXTENT_STATUS_DELAYED;
707                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708                                             map->m_pblk, status);
709                 if (ret < 0) {
710                         retval = ret;
711                         goto out_sem;
712                 }
713         }
714
715 out_sem:
716         up_write((&EXT4_I(inode)->i_data_sem));
717         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718                 ret = check_block_validity(inode, map);
719                 if (ret != 0)
720                         return ret;
721
722                 /*
723                  * Inodes with freshly allocated blocks where contents will be
724                  * visible after transaction commit must be on transaction's
725                  * ordered data list.
726                  */
727                 if (map->m_flags & EXT4_MAP_NEW &&
728                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
730                     !ext4_is_quota_file(inode) &&
731                     ext4_should_order_data(inode)) {
732                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
733                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
734                         else
735                                 ret = ext4_jbd2_inode_add_write(handle, inode);
736                         if (ret)
737                                 return ret;
738                 }
739         }
740         return retval;
741 }
742
743 /*
744  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
745  * we have to be careful as someone else may be manipulating b_state as well.
746  */
747 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
748 {
749         unsigned long old_state;
750         unsigned long new_state;
751
752         flags &= EXT4_MAP_FLAGS;
753
754         /* Dummy buffer_head? Set non-atomically. */
755         if (!bh->b_page) {
756                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
757                 return;
758         }
759         /*
760          * Someone else may be modifying b_state. Be careful! This is ugly but
761          * once we get rid of using bh as a container for mapping information
762          * to pass to / from get_block functions, this can go away.
763          */
764         do {
765                 old_state = READ_ONCE(bh->b_state);
766                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
767         } while (unlikely(
768                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 }
770
771 static int _ext4_get_block(struct inode *inode, sector_t iblock,
772                            struct buffer_head *bh, int flags)
773 {
774         struct ext4_map_blocks map;
775         int ret = 0;
776
777         if (ext4_has_inline_data(inode))
778                 return -ERANGE;
779
780         map.m_lblk = iblock;
781         map.m_len = bh->b_size >> inode->i_blkbits;
782
783         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784                               flags);
785         if (ret > 0) {
786                 map_bh(bh, inode->i_sb, map.m_pblk);
787                 ext4_update_bh_state(bh, map.m_flags);
788                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789                 ret = 0;
790         } else if (ret == 0) {
791                 /* hole case, need to fill in bh->b_size */
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793         }
794         return ret;
795 }
796
797 int ext4_get_block(struct inode *inode, sector_t iblock,
798                    struct buffer_head *bh, int create)
799 {
800         return _ext4_get_block(inode, iblock, bh,
801                                create ? EXT4_GET_BLOCKS_CREATE : 0);
802 }
803
804 /*
805  * Get block function used when preparing for buffered write if we require
806  * creating an unwritten extent if blocks haven't been allocated.  The extent
807  * will be converted to written after the IO is complete.
808  */
809 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
810                              struct buffer_head *bh_result, int create)
811 {
812         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
813                    inode->i_ino, create);
814         return _ext4_get_block(inode, iblock, bh_result,
815                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 }
817
818 /* Maximum number of blocks we map for direct IO at once. */
819 #define DIO_MAX_BLOCKS 4096
820
821 /*
822  * Get blocks function for the cases that need to start a transaction -
823  * generally difference cases of direct IO and DAX IO. It also handles retries
824  * in case of ENOSPC.
825  */
826 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
827                                 struct buffer_head *bh_result, int flags)
828 {
829         int dio_credits;
830         handle_t *handle;
831         int retries = 0;
832         int ret;
833
834         /* Trim mapping request to maximum we can map at once for DIO */
835         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
836                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
837         dio_credits = ext4_chunk_trans_blocks(inode,
838                                       bh_result->b_size >> inode->i_blkbits);
839 retry:
840         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
841         if (IS_ERR(handle))
842                 return PTR_ERR(handle);
843
844         ret = _ext4_get_block(inode, iblock, bh_result, flags);
845         ext4_journal_stop(handle);
846
847         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848                 goto retry;
849         return ret;
850 }
851
852 /* Get block function for DIO reads and writes to inodes without extents */
853 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
854                        struct buffer_head *bh, int create)
855 {
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         if (!create)
860                 return _ext4_get_block(inode, iblock, bh, 0);
861         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
862 }
863
864 /*
865  * Get block function for AIO DIO writes when we create unwritten extent if
866  * blocks are not allocated yet. The extent will be converted to written
867  * after IO is complete.
868  */
869 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
870                 sector_t iblock, struct buffer_head *bh_result, int create)
871 {
872         int ret;
873
874         /* We don't expect handle for direct IO */
875         WARN_ON_ONCE(ext4_journal_current_handle());
876
877         ret = ext4_get_block_trans(inode, iblock, bh_result,
878                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
879
880         /*
881          * When doing DIO using unwritten extents, we need io_end to convert
882          * unwritten extents to written on IO completion. We allocate io_end
883          * once we spot unwritten extent and store it in b_private. Generic
884          * DIO code keeps b_private set and furthermore passes the value to
885          * our completion callback in 'private' argument.
886          */
887         if (!ret && buffer_unwritten(bh_result)) {
888                 if (!bh_result->b_private) {
889                         ext4_io_end_t *io_end;
890
891                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
892                         if (!io_end)
893                                 return -ENOMEM;
894                         bh_result->b_private = io_end;
895                         ext4_set_io_unwritten_flag(inode, io_end);
896                 }
897                 set_buffer_defer_completion(bh_result);
898         }
899
900         return ret;
901 }
902
903 /*
904  * Get block function for non-AIO DIO writes when we create unwritten extent if
905  * blocks are not allocated yet. The extent will be converted to written
906  * after IO is complete by ext4_direct_IO_write().
907  */
908 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
909                 sector_t iblock, struct buffer_head *bh_result, int create)
910 {
911         int ret;
912
913         /* We don't expect handle for direct IO */
914         WARN_ON_ONCE(ext4_journal_current_handle());
915
916         ret = ext4_get_block_trans(inode, iblock, bh_result,
917                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
918
919         /*
920          * Mark inode as having pending DIO writes to unwritten extents.
921          * ext4_direct_IO_write() checks this flag and converts extents to
922          * written.
923          */
924         if (!ret && buffer_unwritten(bh_result))
925                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
926
927         return ret;
928 }
929
930 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
931                    struct buffer_head *bh_result, int create)
932 {
933         int ret;
934
935         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
936                    inode->i_ino, create);
937         /* We don't expect handle for direct IO */
938         WARN_ON_ONCE(ext4_journal_current_handle());
939
940         ret = _ext4_get_block(inode, iblock, bh_result, 0);
941         /*
942          * Blocks should have been preallocated! ext4_file_write_iter() checks
943          * that.
944          */
945         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
946
947         return ret;
948 }
949
950
951 /*
952  * `handle' can be NULL if create is zero
953  */
954 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
955                                 ext4_lblk_t block, int map_flags)
956 {
957         struct ext4_map_blocks map;
958         struct buffer_head *bh;
959         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960         int err;
961
962         J_ASSERT(handle != NULL || create == 0);
963
964         map.m_lblk = block;
965         map.m_len = 1;
966         err = ext4_map_blocks(handle, inode, &map, map_flags);
967
968         if (err == 0)
969                 return create ? ERR_PTR(-ENOSPC) : NULL;
970         if (err < 0)
971                 return ERR_PTR(err);
972
973         bh = sb_getblk(inode->i_sb, map.m_pblk);
974         if (unlikely(!bh))
975                 return ERR_PTR(-ENOMEM);
976         if (map.m_flags & EXT4_MAP_NEW) {
977                 J_ASSERT(create != 0);
978                 J_ASSERT(handle != NULL);
979
980                 /*
981                  * Now that we do not always journal data, we should
982                  * keep in mind whether this should always journal the
983                  * new buffer as metadata.  For now, regular file
984                  * writes use ext4_get_block instead, so it's not a
985                  * problem.
986                  */
987                 lock_buffer(bh);
988                 BUFFER_TRACE(bh, "call get_create_access");
989                 err = ext4_journal_get_create_access(handle, bh);
990                 if (unlikely(err)) {
991                         unlock_buffer(bh);
992                         goto errout;
993                 }
994                 if (!buffer_uptodate(bh)) {
995                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
996                         set_buffer_uptodate(bh);
997                 }
998                 unlock_buffer(bh);
999                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1000                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1001                 if (unlikely(err))
1002                         goto errout;
1003         } else
1004                 BUFFER_TRACE(bh, "not a new buffer");
1005         return bh;
1006 errout:
1007         brelse(bh);
1008         return ERR_PTR(err);
1009 }
1010
1011 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1012                                ext4_lblk_t block, int map_flags)
1013 {
1014         struct buffer_head *bh;
1015
1016         bh = ext4_getblk(handle, inode, block, map_flags);
1017         if (IS_ERR(bh))
1018                 return bh;
1019         if (!bh || buffer_uptodate(bh))
1020                 return bh;
1021         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1022         wait_on_buffer(bh);
1023         if (buffer_uptodate(bh))
1024                 return bh;
1025         put_bh(bh);
1026         return ERR_PTR(-EIO);
1027 }
1028
1029 /* Read a contiguous batch of blocks. */
1030 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1031                      bool wait, struct buffer_head **bhs)
1032 {
1033         int i, err;
1034
1035         for (i = 0; i < bh_count; i++) {
1036                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1037                 if (IS_ERR(bhs[i])) {
1038                         err = PTR_ERR(bhs[i]);
1039                         bh_count = i;
1040                         goto out_brelse;
1041                 }
1042         }
1043
1044         for (i = 0; i < bh_count; i++)
1045                 /* Note that NULL bhs[i] is valid because of holes. */
1046                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1047                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1048                                     &bhs[i]);
1049
1050         if (!wait)
1051                 return 0;
1052
1053         for (i = 0; i < bh_count; i++)
1054                 if (bhs[i])
1055                         wait_on_buffer(bhs[i]);
1056
1057         for (i = 0; i < bh_count; i++) {
1058                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1059                         err = -EIO;
1060                         goto out_brelse;
1061                 }
1062         }
1063         return 0;
1064
1065 out_brelse:
1066         for (i = 0; i < bh_count; i++) {
1067                 brelse(bhs[i]);
1068                 bhs[i] = NULL;
1069         }
1070         return err;
1071 }
1072
1073 int ext4_walk_page_buffers(handle_t *handle,
1074                            struct buffer_head *head,
1075                            unsigned from,
1076                            unsigned to,
1077                            int *partial,
1078                            int (*fn)(handle_t *handle,
1079                                      struct buffer_head *bh))
1080 {
1081         struct buffer_head *bh;
1082         unsigned block_start, block_end;
1083         unsigned blocksize = head->b_size;
1084         int err, ret = 0;
1085         struct buffer_head *next;
1086
1087         for (bh = head, block_start = 0;
1088              ret == 0 && (bh != head || !block_start);
1089              block_start = block_end, bh = next) {
1090                 next = bh->b_this_page;
1091                 block_end = block_start + blocksize;
1092                 if (block_end <= from || block_start >= to) {
1093                         if (partial && !buffer_uptodate(bh))
1094                                 *partial = 1;
1095                         continue;
1096                 }
1097                 err = (*fn)(handle, bh);
1098                 if (!ret)
1099                         ret = err;
1100         }
1101         return ret;
1102 }
1103
1104 /*
1105  * To preserve ordering, it is essential that the hole instantiation and
1106  * the data write be encapsulated in a single transaction.  We cannot
1107  * close off a transaction and start a new one between the ext4_get_block()
1108  * and the commit_write().  So doing the jbd2_journal_start at the start of
1109  * prepare_write() is the right place.
1110  *
1111  * Also, this function can nest inside ext4_writepage().  In that case, we
1112  * *know* that ext4_writepage() has generated enough buffer credits to do the
1113  * whole page.  So we won't block on the journal in that case, which is good,
1114  * because the caller may be PF_MEMALLOC.
1115  *
1116  * By accident, ext4 can be reentered when a transaction is open via
1117  * quota file writes.  If we were to commit the transaction while thus
1118  * reentered, there can be a deadlock - we would be holding a quota
1119  * lock, and the commit would never complete if another thread had a
1120  * transaction open and was blocking on the quota lock - a ranking
1121  * violation.
1122  *
1123  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1124  * will _not_ run commit under these circumstances because handle->h_ref
1125  * is elevated.  We'll still have enough credits for the tiny quotafile
1126  * write.
1127  */
1128 int do_journal_get_write_access(handle_t *handle,
1129                                 struct buffer_head *bh)
1130 {
1131         int dirty = buffer_dirty(bh);
1132         int ret;
1133
1134         if (!buffer_mapped(bh) || buffer_freed(bh))
1135                 return 0;
1136         /*
1137          * __block_write_begin() could have dirtied some buffers. Clean
1138          * the dirty bit as jbd2_journal_get_write_access() could complain
1139          * otherwise about fs integrity issues. Setting of the dirty bit
1140          * by __block_write_begin() isn't a real problem here as we clear
1141          * the bit before releasing a page lock and thus writeback cannot
1142          * ever write the buffer.
1143          */
1144         if (dirty)
1145                 clear_buffer_dirty(bh);
1146         BUFFER_TRACE(bh, "get write access");
1147         ret = ext4_journal_get_write_access(handle, bh);
1148         if (!ret && dirty)
1149                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1150         return ret;
1151 }
1152
1153 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1154 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1155                                   get_block_t *get_block)
1156 {
1157         unsigned from = pos & (PAGE_SIZE - 1);
1158         unsigned to = from + len;
1159         struct inode *inode = page->mapping->host;
1160         unsigned block_start, block_end;
1161         sector_t block;
1162         int err = 0;
1163         unsigned blocksize = inode->i_sb->s_blocksize;
1164         unsigned bbits;
1165         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1166         bool decrypt = false;
1167
1168         BUG_ON(!PageLocked(page));
1169         BUG_ON(from > PAGE_SIZE);
1170         BUG_ON(to > PAGE_SIZE);
1171         BUG_ON(from > to);
1172
1173         if (!page_has_buffers(page))
1174                 create_empty_buffers(page, blocksize, 0);
1175         head = page_buffers(page);
1176         bbits = ilog2(blocksize);
1177         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1178
1179         for (bh = head, block_start = 0; bh != head || !block_start;
1180             block++, block_start = block_end, bh = bh->b_this_page) {
1181                 block_end = block_start + blocksize;
1182                 if (block_end <= from || block_start >= to) {
1183                         if (PageUptodate(page)) {
1184                                 if (!buffer_uptodate(bh))
1185                                         set_buffer_uptodate(bh);
1186                         }
1187                         continue;
1188                 }
1189                 if (buffer_new(bh))
1190                         clear_buffer_new(bh);
1191                 if (!buffer_mapped(bh)) {
1192                         WARN_ON(bh->b_size != blocksize);
1193                         err = get_block(inode, block, bh, 1);
1194                         if (err)
1195                                 break;
1196                         if (buffer_new(bh)) {
1197                                 clean_bdev_bh_alias(bh);
1198                                 if (PageUptodate(page)) {
1199                                         clear_buffer_new(bh);
1200                                         set_buffer_uptodate(bh);
1201                                         mark_buffer_dirty(bh);
1202                                         continue;
1203                                 }
1204                                 if (block_end > to || block_start < from)
1205                                         zero_user_segments(page, to, block_end,
1206                                                            block_start, from);
1207                                 continue;
1208                         }
1209                 }
1210                 if (PageUptodate(page)) {
1211                         if (!buffer_uptodate(bh))
1212                                 set_buffer_uptodate(bh);
1213                         continue;
1214                 }
1215                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1216                     !buffer_unwritten(bh) &&
1217                     (block_start < from || block_end > to)) {
1218                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1219                         *wait_bh++ = bh;
1220                         decrypt = ext4_encrypted_inode(inode) &&
1221                                 S_ISREG(inode->i_mode);
1222                 }
1223         }
1224         /*
1225          * If we issued read requests, let them complete.
1226          */
1227         while (wait_bh > wait) {
1228                 wait_on_buffer(*--wait_bh);
1229                 if (!buffer_uptodate(*wait_bh))
1230                         err = -EIO;
1231         }
1232         if (unlikely(err))
1233                 page_zero_new_buffers(page, from, to);
1234         else if (decrypt)
1235                 err = fscrypt_decrypt_page(page->mapping->host, page,
1236                                 PAGE_SIZE, 0, page->index);
1237         return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242                             loff_t pos, unsigned len, unsigned flags,
1243                             struct page **pagep, void **fsdata)
1244 {
1245         struct inode *inode = mapping->host;
1246         int ret, needed_blocks;
1247         handle_t *handle;
1248         int retries = 0;
1249         struct page *page;
1250         pgoff_t index;
1251         unsigned from, to;
1252
1253         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254                 return -EIO;
1255
1256         trace_ext4_write_begin(inode, pos, len, flags);
1257         /*
1258          * Reserve one block more for addition to orphan list in case
1259          * we allocate blocks but write fails for some reason
1260          */
1261         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262         index = pos >> PAGE_SHIFT;
1263         from = pos & (PAGE_SIZE - 1);
1264         to = from + len;
1265
1266         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268                                                     flags, pagep);
1269                 if (ret < 0)
1270                         return ret;
1271                 if (ret == 1)
1272                         return 0;
1273         }
1274
1275         /*
1276          * grab_cache_page_write_begin() can take a long time if the
1277          * system is thrashing due to memory pressure, or if the page
1278          * is being written back.  So grab it first before we start
1279          * the transaction handle.  This also allows us to allocate
1280          * the page (if needed) without using GFP_NOFS.
1281          */
1282 retry_grab:
1283         page = grab_cache_page_write_begin(mapping, index, flags);
1284         if (!page)
1285                 return -ENOMEM;
1286         unlock_page(page);
1287
1288 retry_journal:
1289         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290         if (IS_ERR(handle)) {
1291                 put_page(page);
1292                 return PTR_ERR(handle);
1293         }
1294
1295         lock_page(page);
1296         if (page->mapping != mapping) {
1297                 /* The page got truncated from under us */
1298                 unlock_page(page);
1299                 put_page(page);
1300                 ext4_journal_stop(handle);
1301                 goto retry_grab;
1302         }
1303         /* In case writeback began while the page was unlocked */
1304         wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1307         if (ext4_should_dioread_nolock(inode))
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block_unwritten);
1310         else
1311                 ret = ext4_block_write_begin(page, pos, len,
1312                                              ext4_get_block);
1313 #else
1314         if (ext4_should_dioread_nolock(inode))
1315                 ret = __block_write_begin(page, pos, len,
1316                                           ext4_get_block_unwritten);
1317         else
1318                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320         if (!ret && ext4_should_journal_data(inode)) {
1321                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322                                              from, to, NULL,
1323                                              do_journal_get_write_access);
1324         }
1325
1326         if (ret) {
1327                 unlock_page(page);
1328                 /*
1329                  * __block_write_begin may have instantiated a few blocks
1330                  * outside i_size.  Trim these off again. Don't need
1331                  * i_size_read because we hold i_mutex.
1332                  *
1333                  * Add inode to orphan list in case we crash before
1334                  * truncate finishes
1335                  */
1336                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337                         ext4_orphan_add(handle, inode);
1338
1339                 ext4_journal_stop(handle);
1340                 if (pos + len > inode->i_size) {
1341                         ext4_truncate_failed_write(inode);
1342                         /*
1343                          * If truncate failed early the inode might
1344                          * still be on the orphan list; we need to
1345                          * make sure the inode is removed from the
1346                          * orphan list in that case.
1347                          */
1348                         if (inode->i_nlink)
1349                                 ext4_orphan_del(NULL, inode);
1350                 }
1351
1352                 if (ret == -ENOSPC &&
1353                     ext4_should_retry_alloc(inode->i_sb, &retries))
1354                         goto retry_journal;
1355                 put_page(page);
1356                 return ret;
1357         }
1358         *pagep = page;
1359         return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365         int ret;
1366         if (!buffer_mapped(bh) || buffer_freed(bh))
1367                 return 0;
1368         set_buffer_uptodate(bh);
1369         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370         clear_buffer_meta(bh);
1371         clear_buffer_prio(bh);
1372         return ret;
1373 }
1374
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383                           struct address_space *mapping,
1384                           loff_t pos, unsigned len, unsigned copied,
1385                           struct page *page, void *fsdata)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct inode *inode = mapping->host;
1389         loff_t old_size = inode->i_size;
1390         int ret = 0, ret2;
1391         int i_size_changed = 0;
1392
1393         trace_ext4_write_end(inode, pos, len, copied);
1394         if (ext4_has_inline_data(inode)) {
1395                 ret = ext4_write_inline_data_end(inode, pos, len,
1396                                                  copied, page);
1397                 if (ret < 0) {
1398                         unlock_page(page);
1399                         put_page(page);
1400                         goto errout;
1401                 }
1402                 copied = ret;
1403         } else
1404                 copied = block_write_end(file, mapping, pos,
1405                                          len, copied, page, fsdata);
1406         /*
1407          * it's important to update i_size while still holding page lock:
1408          * page writeout could otherwise come in and zero beyond i_size.
1409          */
1410         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1411         unlock_page(page);
1412         put_page(page);
1413
1414         if (old_size < pos)
1415                 pagecache_isize_extended(inode, old_size, pos);
1416         /*
1417          * Don't mark the inode dirty under page lock. First, it unnecessarily
1418          * makes the holding time of page lock longer. Second, it forces lock
1419          * ordering of page lock and transaction start for journaling
1420          * filesystems.
1421          */
1422         if (i_size_changed)
1423                 ext4_mark_inode_dirty(handle, inode);
1424
1425         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1426                 /* if we have allocated more blocks and copied
1427                  * less. We will have blocks allocated outside
1428                  * inode->i_size. So truncate them
1429                  */
1430                 ext4_orphan_add(handle, inode);
1431 errout:
1432         ret2 = ext4_journal_stop(handle);
1433         if (!ret)
1434                 ret = ret2;
1435
1436         if (pos + len > inode->i_size) {
1437                 ext4_truncate_failed_write(inode);
1438                 /*
1439                  * If truncate failed early the inode might still be
1440                  * on the orphan list; we need to make sure the inode
1441                  * is removed from the orphan list in that case.
