Linux 6.10-rc4
[sfrench/cifs-2.6.git] / fs / ecryptfs / messaging.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 2004-2008 International Business Machines Corp.
6  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
7  *              Tyler Hicks <code@tyhicks.com>
8  */
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/user_namespace.h>
12 #include <linux/nsproxy.h>
13 #include "ecryptfs_kernel.h"
14
15 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
16 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
17 static DEFINE_MUTEX(ecryptfs_msg_ctx_lists_mux);
18
19 static struct hlist_head *ecryptfs_daemon_hash;
20 DEFINE_MUTEX(ecryptfs_daemon_hash_mux);
21 static int ecryptfs_hash_bits;
22 #define ecryptfs_current_euid_hash(uid) \
23         hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
24
25 static u32 ecryptfs_msg_counter;
26 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
27
28 /**
29  * ecryptfs_acquire_free_msg_ctx
30  * @msg_ctx: The context that was acquired from the free list
31  *
32  * Acquires a context element from the free list and locks the mutex
33  * on the context.  Sets the msg_ctx task to current.  Returns zero on
34  * success; non-zero on error or upon failure to acquire a free
35  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
36  * held.
37  */
38 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
39 {
40         struct list_head *p;
41         int rc;
42
43         if (list_empty(&ecryptfs_msg_ctx_free_list)) {
44                 printk(KERN_WARNING "%s: The eCryptfs free "
45                        "context list is empty.  It may be helpful to "
46                        "specify the ecryptfs_message_buf_len "
47                        "parameter to be greater than the current "
48                        "value of [%d]\n", __func__, ecryptfs_message_buf_len);
49                 rc = -ENOMEM;
50                 goto out;
51         }
52         list_for_each(p, &ecryptfs_msg_ctx_free_list) {
53                 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
54                 if (mutex_trylock(&(*msg_ctx)->mux)) {
55                         (*msg_ctx)->task = current;
56                         rc = 0;
57                         goto out;
58