1442                  */
1443                 if (inode->i_nlink)
1444                         ext4_orphan_del(NULL, inode);
1445         }
1446
1447         return ret ? ret : copied;
1448 }
1449
1450 /*
1451  * This is a private version of page_zero_new_buffers() which doesn't
1452  * set the buffer to be dirty, since in data=journalled mode we need
1453  * to call ext4_handle_dirty_metadata() instead.
1454  */
1455 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1456                                             struct page *page,
1457                                             unsigned from, unsigned to)
1458 {
1459         unsigned int block_start = 0, block_end;
1460         struct buffer_head *head, *bh;
1461
1462         bh = head = page_buffers(page);
1463         do {
1464                 block_end = block_start + bh->b_size;
1465                 if (buffer_new(bh)) {
1466                         if (block_end > from && block_start < to) {
1467                                 if (!PageUptodate(page)) {
1468                                         unsigned start, size;
1469
1470                                         start = max(from, block_start);
1471                                         size = min(to, block_end) - start;
1472
1473                                         zero_user(page, start, size);
1474                                         write_end_fn(handle, bh);
1475                                 }
1476                                 clear_buffer_new(bh);
1477                         }
1478                 }
1479                 block_start = block_end;
1480                 bh = bh->b_this_page;
1481         } while (bh != head);
1482 }
1483
1484 static int ext4_journalled_write_end(struct file *file,
1485                                      struct address_space *mapping,
1486                                      loff_t pos, unsigned len, unsigned copied,
1487                                      struct page *page, void *fsdata)
1488 {
1489         handle_t *handle = ext4_journal_current_handle();
1490         struct inode *inode = mapping->host;
1491         loff_t old_size = inode->i_size;
1492         int ret = 0, ret2;
1493         int partial = 0;
1494         unsigned from, to;
1495         int size_changed = 0;
1496
1497         trace_ext4_journalled_write_end(inode, pos, len, copied);
1498         from = pos & (PAGE_SIZE - 1);
1499         to = from + len;
1500
1501         BUG_ON(!ext4_handle_valid(handle));
1502
1503         if (ext4_has_inline_data(inode)) {
1504                 ret = ext4_write_inline_data_end(inode, pos, len,
1505                                                  copied, page);
1506                 if (ret < 0) {
1507                         unlock_page(page);
1508                         put_page(page);
1509                         goto errout;
1510                 }
1511                 copied = ret;
1512         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1513                 copied = 0;
1514                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1515         } else {
1516                 if (unlikely(copied < len))
1517                         ext4_journalled_zero_new_buffers(handle, page,
1518                                                          from + copied, to);
1519                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1520                                              from + copied, &partial,
1521                                              write_end_fn);
1522                 if (!partial)
1523                         SetPageUptodate(page);
1524         }
1525         size_changed = ext4_update_inode_size(inode, pos + copied);
1526         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1527         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1528         unlock_page(page);
1529         put_page(page);
1530
1531         if (old_size < pos)
1532                 pagecache_isize_extended(inode, old_size, pos);
1533
1534         if (size_changed) {
1535                 ret2 = ext4_mark_inode_dirty(handle, inode);
1536                 if (!ret)
1537                         ret = ret2;
1538         }
1539
1540         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1541                 /* if we have allocated more blocks and copied
1542                  * less. We will have blocks allocated outside
1543                  * inode->i_size. So truncate them
1544                  */
1545                 ext4_orphan_add(handle, inode);
1546
1547 errout:
1548         ret2 = ext4_journal_stop(handle);
1549         if (!ret)
1550                 ret = ret2;
1551         if (pos + len > inode->i_size) {
1552                 ext4_truncate_failed_write(inode);
1553                 /*
1554                  * If truncate failed early the inode might still be
1555                  * on the orphan list; we need to make sure the inode
1556                  * is removed from the orphan list in that case.
1557                  */
1558                 if (inode->i_nlink)
1559                         ext4_orphan_del(NULL, inode);
1560         }
1561
1562         return ret ? ret : copied;
1563 }
1564
1565 /*
1566  * Reserve space for a single cluster
1567  */
1568 static int ext4_da_reserve_space(struct inode *inode)
1569 {
1570         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1571         struct ext4_inode_info *ei = EXT4_I(inode);
1572         int ret;
1573
1574         /*
1575          * We will charge metadata quota at writeout time; this saves
1576          * us from metadata over-estimation, though we may go over by
1577          * a small amount in the end.  Here we just reserve for data.
1578          */
1579         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1580         if (ret)
1581                 return ret;
1582
1583         spin_lock(&ei->i_block_reservation_lock);
1584         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1585                 spin_unlock(&ei->i_block_reservation_lock);
1586                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587                 return -ENOSPC;
1588         }
1589         ei->i_reserved_data_blocks++;
1590         trace_ext4_da_reserve_space(inode);
1591         spin_unlock(&ei->i_block_reservation_lock);
1592
1593         return 0;       /* success */
1594 }
1595
1596 static void ext4_da_release_space(struct inode *inode, int to_free)
1597 {
1598         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599         struct ext4_inode_info *ei = EXT4_I(inode);
1600
1601         if (!to_free)
1602                 return;         /* Nothing to release, exit */
1603
1604         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1605
1606         trace_ext4_da_release_space(inode, to_free);
1607         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1608                 /*
1609                  * if there aren't enough reserved blocks, then the
1610                  * counter is messed up somewhere.  Since this
1611                  * function is called from invalidate page, it's
1612                  * harmless to return without any action.
1613                  */
1614                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1615                          "ino %lu, to_free %d with only %d reserved "
1616                          "data blocks", inode->i_ino, to_free,
1617                          ei->i_reserved_data_blocks);
1618                 WARN_ON(1);
1619                 to_free = ei->i_reserved_data_blocks;
1620         }
1621         ei->i_reserved_data_blocks -= to_free;
1622
1623         /* update fs dirty data blocks counter */
1624         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1625
1626         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1627
1628         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629 }
1630
1631 static void ext4_da_page_release_reservation(struct page *page,
1632                                              unsigned int offset,
1633                                              unsigned int length)
1634 {
1635         int to_release = 0, contiguous_blks = 0;
1636         struct buffer_head *head, *bh;
1637         unsigned int curr_off = 0;
1638         struct inode *inode = page->mapping->host;
1639         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640         unsigned int stop = offset + length;
1641         int num_clusters;
1642         ext4_fsblk_t lblk;
1643
1644         BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646         head = page_buffers(page);
1647         bh = head;
1648         do {
1649                 unsigned int next_off = curr_off + bh->b_size;
1650
1651                 if (next_off > stop)
1652                         break;
1653
1654                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655                         to_release++;
1656                         contiguous_blks++;
1657                         clear_buffer_delay(bh);
1658                 } else if (contiguous_blks) {
1659                         lblk = page->index <<
1660                                (PAGE_SHIFT - inode->i_blkbits);
1661                         lblk += (curr_off >> inode->i_blkbits) -
1662                                 contiguous_blks;
1663                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664                         contiguous_blks = 0;
1665                 }
1666                 curr_off = next_off;
1667         } while ((bh = bh->b_this_page) != head);
1668
1669         if (contiguous_blks) {
1670                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1671                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1672                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1673         }
1674
1675         /* If we have released all the blocks belonging to a cluster, then we
1676          * need to release the reserved space for that cluster. */
1677         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1678         while (num_clusters > 0) {
1679                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1680                         ((num_clusters - 1) << sbi->s_cluster_bits);
1681                 if (sbi->s_cluster_ratio == 1 ||
1682                     !ext4_find_delalloc_cluster(inode, lblk))
1683                         ext4_da_release_space(inode, 1);
1684
1685                 num_clusters--;
1686         }
1687 }
1688
1689 /*
1690  * Delayed allocation stuff
1691  */
1692
1693 struct mpage_da_data {
1694         struct inode *inode;
1695         struct writeback_control *wbc;
1696
1697         pgoff_t first_page;     /* The first page to write */
1698         pgoff_t next_page;      /* Current page to examine */
1699         pgoff_t last_page;      /* Last page to examine */
1700         /*
1701          * Extent to map - this can be after first_page because that can be
1702          * fully mapped. We somewhat abuse m_flags to store whether the extent
1703          * is delalloc or unwritten.
1704          */
1705         struct ext4_map_blocks map;
1706         struct ext4_io_submit io_submit;        /* IO submission data */
1707         unsigned int do_map:1;
1708 };
1709
1710 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1711                                        bool invalidate)
1712 {
1713         int nr_pages, i;
1714         pgoff_t index, end;
1715         struct pagevec pvec;
1716         struct inode *inode = mpd->inode;
1717         struct address_space *mapping = inode->i_mapping;
1718
1719         /* This is necessary when next_page == 0. */
1720         if (mpd->first_page >= mpd->next_page)
1721                 return;
1722
1723         index = mpd->first_page;
1724         end   = mpd->next_page - 1;
1725         if (invalidate) {
1726                 ext4_lblk_t start, last;
1727                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1728                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1729                 ext4_es_remove_extent(inode, start, last - start + 1);
1730         }
1731
1732         pagevec_init(&pvec);
1733         while (index <= end) {
1734                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1735                 if (nr_pages == 0)
1736                         break;
1737                 for (i = 0; i < nr_pages; i++) {
1738                         struct page *page = pvec.pages[i];
1739
1740                         BUG_ON(!PageLocked(page));
1741                         BUG_ON(PageWriteback(page));
1742                         if (invalidate) {
1743                                 if (page_mapped(page))
1744                                         clear_page_dirty_for_io(page);
1745                                 block_invalidatepage(page, 0, PAGE_SIZE);
1746                                 ClearPageUptodate(page);
1747                         }
1748                         unlock_page(page);
1749                 }
1750                 pagevec_release(&pvec);
1751         }
1752 }
1753
1754 static void ext4_print_free_blocks(struct inode *inode)
1755 {
1756         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1757         struct super_block *sb = inode->i_sb;
1758         struct ext4_inode_info *ei = EXT4_I(inode);
1759
1760         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1761                EXT4_C2B(EXT4_SB(inode->i_sb),
1762                         ext4_count_free_clusters(sb)));
1763         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1764         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1765                (long long) EXT4_C2B(EXT4_SB(sb),
1766                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1767         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1768                (long long) EXT4_C2B(EXT4_SB(sb),
1769                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1770         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1771         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1772                  ei->i_reserved_data_blocks);
1773         return;
1774 }
1775
1776 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1777 {
1778         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1779 }
1780
1781 /*
1782  * This function is grabs code from the very beginning of
1783  * ext4_map_blocks, but assumes that the caller is from delayed write
1784  * time. This function looks up the requested blocks and sets the
1785  * buffer delay bit under the protection of i_data_sem.
1786  */
1787 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1788                               struct ext4_map_blocks *map,
1789                               struct buffer_head *bh)
1790 {
1791         struct extent_status es;
1792         int retval;
1793         sector_t invalid_block = ~((sector_t) 0xffff);
1794 #ifdef ES_AGGRESSIVE_TEST
1795         struct ext4_map_blocks orig_map;
1796
1797         memcpy(&orig_map, map, sizeof(*map));
1798 #endif
1799
1800         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1801                 invalid_block = ~0;
1802
1803         map->m_flags = 0;
1804         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1805                   "logical block %lu\n", inode->i_ino, map->m_len,
1806                   (unsigned long) map->m_lblk);
1807
1808         /* Lookup extent status tree firstly */
1809         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1810                 if (ext4_es_is_hole(&es)) {
1811                         retval = 0;
1812                         down_read(&EXT4_I(inode)->i_data_sem);
1813                         goto add_delayed;
1814                 }
1815
1816                 /*
1817                  * Delayed extent could be allocated by fallocate.
1818                  * So we need to check it.
1819                  */
1820                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1821                         map_bh(bh, inode->i_sb, invalid_block);
1822                         set_buffer_new(bh);
1823                         set_buffer_delay(bh);
1824                         return 0;
1825                 }
1826
1827                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1828                 retval = es.es_len - (iblock - es.es_lblk);
1829                 if (retval > map->m_len)
1830                         retval = map->m_len;
1831                 map->m_len = retval;
1832                 if (ext4_es_is_written(&es))
1833                         map->m_flags |= EXT4_MAP_MAPPED;
1834                 else if (ext4_es_is_unwritten(&es))
1835                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1836                 else
1837                         BUG_ON(1);
1838
1839 #ifdef ES_AGGRESSIVE_TEST
1840                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1841 #endif
1842                 return retval;
1843         }
1844
1845         /*
1846          * Try to see if we can get the block without requesting a new
1847          * file system block.
1848          */
1849         down_read(&EXT4_I(inode)->i_data_sem);
1850         if (ext4_has_inline_data(inode))
1851                 retval = 0;
1852         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1853                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1854         else
1855                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1856
1857 add_delayed:
1858         if (retval == 0) {
1859                 int ret;
1860                 /*
1861                  * XXX: __block_prepare_write() unmaps passed block,
1862                  * is it OK?
1863                  */
1864                 /*
1865                  * If the block was allocated from previously allocated cluster,
1866                  * then we don't need to reserve it again. However we still need
1867                  * to reserve metadata for every block we're going to write.
1868                  */
1869                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1870                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1871                         ret = ext4_da_reserve_space(inode);
1872                         if (ret) {
1873                                 /* not enough space to reserve */
1874                                 retval = ret;
1875                                 goto out_unlock;
1876                         }
1877                 }
1878
1879                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1880                                             ~0, EXTENT_STATUS_DELAYED);
1881                 if (ret) {
1882                         retval = ret;
1883                         goto out_unlock;
1884                 }
1885
1886                 map_bh(bh, inode->i_sb, invalid_block);
1887                 set_buffer_new(bh);
1888                 set_buffer_delay(bh);
1889         } else if (retval > 0) {
1890                 int ret;
1891                 unsigned int status;
1892
1893                 if (unlikely(retval != map->m_len)) {
1894                         ext4_warning(inode->i_sb,
1895                                      "ES len assertion failed for inode "
1896                                      "%lu: retval %d != map->m_len %d",
1897                                      inode->i_ino, retval, map->m_len);
1898                         WARN_ON(1);
1899                 }
1900
1901                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1902                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1903                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1904                                             map->m_pblk, status);
1905                 if (ret != 0)
1906                         retval = ret;
1907         }
1908
1909 out_unlock:
1910         up_read((&EXT4_I(inode)->i_data_sem));
1911
1912         return retval;
1913 }
1914
1915 /*
1916  * This is a special get_block_t callback which is used by
1917  * ext4_da_write_begin().  It will either return mapped block or
1918  * reserve space for a single block.
1919  *
1920  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1921  * We also have b_blocknr = -1 and b_bdev initialized properly
1922  *
1923  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1924  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1925  * initialized properly.
1926  */
1927 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1928                            struct buffer_head *bh, int create)
1929 {
1930         struct ext4_map_blocks map;
1931         int ret = 0;
1932
1933         BUG_ON(create == 0);
1934         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1935
1936         map.m_lblk = iblock;
1937         map.m_len = 1;
1938
1939         /*
1940          * first, we need to know whether the block is allocated already
1941          * preallocated blocks are unmapped but should treated
1942          * the same as allocated blocks.
1943          */
1944         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1945         if (ret <= 0)
1946                 return ret;
1947
1948         map_bh(bh, inode->i_sb, map.m_pblk);
1949         ext4_update_bh_state(bh, map.m_flags);
1950
1951         if (buffer_unwritten(bh)) {
1952                 /* A delayed write to unwritten bh should be marked
1953                  * new and mapped.  Mapped ensures that we don't do
1954                  * get_block multiple times when we write to the same
1955                  * offset and new ensures that we do proper zero out
1956                  * for partial write.
1957                  */
1958                 set_buffer_new(bh);
1959                 set_buffer_mapped(bh);
1960         }
1961         return 0;
1962 }
1963
1964 static int bget_one(handle_t *handle, struct buffer_head *bh)
1965 {
1966         get_bh(bh);
1967         return 0;
1968 }
1969
1970 static int bput_one(handle_t *handle, struct buffer_head *bh)
1971 {
1972         put_bh(bh);
1973         return 0;
1974 }
1975
1976 static int __ext4_journalled_writepage(struct page *page,
1977                                        unsigned int len)
1978 {
1979         struct address_space *mapping = page->mapping;
1980         struct inode *inode = mapping->host;
1981         struct buffer_head *page_bufs = NULL;
1982         handle_t *handle = NULL;
1983         int ret = 0, err = 0;
1984         int inline_data = ext4_has_inline_data(inode);
1985         struct buffer_head *inode_bh = NULL;
1986
1987         ClearPageChecked(page);
1988
1989         if (inline_data) {
1990                 BUG_ON(page->index != 0);
1991                 BUG_ON(len > ext4_get_max_inline_size(inode));
1992                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1993                 if (inode_bh == NULL)
1994                         goto out;
1995         } else {
1996                 page_bufs = page_buffers(page);
1997                 if (!page_bufs) {
1998                         BUG();
1999                         goto out;
2000                 }
2001                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2002                                        NULL, bget_one);
2003         }
2004         /*
2005          * We need to release the page lock before we start the
2006          * journal, so grab a reference so the page won't disappear
2007          * out from under us.
2008          */
2009         get_page(page);
2010         unlock_page(page);
2011
2012         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2013                                     ext4_writepage_trans_blocks(inode));
2014         if (IS_ERR(handle)) {
2015                 ret = PTR_ERR(handle);
2016                 put_page(page);
2017                 goto out_no_pagelock;
2018         }
2019         BUG_ON(!ext4_handle_valid(handle));
2020
2021         lock_page(page);
2022         put_page(page);
2023         if (page->mapping != mapping) {
2024                 /* The page got truncated from under us */
2025                 ext4_journal_stop(handle);
2026                 ret = 0;
2027                 goto out;
2028         }
2029
2030         if (inline_data) {
2031                 BUFFER_TRACE(inode_bh, "get write access");
2032                 ret = ext4_journal_get_write_access(handle, inode_bh);
2033
2034                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2035
2036         } else {
2037                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2038                                              do_journal_get_write_access);
2039
2040                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2041                                              write_end_fn);
2042         }
2043         if (ret == 0)
2044                 ret = err;
2045         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2046         err = ext4_journal_stop(handle);
2047         if (!ret)
2048                 ret = err;
2049
2050         if (!ext4_has_inline_data(inode))
2051                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2052                                        NULL, bput_one);
2053         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2054 out:
2055         unlock_page(page);
2056 out_no_pagelock:
2057         brelse(inode_bh);
2058         return ret;
2059 }
2060
2061 /*
2062  * Note that we don't need to start a transaction unless we're journaling data
2063  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2064  * need to file the inode to the transaction's list in ordered mode because if
2065  * we are writing back data added by write(), the inode is already there and if
2066  * we are writing back data modified via mmap(), no one guarantees in which
2067  * transaction the data will hit the disk. In case we are journaling data, we
2068  * cannot start transaction directly because transaction start ranks above page
2069  * lock so we have to do some magic.
2070  *
2071  * This function can get called via...
2072  *   - ext4_writepages after taking page lock (have journal handle)
2073  *   - journal_submit_inode_data_buffers (no journal handle)
2074  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2075  *   - grab_page_cache when doing write_begin (have journal handle)
2076  *
2077  * We don't do any block allocation in this function. If we have page with
2078  * multiple blocks we need to write those buffer_heads that are mapped. This
2079  * is important for mmaped based write. So if we do with blocksize 1K
2080  * truncate(f, 1024);
2081  * a = mmap(f, 0, 4096);
2082  * a[0] = 'a';
2083  * truncate(f, 4096);
2084  * we have in the page first buffer_head mapped via page_mkwrite call back
2085  * but other buffer_heads would be unmapped but dirty (dirty done via the
2086  * do_wp_page). So writepage should write the first block. If we modify
2087  * the mmap area beyond 1024 we will again get a page_fault and the
2088  * page_mkwrite callback will do the block allocation and mark the
2089  * buffer_heads mapped.
2090  *
2091  * We redirty the page if we have any buffer_heads that is either delay or
2092  * unwritten in the page.
2093  *
2094  * We can get recursively called as show below.
2095  *
2096  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2097  *              ext4_writepage()
2098  *
2099  * But since we don't do any block allocation we should not deadlock.
2100  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2101  */
2102 static int ext4_writepage(struct page *page,
2103                           struct writeback_control *wbc)
2104 {
2105         int ret = 0;
2106         loff_t size;
2107         unsigned int len;
2108         struct buffer_head *page_bufs = NULL;
2109         struct inode *inode = page->mapping->host;
2110         struct ext4_io_submit io_submit;
2111         bool keep_towrite = false;
2112
2113         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2114                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2115                 unlock_page(page);
2116                 return -EIO;
2117         }
2118
2119         trace_ext4_writepage(page);
2120         size = i_size_read(inode);
2121         if (page->index == size >> PAGE_SHIFT)
2122                 len = size & ~PAGE_MASK;
2123         else
2124                 len = PAGE_SIZE;
2125
2126         page_bufs = page_buffers(page);
2127         /*
2128          * We cannot do block allocation or other extent handling in this
2129          * function. If there are buffers needing that, we have to redirty
2130          * the page. But we may reach here when we do a journal commit via
2131          * journal_submit_inode_data_buffers() and in that case we must write
2132          * allocated buffers to achieve data=ordered mode guarantees.
2133          *
2134          * Also, if there is only one buffer per page (the fs block
2135          * size == the page size), if one buffer needs block
2136          * allocation or needs to modify the extent tree to clear the
2137          * unwritten flag, we know that the page can't be written at
2138          * all, so we might as well refuse the write immediately.
2139          * Unfortunately if the block size != page size, we can't as
2140          * easily detect this case using ext4_walk_page_buffers(), but
2141          * for the extremely common case, this is an optimization that
2142          * skips a useless round trip through ext4_bio_write_page().
2143          */
2144         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2145                                    ext4_bh_delay_or_unwritten)) {
2146                 redirty_page_for_writepage(wbc, page);
2147                 if ((current->flags & PF_MEMALLOC) ||
2148                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2149                         /*
2150                          * For memory cleaning there's no point in writing only
2151                          * some buffers. So just bail out. Warn if we came here
2152                          * from direct reclaim.
2153                          */
2154                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2155                                                         == PF_MEMALLOC);
2156                         unlock_page(page);
2157                         return 0;
2158                 }
2159                 keep_towrite = true;
2160         }
2161
2162         if (PageChecked(page) && ext4_should_journal_data(inode))
2163                 /*
2164                  * It's mmapped pagecache.  Add buffers and journal it.  There
2165                  * doesn't seem much point in redirtying the page here.
2166                  */
2167                 return __ext4_journalled_writepage(page, len);
2168
2169         ext4_io_submit_init(&io_submit, wbc);
2170         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2171         if (!io_submit.io_end) {
2172                 redirty_page_for_writepage(wbc, page);
2173                 unlock_page(page);
2174                 return -ENOMEM;
2175         }
2176         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2177         ext4_io_submit(&io_submit);
2178         /* Drop io_end reference we got from init */
2179         ext4_put_io_end_defer(io_submit.io_end);
2180         return ret;
2181 }
2182
2183 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2184 {
2185         int len;
2186         loff_t size;
2187         int err;
2188
2189         BUG_ON(page->index != mpd->first_page);
2190         clear_page_dirty_for_io(page);
2191         /*
2192          * We have to be very careful here!  Nothing protects writeback path
2193          * against i_size changes and the page can be writeably mapped into
2194          * page tables. So an application can be growing i_size and writing
2195          * data through mmap while writeback runs. clear_page_dirty_for_io()
2196          * write-protects our page in page tables and the page cannot get
2197          * written to again until we release page lock. So only after
2198          * clear_page_dirty_for_io() we are safe to sample i_size for
2199          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2200          * on the barrier provided by TestClearPageDirty in
2201          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2202          * after page tables are updated.
2203          */
2204         size = i_size_read(mpd->inode);
2205         if (page->index == size >> PAGE_SHIFT)
2206                 len = size & ~PAGE_MASK;
2207         else
2208                 len = PAGE_SIZE;
2209         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2210         if (!err)
2211                 mpd->wbc->nr_to_write--;
2212         mpd->first_page++;
2213
2214         return err;
2215 }
2216
2217 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2218
2219 /*
2220  * mballoc gives us at most this number of blocks...
2221  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2222  * The rest of mballoc seems to handle chunks up to full group size.
2223  */
2224 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2225
2226 /*
2227  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2228  *
2229  * @mpd - extent of blocks
2230  * @lblk - logical number of the block in the file
2231  * @bh - buffer head we want to add to the extent
2232  *
2233  * The function is used to collect contig. blocks in the same state. If the
2234  * buffer doesn't require mapping for writeback and we haven't started the
2235  * extent of buffers to map yet, the function returns 'true' immediately - the
2236  * caller can write the buffer right away. Otherwise the function returns true
2237  * if the block has been added to the extent, false if the block couldn't be
2238  * added.
2239  */
2240 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2241                                    struct buffer_head *bh)
2242 {
2243         struct ext4_map_blocks *map = &mpd->map;
2244
2245         /* Buffer that doesn't need mapping for writeback? */
2246         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2247             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2248                 /* So far no extent to map => we write the buffer right away */
2249                 if (map->m_len == 0)
2250                         return true;
2251                 return false;
2252         }
2253
2254         /* First block in the extent? */
2255         if (map->m_len == 0) {
2256                 /* We cannot map unless handle is started... */
2257                 if (!mpd->do_map)
2258                         return false;
2259                 map->m_lblk = lblk;
2260                 map->m_len = 1;
2261                 map->m_flags = bh->b_state & BH_FLAGS;
2262                 return true;
2263         }
2264
2265         /* Don't go larger than mballoc is willing to allocate */
2266         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2267                 return false;
2268
2269         /* Can we merge the block to our big extent? */
2270         if (lblk == map->m_lblk + map->m_len &&
2271             (bh->b_state & BH_FLAGS) == map->m_flags) {
2272                 map->m_len++;
2273                 return true;
2274         }
2275         return false;
2276 }
2277
2278 /*
2279  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2280  *
2281  * @mpd - extent of blocks for mapping
2282  * @head - the first buffer in the page
2283  * @bh - buffer we should start processing from
2284  * @lblk - logical number of the block in the file corresponding to @bh
2285  *
2286  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2287  * the page for IO if all buffers in this page were mapped and there's no
2288  * accumulated extent of buffers to map or add buffers in the page to the
2289  * extent of buffers to map. The function returns 1 if the caller can continue
2290  * by processing the next page, 0 if it should stop adding buffers to the
2291  * extent to map because we cannot extend it anymore. It can also return value
2292  * < 0 in case of error during IO submission.
2293  */
2294 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2295                                    struct buffer_head *head,
2296                                    struct buffer_head *bh,
2297                                    ext4_lblk_t lblk)
2298 {
2299         struct inode *inode = mpd->inode;
2300         int err;
2301         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2302                                                         >> inode->i_blkbits;
2303
2304         do {
2305                 BUG_ON(buffer_locked(bh));
2306
2307                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2308                         /* Found extent to map? */
2309                         if (mpd->map.m_len)
2310                                 return 0;
2311                         /* Buffer needs mapping and handle is not started? */
2312                         if (!mpd->do_map)
2313                                 return 0;
2314                         /* Everything mapped so far and we hit EOF */
2315                         break;
2316                 }
2317         } while (lblk++, (bh = bh->b_this_page) != head);
2318         /* So far everything mapped? Submit the page for IO. */
2319         if (mpd->map.m_len == 0) {
2320                 err = mpage_submit_page(mpd, head->b_page);
2321                 if (err < 0)
2322                         return err;
2323         }
2324         return lblk < blocks;
2325 }
2326
2327 /*
2328  * mpage_map_buffers - update buffers corresponding to changed extent and
2329  *                     submit fully mapped pages for IO
2330  *
2331  * @mpd - description of extent to map, on return next extent to map
2332  *
2333  * Scan buffers corresponding to changed extent (we expect corresponding pages
2334  * to be already locked) and update buffer state according to new extent state.
2335  * We map delalloc buffers to their physical location, clear unwritten bits,
2336  * and mark buffers as uninit when we perform writes to unwritten extents
2337  * and do extent conversion after IO is finished. If the last page is not fully
2338  * mapped, we update @map to the next extent in the last page that needs
2339  * mapping. Otherwise we submit the page for IO.
2340  */
2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343         struct pagevec pvec;
2344         int nr_pages, i;
2345         struct inode *inode = mpd->inode;
2346         struct buffer_head *head, *bh;
2347         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348         pgoff_t start, end;
2349         ext4_lblk_t lblk;
2350         sector_t pblock;
2351         int err;
2352
2353         start = mpd->map.m_lblk >> bpp_bits;
2354         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355         lblk = start << bpp_bits;
2356         pblock = mpd->map.m_pblk;
2357
2358         pagevec_init(&pvec);
2359         while (start <= end) {
2360                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2361                                                 &start, end);
2362                 if (nr_pages == 0)
2363                         break;
2364                 for (i = 0; i < nr_pages; i++) {
2365                         struct page *page = pvec.pages[i];
2366
2367                         bh = head = page_buffers(page);
2368                         do {
2369                                 if (lblk < mpd->map.m_lblk)
2370                                         continue;
2371                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2372                                         /*
2373                                          * Buffer after end of mapped extent.
2374                                          * Find next buffer in the page to map.
2375                                          */
2376                                         mpd->map.m_len = 0;
2377                                         mpd->map.m_flags = 0;
2378                                         /*
2379                                          * FIXME: If dioread_nolock supports
2380                                          * blocksize < pagesize, we need to make
2381                                          * sure we add size mapped so far to
2382                                          * io_end->size as the following call
2383                                          * can submit the page for IO.
2384                                          */
2385                                         err = mpage_process_page_bufs(mpd, head,
2386                                                                       bh, lblk);
2387                                         pagevec_release(&pvec);
2388                                         if (err > 0)
2389                                                 err = 0;
2390                                         return err;
2391                                 }
2392                                 if (buffer_delay(bh)) {
2393                                         clear_buffer_delay(bh);
2394                                         bh->b_blocknr = pblock++;
2395                                 }
2396                                 clear_buffer_unwritten(bh);
2397                         } while (lblk++, (bh = bh->b_this_page) != head);
2398
2399                         /*
2400                          * FIXME: This is going to break if dioread_nolock
2401                          * supports blocksize < pagesize as we will try to
2402                          * convert potentially unmapped parts of inode.
2403                          */
2404                         mpd->io_submit.io_end->size += PAGE_SIZE;
2405                         /* Page fully mapped - let IO run! */
2406                         err = mpage_submit_page(mpd, page);
2407                         if (err < 0) {
2408                                 pagevec_release(&pvec);
2409                                 return err;
2410                         }
2411                 }
2412                 pagevec_release(&pvec);
2413         }
2414         /* Extent fully mapped and matches with page boundary. We are done. */
2415         mpd->map.m_len = 0;
2416         mpd->map.m_flags = 0;
2417         return 0;
2418 }
2419
2420 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2421 {
2422         struct inode *inode = mpd->inode;
2423         struct ext4_map_blocks *map = &mpd->map;
2424         int get_blocks_flags;
2425         int err, dioread_nolock;
2426
2427         trace_ext4_da_write_pages_extent(inode, map);
2428         /*
2429          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2430          * to convert an unwritten extent to be initialized (in the case
2431          * where we have written into one or more preallocated blocks).  It is
2432          * possible that we're going to need more metadata blocks than
2433          * previously reserved. However we must not fail because we're in
2434          * writeback and there is nothing we can do about it so it might result
2435          * in data loss.  So use reserved blocks to allocate metadata if
2436          * possible.
2437          *
2438          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2439          * the blocks in question are delalloc blocks.  This indicates
2440          * that the blocks and quotas has already been checked when
2441          * the data was copied into the page cache.
2442          */
2443         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2444                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2445                            EXT4_GET_BLOCKS_IO_SUBMIT;
2446         dioread_nolock = ext4_should_dioread_nolock(inode);
2447         if (dioread_nolock)
2448                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2449         if (map->m_flags & (1 << BH_Delay))
2450                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2451
2452         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2453         if (err < 0)
2454                 return err;
2455         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2456                 if (!mpd->io_submit.io_end->handle &&
2457                     ext4_handle_valid(handle)) {
2458                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2459                         handle->h_rsv_handle = NULL;
2460                 }
2461                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2462         }
2463
2464         BUG_ON(map->m_len == 0);
2465         if (map->m_flags & EXT4_MAP_NEW) {
2466                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2467                                    map->m_len);
2468         }
2469         return 0;
2470 }
2471
2472 /*
2473  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2474  *                               mpd->len and submit pages underlying it for IO
2475  *
2476  * @handle - handle for journal operations
2477  * @mpd - extent to map
2478  * @give_up_on_write - we set this to true iff there is a fatal error and there
2479  *                     is no hope of writing the data. The caller should discard
2480  *                     dirty pages to avoid infinite loops.
2481  *
2482  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2483  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2484  * them to initialized or split the described range from larger unwritten
2485  * extent. Note that we need not map all the described range since allocation
2486  * can return less blocks or the range is covered by more unwritten extents. We
2487  * cannot map more because we are limited by reserved transaction credits. On
2488  * the other hand we always make sure that the last touched page is fully
2489  * mapped so that it can be written out (and thus forward progress is
2490  * guaranteed). After mapping we submit all mapped pages for IO.
2491  */
2492 static int mpage_map_and_submit_extent(handle_t *handle,
2493                                        struct mpage_da_data *mpd,
2494                                        bool *give_up_on_write)
2495 {
2496         struct inode *inode = mpd->inode;
2497         struct ext4_map_blocks *map = &mpd->map;
2498         int err;
2499         loff_t disksize;
2500         int progress = 0;
2501
2502         mpd->io_submit.io_end->offset =
2503                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2504         do {
2505                 err = mpage_map_one_extent(handle, mpd);
2506                 if (err < 0) {
2507                         struct super_block *sb = inode->i_sb;
2508
2509                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2510                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2511                                 goto invalidate_dirty_pages;
2512                         /*
2513                          * Let the uper layers retry transient errors.
2514                          * In the case of ENOSPC, if ext4_count_free_blocks()
2515                          * is non-zero, a commit should free up blocks.
2516                          */
2517                         if ((err == -ENOMEM) ||
2518                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2519                                 if (progress)
2520                                         goto update_disksize;
2521                                 return err;
2522                         }
2523                         ext4_msg(sb, KERN_CRIT,
2524                                  "Delayed block allocation failed for "
2525                                  "inode %lu at logical offset %llu with"
2526                                  " max blocks %u with error %d",
2527                                  inode->i_ino,
2528                                  (unsigned long long)map->m_lblk,
2529                                  (unsigned)map->m_len, -err);
2530                         ext4_msg(sb, KERN_CRIT,
2531                                  "This should not happen!! Data will "
2532                                  "be lost\n");
2533                         if (err == -ENOSPC)
2534                                 ext4_print_free_blocks(inode);
2535                 invalidate_dirty_pages:
2536                         *give_up_on_write = true;
2537                         return err;
2538                 }
2539                 progress = 1;
2540                 /*
2541                  * Update buffer state, submit mapped pages, and get us new
2542                  * extent to map
2543                  */
2544                 err = mpage_map_and_submit_buffers(mpd);
2545                 if (err < 0)
2546                         goto update_disksize;
2547         } while (map->m_len);
2548
2549 update_disksize:
2550         /*
2551          * Update on-disk size after IO is submitted.  Races with
2552          * truncate are avoided by checking i_size under i_data_sem.
2553          */
2554         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2555         if (disksize > EXT4_I(inode)->i_disksize) {
2556                 int err2;
2557                 loff_t i_size;
2558
2559                 down_write(&EXT4_I(inode)->i_data_sem);
2560                 i_size = i_size_read(inode);
2561                 if (disksize > i_size)
2562                         disksize = i_size;
2563                 if (disksize > EXT4_I(inode)->i_disksize)
2564                         EXT4_I(inode)->i_disksize = disksize;
2565                 up_write(&EXT4_I(inode)->i_data_sem);
2566                 err2 = ext4_mark_inode_dirty(handle, inode);
2567                 if (err2)
2568                         ext4_error(inode->i_sb,
2569                                    "Failed to mark inode %lu dirty",
2570                                    inode->i_ino);
2571                 if (!err)
2572                         err = err2;
2573         }
2574         return err;
2575 }
2576
2577 /*
2578  * Calculate the total number of credits to reserve for one writepages
2579  * iteration. This is called from ext4_writepages(). We map an extent of
2580  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2581  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2582  * bpp - 1 blocks in bpp different extents.
2583  */
2584 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2585 {
2586         int bpp = ext4_journal_blocks_per_page(inode);
2587
2588         return ext4_meta_trans_blocks(inode,
2589                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2590 }
2591
2592 /*
2593  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2594  *                               and underlying extent to map
2595  *
2596  * @mpd - where to look for pages
2597  *
2598  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2599  * IO immediately. When we find a page which isn't mapped we start accumulating
2600  * extent of buffers underlying these pages that needs mapping (formed by
2601  * either delayed or unwritten buffers). We also lock the pages containing
2602  * these buffers. The extent found is returned in @mpd structure (starting at
2603  * mpd->lblk with length mpd->len blocks).
2604  *
2605  * Note that this function can attach bios to one io_end structure which are
2606  * neither logically nor physically contiguous. Although it may seem as an
2607  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2608  * case as we need to track IO to all buffers underlying a page in one io_end.
2609  */
2610 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2611 {
2612         struct address_space *mapping = mpd->inode->i_mapping;
2613         struct pagevec pvec;
2614         unsigned int nr_pages;
2615         long left = mpd->wbc->nr_to_write;
2616         pgoff_t index = mpd->first_page;
2617         pgoff_t end = mpd->last_page;
2618         int tag;
2619         int i, err = 0;
2620         int blkbits = mpd->inode->i_blkbits;
2621         ext4_lblk_t lblk;
2622         struct buffer_head *head;
2623
2624         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2625                 tag = PAGECACHE_TAG_TOWRITE;
2626         else
2627                 tag = PAGECACHE_TAG_DIRTY;
2628
2629         pagevec_init(&pvec);
2630         mpd->map.m_len = 0;
2631         mpd->next_page = index;
2632         while (index <= end) {
2633                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2634                                 tag);
2635                 if (nr_pages == 0)
2636                         goto out;
2637
2638                 for (i = 0; i < nr_pages; i++) {
2639                         struct page *page = pvec.pages[i];
2640
2641                         /*
2642                          * Accumulated enough dirty pages? This doesn't apply
2643                          * to WB_SYNC_ALL mode. For integrity sync we have to
2644                          * keep going because someone may be concurrently
2645                          * dirtying pages, and we might have synced a lot of
2646                          * newly appeared dirty pages, but have not synced all
2647                          * of the old dirty pages.
2648                          */
2649                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650                                 goto out;
2651
2652                         /* If we can't merge this page, we are done. */
2653                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654                                 goto out;
2655
2656                         lock_page(page);
2657                         /*
2658                          * If the page is no longer dirty, or its mapping no
2659                          * longer corresponds to inode we are writing (which
2660                          * means it has been truncated or invalidated), or the
2661                          * page is already under writeback and we are not doing
2662                          * a data integrity writeback, skip the page
2663                          */
2664                         if (!PageDirty(page) ||
2665                             (PageWriteback(page) &&
2666                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667                             unlikely(page->mapping != mapping)) {
2668                                 unlock_page(page);
2669                                 continue;
2670                         }
2671
2672                         wait_on_page_writeback(page);
2673                         BUG_ON(PageWriteback(page));
2674
2675                         if (mpd->map.m_len == 0)
2676                                 mpd->first_page = page->index;
2677                         mpd->next_page = page->index + 1;
2678                         /* Add all dirty buffers to mpd */
2679                         lblk = ((ext4_lblk_t)page->index) <<
2680                                 (PAGE_SHIFT - blkbits);
2681                         head = page_buffers(page);
2682                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2683                         if (err <= 0)
2684                                 goto out;
2685                         err = 0;
2686                         left--;
2687                 }
2688                 pagevec_release(&pvec);
2689                 cond_resched();
2690         }
2691         return 0;
2692 out:
2693         pagevec_release(&pvec);
2694         return err;
2695 }
2696
2697 static int ext4_writepages(struct address_space *mapping,
2698                            struct writeback_control *wbc)
2699 {
2700         pgoff_t writeback_index = 0;
2701         long nr_to_write = wbc->nr_to_write;
2702         int range_whole = 0;
2703         int cycled = 1;
2704         handle_t *handle = NULL;
2705         struct mpage_da_data mpd;
2706         struct inode *inode = mapping->host;
2707         int needed_blocks, rsv_blocks = 0, ret = 0;
2708         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709         bool done;
2710         struct blk_plug plug;
2711         bool give_up_on_write = false;
2712
2713         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714                 return -EIO;
2715
2716         percpu_down_read(&sbi->s_journal_flag_rwsem);
2717         trace_ext4_writepages(inode, wbc);
2718
2719         /*
2720          * No pages to write? This is mainly a kludge to avoid starting
2721          * a transaction for special inodes like journal inode on last iput()
2722          * because that could violate lock ordering on umount
2723          */
2724         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2725                 goto out_writepages;
2726
2727         if (ext4_should_journal_data(inode)) {
2728                 ret = generic_writepages(mapping, wbc);
2729                 goto out_writepages;
2730         }
2731
2732         /*
2733          * If the filesystem has aborted, it is read-only, so return
2734          * right away instead of dumping stack traces later on that
2735          * will obscure the real source of the problem.  We test
2736          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2737          * the latter could be true if the filesystem is mounted
2738          * read-only, and in that case, ext4_writepages should
2739          * *never* be called, so if that ever happens, we would want
2740          * the stack trace.
2741          */
2742         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2743                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2744                 ret = -EROFS;
2745                 goto out_writepages;
2746         }
2747
2748         if (ext4_should_dioread_nolock(inode)) {
2749                 /*
2750                  * We may need to convert up to one extent per block in
2751                  * the page and we may dirty the inode.
2752                  */
2753                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2754         }
2755
2756         /*
2757          * If we have inline data and arrive here, it means that
2758          * we will soon create the block for the 1st page, so
2759          * we'd better clear the inline data here.
2760          */
2761         if (ext4_has_inline_data(inode)) {
2762                 /* Just inode will be modified... */
2763                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2764                 if (IS_ERR(handle)) {
2765                         ret = PTR_ERR(handle);
2766                         goto out_writepages;
2767                 }
2768                 BUG_ON(ext4_test_inode_state(inode,
2769                                 EXT4_STATE_MAY_INLINE_DATA));
2770                 ext4_destroy_inline_data(handle, inode);
2771                 ext4_journal_stop(handle);
2772         }
2773
2774         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775                 range_whole = 1;
2776
2777         if (wbc->range_cyclic) {
2778                 writeback_index = mapping->writeback_index;
2779                 if (writeback_index)
2780                         cycled = 0;
2781                 mpd.first_page = writeback_index;
2782                 mpd.last_page = -1;
2783         } else {
2784                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786         }
2787
2788         mpd.inode = inode;
2789         mpd.wbc = wbc;
2790         ext4_io_submit_init(&mpd.io_submit, wbc);
2791 retry:
2792         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794         done = false;
2795         blk_start_plug(&plug);
2796
2797         /*
2798          * First writeback pages that don't need mapping - we can avoid
2799          * starting a transaction unnecessarily and also avoid being blocked
2800          * in the block layer on device congestion while having transaction
2801          * started.
2802          */
2803         mpd.do_map = 0;
2804         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805         if (!mpd.io_submit.io_end) {
2806                 ret = -ENOMEM;
2807                 goto unplug;
2808         }
2809         ret = mpage_prepare_extent_to_map(&mpd);
2810         /* Submit prepared bio */
2811         ext4_io_submit(&mpd.io_submit);
2812         ext4_put_io_end_defer(mpd.io_submit.io_end);
2813         mpd.io_submit.io_end = NULL;
2814         /* Unlock pages we didn't use */
2815         mpage_release_unused_pages(&mpd, false);
2816         if (ret < 0)
2817                 goto unplug;
2818
2819         while (!done && mpd.first_page <= mpd.last_page) {
2820                 /* For each extent of pages we use new io_end */
2821                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822                 if (!mpd.io_submit.io_end) {
2823                         ret = -ENOMEM;
2824                         break;
2825                 }
2826
2827                 /*
2828                  * We have two constraints: We find one extent to map and we
2829                  * must always write out whole page (makes a difference when
2830                  * blocksize < pagesize) so that we don't block on IO when we
2831                  * try to write out the rest of the page. Journalled mode is
2832                  * not supported by delalloc.
2833                  */
2834                 BUG_ON(ext4_should_journal_data(inode));
2835                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837                 /* start a new transaction */
2838                 handle = ext4_journal_start_with_reserve(inode,
2839                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840                 if (IS_ERR(handle)) {
2841                         ret = PTR_ERR(handle);
2842                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843                                "%ld pages, ino %lu; err %d", __func__,
2844                                 wbc->nr_to_write, inode->i_ino, ret);
2845                         /* Release allocated io_end */
2846                         ext4_put_io_end(mpd.io_submit.io_end);
2847                         mpd.io_submit.io_end = NULL;
2848                         break;
2849                 }
2850                 mpd.do_map = 1;
2851
2852                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853                 ret = mpage_prepare_extent_to_map(&mpd);
2854                 if (!ret) {
2855                         if (mpd.map.m_len)
2856                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2857                                         &give_up_on_write);
2858                         else {
2859                                 /*
2860                                  * We scanned the whole range (or exhausted
2861                                  * nr_to_write), submitted what was mapped and
2862                                  * didn't find anything needing mapping. We are
2863                                  * done.
2864                                  */
2865                                 done = true;
2866                         }
2867                 }
2868                 /*
2869                  * Caution: If the handle is synchronous,
2870                  * ext4_journal_stop() can wait for transaction commit
2871                  * to finish which may depend on writeback of pages to
2872                  * complete or on page lock to be released.  In that
2873                  * case, we have to wait until after after we have
2874                  * submitted all the IO, released page locks we hold,
2875                  * and dropped io_end reference (for extent conversion
2876                  * to be able to complete) before stopping the handle.
2877                  */
2878                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2879                         ext4_journal_stop(handle);
2880                         handle = NULL;
2881                         mpd.do_map = 0;
2882                 }
2883                 /* Submit prepared bio */
2884                 ext4_io_submit(&mpd.io_submit);
2885                 /* Unlock pages we didn't use */
2886                 mpage_release_unused_pages(&mpd, give_up_on_write);
2887                 /*
2888                  * Drop our io_end reference we got from init. We have
2889                  * to be careful and use deferred io_end finishing if
2890                  * we are still holding the transaction as we can
2891                  * release the last reference to io_end which may end
2892                  * up doing unwritten extent conversion.
2893                  */
2894                 if (handle) {
2895                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2896                         ext4_journal_stop(handle);
2897                 } else
2898                         ext4_put_io_end(mpd.io_submit.io_end);
2899                 mpd.io_submit.io_end = NULL;
2900
2901                 if (ret == -ENOSPC && sbi->s_journal) {
2902                         /*
2903                          * Commit the transaction which would
2904                          * free blocks released in the transaction
2905                          * and try again
2906                          */
2907                         jbd2_journal_force_commit_nested(sbi->s_journal);
2908                         ret = 0;
2909                         continue;
2910                 }
2911                 /* Fatal error - ENOMEM, EIO... */
2912                 if (ret)
2913                         break;
2914         }
2915 unplug:
2916         blk_finish_plug(&plug);
2917         if (!ret && !cycled && wbc->nr_to_write > 0) {
2918                 cycled = 1;
2919                 mpd.last_page = writeback_index - 1;
2920                 mpd.first_page = 0;
2921                 goto retry;
2922         }
2923
2924         /* Update index */
2925         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2926                 /*
2927                  * Set the writeback_index so that range_cyclic
2928                  * mode will write it back later
2929                  */
2930                 mapping->writeback_index = mpd.first_page;
2931
2932 out_writepages:
2933         trace_ext4_writepages_result(inode, wbc, ret,
2934                                      nr_to_write - wbc->nr_to_write);
2935         percpu_up_read(&sbi->s_journal_flag_rwsem);
2936         return ret;
2937 }
2938
2939 static int ext4_dax_writepages(struct address_space *mapping,
2940                                struct writeback_control *wbc)
2941 {
2942         int ret;
2943         long nr_to_write = wbc->nr_to_write;
2944         struct inode *inode = mapping->host;
2945         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2946
2947         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2948                 return -EIO;
2949
2950         percpu_down_read(&sbi->s_journal_flag_rwsem);
2951         trace_ext4_writepages(inode, wbc);
2952
2953         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2954         trace_ext4_writepages_result(inode, wbc, ret,
2955                                      nr_to_write - wbc->nr_to_write);
2956         percpu_up_read(&sbi->s_journal_flag_rwsem);
2957         return ret;
2958 }
2959
2960 static int ext4_nonda_switch(struct super_block *sb)
2961 {
2962         s64 free_clusters, dirty_clusters;
2963         struct ext4_sb_info *sbi = EXT4_SB(sb);
2964
2965         /*
2966          * switch to non delalloc mode if we are running low
2967          * on free block. The free block accounting via percpu
2968          * counters can get slightly wrong with percpu_counter_batch getting
2969          * accumulated on each CPU without updating global counters
2970          * Delalloc need an accurate free block accounting. So switch
2971          * to non delalloc when we are near to error range.
2972          */
2973         free_clusters =
2974                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2975         dirty_clusters =
2976                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2977         /*
2978          * Start pushing delalloc when 1/2 of free blocks are dirty.
2979          */
2980         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2981                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2982
2983         if (2 * free_clusters < 3 * dirty_clusters ||
2984             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2985                 /*
2986                  * free block count is less than 150% of dirty blocks
2987                  * or free blocks is less than watermark
2988                  */
2989                 return 1;
2990         }
2991         return 0;
2992 }
2993
2994 /* We always reserve for an inode update; the superblock could be there too */
2995 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2996 {
2997         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2998                 return 1;
2999
3000         if (pos + len <= 0x7fffffffULL)
3001                 return 1;
3002
3003         /* We might need to update the superblock to set LARGE_FILE */
3004         return 2;
3005 }
3006
3007 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3008                                loff_t pos, unsigned len, unsigned flags,
3009                                struct page **pagep, void **fsdata)
3010 {
3011         int ret, retries = 0;
3012         struct page *page;
3013         pgoff_t index;
3014         struct inode *inode = mapping->host;
3015         handle_t *handle;
3016
3017         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3018                 return -EIO;
3019
3020         index = pos >> PAGE_SHIFT;
3021
3022         if (ext4_nonda_switch(inode->i_sb) ||
3023             S_ISLNK(inode->i_mode)) {
3024                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3025                 return ext4_write_begin(file, mapping, pos,
3026                                         len, flags, pagep, fsdata);
3027         }
3028         *fsdata = (void *)0;
3029         trace_ext4_da_write_begin(inode, pos, len, flags);
3030
3031         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3032                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3033                                                       pos, len, flags,
3034                                                       pagep, fsdata);
3035                 if (ret < 0)
3036                         return ret;
3037                 if (ret == 1)
3038                         return 0;
3039         }
3040
3041         /*
3042          * grab_cache_page_write_begin() can take a long time if the
3043          * system is thrashing due to memory pressure, or if the page
3044          * is being written back.  So grab it first before we start
3045          * the transaction handle.  This also allows us to allocate
3046          * the page (if needed) without using GFP_NOFS.
3047          */
3048 retry_grab:
3049         page = grab_cache_page_write_begin(mapping, index, flags);
3050         if (!page)
3051                 return -ENOMEM;
3052         unlock_page(page);
3053
3054         /*
3055          * With delayed allocation, we don't log the i_disksize update
3056          * if there is delayed block allocation. But we still need
3057          * to journalling the i_disksize update if writes to the end
3058          * of file which has an already mapped buffer.
3059          */
3060 retry_journal:
3061         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3062                                 ext4_da_write_credits(inode, pos, len));
3063         if (IS_ERR(handle)) {
3064                 put_page(page);
3065                 return PTR_ERR(handle);
3066         }
3067
3068         lock_page(page);
3069         if (page->mapping != mapping) {
3070                 /* The page got truncated from under us */
3071                 unlock_page(page);
3072                 put_page(page);
3073                 ext4_journal_stop(handle);
3074                 goto retry_grab;
3075         }
3076         /* In case writeback began while the page was unlocked */
3077         wait_for_stable_page(page);
3078
3079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3080         ret = ext4_block_write_begin(page, pos, len,
3081                                      ext4_da_get_block_prep);
3082 #else
3083         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3084 #endif
3085         if (ret < 0) {
3086                 unlock_page(page);
3087                 ext4_journal_stop(handle);
3088                 /*
3089                  * block_write_begin may have instantiated a few blocks
3090                  * outside i_size.  Trim these off again. Don't need
3091                  * i_size_read because we hold i_mutex.
3092                  */
3093                 if (pos + len > inode->i_size)
3094                         ext4_truncate_failed_write(inode);
3095
3096                 if (ret == -ENOSPC &&
3097                     ext4_should_retry_alloc(inode->i_sb, &retries))
3098                         goto retry_journal;
3099
3100                 put_page(page);
3101                 return ret;
3102         }
3103
3104         *pagep = page;
3105         return ret;
3106 }
3107
3108 /*
3109  * Check if we should update i_disksize
3110  * when write to the end of file but not require block allocation
3111  */
3112 static int ext4_da_should_update_i_disksize(struct page *page,
3113                                             unsigned long offset)
3114 {
3115         struct buffer_head *bh;
3116         struct inode *inode = page->mapping->host;
3117         unsigned int idx;
3118         int i;
3119
3120         bh = page_buffers(page);
3121         idx = offset >> inode->i_blkbits;
3122
3123         for (i = 0; i < idx; i++)
3124                 bh = bh->b_this_page;
3125
3126         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3127                 return 0;
3128         return 1;
3129 }
3130
3131 static int ext4_da_write_end(struct file *file,
3132                              struct address_space *mapping,
3133                              loff_t pos, unsigned len, unsigned copied,
3134                              struct page *page, void *fsdata)
3135 {
3136         struct inode *inode = mapping->host;
3137         int ret = 0, ret2;
3138         handle_t *handle = ext4_journal_current_handle();
3139         loff_t new_i_size;
3140         unsigned long start, end;
3141         int write_mode = (int)(unsigned long)fsdata;
3142
3143         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3144                 return ext4_write_end(file, mapping, pos,
3145                                       len, copied, page, fsdata);
3146
3147         trace_ext4_da_write_end(inode, pos, len, copied);
3148         start = pos & (PAGE_SIZE - 1);
3149         end = start + copied - 1;
3150
3151         /*
3152          * generic_write_end() will run mark_inode_dirty() if i_size
3153          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3154          * into that.
3155          */
3156         new_i_size = pos + copied;
3157         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3158                 if (ext4_has_inline_data(inode) ||
3159                     ext4_da_should_update_i_disksize(page, end)) {
3160                         ext4_update_i_disksize(inode, new_i_size);
3161                         /* We need to mark inode dirty even if
3162                          * new_i_size is less that inode->i_size
3163                          * bu greater than i_disksize.(hint delalloc)
3164                          */
3165                         ext4_mark_inode_dirty(handle, inode);
3166                 }
3167         }
3168
3169         if (write_mode != CONVERT_INLINE_DATA &&
3170             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3171             ext4_has_inline_data(inode))
3172                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3173                                                      page);
3174         else
3175                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3176                                                         page, fsdata);
3177
3178         copied = ret2;
3179         if (ret2 < 0)
3180                 ret = ret2;
3181         ret2 = ext4_journal_stop(handle);
3182         if (!ret)
3183                 ret = ret2;
3184
3185         return ret ? ret : copied;
3186 }
3187
3188 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3189                                    unsigned int length)
3190 {
3191         /*
3192          * Drop reserved blocks
3193          */
3194         BUG_ON(!PageLocked(page));
3195         if (!page_has_buffers(page))
3196                 goto out;
3197
3198         ext4_da_page_release_reservation(page, offset, length);
3199
3200 out:
3201         ext4_invalidatepage(page, offset, length);
3202
3203         return;
3204 }
3205
3206 /*
3207  * Force all delayed allocation blocks to be allocated for a given inode.
3208  */
3209 int ext4_alloc_da_blocks(struct inode *inode)
3210 {
3211         trace_ext4_alloc_da_blocks(inode);
3212
3213         if (!EXT4_I(inode)->i_reserved_data_blocks)
3214                 return 0;
3215
3216         /*
3217          * We do something simple for now.  The filemap_flush() will
3218          * also start triggering a write of the data blocks, which is
3219          * not strictly speaking necessary (and for users of
3220          * laptop_mode, not even desirable).  However, to do otherwise
3221          * would require replicating code paths in:
3222          *
3223          * ext4_writepages() ->
3224          *    write_cache_pages() ---> (via passed in callback function)
3225          *        __mpage_da_writepage() -->
3226          *           mpage_add_bh_to_extent()
3227          *           mpage_da_map_blocks()
3228          *
3229          * The problem is that write_cache_pages(), located in
3230          * mm/page-writeback.c, marks pages clean in preparation for
3231          * doing I/O, which is not desirable if we're not planning on
3232          * doing I/O at all.
3233          *
3234          * We could call write_cache_pages(), and then redirty all of
3235          * the pages by calling redirty_page_for_writepage() but that
3236          * would be ugly in the extreme.  So instead we would need to
3237          * replicate parts of the code in the above functions,
3238          * simplifying them because we wouldn't actually intend to
3239          * write out the pages, but rather only collect contiguous
3240          * logical block extents, call the multi-block allocator, and
3241          * then update the buffer heads with the block allocations.
3242          *
3243          * For now, though, we'll cheat by calling filemap_flush(),
3244          * which will map the blocks, and start the I/O, but not
3245          * actually wait for the I/O to complete.
3246          */
3247         return filemap_flush(inode->i_mapping);
3248 }
3249
3250 /*
3251  * bmap() is special.  It gets used by applications such as lilo and by
3252  * the swapper to find the on-disk block of a specific piece of data.
3253  *
3254  * Naturally, this is dangerous if the block concerned is still in the
3255  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3256  * filesystem and enables swap, then they may get a nasty shock when the
3257  * data getting swapped to that swapfile suddenly gets overwritten by
3258  * the original zero's written out previously to the journal and
3259  * awaiting writeback in the kernel's buffer cache.
3260  *
3261  * So, if we see any bmap calls here on a modified, data-journaled file,
3262  * take extra steps to flush any blocks which might be in the cache.
3263  */
3264 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3265 {
3266         struct inode *inode = mapping->host;
3267         journal_t *journal;
3268         int err;
3269
3270         /*
3271          * We can get here for an inline file via the FIBMAP ioctl
3272          */
3273         if (ext4_has_inline_data(inode))
3274                 return 0;
3275
3276         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3277                         test_opt(inode->i_sb, DELALLOC)) {
3278                 /*
3279                  * With delalloc we want to sync the file
3280                  * so that we can make sure we allocate
3281                  * blocks for file
3282                  */
3283                 filemap_write_and_wait(mapping);
3284         }
3285
3286         if (EXT4_JOURNAL(inode) &&
3287             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3288                 /*
3289                  * This is a REALLY heavyweight approach, but the use of
3290                  * bmap on dirty files is expected to be extremely rare:
3291                  * only if we run lilo or swapon on a freshly made file
3292                  * do we expect this to happen.
3293                  *
3294                  * (bmap requires CAP_SYS_RAWIO so this does not
3295                  * represent an unprivileged user DOS attack --- we'd be
3296                  * in trouble if mortal users could trigger this path at
3297                  * will.)
3298                  *
3299                  * NB. EXT4_STATE_JDATA is not set on files other than
3300                  * regular files.  If somebody wants to bmap a directory
3301                  * or symlink and gets confused because the buffer
3302                  * hasn't yet been flushed to disk, they deserve
3303                  * everything they get.
3304                  */
3305
3306                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3307                 journal = EXT4_JOURNAL(inode);
3308                 jbd2_journal_lock_updates(journal);
3309                 err = jbd2_journal_flush(journal);
3310                 jbd2_journal_unlock_updates(journal);
3311
3312                 if (err)
3313                         return 0;
3314         }
3315
3316         return generic_block_bmap(mapping, block, ext4_get_block);
3317 }
3318
3319 static int ext4_readpage(struct file *file, struct page *page)
3320 {
3321         int ret = -EAGAIN;
3322         struct inode *inode = page->mapping->host;
3323
3324         trace_ext4_readpage(page);
3325
3326         if (ext4_has_inline_data(inode))
3327                 ret = ext4_readpage_inline(inode, page);
3328
3329         if (ret == -EAGAIN)
3330                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3331
3332         return ret;
3333 }
3334
3335 static int
3336 ext4_readpages(struct file *file, struct address_space *mapping,
3337                 struct list_head *pages, unsigned nr_pages)
3338 {
3339         struct inode *inode = mapping->host;
3340
3341         /* If the file has inline data, no need to do readpages. */
3342         if (ext4_has_inline_data(inode))
3343                 return 0;
3344
3345         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3346 }
3347
3348 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3349                                 unsigned int length)
3350 {
3351         trace_ext4_invalidatepage(page, offset, length);
3352
3353         /* No journalling happens on data buffers when this function is used */
3354         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3355
3356         block_invalidatepage(page, offset, length);
3357 }
3358
3359 static int __ext4_journalled_invalidatepage(struct page *page,
3360                                             unsigned int offset,
3361                                             unsigned int length)
3362 {
3363         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3364
3365         trace_ext4_journalled_invalidatepage(page, offset, length);
3366
3367         /*
3368          * If it's a full truncate we just forget about the pending dirtying
3369          */
3370         if (offset == 0 && length == PAGE_SIZE)
3371                 ClearPageChecked(page);
3372
3373         return jbd2_journal_invalidatepage(journal, page, offset, length);
3374 }
3375
3376 /* Wrapper for aops... */
3377 static void ext4_journalled_invalidatepage(struct page *page,
3378                                            unsigned int offset,
3379                                            unsigned int length)
3380 {
3381         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3382 }
3383
3384 static int ext4_releasepage(struct page *page, gfp_t wait)
3385 {
3386         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3387
3388         trace_ext4_releasepage(page);
3389
3390         /* Page has dirty journalled data -> cannot release */
3391         if (PageChecked(page))
3392                 return 0;
3393         if (journal)
3394                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3395         else
3396                 return try_to_free_buffers(page);
3397 }
3398
3399 static bool ext4_inode_datasync_dirty(struct inode *inode)
3400 {
3401         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3402
3403         if (journal)
3404                 return !jbd2_transaction_committed(journal,
3405                                         EXT4_I(inode)->i_datasync_tid);
3406         /* Any metadata buffers to write? */
3407         if (!list_empty(&inode->i_mapping->private_list))
3408                 return true;
3409         return inode->i_state & I_DIRTY_DATASYNC;
3410 }
3411
3412 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3413                             unsigned flags, struct iomap *iomap)
3414 {
3415         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3416         unsigned int blkbits = inode->i_blkbits;
3417         unsigned long first_block = offset >> blkbits;
3418         unsigned long last_block = (offset + length - 1) >> blkbits;
3419         struct ext4_map_blocks map;
3420         bool delalloc = false;
3421         int ret;
3422
3423
3424         if (flags & IOMAP_REPORT) {
3425                 if (ext4_has_inline_data(inode)) {
3426                         ret = ext4_inline_data_iomap(inode, iomap);
3427                         if (ret != -EAGAIN) {
3428                                 if (ret == 0 && offset >= iomap->length)
3429                                         ret = -ENOENT;
3430                                 return ret;
3431                         }
3432                 }
3433         } else {
3434                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3435                         return -ERANGE;
3436         }
3437
3438         map.m_lblk = first_block;
3439         map.m_len = last_block - first_block + 1;
3440
3441         if (flags & IOMAP_REPORT) {
3442                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443                 if (ret < 0)
3444                         return ret;
3445
3446                 if (ret == 0) {
3447                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3448                         struct extent_status es;
3449
3450                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3451
3452                         if (!es.es_len || es.es_lblk > end) {
3453                                 /* entire range is a hole */
3454                         } else if (es.es_lblk > map.m_lblk) {
3455                                 /* range starts with a hole */
3456                                 map.m_len = es.es_lblk - map.m_lblk;
3457                         } else {
3458                                 ext4_lblk_t offs = 0;
3459
3460                                 if (es.es_lblk < map.m_lblk)
3461                                         offs = map.m_lblk - es.es_lblk;
3462                                 map.m_lblk = es.es_lblk + offs;
3463                                 map.m_len = es.es_len - offs;
3464                                 delalloc = true;
3465                         }
3466                 }
3467         } else if (flags & IOMAP_WRITE) {
3468                 int dio_credits;
3469                 handle_t *handle;
3470                 int retries = 0;
3471
3472                 /* Trim mapping request to maximum we can map at once for DIO */
3473                 if (map.m_len > DIO_MAX_BLOCKS)
3474                         map.m_len = DIO_MAX_BLOCKS;
3475                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3476 retry:
3477                 /*
3478                  * Either we allocate blocks and then we don't get unwritten
3479                  * extent so we have reserved enough credits, or the blocks
3480                  * are already allocated and unwritten and in that case
3481                  * extent conversion fits in the credits as well.
3482                  */
3483                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3484                                             dio_credits);
3485                 if (IS_ERR(handle))
3486                         return PTR_ERR(handle);
3487
3488                 ret = ext4_map_blocks(handle, inode, &map,
3489                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3490                 if (ret < 0) {
3491                         ext4_journal_stop(handle);
3492                         if (ret == -ENOSPC &&
3493                             ext4_should_retry_alloc(inode->i_sb, &retries))
3494                                 goto retry;
3495                         return ret;
3496                 }
3497
3498                 /*
3499                  * If we added blocks beyond i_size, we need to make sure they
3500                  * will get truncated if we crash before updating i_size in
3501                  * ext4_iomap_end(). For faults we don't need to do that (and
3502                  * even cannot because for orphan list operations inode_lock is
3503                  * required) - if we happen to instantiate block beyond i_size,
3504                  * it is because we race with truncate which has already added
3505                  * the inode to the orphan list.
3506                  */
3507                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3508                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3509                         int err;
3510
3511                         err = ext4_orphan_add(handle, inode);
3512                         if (err < 0) {
3513                                 ext4_journal_stop(handle);
3514                                 return err;
3515                         }
3516                 }
3517                 ext4_journal_stop(handle);
3518         } else {
3519                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3520                 if (ret < 0)
3521                         return ret;
3522         }
3523
3524         iomap->flags = 0;
3525         if (ext4_inode_datasync_dirty(inode))
3526                 iomap->flags |= IOMAP_F_DIRTY;
3527         iomap->bdev = inode->i_sb->s_bdev;
3528         iomap->dax_dev = sbi->s_daxdev;
3529         iomap->offset = (u64)first_block << blkbits;
3530         iomap->length = (u64)map.m_len << blkbits;
3531
3532         if (ret == 0) {
3533                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3534                 iomap->addr = IOMAP_NULL_ADDR;
3535         } else {
3536                 if (map.m_flags & EXT4_MAP_MAPPED) {
3537                         iomap->type = IOMAP_MAPPED;
3538                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3539                         iomap->type = IOMAP_UNWRITTEN;
3540                 } else {
3541                         WARN_ON_ONCE(1);
3542                         return -EIO;
3543                 }
3544                 iomap->addr = (u64)map.m_pblk << blkbits;
3545         }
3546
3547         if (map.m_flags & EXT4_MAP_NEW)
3548                 iomap->flags |= IOMAP_F_NEW;
3549
3550         return 0;
3551 }
3552
3553 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3554                           ssize_t written, unsigned flags, struct iomap *iomap)
3555 {
3556         int ret = 0;
3557         handle_t *handle;
3558         int blkbits = inode->i_blkbits;
3559         bool truncate = false;
3560
3561         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3562                 return 0;
3563
3564         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3565         if (IS_ERR(handle)) {
3566                 ret = PTR_ERR(handle);
3567                 goto orphan_del;
3568         }
3569         if (ext4_update_inode_size(inode, offset + written))
3570                 ext4_mark_inode_dirty(handle, inode);
3571         /*
3572          * We may need to truncate allocated but not written blocks beyond EOF.
3573          */
3574         if (iomap->offset + iomap->length > 
3575             ALIGN(inode->i_size, 1 << blkbits)) {
3576                 ext4_lblk_t written_blk, end_blk;
3577
3578                 written_blk = (offset + written) >> blkbits;
3579                 end_blk = (offset + length) >> blkbits;
3580                 if (written_blk < end_blk && ext4_can_truncate(inode))
3581                         truncate = true;
3582         }
3583         /*
3584          * Remove inode from orphan list if we were extending a inode and
3585          * everything went fine.
3586          */
3587         if (!truncate && inode->i_nlink &&
3588             !list_empty(&EXT4_I(inode)->i_orphan))
3589                 ext4_orphan_del(handle, inode);
3590         ext4_journal_stop(handle);
3591         if (truncate) {
3592                 ext4_truncate_failed_write(inode);
3593 orphan_del:
3594                 /*
3595                  * If truncate failed early the inode might still be on the
3596                  * orphan list; we need to make sure the inode is removed from
3597                  * the orphan list in that case.
3598                  */
3599                 if (inode->i_nlink)
3600                         ext4_orphan_del(NULL, inode);
3601         }
3602         return ret;
3603 }
3604
3605 const struct iomap_ops ext4_iomap_ops = {
3606         .iomap_begin            = ext4_iomap_begin,
3607         .iomap_end              = ext4_iomap_end,
3608 };
3609
3610 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3611                             ssize_t size, void *private)
3612 {
3613         ext4_io_end_t *io_end = private;
3614
3615         /* if not async direct IO just return */
3616         if (!io_end)
3617                 return 0;
3618
3619         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3620                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3621                   io_end, io_end->inode->i_ino, iocb, offset, size);
3622
3623         /*
3624          * Error during AIO DIO. We cannot convert unwritten extents as the
3625          * data was not written. Just clear the unwritten flag and drop io_end.
3626          */
3627         if (size <= 0) {
3628                 ext4_clear_io_unwritten_flag(io_end);
3629                 size = 0;
3630         }
3631         io_end->offset = offset;
3632         io_end->size = size;
3633         ext4_put_io_end(io_end);
3634
3635         return 0;
3636 }
3637
3638 /*
3639  * Handling of direct IO writes.
3640  *
3641  * For ext4 extent files, ext4 will do direct-io write even to holes,
3642  * preallocated extents, and those write extend the file, no need to
3643  * fall back to buffered IO.
3644  *
3645  * For holes, we fallocate those blocks, mark them as unwritten
3646  * If those blocks were preallocated, we mark sure they are split, but
3647  * still keep the range to write as unwritten.
3648  *
3649  * The unwritten extents will be converted to written when DIO is completed.
3650  * For async direct IO, since the IO may still pending when return, we
3651  * set up an end_io call back function, which will do the conversion
3652  * when async direct IO completed.
3653  *
3654  * If the O_DIRECT write will extend the file then add this inode to the
3655  * orphan list.  So recovery will truncate it back to the original size
3656  * if the machine crashes during the write.
3657  *
3658  */
3659 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3660 {
3661         struct file *file = iocb->ki_filp;
3662         struct inode *inode = file->f_mapping->host;
3663         struct ext4_inode_info *ei = EXT4_I(inode);
3664         ssize_t ret;
3665         loff_t offset = iocb->ki_pos;
3666         size_t count = iov_iter_count(iter);
3667         int overwrite = 0;
3668         get_block_t *get_block_func = NULL;
3669         int dio_flags = 0;
3670         loff_t final_size = offset + count;
3671         int orphan = 0;
3672         handle_t *handle;
3673
3674         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3675                 /* Credits for sb + inode write */
3676                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677                 if (IS_ERR(handle)) {
3678                         ret = PTR_ERR(handle);
3679                         goto out;
3680                 }
3681                 ret = ext4_orphan_add(handle, inode);
3682                 if (ret) {
3683                         ext4_journal_stop(handle);
3684                         goto out;
3685                 }
3686                 orphan = 1;
3687                 ext4_update_i_disksize(inode, inode->i_size);
3688                 ext4_journal_stop(handle);
3689         }
3690
3691         BUG_ON(iocb->private == NULL);
3692
3693         /*
3694          * Make all waiters for direct IO properly wait also for extent
3695          * conversion. This also disallows race between truncate() and
3696          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3697          */
3698         inode_dio_begin(inode);
3699
3700         /* If we do a overwrite dio, i_mutex locking can be released */
3701         overwrite = *((int *)iocb->private);
3702
3703         if (overwrite)
3704                 inode_unlock(inode);
3705
3706         /*
3707          * For extent mapped files we could direct write to holes and fallocate.
3708          *
3709          * Allocated blocks to fill the hole are marked as unwritten to prevent
3710          * parallel buffered read to expose the stale data before DIO complete
3711          * the data IO.
3712          *
3713          * As to previously fallocated extents, ext4 get_block will just simply
3714          * mark the buffer mapped but still keep the extents unwritten.
3715          *
3716          * For non AIO case, we will convert those unwritten extents to written
3717          * after return back from blockdev_direct_IO. That way we save us from
3718          * allocating io_end structure and also the overhead of offloading
3719          * the extent convertion to a workqueue.
3720          *
3721          * For async DIO, the conversion needs to be deferred when the
3722          * IO is completed. The ext4 end_io callback function will be
3723          * called to take care of the conversion work.  Here for async
3724          * case, we allocate an io_end structure to hook to the iocb.
3725          */
3726         iocb->private = NULL;
3727         if (overwrite)
3728                 get_block_func = ext4_dio_get_block_overwrite;
3729         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3730                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3731                 get_block_func = ext4_dio_get_block;
3732                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3733         } else if (is_sync_kiocb(iocb)) {
3734                 get_block_func = ext4_dio_get_block_unwritten_sync;
3735                 dio_flags = DIO_LOCKING;
3736         } else {
3737                 get_block_func = ext4_dio_get_block_unwritten_async;
3738                 dio_flags = DIO_LOCKING;
3739         }
3740         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3741                                    get_block_func, ext4_end_io_dio, NULL,
3742                                    dio_flags);
3743
3744         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3745                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3746                 int err;
3747                 /*
3748                  * for non AIO case, since the IO is already
3749                  * completed, we could do the conversion right here
3750                  */
3751                 err = ext4_convert_unwritten_extents(NULL, inode,
3752                                                      offset, ret);
3753                 if (err < 0)
3754                         ret = err;
3755                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3756         }
3757
3758         inode_dio_end(inode);
3759         /* take i_mutex locking again if we do a ovewrite dio */
3760         if (overwrite)
3761                 inode_lock(inode);
3762
3763         if (ret < 0 && final_size > inode->i_size)
3764                 ext4_truncate_failed_write(inode);
3765
3766         /* Handle extending of i_size after direct IO write */
3767         if (orphan) {
3768                 int err;
3769
3770                 /* Credits for sb + inode write */
3771                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3772                 if (IS_ERR(handle)) {
3773                         /*
3774                          * We wrote the data but cannot extend
3775                          * i_size. Bail out. In async io case, we do
3776                          * not return error here because we have
3777                          * already submmitted the corresponding
3778                          * bio. Returning error here makes the caller
3779                          * think that this IO is done and failed
3780                          * resulting in race with bio's completion
3781                          * handler.
3782                          */
3783                         if (!ret)
3784                                 ret = PTR_ERR(handle);
3785                         if (inode->i_nlink)
3786                                 ext4_orphan_del(NULL, inode);
3787
3788                         goto out;
3789                 }
3790                 if (inode->i_nlink)
3791                         ext4_orphan_del(handle, inode);
3792                 if (ret > 0) {
3793                         loff_t end = offset + ret;
3794                         if (end > inode->i_size || end > ei->i_disksize) {
3795                                 ext4_update_i_disksize(inode, end);
3796                                 if (end > inode->i_size)
3797                                         i_size_write(inode, end);
3798                                 /*
3799                                  * We're going to return a positive `ret'
3800                                  * here due to non-zero-length I/O, so there's
3801                                  * no way of reporting error returns from
3802                                  * ext4_mark_inode_dirty() to userspace.  So
3803                                  * ignore it.
3804                                  */
3805                                 ext4_mark_inode_dirty(handle, inode);
3806                         }
3807                 }
3808                 err = ext4_journal_stop(handle);
3809                 if (ret == 0)
3810                         ret = err;
3811         }
3812 out:
3813         return ret;
3814 }
3815
3816 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3817 {
3818         struct address_space *mapping = iocb->ki_filp->f_mapping;
3819         struct inode *inode = mapping->host;
3820         size_t count = iov_iter_count(iter);
3821         ssize_t ret;
3822
3823         /*
3824          * Shared inode_lock is enough for us - it protects against concurrent
3825          * writes & truncates and since we take care of writing back page cache,
3826          * we are protected against page writeback as well.
3827          */
3828         inode_lock_shared(inode);
3829         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3830                                            iocb->ki_pos + count - 1);
3831         if (ret)
3832                 goto out_unlock;
3833         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3834                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3835 out_unlock:
3836         inode_unlock_shared(inode);
3837         return ret;
3838 }
3839
3840 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3841 {
3842         struct file *file = iocb->ki_filp;
3843         struct inode *inode = file->f_mapping->host;
3844         size_t count = iov_iter_count(iter);
3845         loff_t offset = iocb->ki_pos;
3846         ssize_t ret;
3847
3848 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3849         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3850                 return 0;
3851 #endif
3852
3853         /*
3854          * If we are doing data journalling we don't support O_DIRECT
3855          */
3856         if (ext4_should_journal_data(inode))
3857                 return 0;
3858
3859         /* Let buffer I/O handle the inline data case. */
3860         if (ext4_has_inline_data(inode))
3861                 return 0;
3862
3863         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3864         if (iov_iter_rw(iter) == READ)
3865                 ret = ext4_direct_IO_read(iocb, iter);
3866         else
3867                 ret = ext4_direct_IO_write(iocb, iter);
3868         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3869         return ret;
3870 }
3871
3872 /*
3873  * Pages can be marked dirty completely asynchronously from ext4's journalling
3874  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3875  * much here because ->set_page_dirty is called under VFS locks.  The page is
3876  * not necessarily locked.
3877  *
3878  * We cannot just dirty the page and leave attached buffers clean, because the
3879  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3880  * or jbddirty because all the journalling code will explode.
3881  *
3882  * So what we do is to mark the page "pending dirty" and next time writepage
3883  * is called, propagate that into the buffers appropriately.
3884  */
3885 static int ext4_journalled_set_page_dirty(struct page *page)
3886 {
3887         SetPageChecked(page);
3888         return __set_page_dirty_nobuffers(page);
3889 }
3890
3891 static int ext4_set_page_dirty(struct page *page)
3892 {
3893         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3894         WARN_ON_ONCE(!page_has_buffers(page));
3895         return __set_page_dirty_buffers(page);
3896 }
3897
3898 static const struct address_space_operations ext4_aops = {
3899         .readpage               = ext4_readpage,
3900         .readpages              = ext4_readpages,
3901         .writepage              = ext4_writepage,
3902         .writepages             = ext4_writepages,
3903         .write_begin            = ext4_write_begin,
3904         .write_end              = ext4_write_end,
3905         .set_page_dirty         = ext4_set_page_dirty,
3906         .bmap                   = ext4_bmap,
3907         .invalidatepage         = ext4_invalidatepage,
3908         .releasepage            = ext4_releasepage,
3909         .direct_IO              = ext4_direct_IO,
3910         .migratepage            = buffer_migrate_page,
3911         .is_partially_uptodate  = block_is_partially_uptodate,
3912         .error_remove_page      = generic_error_remove_page,
3913 };
3914
3915 static const struct address_space_operations ext4_journalled_aops = {
3916         .readpage               = ext4_readpage,
3917         .readpages              = ext4_readpages,
3918         .writepage              = ext4_writepage,
3919         .writepages             = ext4_writepages,
3920         .write_begin            = ext4_write_begin,
3921         .write_end              = ext4_journalled_write_end,
3922         .set_page_dirty         = ext4_journalled_set_page_dirty,
3923         .bmap                   = ext4_bmap,
3924         .invalidatepage         = ext4_journalled_invalidatepage,
3925         .releasepage            = ext4_releasepage,
3926         .direct_IO              = ext4_direct_IO,
3927         .is_partially_uptodate  = block_is_partially_uptodate,
3928         .error_remove_page      = generic_error_remove_page,
3929 };
3930
3931 static const struct address_space_operations ext4_da_aops = {
3932         .readpage               = ext4_readpage,
3933         .readpages              = ext4_readpages,
3934         .writepage              = ext4_writepage,
3935         .writepages             = ext4_writepages,
3936         .write_begin            = ext4_da_write_begin,
3937         .write_end              = ext4_da_write_end,
3938         .set_page_dirty         = ext4_set_page_dirty,
3939         .bmap                   = ext4_bmap,
3940         .invalidatepage         = ext4_da_invalidatepage,
3941         .releasepage            = ext4_releasepage,
3942         .direct_IO              = ext4_direct_IO,
3943         .migratepage            = buffer_migrate_page,
3944         .is_partially_uptodate  = block_is_partially_uptodate,
3945         .error_remove_page      = generic_error_remove_page,
3946 };
3947
3948 static const struct address_space_operations ext4_dax_aops = {
3949         .writepages             = ext4_dax_writepages,
3950         .direct_IO              = noop_direct_IO,
3951         .set_page_dirty         = noop_set_page_dirty,
3952         .invalidatepage         = noop_invalidatepage,
3953 };
3954
3955 void ext4_set_aops(struct inode *inode)
3956 {
3957         switch (ext4_inode_journal_mode(inode)) {
3958         case EXT4_INODE_ORDERED_DATA_MODE:
3959         case EXT4_INODE_WRITEBACK_DATA_MODE:
3960                 break;
3961         case EXT4_INODE_JOURNAL_DATA_MODE:
3962                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3963                 return;
3964         default:
3965                 BUG();
3966         }
3967         if (IS_DAX(inode))
3968                 inode->i_mapping->a_ops = &ext4_dax_aops;
3969         else if (test_opt(inode->i_sb, DELALLOC))
3970                 inode->i_mapping->a_ops = &ext4_da_aops;
3971         else
3972                 inode->i_mapping->a_ops = &ext4_aops;
3973 }
3974
3975 static int __ext4_block_zero_page_range(handle_t *handle,
3976                 struct address_space *mapping, loff_t from, loff_t length)
3977 {
3978         ext4_fsblk_t index = from >> PAGE_SHIFT;
3979         unsigned offset = from & (PAGE_SIZE-1);
3980         unsigned blocksize, pos;
3981         ext4_lblk_t iblock;
3982         struct inode *inode = mapping->host;
3983         struct buffer_head *bh;
3984         struct page *page;
3985         int err = 0;
3986
3987         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3988                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3989         if (!page)
3990                 return -ENOMEM;
3991
3992         blocksize = inode->i_sb->s_blocksize;
3993
3994         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3995
3996         if (!page_has_buffers(page))
3997                 create_empty_buffers(page, blocksize, 0);
3998
3999         /* Find the buffer that contains "offset" */
4000         bh = page_buffers(page);
4001         pos = blocksize;
4002         while (offset >= pos) {
4003                 bh = bh->b_this_page;
4004                 iblock++;
4005                 pos += blocksize;
4006         }
4007         if (buffer_freed(bh)) {
4008                 BUFFER_TRACE(bh, "freed: skip");
4009                 goto unlock;
4010         }
4011         if (!buffer_mapped(bh)) {
4012                 BUFFER_TRACE(bh, "unmapped");
4013                 ext4_get_block(inode, iblock, bh, 0);
4014                 /* unmapped? It's a hole - nothing to do */
4015                 if (!buffer_mapped(bh)) {
4016                         BUFFER_TRACE(bh, "still unmapped");
4017                         goto unlock;
4018                 }
4019         }
4020
4021         /* Ok, it's mapped. Make sure it's up-to-date */
4022         if (PageUptodate(page))
4023                 set_buffer_uptodate(bh);
4024
4025         if (!buffer_uptodate(bh)) {
4026                 err = -EIO;
4027                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4028                 wait_on_buffer(bh);
4029                 /* Uhhuh. Read error. Complain and punt. */
4030                 if (!buffer_uptodate(bh))
4031                         goto unlock;
4032                 if (S_ISREG(inode->i_mode) &&
4033                     ext4_encrypted_inode(inode)) {
4034                         /* We expect the key to be set. */
4035                         BUG_ON(!fscrypt_has_encryption_key(inode));
4036                         BUG_ON(blocksize != PAGE_SIZE);
4037                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4038                                                 page, PAGE_SIZE, 0, page->index));
4039                 }
4040         }
4041         if (ext4_should_journal_data(inode)) {
4042                 BUFFER_TRACE(bh, "get write access");
4043                 err = ext4_journal_get_write_access(handle, bh);
4044                 if (err)
4045                         goto unlock;
4046         }
4047         zero_user(page, offset, length);
4048         BUFFER_TRACE(bh, "zeroed end of block");
4049
4050         if (ext4_should_journal_data(inode)) {
4051                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4052         } else {
4053                 err = 0;
4054                 mark_buffer_dirty(bh);
4055                 if (ext4_should_order_data(inode))
4056                         err = ext4_jbd2_inode_add_write(handle, inode);
4057         }
4058
4059 unlock:
4060         unlock_page(page);
4061         put_page(page);
4062         return err;
4063 }
4064
4065 /*
4066  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4067  * starting from file offset 'from'.  The range to be zero'd must
4068  * be contained with in one block.  If the specified range exceeds
4069  * the end of the block it will be shortened to end of the block
4070  * that cooresponds to 'from'
4071  */
4072 static int ext4_block_zero_page_range(handle_t *handle,
4073                 struct address_space *mapping, loff_t from, loff_t length)
4074 {
4075         struct inode *inode = mapping->host;
4076         unsigned offset = from & (PAGE_SIZE-1);
4077         unsigned blocksize = inode->i_sb->s_blocksize;
4078         unsigned max = blocksize - (offset & (blocksize - 1));
4079
4080         /*
4081          * correct length if it does not fall between
4082          * 'from' and the end of the block
4083          */
4084         if (length > max || length < 0)
4085                 length = max;
4086
4087         if (IS_DAX(inode)) {
4088                 return iomap_zero_range(inode, from, length, NULL,
4089                                         &ext4_iomap_ops);
4090         }
4091         return __ext4_block_zero_page_range(handle, mapping, from, length);
4092 }
4093
4094 /*
4095  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4096  * up to the end of the block which corresponds to `from'.
4097  * This required during truncate. We need to physically zero the tail end
4098  * of that block so it doesn't yield old data if the file is later grown.
4099  */
4100 static int ext4_block_truncate_page(handle_t *handle,
4101                 struct address_space *mapping, loff_t from)
4102 {
4103         unsigned offset = from & (PAGE_SIZE-1);
4104         unsigned length;
4105         unsigned blocksize;
4106         struct inode *inode = mapping->host;
4107
4108         /* If we are processing an encrypted inode during orphan list handling */
4109         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4110                 return 0;
4111
4112         blocksize = inode->i_sb->s_blocksize;
4113         length = blocksize - (offset & (blocksize - 1));
4114
4115         return ext4_block_zero_page_range(handle, mapping, from, length);
4116 }
4117
4118 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4119                              loff_t lstart, loff_t length)
4120 {
4121         struct super_block *sb = inode->i_sb;
4122         struct address_space *mapping = inode->i_mapping;
4123         unsigned partial_start, partial_end;
4124         ext4_fsblk_t start, end;
4125         loff_t byte_end = (lstart + length - 1);
4126         int err = 0;
4127
4128         partial_start = lstart & (sb->s_blocksize - 1);
4129         partial_end = byte_end & (sb->s_blocksize - 1);
4130
4131         start = lstart >> sb->s_blocksize_bits;
4132         end = byte_end >> sb->s_blocksize_bits;
4133
4134         /* Handle partial zero within the single block */
4135         if (start == end &&
4136             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4137                 err = ext4_block_zero_page_range(handle, mapping,
4138                                                  lstart, length);
4139                 return err;
4140         }
4141         /* Handle partial zero out on the start of the range */
4142         if (partial_start) {
4143                 err = ext4_block_zero_page_range(handle, mapping,
4144                                                  lstart, sb->s_blocksize);
4145                 if (err)
4146                         return err;
4147         }
4148         /* Handle partial zero out on the end of the range */
4149         if (partial_end != sb->s_blocksize - 1)
4150                 err = ext4_block_zero_page_range(handle, mapping,
4151                                                  byte_end - partial_end,
4152                                                  partial_end + 1);
4153         return err;
4154 }
4155
4156 int ext4_can_truncate(struct inode *inode)
4157 {
4158         if (S_ISREG(inode->i_mode))
4159                 return 1;
4160         if (S_ISDIR(inode->i_mode))
4161                 return 1;
4162         if (S_ISLNK(inode->i_mode))
4163                 return !ext4_inode_is_fast_symlink(inode);
4164         return 0;
4165 }
4166
4167 /*
4168  * We have to make sure i_disksize gets properly updated before we truncate
4169  * page cache due to hole punching or zero range. Otherwise i_disksize update
4170  * can get lost as it may have been postponed to submission of writeback but
4171  * that will never happen after we truncate page cache.
4172  */
4173 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4174                                       loff_t len)
4175 {
4176         handle_t *handle;
4177         loff_t size = i_size_read(inode);
4178
4179         WARN_ON(!inode_is_locked(inode));
4180         if (offset > size || offset + len < size)
4181                 return 0;
4182
4183         if (EXT4_I(inode)->i_disksize >= size)
4184                 return 0;
4185
4186         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4187         if (IS_ERR(handle))
4188                 return PTR_ERR(handle);
4189         ext4_update_i_disksize(inode, size);
4190         ext4_mark_inode_dirty(handle, inode);
4191         ext4_journal_stop(handle);
4192
4193         return 0;
4194 }
4195
4196 /*
4197  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4198  * associated with the given offset and length
4199  *
4200  * @inode:  File inode
4201  * @offset: The offset where the hole will begin
4202  * @len:    The length of the hole
4203  *
4204  * Returns: 0 on success or negative on failure
4205  */
4206
4207 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4208 {
4209         struct super_block *sb = inode->i_sb;
4210         ext4_lblk_t first_block, stop_block;
4211         struct address_space *mapping = inode->i_mapping;
4212         loff_t first_block_offset, last_block_offset;
4213         handle_t *handle;
4214         unsigned int credits;
4215         int ret = 0;
4216
4217         if (!S_ISREG(inode->i_mode))
4218                 return -EOPNOTSUPP;
4219
4220         trace_ext4_punch_hole(inode, offset, length, 0);
4221
4222         /*
4223          * Write out all dirty pages to avoid race conditions
4224          * Then release them.
4225          */
4226         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4227                 ret = filemap_write_and_wait_range(mapping, offset,
4228                                                    offset + length - 1);
4229                 if (ret)
4230                         return ret;
4231         }
4232
4233         inode_lock(inode);
4234
4235         /* No need to punch hole beyond i_size */
4236         if (offset >= inode->i_size)
4237                 goto out_mutex;
4238
4239         /*
4240          * If the hole extends beyond i_size, set the hole
4241          * to end after the page that contains i_size
4242          */
4243         if (offset + length > inode->i_size) {
4244                 length = inode->i_size +
4245                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4246                    offset;
4247         }
4248
4249         if (offset & (sb->s_blocksize - 1) ||
4250             (offset + length) & (sb->s_blocksize - 1)) {
4251                 /*
4252                  * Attach jinode to inode for jbd2 if we do any zeroing of
4253                  * partial block
4254                  */
4255                 ret = ext4_inode_attach_jinode(inode);
4256                 if (ret < 0)
4257                         goto out_mutex;
4258
4259         }
4260
4261         /* Wait all existing dio workers, newcomers will block on i_mutex */
4262         inode_dio_wait(inode);
4263
4264         /*
4265          * Prevent page faults from reinstantiating pages we have released from
4266          * page cache.
4267          */
4268         down_write(&EXT4_I(inode)->i_mmap_sem);
4269         first_block_offset = round_up(offset, sb->s_blocksize);
4270         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4271
4272         /* Now release the pages and zero block aligned part of pages*/
4273         if (last_block_offset > first_block_offset) {
4274                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4275                 if (ret)
4276                         goto out_dio;
4277                 truncate_pagecache_range(inode, first_block_offset,
4278                                          last_block_offset);
4279         }
4280
4281         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4282                 credits = ext4_writepage_trans_blocks(inode);
4283         else
4284                 credits = ext4_blocks_for_truncate(inode);
4285         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4286         if (IS_ERR(handle)) {
4287                 ret = PTR_ERR(handle);
4288                 ext4_std_error(sb, ret);
4289                 goto out_dio;
4290         }
4291
4292         ret = ext4_zero_partial_blocks(handle, inode, offset,
4293                                        length);
4294         if (ret)
4295                 goto out_stop;
4296
4297         first_block = (offset + sb->s_blocksize - 1) >>
4298                 EXT4_BLOCK_SIZE_BITS(sb);
4299         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4300
4301         /* If there are blocks to remove, do it */
4302         if (stop_block > first_block) {
4303
4304                 down_write(&EXT4_I(inode)->i_data_sem);
4305                 ext4_discard_preallocations(inode);
4306
4307                 ret = ext4_es_remove_extent(inode, first_block,
4308                                             stop_block - first_block);
4309                 if (ret) {
4310                         up_write(&EXT4_I(inode)->i_data_sem);
4311                         goto out_stop;
4312                 }
4313
4314                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4315                         ret = ext4_ext_remove_space(inode, first_block,
4316                                                     stop_block - 1);
4317                 else
4318                         ret = ext4_ind_remove_space(handle, inode, first_block,
4319                                                     stop_block);
4320
4321                 up_write(&EXT4_I(inode)->i_data_sem);
4322         }
4323         if (IS_SYNC(inode))
4324                 ext4_handle_sync(handle);
4325
4326         inode->i_mtime = inode->i_ctime = current_time(inode);
4327         ext4_mark_inode_dirty(handle, inode);
4328         if (ret >= 0)
4329                 ext4_update_inode_fsync_trans(handle, inode, 1);
4330 out_stop:
4331         ext4_journal_stop(handle);
4332 out_dio:
4333         up_write(&EXT4_I(inode)->i_mmap_sem);
4334 out_mutex:
4335         inode_unlock(inode);
4336         return ret;
4337 }
4338
4339 int ext4_inode_attach_jinode(struct inode *inode)
4340 {
4341         struct ext4_inode_info *ei = EXT4_I(inode);
4342         struct jbd2_inode *jinode;
4343
4344         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4345                 return 0;
4346
4347         jinode = jbd2_alloc_inode(GFP_KERNEL);
4348         spin_lock(&inode->i_lock);
4349         if (!ei->jinode) {
4350                 if (!jinode) {
4351                         spin_unlock(&inode->i_lock);
4352                         return -ENOMEM;
4353                 }
4354                 ei->jinode = jinode;
4355                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4356                 jinode = NULL;
4357         }
4358         spin_unlock(&inode->i_lock);
4359         if (unlikely(jinode != NULL))
4360                 jbd2_free_inode(jinode);
4361         return 0;
4362 }
4363
4364 /*
4365  * ext4_truncate()
4366  *
4367  * We block out ext4_get_block() block instantiations across the entire
4368  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4369  * simultaneously on behalf of the same inode.
4370  *
4371  * As we work through the truncate and commit bits of it to the journal there
4372  * is one core, guiding principle: the file's tree must always be consistent on
4373  * disk.  We must be able to restart the truncate after a crash.
4374  *
4375  * The file's tree may be transiently inconsistent in memory (although it
4376  * probably isn't), but whenever we close off and commit a journal transaction,
4377  * the contents of (the filesystem + the journal) must be consistent and
4378  * restartable.  It's pretty simple, really: bottom up, right to left (although
4379  * left-to-right works OK too).
4380  *
4381  * Note that at recovery time, journal replay occurs *before* the restart of
4382  * truncate against the orphan inode list.
4383  *
4384  * The committed inode has the new, desired i_size (which is the same as
4385  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4386  * that this inode's truncate did not complete and it will again call
4387  * ext4_truncate() to have another go.  So there will be instantiated blocks
4388  * to the right of the truncation point in a crashed ext4 filesystem.  But
4389  * that's fine - as long as they are linked from the inode, the post-crash
4390  * ext4_truncate() run will find them and release them.
4391  */
4392 int ext4_truncate(struct inode *inode)
4393 {
4394         struct ext4_inode_info *ei = EXT4_I(inode);
4395         unsigned int credits;
4396         int err = 0;
4397         handle_t *handle;
4398         struct address_space *mapping = inode->i_mapping;
4399
4400         /*
4401          * There is a possibility that we're either freeing the inode
4402          * or it's a completely new inode. In those cases we might not
4403          * have i_mutex locked because it's not necessary.
4404          */
4405         if (!(inode->i_state & (I_NEW|I_FREEING)))
4406                 WARN_ON(!inode_is_locked(inode));
4407         trace_ext4_truncate_enter(inode);
4408
4409         if (!ext4_can_truncate(inode))
4410                 return 0;
4411
4412         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4413
4414         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4415                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4416
4417         if (ext4_has_inline_data(inode)) {
4418                 int has_inline = 1;
4419
4420                 err = ext4_inline_data_truncate(inode, &has_inline);
4421                 if (err)
4422                         return err;
4423                 if (has_inline)
4424                         return 0;
4425         }
4426
4427         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4428         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4429                 if (ext4_inode_attach_jinode(inode) < 0)
4430                         return 0;
4431         }
4432
4433         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4434                 credits = ext4_writepage_trans_blocks(inode);
4435         else
4436                 credits = ext4_blocks_for_truncate(inode);
4437
4438         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4439         if (IS_ERR(handle))
4440                 return PTR_ERR(handle);
4441
4442         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4443                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4444
4445         /*
4446          * We add the inode to the orphan list, so that if this
4447          * truncate spans multiple transactions, and we crash, we will
4448          * resume the truncate when the filesystem recovers.  It also
4449          * marks the inode dirty, to catch the new size.
4450          *
4451          * Implication: the file must always be in a sane, consistent
4452          * truncatable state while each transaction commits.
4453          */
4454         err = ext4_orphan_add(handle, inode);
4455         if (err)
4456                 goto out_stop;
4457
4458         down_write(&EXT4_I(inode)->i_data_sem);
4459
4460         ext4_discard_preallocations(inode);
4461
4462         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4463                 err = ext4_ext_truncate(handle, inode);
4464         else
4465                 ext4_ind_truncate(handle, inode);
4466
4467         up_write(&ei->i_data_sem);
4468         if (err)
4469                 goto out_stop;
4470
4471         if (IS_SYNC(inode))
4472                 ext4_handle_sync(handle);
4473
4474 out_stop:
4475         /*
4476          * If this was a simple ftruncate() and the file will remain alive,
4477          * then we need to clear up the orphan record which we created above.
4478          * However, if this was a real unlink then we were called by
4479          * ext4_evict_inode(), and we allow that function to clean up the
4480          * orphan info for us.
4481          */
4482         if (inode->i_nlink)
4483                 ext4_orphan_del(handle, inode);
4484
4485         inode->i_mtime = inode->i_ctime = current_time(inode);
4486         ext4_mark_inode_dirty(handle, inode);
4487         ext4_journal_stop(handle);
4488
4489         trace_ext4_truncate_exit(inode);
4490         return err;
4491 }
4492
4493 /*
4494  * ext4_get_inode_loc returns with an extra refcount against the inode's
4495  * underlying buffer_head on success. If 'in_mem' is true, we have all
4496  * data in memory that is needed to recreate the on-disk version of this
4497  * inode.
4498  */
4499 static int __ext4_get_inode_loc(struct inode *inode,
4500                                 struct ext4_iloc *iloc, int in_mem)
4501 {
4502         struct ext4_group_desc  *gdp;
4503         struct buffer_head      *bh;
4504         struct super_block      *sb = inode->i_sb;
4505         ext4_fsblk_t            block;
4506         int                     inodes_per_block, inode_offset;
4507
4508         iloc->bh = NULL;
4509         if (inode->i_ino < EXT4_ROOT_INO ||
4510             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4511                 return -EFSCORRUPTED;
4512
4513         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4514         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4515         if (!gdp)
4516                 return -EIO;
4517
4518         /*
4519          * Figure out the offset within the block group inode table
4520          */
4521         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4522         inode_offset = ((inode->i_ino - 1) %
4523                         EXT4_INODES_PER_GROUP(sb));
4524         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4525         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4526
4527         bh = sb_getblk(sb, block);
4528         if (unlikely(!bh))
4529                 return -ENOMEM;
4530         if (!buffer_uptodate(bh)) {
4531                 lock_buffer(bh);
4532
4533                 /*
4534                  * If the buffer has the write error flag, we have failed
4535                  * to write out another inode in the same block.  In this
4536                  * case, we don't have to read the block because we may
4537                  * read the old inode data successfully.
4538                  */
4539                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4540                         set_buffer_uptodate(bh);
4541
4542                 if (buffer_uptodate(bh)) {
4543                         /* someone brought it uptodate while we waited */
4544                         unlock_buffer(bh);
4545                         goto has_buffer;
4546                 }
4547
4548                 /*
4549                  * If we have all information of the inode in memory and this
4550                  * is the only valid inode in the block, we need not read the
4551                  * block.
4552                  */
4553                 if (in_mem) {
4554                         struct buffer_head *bitmap_bh;
4555                         int i, start;
4556
4557                         start = inode_offset & ~(inodes_per_block - 1);
4558
4559                         /* Is the inode bitmap in cache? */
4560                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4561                         if (unlikely(!bitmap_bh))
4562                                 goto make_io;
4563
4564                         /*
4565                          * If the inode bitmap isn't in cache then the
4566                          * optimisation may end up performing two reads instead
4567                          * of one, so skip it.
4568                          */
4569                         if (!buffer_uptodate(bitmap_bh)) {
4570                                 brelse(bitmap_bh);
4571                                 goto make_io;
4572                         }
4573                         for (i = start; i < start + inodes_per_block; i++) {
4574                                 if (i == inode_offset)
4575                                         continue;
4576                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4577                                         break;
4578                         }
4579                         brelse(bitmap_bh);
4580                         if (i == start + inodes_per_block) {
4581                                 /* all other inodes are free, so skip I/O */
4582                                 memset(bh->b_data, 0, bh->b_size);
4583                                 set_buffer_uptodate(bh);
4584                                 unlock_buffer(bh);
4585                                 goto has_buffer;
4586                         }
4587                 }
4588
4589 make_io:
4590                 /*
4591                  * If we need to do any I/O, try to pre-readahead extra
4592                  * blocks from the inode table.
4593                  */
4594                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4595                         ext4_fsblk_t b, end, table;
4596                         unsigned num;
4597                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4598
4599                         table = ext4_inode_table(sb, gdp);
4600                         /* s_inode_readahead_blks is always a power of 2 */
4601                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4602                         if (table > b)
4603                                 b = table;
4604                         end = b + ra_blks;
4605                         num = EXT4_INODES_PER_GROUP(sb);
4606                         if (ext4_has_group_desc_csum(sb))
4607                                 num -= ext4_itable_unused_count(sb, gdp);
4608                         table += num / inodes_per_block;
4609                         if (end > table)
4610                                 end = table;
4611                         while (b <= end)
4612                                 sb_breadahead(sb, b++);
4613                 }
4614
4615                 /*
4616                  * There are other valid inodes in the buffer, this inode
4617                  * has in-inode xattrs, or we don't have this inode in memory.
4618                  * Read the block from disk.
4619                  */
4620                 trace_ext4_load_inode(inode);
4621                 get_bh(bh);
4622                 bh->b_end_io = end_buffer_read_sync;
4623                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4624                 wait_on_buffer(bh);
4625                 if (!buffer_uptodate(bh)) {
4626                         EXT4_ERROR_INODE_BLOCK(inode, block,
4627                                                "unable to read itable block");
4628                         brelse(bh);
4629                         return -EIO;
4630                 }
4631         }
4632 has_buffer:
4633         iloc->bh = bh;
4634         return 0;
4635 }
4636
4637 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4638 {
4639         /* We have all inode data except xattrs in memory here. */
4640         return __ext4_get_inode_loc(inode, iloc,
4641                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4642 }
4643
4644 static bool ext4_should_use_dax(struct inode *inode)
4645 {
4646         if (!test_opt(inode->i_sb, DAX))
4647                 return false;
4648         if (!S_ISREG(inode->i_mode))
4649                 return false;
4650         if (ext4_should_journal_data(inode))
4651                 return false;
4652         if (ext4_has_inline_data(inode))
4653                 return false;
4654         if (ext4_encrypted_inode(inode))
4655                 return false;
4656         return true;
4657 }
4658
4659 void ext4_set_inode_flags(struct inode *inode)
4660 {
4661         unsigned int flags = EXT4_I(inode)->i_flags;
4662         unsigned int new_fl = 0;
4663
4664         if (flags & EXT4_SYNC_FL)
4665                 new_fl |= S_SYNC;
4666         if (flags & EXT4_APPEND_FL)
4667                 new_fl |= S_APPEND;
4668         if (flags & EXT4_IMMUTABLE_FL)
4669                 new_fl |= S_IMMUTABLE;
4670         if (flags & EXT4_NOATIME_FL)
4671                 new_fl |= S_NOATIME;
4672         if (flags & EXT4_DIRSYNC_FL)
4673                 new_fl |= S_DIRSYNC;
4674         if (ext4_should_use_dax(inode))
4675                 new_fl |= S_DAX;
4676         if (flags & EXT4_ENCRYPT_FL)
4677                 new_fl |= S_ENCRYPTED;
4678         inode_set_flags(inode, new_fl,
4679                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4680                         S_ENCRYPTED);
4681 }
4682
4683 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4684                                   struct ext4_inode_info *ei)
4685 {
4686         blkcnt_t i_blocks ;
4687         struct inode *inode = &(ei->vfs_inode);
4688         struct super_block *sb = inode->i_sb;
4689
4690         if (ext4_has_feature_huge_file(sb)) {
4691                 /* we are using combined 48 bit field */
4692                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4693                                         le32_to_cpu(raw_inode->i_blocks_lo);
4694                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4695                         /* i_blocks represent file system block size */
4696                         return i_blocks  << (inode->i_blkbits - 9);
4697                 } else {
4698                         return i_blocks;
4699                 }
4700         } else {
4701                 return le32_to_cpu(raw_inode->i_blocks_lo);
4702         }
4703 }
4704
4705 static inline int ext4_iget_extra_inode(struct inode *inode,
4706                                          struct ext4_inode *raw_inode,
4707                                          struct ext4_inode_info *ei)
4708 {
4709         __le32 *magic = (void *)raw_inode +
4710                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4711
4712         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4713             EXT4_INODE_SIZE(inode->i_sb) &&
4714             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4715                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4716                 return ext4_find_inline_data_nolock(inode);
4717         } else
4718                 EXT4_I(inode)->i_inline_off = 0;
4719         return 0;
4720 }
4721
4722 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4723 {
4724         if (!ext4_has_feature_project(inode->i_sb))
4725                 return -EOPNOTSUPP;
4726         *projid = EXT4_I(inode)->i_projid;
4727         return 0;
4728 }
4729
4730 /*
4731  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4732  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4733  * set.
4734  */
4735 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4736 {
4737         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4738                 inode_set_iversion_raw(inode, val);
4739         else
4740                 inode_set_iversion_queried(inode, val);
4741 }
4742 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4743 {
4744         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4745                 return inode_peek_iversion_raw(inode);
4746         else
4747                 return inode_peek_iversion(inode);
4748 }
4749
4750 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4751 {
4752         struct ext4_iloc iloc;
4753         struct ext4_inode *raw_inode;
4754         struct ext4_inode_info *ei;
4755         struct inode *inode;
4756         journal_t *journal = EXT4_SB(sb)->s_journal;
4757         long ret;
4758         loff_t size;
4759         int block;
4760         uid_t i_uid;
4761         gid_t i_gid;
4762         projid_t i_projid;
4763
4764         inode = iget_locked(sb, ino);
4765         if (!inode)
4766                 return ERR_PTR(-ENOMEM);
4767         if (!(inode->i_state & I_NEW))
4768                 return inode;
4769
4770         ei = EXT4_I(inode);
4771         iloc.bh = NULL;
4772
4773         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4774         if (ret < 0)
4775                 goto bad_inode;
4776         raw_inode = ext4_raw_inode(&iloc);
4777
4778         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4779                 EXT4_ERROR_INODE(inode, "root inode unallocated");
4780                 ret = -EFSCORRUPTED;
4781                 goto bad_inode;
4782         }
4783
4784         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4785                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4786                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4787                         EXT4_INODE_SIZE(inode->i_sb) ||
4788                     (ei->i_extra_isize & 3)) {
4789                         EXT4_ERROR_INODE(inode,
4790                                          "bad extra_isize %u (inode size %u)",
4791                                          ei->i_extra_isize,
4792                                          EXT4_INODE_SIZE(inode->i_sb));
4793                         ret = -EFSCORRUPTED;
4794                         goto bad_inode;
4795                 }
4796         } else
4797                 ei->i_extra_isize = 0;
4798
4799         /* Precompute checksum seed for inode metadata */
4800         if (ext4_has_metadata_csum(sb)) {
4801                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4802                 __u32 csum;
4803                 __le32 inum = cpu_to_le32(inode->i_ino);
4804                 __le32 gen = raw_inode->i_generation;
4805                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4806                                    sizeof(inum));
4807                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4808                                               sizeof(gen));
4809         }
4810
4811         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4812                 EXT4_ERROR_INODE(inode, "checksum invalid");
4813                 ret = -EFSBADCRC;
4814                 goto bad_inode;
4815         }
4816
4817         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4818         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4819         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4820         if (ext4_has_feature_project(sb) &&
4821             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4822             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4823                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4824         else
4825                 i_projid = EXT4_DEF_PROJID;
4826
4827         if (!(test_opt(inode->i_sb, NO_UID32))) {
4828                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4829                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4830         }
4831         i_uid_write(inode, i_uid);
4832         i_gid_write(inode, i_gid);
4833         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4834         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4835
4836         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4837         ei->i_inline_off = 0;
4838         ei->i_dir_start_lookup = 0;
4839         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4840         /* We now have enough fields to check if the inode was active or not.
4841          * This is needed because nfsd might try to access dead inodes
4842          * the test is that same one that e2fsck uses
4843          * NeilBrown 1999oct15
4844          */
4845         if (inode->i_nlink == 0) {
4846                 if ((inode->i_mode == 0 ||
4847                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4848                     ino != EXT4_BOOT_LOADER_INO) {
4849                         /* this inode is deleted */
4850                         ret = -ESTALE;
4851                         goto bad_inode;
4852                 }
4853                 /* The only unlinked inodes we let through here have
4854                  * valid i_mode and are being read by the orphan
4855                  * recovery code: that's fine, we're about to complete
4856                  * the process of deleting those.
4857                  * OR it is the EXT4_BOOT_LOADER_INO which is
4858                  * not initialized on a new filesystem. */
4859         }
4860         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4861         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4862         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4863         if (ext4_has_feature_64bit(sb))
4864                 ei->i_file_acl |=
4865                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4866         inode->i_size = ext4_isize(sb, raw_inode);
4867         if ((size = i_size_read(inode)) < 0) {
4868                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4869                 ret = -EFSCORRUPTED;
4870                 goto bad_inode;
4871         }
4872         ei->i_disksize = inode->i_size;
4873 #ifdef CONFIG_QUOTA
4874         ei->i_reserved_quota = 0;
4875 #endif
4876         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4877         ei->i_block_group = iloc.block_group;
4878         ei->i_last_alloc_group = ~0;
4879         /*
4880          * NOTE! The in-memory inode i_data array is in little-endian order
4881          * even on big-endian machines: we do NOT byteswap the block numbers!
4882          */
4883         for (block = 0; block < EXT4_N_BLOCKS; block++)
4884                 ei->i_data[block] = raw_inode->i_block[block];
4885         INIT_LIST_HEAD(&ei->i_orphan);
4886
4887         /*
4888          * Set transaction id's of transactions that have to be committed
4889          * to finish f[data]sync. We set them to currently running transaction
4890          * as we cannot be sure that the inode or some of its metadata isn't
4891          * part of the transaction - the inode could have been reclaimed and
4892          * now it is reread from disk.
4893          */
4894         if (journal) {
4895                 transaction_t *transaction;
4896                 tid_t tid;
4897
4898                 read_lock(&journal->j_state_lock);
4899                 if (journal->j_running_transaction)
4900                         transaction = journal->j_running_transaction;
4901                 else
4902                         transaction = journal->j_committing_transaction;
4903                 if (transaction)
4904                         tid = transaction->t_tid;
4905                 else
4906                         tid = journal->j_commit_sequence;
4907                 read_unlock(&journal->j_state_lock);
4908                 ei->i_sync_tid = tid;
4909                 ei->i_datasync_tid = tid;
4910         }
4911
4912         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4913                 if (ei->i_extra_isize == 0) {
4914                         /* The extra space is currently unused. Use it. */
4915                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4916                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4917                                             EXT4_GOOD_OLD_INODE_SIZE;
4918                 } else {
4919                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4920                         if (ret)
4921                                 goto bad_inode;
4922                 }
4923         }
4924
4925         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4926         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4927         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4928         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4929
4930         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4931                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4932
4933                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4934                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4935                                 ivers |=
4936                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4937                 }
4938                 ext4_inode_set_iversion_queried(inode, ivers);
4939         }
4940
4941         ret = 0;
4942         if (ei->i_file_acl &&
4943             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4944                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4945                                  ei->i_file_acl);
4946                 ret = -EFSCORRUPTED;
4947                 goto bad_inode;
4948         } else if (!ext4_has_inline_data(inode)) {
4949                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4950                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4951                             (S_ISLNK(inode->i_mode) &&
4952                              !ext4_inode_is_fast_symlink(inode))))
4953                                 /* Validate extent which is part of inode */
4954                                 ret = ext4_ext_check_inode(inode);
4955                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4956                            (S_ISLNK(inode->i_mode) &&
4957                             !ext4_inode_is_fast_symlink(inode))) {
4958                         /* Validate block references which are part of inode */
4959                         ret = ext4_ind_check_inode(inode);
4960                 }
4961         }
4962         if (ret)
4963                 goto bad_inode;
4964
4965         if (S_ISREG(inode->i_mode)) {
4966                 inode->i_op = &ext4_file_inode_operations;
4967                 inode->i_fop = &ext4_file_operations;
4968                 ext4_set_aops(inode);
4969         } else if (S_ISDIR(inode->i_mode)) {
4970                 inode->i_op = &ext4_dir_inode_operations;
4971                 inode->i_fop = &ext4_dir_operations;
4972         } else if (S_ISLNK(inode->i_mode)) {
4973                 /* VFS does not allow setting these so must be corruption */
4974                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4975                         EXT4_ERROR_INODE(inode,
4976                           "immutable or append flags not allowed on symlinks");
4977                         ret = -EFSCORRUPTED;
4978                         goto bad_inode;
4979                 }
4980                 if (ext4_encrypted_inode(inode)) {
4981                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4982                         ext4_set_aops(inode);
4983                 } else if (ext4_inode_is_fast_symlink(inode)) {
4984                         inode->i_link = (char *)ei->i_data;
4985                         inode->i_op = &ext4_fast_symlink_inode_operations;
4986                         nd_terminate_link(ei->i_data, inode->i_size,
4987                                 sizeof(ei->i_data) - 1);
4988                 } else {
4989                         inode->i_op = &ext4_symlink_inode_operations;
4990                         ext4_set_aops(inode);
4991                 }
4992                 inode_nohighmem(inode);
4993         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4994               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4995                 inode->i_op = &ext4_special_inode_operations;
4996                 if (raw_inode->i_block[0])
4997                         init_special_inode(inode, inode->i_mode,
4998                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4999                 else
5000                         init_special_inode(inode, inode->i_mode,
5001                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5002         } else if (ino == EXT4_BOOT_LOADER_INO) {
5003                 make_bad_inode(inode);
5004         } else {
5005                 ret = -EFSCORRUPTED;
5006                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5007                 goto bad_inode;
5008         }
5009         brelse(iloc.bh);
5010         ext4_set_inode_flags(inode);
5011
5012         unlock_new_inode(inode);
5013         return inode;
5014
5015 bad_inode:
5016         brelse(iloc.bh);
5017         iget_failed(inode);
5018         return ERR_PTR(ret);
5019 }
5020
5021 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
5022 {
5023         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
5024                 return ERR_PTR(-EFSCORRUPTED);
5025         return ext4_iget(sb, ino);
5026 }
5027
5028 static int ext4_inode_blocks_set(handle_t *handle,
5029                                 struct ext4_inode *raw_inode,
5030                                 struct ext4_inode_info *ei)
5031 {
5032         struct inode *inode = &(ei->vfs_inode);
5033         u64 i_blocks = inode->i_blocks;
5034         struct super_block *sb = inode->i_sb;
5035
5036         if (i_blocks <= ~0U) {
5037                 /*
5038                  * i_blocks can be represented in a 32 bit variable
5039                  * as multiple of 512 bytes
5040                  */
5041                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5042                 raw_inode->i_blocks_high = 0;
5043                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5044                 return 0;
5045         }
5046         if (!ext4_has_feature_huge_file(sb))
5047                 return -EFBIG;
5048
5049         if (i_blocks <= 0xffffffffffffULL) {
5050                 /*
5051                  * i_blocks can be represented in a 48 bit variable
5052                  * as multiple of 512 bytes
5053                  */
5054                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5055                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5056                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5057         } else {
5058                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5059                 /* i_block is stored in file system block size */
5060                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5061                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5062                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5063         }
5064         return 0;
5065 }
5066
5067 struct other_inode {
5068         unsigned long           orig_ino;
5069         struct ext4_inode       *raw_inode;
5070 };
5071
5072 static int other_inode_match(struct inode * inode, unsigned long ino,
5073                              void *data)
5074 {
5075         struct other_inode *oi = (struct other_inode *) data;
5076
5077         if ((inode->i_ino != ino) ||
5078             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5079                                I_DIRTY_INODE)) ||
5080             ((inode->i_state & I_DIRTY_TIME) == 0))
5081                 return 0;
5082         spin_lock(&inode->i_lock);
5083         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5084                                 I_DIRTY_INODE)) == 0) &&
5085             (inode->i_state & I_DIRTY_TIME)) {
5086                 struct ext4_inode_info  *ei = EXT4_I(inode);
5087
5088                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5089                 spin_unlock(&inode->i_lock);
5090
5091                 spin_lock(&ei->i_raw_lock);
5092                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5093                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5094                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5095                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5096                 spin_unlock(&ei->i_raw_lock);
5097                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5098                 return -1;
5099         }
5100         spin_unlock(&inode->i_lock);
5101         return -1;
5102 }
5103
5104 /*
5105  * Opportunistically update the other time fields for other inodes in
5106  * the same inode table block.
5107  */
5108 static void ext4_update_other_inodes_time(struct super_block *sb,
5109                                           unsigned long orig_ino, char *buf)
5110 {
5111         struct other_inode oi;
5112         unsigned long ino;
5113         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5114         int inode_size = EXT4_INODE_SIZE(sb);
5115
5116         oi.orig_ino = orig_ino;
5117         /*
5118          * Calculate the first inode in the inode table block.  Inode
5119          * numbers are one-based.  That is, the first inode in a block
5120          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5121          */
5122         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5123         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5124                 if (ino == orig_ino)
5125                         continue;
5126                 oi.raw_inode = (struct ext4_inode *) buf;
5127                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5128         }
5129 }
5130
5131 /*
5132  * Post the struct inode info into an on-disk inode location in the
5133  * buffer-cache.  This gobbles the caller's reference to the
5134  * buffer_head in the inode location struct.
5135  *
5136  * The caller must have write access to iloc->bh.
5137  */
5138 static int ext4_do_update_inode(handle_t *handle,
5139                                 struct inode *inode,
5140                                 struct ext4_iloc *iloc)
5141 {
5142         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5143         struct ext4_inode_info *ei = EXT4_I(inode);
5144         struct buffer_head *bh = iloc->bh;
5145         struct super_block *sb = inode->i_sb;
5146         int err = 0, rc, block;
5147         int need_datasync = 0, set_large_file = 0;
5148         uid_t i_uid;
5149         gid_t i_gid;
5150         projid_t i_projid;
5151
5152         spin_lock(&ei->i_raw_lock);
5153
5154         /* For fields not tracked in the in-memory inode,
5155          * initialise them to zero for new inodes. */
5156         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5157                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5158
5159         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5160         i_uid = i_uid_read(inode);
5161         i_gid = i_gid_read(inode);
5162         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5163         if (!(test_opt(inode->i_sb, NO_UID32))) {
5164                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5165                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5166 /*
5167  * Fix up interoperability with old kernels. Otherwise, old inodes get
5168  * re-used with the upper 16 bits of the uid/gid intact
5169  */
5170                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5171                         raw_inode->i_uid_high = 0;
5172                         raw_inode->i_gid_high = 0;
5173                 } else {
5174                         raw_inode->i_uid_high =
5175                                 cpu_to_le16(high_16_bits(i_uid));
5176                         raw_inode->i_gid_high =
5177                                 cpu_to_le16(high_16_bits(i_gid));
5178                 }
5179         } else {
5180                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5181                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5182                 raw_inode->i_uid_high = 0;
5183                 raw_inode->i_gid_high = 0;
5184         }
5185         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5186
5187         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5188         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5189         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5190         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5191
5192         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5193         if (err) {
5194                 spin_unlock(&ei->i_raw_lock);
5195                 goto out_brelse;
5196         }
5197         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5198         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5199         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5200                 raw_inode->i_file_acl_high =
5201                         cpu_to_le16(ei->i_file_acl >> 32);
5202         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5203         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5204                 ext4_isize_set(raw_inode, ei->i_disksize);
5205                 need_datasync = 1;
5206         }
5207         if (ei->i_disksize > 0x7fffffffULL) {
5208                 if (!ext4_has_feature_large_file(sb) ||
5209                                 EXT4_SB(sb)->s_es->s_rev_level ==
5210                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5211                         set_large_file = 1;
5212         }
5213         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5214         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5215                 if (old_valid_dev(inode->i_rdev)) {
5216                         raw_inode->i_block[0] =
5217                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5218                         raw_inode->i_block[1] = 0;
5219                 } else {
5220                         raw_inode->i_block[0] = 0;
5221                         raw_inode->i_block[1] =
5222                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5223                         raw_inode->i_block[2] = 0;
5224                 }
5225         } else if (!ext4_has_inline_data(inode)) {
5226                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5227                         raw_inode->i_block[block] = ei->i_data[block];
5228         }
5229
5230         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5231                 u64 ivers = ext4_inode_peek_iversion(inode);
5232
5233                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5234                 if (ei->i_extra_isize) {
5235                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5236                                 raw_inode->i_version_hi =
5237                                         cpu_to_le32(ivers >> 32);
5238                         raw_inode->i_extra_isize =
5239                                 cpu_to_le16(ei->i_extra_isize);
5240                 }
5241         }
5242
5243         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5244                i_projid != EXT4_DEF_PROJID);
5245
5246         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5247             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5248                 raw_inode->i_projid = cpu_to_le32(i_projid);
5249
5250         ext4_inode_csum_set(inode, raw_inode, ei);
5251         spin_unlock(&ei->i_raw_lock);
5252         if (inode->i_sb->s_flags & SB_LAZYTIME)
5253                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5254                                               bh->b_data);
5255
5256         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5257         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5258         if (!err)
5259                 err = rc;
5260         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5261         if (set_large_file) {
5262                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5263                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5264                 if (err)
5265                         goto out_brelse;
5266                 ext4_update_dynamic_rev(sb);
5267                 ext4_set_feature_large_file(sb);
5268                 ext4_handle_sync(handle);
5269                 err = ext4_handle_dirty_super(handle, sb);
5270         }
5271         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5272 out_brelse:
5273         brelse(bh);
5274         ext4_std_error(inode->i_sb, err);
5275         return err;
5276 }
5277
5278 /*
5279  * ext4_write_inode()
5280  *
5281  * We are called from a few places:
5282  *
5283  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5284  *   Here, there will be no transaction running. We wait for any running
5285  *   transaction to commit.
5286  *
5287  * - Within flush work (sys_sync(), kupdate and such).
5288  *   We wait on commit, if told to.
5289  *
5290  * - Within iput_final() -> write_inode_now()
5291  *   We wait on commit, if told to.
5292  *
5293  * In all cases it is actually safe for us to return without doing anything,
5294  * because the inode has been copied into a raw inode buffer in
5295  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5296  * writeback.
5297  *
5298  * Note that we are absolutely dependent upon all inode dirtiers doing the
5299  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5300  * which we are interested.
5301  *
5302  * It would be a bug for them to not do this.  The code:
5303  *
5304  *      mark_inode_dirty(inode)
5305  *      stuff();
5306  *      inode->i_size = expr;
5307  *
5308  * is in error because write_inode() could occur while `stuff()' is running,
5309  * and the new i_size will be lost.  Plus the inode will no longer be on the
5310  * superblock's dirty inode list.
5311  */
5312 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5313 {
5314         int err;
5315
5316         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5317                 return 0;
5318
5319         if (EXT4_SB(inode->i_sb)->s_journal) {
5320                 if (ext4_journal_current_handle()) {
5321                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5322                         dump_stack();
5323                         return -EIO;
5324                 }
5325
5326                 /*
5327                  * No need to force transaction in WB_SYNC_NONE mode. Also
5328                  * ext4_sync_fs() will force the commit after everything is
5329                  * written.
5330                  */
5331                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5332                         return 0;
5333
5334                 err = ext4_force_commit(inode->i_sb);
5335         } else {
5336                 struct ext4_iloc iloc;
5337
5338                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5339                 if (err)
5340                         return err;
5341                 /*
5342                  * sync(2) will flush the whole buffer cache. No need to do
5343                  * it here separately for each inode.
5344                  */
5345                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5346                         sync_dirty_buffer(iloc.bh);
5347                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5348                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5349                                          "IO error syncing inode");
5350                         err = -EIO;
5351                 }
5352                 brelse(iloc.bh);
5353         }
5354         return err;
5355 }
5356
5357 /*
5358  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5359  * buffers that are attached to a page stradding i_size and are undergoing
5360  * commit. In that case we have to wait for commit to finish and try again.
5361  */
5362 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5363 {
5364         struct page *page;
5365         unsigned offset;
5366         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5367         tid_t commit_tid = 0;
5368         int ret;
5369
5370         offset = inode->i_size & (PAGE_SIZE - 1);
5371         /*
5372          * All buffers in the last page remain valid? Then there's nothing to
5373          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5374          * blocksize case
5375          */
5376         if (offset > PAGE_SIZE - i_blocksize(inode))
5377                 return;
5378         while (1) {
5379                 page = find_lock_page(inode->i_mapping,
5380                                       inode->i_size >> PAGE_SHIFT);
5381                 if (!page)
5382                         return;
5383                 ret = __ext4_journalled_invalidatepage(page, offset,
5384                                                 PAGE_SIZE - offset);
5385                 unlock_page(page);
5386                 put_page(page);
5387                 if (ret != -EBUSY)
5388                         return;
5389                 commit_tid = 0;
5390                 read_lock(&journal->j_state_lock);
5391                 if (journal->j_committing_transaction)
5392                         commit_tid = journal->j_committing_transaction->t_tid;
5393                 read_unlock(&journal->j_state_lock);
5394                 if (commit_tid)
5395                         jbd2_log_wait_commit(journal, commit_tid);
5396         }
5397 }
5398
5399 /*
5400  * ext4_setattr()
5401  *
5402  * Called from notify_change.
5403  *
5404  * We want to trap VFS attempts to truncate the file as soon as
5405  * possible.  In particular, we want to make sure that when the VFS
5406  * shrinks i_size, we put the inode on the orphan list and modify
5407  * i_disksize immediately, so that during the subsequent flushing of
5408  * dirty pages and freeing of disk blocks, we can guarantee that any
5409  * commit will leave the blocks being flushed in an unused state on
5410  * disk.  (On recovery, the inode will get truncated and the blocks will
5411  * be freed, so we have a strong guarantee that no future commit will
5412  * leave these blocks visible to the user.)
5413  *
5414  * Another thing we have to assure is that if we are in ordered mode
5415  * and inode is still attached to the committing transaction, we must
5416  * we start writeout of all the dirty pages which are being truncated.
5417  * This way we are sure that all the data written in the previous
5418  * transaction are already on disk (truncate waits for pages under
5419  * writeback).
5420  *
5421  * Called with inode->i_mutex down.
5422  */
5423 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5424 {
5425         struct inode *inode = d_inode(dentry);
5426         int error, rc = 0;
5427         int orphan = 0;
5428         const unsigned int ia_valid = attr->ia_valid;
5429
5430         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5431                 return -EIO;
5432
5433         error = setattr_prepare(dentry, attr);
5434         if (error)
5435                 return error;
5436
5437         error = fscrypt_prepare_setattr(dentry, attr);
5438         if (error)
5439                 return error;
5440
5441         if (is_quota_modification(inode, attr)) {
5442                 error = dquot_initialize(inode);
5443                 if (error)
5444                         return error;
5445         }
5446         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5447             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5448                 handle_t *handle;
5449
5450                 /* (user+group)*(old+new) structure, inode write (sb,
5451                  * inode block, ? - but truncate inode update has it) */
5452                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5453                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5454                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5455                 if (IS_ERR(handle)) {
5456                         error = PTR_ERR(handle);
5457                         goto err_out;
5458                 }
5459
5460                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5461                  * counts xattr inode references.
5462                  */
5463                 down_read(&EXT4_I(inode)->xattr_sem);
5464                 error = dquot_transfer(inode, attr);
5465                 up_read(&EXT4_I(inode)->xattr_sem);
5466
5467                 if (error) {
5468                         ext4_journal_stop(handle);
5469                         return error;
5470                 }
5471                 /* Update corresponding info in inode so that everything is in
5472                  * one transaction */
5473                 if (attr->ia_valid & ATTR_UID)
5474                         inode->i_uid = attr->ia_uid;
5475                 if (attr->ia_valid & ATTR_GID)
5476                         inode->i_gid = attr->ia_gid;
5477                 error = ext4_mark_inode_dirty(handle, inode);
5478                 ext4_journal_stop(handle);
5479         }
5480
5481         if (attr->ia_valid & ATTR_SIZE) {
5482                 handle_t *handle;
5483                 loff_t oldsize = inode->i_size;
5484                 int shrink = (attr->ia_size <= inode->i_size);
5485
5486                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5487                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5488
5489                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5490                                 return -EFBIG;
5491                 }
5492                 if (!S_ISREG(inode->i_mode))
5493                         return -EINVAL;
5494
5495                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5496                         inode_inc_iversion(inode);
5497
5498                 if (ext4_should_order_data(inode) &&
5499                     (attr->ia_size < inode->i_size)) {
5500                         error = ext4_begin_ordered_truncate(inode,
5501                                                             attr->ia_size);
5502                         if (error)
5503                                 goto err_out;
5504                 }
5505                 if (attr->ia_size != inode->i_size) {
5506                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5507                         if (IS_ERR(handle)) {
5508                                 error = PTR_ERR(handle);
5509                                 goto err_out;
5510                         }
5511                         if (ext4_handle_valid(handle) && shrink) {
5512                                 error = ext4_orphan_add(handle, inode);
5513                                 orphan = 1;
5514                         }
5515                         /*
5516                          * Update c/mtime on truncate up, ext4_truncate() will
5517                          * update c/mtime in shrink case below
5518                          */
5519                         if (!shrink) {
5520                                 inode->i_mtime = current_time(inode);
5521                                 inode->i_ctime = inode->i_mtime;
5522                         }
5523                         down_write(&EXT4_I(inode)->i_data_sem);
5524                         EXT4_I(inode)->i_disksize = attr->ia_size;
5525                         rc = ext4_mark_inode_dirty(handle, inode);
5526                         if (!error)
5527                                 error = rc;
5528                         /*
5529                          * We have to update i_size under i_data_sem together
5530                          * with i_disksize to avoid races with writeback code
5531                          * running ext4_wb_update_i_disksize().
5532                          */
5533                         if (!error)
5534                                 i_size_write(inode, attr->ia_size);
5535                         up_write(&EXT4_I(inode)->i_data_sem);
5536                         ext4_journal_stop(handle);
5537                         if (error) {
5538                                 if (orphan)
5539                                         ext4_orphan_del(NULL, inode);
5540                                 goto err_out;
5541                         }
5542                 }
5543                 if (!shrink)
5544                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5545
5546                 /*
5547                  * Blocks are going to be removed from the inode. Wait
5548                  * for dio in flight.  Temporarily disable
5549                  * dioread_nolock to prevent livelock.
5550                  */
5551                 if (orphan) {
5552                         if (!ext4_should_journal_data(inode)) {
5553                                 inode_dio_wait(inode);
5554                         } else
5555                                 ext4_wait_for_tail_page_commit(inode);
5556                 }
5557                 down_write(&EXT4_I(inode)->i_mmap_sem);
5558                 /*
5559                  * Truncate pagecache after we've waited for commit
5560                  * in data=journal mode to make pages freeable.
5561                  */
5562                 truncate_pagecache(inode, inode->i_size);
5563                 if (shrink) {
5564                         rc = ext4_truncate(inode);
5565                         if (rc)
5566                                 error = rc;
5567                 }
5568                 up_write(&EXT4_I(inode)->i_mmap_sem);
5569         }
5570
5571         if (!error) {
5572                 setattr_copy(inode, attr);
5573                 mark_inode_dirty(inode);
5574         }
5575
5576         /*
5577          * If the call to ext4_truncate failed to get a transaction handle at
5578          * all, we need to clean up the in-core orphan list manually.
5579          */
5580         if (orphan && inode->i_nlink)
5581                 ext4_orphan_del(NULL, inode);
5582
5583         if (!error && (ia_valid & ATTR_MODE))
5584                 rc = posix_acl_chmod(inode, inode->i_mode);
5585
5586 err_out:
5587         ext4_std_error(inode->i_sb, error);
5588         if (!error)
5589                 error = rc;
5590         return error;
5591 }
5592
5593 int ext4_getattr(const struct path *path, struct kstat *stat,
5594                  u32 request_mask, unsigned int query_flags)
5595 {
5596         struct inode *inode = d_inode(path->dentry);
5597         struct ext4_inode *raw_inode;
5598         struct ext4_inode_info *ei = EXT4_I(inode);
5599         unsigned int flags;
5600
5601         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5602                 stat->result_mask |= STATX_BTIME;
5603                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5604                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5605         }
5606
5607         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5608         if (flags & EXT4_APPEND_FL)
5609                 stat->attributes |= STATX_ATTR_APPEND;
5610         if (flags & EXT4_COMPR_FL)
5611                 stat->attributes |= STATX_ATTR_COMPRESSED;
5612         if (flags & EXT4_ENCRYPT_FL)
5613                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5614         if (flags & EXT4_IMMUTABLE_FL)
5615                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5616         if (flags & EXT4_NODUMP_FL)
5617                 stat->attributes |= STATX_ATTR_NODUMP;
5618
5619         stat->attributes_mask |= (STATX_ATTR_APPEND |
5620                                   STATX_ATTR_COMPRESSED |
5621                                   STATX_ATTR_ENCRYPTED |
5622                                   STATX_ATTR_IMMUTABLE |
5623                                   STATX_ATTR_NODUMP);
5624
5625         generic_fillattr(inode, stat);
5626         return 0;
5627 }
5628
5629 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5630                       u32 request_mask, unsigned int query_flags)
5631 {
5632         struct inode *inode = d_inode(path->dentry);
5633         u64 delalloc_blocks;
5634
5635         ext4_getattr(path, stat, request_mask, query_flags);
5636
5637         /*
5638          * If there is inline data in the inode, the inode will normally not
5639          * have data blocks allocated (it may have an external xattr block).
5640          * Report at least one sector for such files, so tools like tar, rsync,
5641          * others don't incorrectly think the file is completely sparse.
5642          */
5643         if (unlikely(ext4_has_inline_data(inode)))
5644                 stat->blocks += (stat->size + 511) >> 9;
5645
5646         /*
5647          * We can't update i_blocks if the block allocation is delayed
5648          * otherwise in the case of system crash before the real block
5649          * allocation is done, we will have i_blocks inconsistent with
5650          * on-disk file blocks.
5651          * We always keep i_blocks updated together with real
5652          * allocation. But to not confuse with user, stat
5653          * will return the blocks that include the delayed allocation
5654          * blocks for this file.
5655          */
5656         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5657                                    EXT4_I(inode)->i_reserved_data_blocks);
5658         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5659         return 0;
5660 }
5661
5662 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5663                                    int pextents)
5664 {
5665         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5666                 return ext4_ind_trans_blocks(inode, lblocks);
5667         return ext4_ext_index_trans_blocks(inode, pextents);
5668 }
5669
5670 /*
5671  * Account for index blocks, block groups bitmaps and block group
5672  * descriptor blocks if modify datablocks and index blocks
5673  * worse case, the indexs blocks spread over different block groups
5674  *
5675  * If datablocks are discontiguous, they are possible to spread over
5676  * different block groups too. If they are contiguous, with flexbg,
5677  * they could still across block group boundary.
5678  *
5679  * Also account for superblock, inode, quota and xattr blocks
5680  */
5681 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5682                                   int pextents)
5683 {
5684         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5685         int gdpblocks;
5686         int idxblocks;
5687         int ret = 0;
5688
5689         /*
5690          * How many index blocks need to touch to map @lblocks logical blocks
5691          * to @pextents physical extents?
5692          */
5693         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5694
5695         ret = idxblocks;
5696
5697         /*
5698          * Now let's see how many group bitmaps and group descriptors need
5699          * to account
5700          */
5701         groups = idxblocks + pextents;
5702         gdpblocks = groups;
5703         if (groups > ngroups)
5704                 groups = ngroups;
5705         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5706                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5707
5708         /* bitmaps and block group descriptor blocks */
5709         ret += groups + gdpblocks;
5710
5711         /* Blocks for super block, inode, quota and xattr blocks */
5712         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5713
5714         return ret;
5715 }
5716
5717 /*
5718  * Calculate the total number of credits to reserve to fit
5719  * the modification of a single pages into a single transaction,
5720  * which may include multiple chunks of block allocations.
5721  *
5722  * This could be called via ext4_write_begin()
5723  *
5724  * We need to consider the worse case, when
5725  * one new block per extent.
5726  */
5727 int ext4_writepage_trans_blocks(struct inode *inode)
5728 {
5729         int bpp = ext4_journal_blocks_per_page(inode);
5730         int ret;
5731
5732         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5733
5734         /* Account for data blocks for journalled mode */
5735         if (ext4_should_journal_data(inode))
5736                 ret += bpp;
5737         return ret;
5738 }
5739
5740 /*
5741  * Calculate the journal credits for a chunk of data modification.
5742  *
5743  * This is called from DIO, fallocate or whoever calling
5744  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5745  *
5746  * journal buffers for data blocks are not included here, as DIO
5747  * and fallocate do no need to journal data buffers.
5748  */
5749 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5750 {
5751         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5752 }
5753
5754 /*
5755  * The caller must have previously called ext4_reserve_inode_write().
5756  * Give this, we know that the caller already has write access to iloc->bh.
5757  */
5758 int ext4_mark_iloc_dirty(handle_t *handle,
5759                          struct inode *inode, struct ext4_iloc *iloc)
5760 {
5761         int err = 0;
5762
5763         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5764                 return -EIO;
5765
5766         if (IS_I_VERSION(inode))
5767                 inode_inc_iversion(inode);
5768
5769         /* the do_update_inode consumes one bh->b_count */
5770         get_bh(iloc->bh);
5771
5772         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5773         err = ext4_do_update_inode(handle, inode, iloc);
5774         put_bh(iloc->bh);
5775         return err;
5776 }
5777
5778 /*
5779  * On success, We end up with an outstanding reference count against
5780  * iloc->bh.  This _must_ be cleaned up later.
5781  */
5782
5783 int
5784 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5785                          struct ext4_iloc *iloc)
5786 {
5787         int err;
5788
5789         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5790                 return -EIO;
5791
5792         err = ext4_get_inode_loc(inode, iloc);
5793         if (!err) {
5794                 BUFFER_TRACE(iloc->bh, "get_write_access");
5795                 err = ext4_journal_get_write_access(handle, iloc->bh);
5796                 if (err) {
5797                         brelse(iloc->bh);
5798                         iloc->bh = NULL;
5799                 }
5800         }
5801         ext4_std_error(inode->i_sb, err);
5802         return err;
5803 }
5804
5805 static int __ext4_expand_extra_isize(struct inode *inode,
5806                                      unsigned int new_extra_isize,
5807                                      struct ext4_iloc *iloc,
5808                                      handle_t *handle, int *no_expand)
5809 {
5810         struct ext4_inode *raw_inode;
5811         struct ext4_xattr_ibody_header *header;
5812         int error;
5813
5814         raw_inode = ext4_raw_inode(iloc);
5815
5816         header = IHDR(inode, raw_inode);
5817
5818         /* No extended attributes present */
5819         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5820             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5821                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5822                        EXT4_I(inode)->i_extra_isize, 0,
5823                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5824                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5825                 return 0;
5826         }
5827
5828         /* try to expand with EAs present */
5829         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5830                                            raw_inode, handle);
5831         if (error) {
5832                 /*
5833                  * Inode size expansion failed; don't try again
5834                  */
5835                 *no_expand = 1;
5836         }
5837
5838         return error;
5839 }
5840
5841 /*
5842  * Expand an inode by new_extra_isize bytes.
5843  * Returns 0 on success or negative error number on failure.
5844  */
5845 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5846                                           unsigned int new_extra_isize,
5847                                           struct ext4_iloc iloc,
5848                                           handle_t *handle)
5849 {
5850         int no_expand;
5851         int error;
5852
5853         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5854                 return -EOVERFLOW;
5855
5856         /*
5857          * In nojournal mode, we can immediately attempt to expand
5858          * the inode.  When journaled, we first need to obtain extra
5859          * buffer credits since we may write into the EA block
5860          * with this same handle. If journal_extend fails, then it will
5861          * only result in a minor loss of functionality for that inode.
5862          * If this is felt to be critical, then e2fsck should be run to
5863          * force a large enough s_min_extra_isize.
5864          */
5865         if (ext4_handle_valid(handle) &&
5866             jbd2_journal_extend(handle,
5867                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5868                 return -ENOSPC;
5869
5870         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5871                 return -EBUSY;
5872
5873         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5874                                           handle, &no_expand);
5875         ext4_write_unlock_xattr(inode, &no_expand);
5876
5877         return error;
5878 }
5879
5880 int ext4_expand_extra_isize(struct inode *inode,
5881                             unsigned int new_extra_isize,
5882                             struct ext4_iloc *iloc)
5883 {
5884         handle_t *handle;
5885         int no_expand;
5886         int error, rc;
5887
5888         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5889                 brelse(iloc->bh);
5890                 return -EOVERFLOW;
5891         }
5892
5893         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5894                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5895         if (IS_ERR(handle)) {
5896                 error = PTR_ERR(handle);
5897                 brelse(iloc->bh);
5898                 return error;
5899         }
5900
5901         ext4_write_lock_xattr(inode, &no_expand);
5902
5903         BUFFER_TRACE(iloc.bh, "get_write_access");
5904         error = ext4_journal_get_write_access(handle, iloc->bh);
5905         if (error) {
5906                 brelse(iloc->bh);
5907                 goto out_stop;
5908         }
5909
5910         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5911                                           handle, &no_expand);
5912
5913         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5914         if (!error)
5915                 error = rc;
5916
5917         ext4_write_unlock_xattr(inode, &no_expand);
5918 out_stop:
5919         ext4_journal_stop(handle);
5920         return error;
5921 }
5922
5923 /*
5924  * What we do here is to mark the in-core inode as clean with respect to inode
5925  * dirtiness (it may still be data-dirty).
5926  * This means that the in-core inode may be reaped by prune_icache
5927  * without having to perform any I/O.  This is a very good thing,
5928  * because *any* task may call prune_icache - even ones which
5929  * have a transaction open against a different journal.
5930  *
5931  * Is this cheating?  Not really.  Sure, we haven't written the
5932  * inode out, but prune_icache isn't a user-visible syncing function.
5933  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5934  * we start and wait on commits.
5935  */
5936 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5937 {
5938         struct ext4_iloc iloc;
5939         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5940         int err;
5941
5942         might_sleep();
5943         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5944         err = ext4_reserve_inode_write(handle, inode, &iloc);
5945         if (err)
5946                 return err;
5947
5948         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5949                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5950                                                iloc, handle);
5951
5952         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5953 }
5954
5955 /*
5956  * ext4_dirty_inode() is called from __mark_inode_dirty()
5957  *
5958  * We're really interested in the case where a file is being extended.
5959  * i_size has been changed by generic_commit_write() and we thus need
5960  * to include the updated inode in the current transaction.
5961  *
5962  * Also, dquot_alloc_block() will always dirty the inode when blocks
5963  * are allocated to the file.
5964  *
5965  * If the inode is marked synchronous, we don't honour that here - doing
5966  * so would cause a commit on atime updates, which we don't bother doing.
5967  * We handle synchronous inodes at the highest possible level.
5968  *
5969  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5970  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5971  * to copy into the on-disk inode structure are the timestamp files.
5972  */
5973 void ext4_dirty_inode(struct inode *inode, int flags)
5974 {
5975         handle_t *handle;
5976
5977         if (flags == I_DIRTY_TIME)
5978                 return;
5979         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5980         if (IS_ERR(handle))
5981                 goto out;
5982
5983         ext4_mark_inode_dirty(handle, inode);
5984
5985         ext4_journal_stop(handle);
5986 out:
5987         return;
5988 }
5989
5990 #if 0
5991 /*
5992  * Bind an inode's backing buffer_head into this transaction, to prevent
5993  * it from being flushed to disk early.  Unlike
5994  * ext4_reserve_inode_write, this leaves behind no bh reference and
5995  * returns no iloc structure, so the caller needs to repeat the iloc
5996  * lookup to mark the inode dirty later.
5997  */
5998 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5999 {
6000         struct ext4_iloc iloc;
6001
6002         int err = 0;
6003         if (handle) {
6004                 err = ext4_get_inode_loc(inode, &iloc);
6005                 if (!err) {
6006                         BUFFER_TRACE(iloc.bh, "get_write_access");
6007                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6008                         if (!err)
6009                                 err = ext4_handle_dirty_metadata(handle,
6010                                                                  NULL,
6011                                                                  iloc.bh);
6012                         brelse(iloc.bh);
6013                 }
6014         }
6015         ext4_std_error(inode->i_sb, err);
6016         return err;
6017 }
6018 #endif
6019
6020 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6021 {
6022         journal_t *journal;
6023         handle_t *handle;
6024         int err;
6025         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6026
6027         /*
6028          * We have to be very careful here: changing a data block's
6029          * journaling status dynamically is dangerous.  If we write a
6030          * data block to the journal, change the status and then delete
6031          * that block, we risk forgetting to revoke the old log record
6032          * from the journal and so a subsequent replay can corrupt data.
6033          * So, first we make sure that the journal is empty and that
6034          * nobody is changing anything.
6035          */
6036
6037         journal = EXT4_JOURNAL(inode);
6038         if (!journal)
6039                 return 0;
6040         if (is_journal_aborted(journal))
6041                 return -EROFS;
6042
6043         /* Wait for all existing dio workers */
6044         inode_dio_wait(inode);
6045
6046         /*
6047          * Before flushing the journal and switching inode's aops, we have
6048          * to flush all dirty data the inode has. There can be outstanding
6049          * delayed allocations, there can be unwritten extents created by
6050          * fallocate or buffered writes in dioread_nolock mode covered by
6051          * dirty data which can be converted only after flushing the dirty
6052          * data (and journalled aops don't know how to handle these cases).
6053          */
6054         if (val) {
6055                 down_write(&EXT4_I(inode)->i_mmap_sem);
6056                 err = filemap_write_and_wait(inode->i_mapping);
6057                 if (err < 0) {
6058                         up_write(&EXT4_I(inode)->i_mmap_sem);
6059                         return err;
6060                 }
6061         }
6062
6063         percpu_down_write(&sbi->s_journal_flag_rwsem);
6064         jbd2_journal_lock_updates(journal);
6065
6066         /*
6067          * OK, there are no updates running now, and all cached data is
6068          * synced to disk.  We are now in a completely consistent state
6069          * which doesn't have anything in the journal, and we know that
6070          * no filesystem updates are running, so it is safe to modify
6071          * the inode's in-core data-journaling state flag now.
6072          */
6073
6074         if (val)
6075                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6076         else {
6077                 err = jbd2_journal_flush(journal);
6078                 if (err < 0) {
6079                         jbd2_journal_unlock_updates(journal);
6080                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6081                         return err;
6082                 }
6083                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6084         }
6085         ext4_set_aops(inode);
6086
6087         jbd2_journal_unlock_updates(journal);
6088         percpu_up_write(&sbi->s_journal_flag_rwsem);
6089
6090         if (val)
6091                 up_write(&EXT4_I(inode)->i_mmap_sem);
6092
6093         /* Finally we can mark the inode as dirty. */
6094
6095         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6096         if (IS_ERR(handle))
6097                 return PTR_ERR(handle);
6098
6099         err = ext4_mark_inode_dirty(handle, inode);
6100         ext4_handle_sync(handle);
6101         ext4_journal_stop(handle);
6102         ext4_std_error(inode->i_sb, err);
6103
6104         return err;
6105 }
6106
6107 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6108 {
6109         return !buffer_mapped(bh);
6110 }
6111
6112 int ext4_page_mkwrite(struct vm_fault *vmf)
6113 {
6114         struct vm_area_struct *vma = vmf->vma;
6115         struct page *page = vmf->page;
6116         loff_t size;
6117         unsigned long len;
6118         int ret;
6119         struct file *file = vma->vm_file;
6120         struct inode *inode = file_inode(file);
6121         struct address_space *mapping = inode->i_mapping;
6122         handle_t *handle;
6123         get_block_t *get_block;
6124         int retries = 0;
6125
6126         sb_start_pagefault(inode->i_sb);
6127         file_update_time(vma->vm_file);
6128
6129         down_read(&EXT4_I(inode)->i_mmap_sem);
6130
6131         ret = ext4_convert_inline_data(inode);
6132         if (ret)
6133                 goto out_ret;
6134
6135         /* Delalloc case is easy... */
6136         if (test_opt(inode->i_sb, DELALLOC) &&
6137             !ext4_should_journal_data(inode) &&
6138             !ext4_nonda_switch(inode->i_sb)) {
6139                 do {
6140                         ret = block_page_mkwrite(vma, vmf,
6141                                                    ext4_da_get_block_prep);
6142                 } while (ret == -ENOSPC &&
6143                        ext4_should_retry_alloc(inode->i_sb, &retries));
6144                 goto out_ret;
6145         }
6146
6147         lock_page(page);
6148         size = i_size_read(inode);
6149         /* Page got truncated from under us? */
6150         if (page->mapping != mapping || page_offset(page) > size) {
6151                 unlock_page(page);
6152                 ret = VM_FAULT_NOPAGE;
6153                 goto out;
6154         }
6155
6156         if (page->index == size >> PAGE_SHIFT)
6157                 len = size & ~PAGE_MASK;
6158         else
6159                 len = PAGE_SIZE;
6160         /*
6161          * Return if we have all the buffers mapped. This avoids the need to do
6162          * journal_start/journal_stop which can block and take a long time
6163          */
6164         if (page_has_buffers(page)) {
6165                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6166                                             0, len, NULL,
6167                                             ext4_bh_unmapped)) {
6168                         /* Wait so that we don't change page under IO */
6169                         wait_for_stable_page(page);
6170                         ret = VM_FAULT_LOCKED;
6171                         goto out;
6172                 }
6173         }
6174         unlock_page(page);
6175         /* OK, we need to fill the hole... */
6176         if (ext4_should_dioread_nolock(inode))
6177                 get_block = ext4_get_block_unwritten;
6178         else
6179                 get_block = ext4_get_block;
6180 retry_alloc:
6181         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6182                                     ext4_writepage_trans_blocks(inode));
6183         if (IS_ERR(handle)) {
6184                 ret = VM_FAULT_SIGBUS;
6185                 goto out;
6186         }
6187         ret = block_page_mkwrite(vma, vmf, get_block);
6188         if (!ret && ext4_should_journal_data(inode)) {
6189                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6190                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6191                         unlock_page(page);
6192                         ret = VM_FAULT_SIGBUS;
6193                         ext4_journal_stop(handle);
6194                         goto out;
6195                 }
6196                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6197         }
6198         ext4_journal_stop(handle);
6199         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6200                 goto retry_alloc;
6201 out_ret:
6202         ret = block_page_mkwrite_return(ret);
6203 out:
6204         up_read(&EXT4_I(inode)->i_mmap_sem);
6205         sb_end_pagefault(inode->i_sb);
6206         return ret;
6207 }
6208
6209 int ext4_filemap_fault(struct vm_fault *vmf)
6210 {
6211         struct inode *inode = file_inode(vmf->vma->vm_file);
6212         int err;
6213
6214         down_read(&EXT4_I(inode)->i_mmap_sem);
6215         err = filemap_fault(vmf);
6216         up_read(&EXT4_I(inode)->i_mmap_sem);
6217
6218         return err;
6219 }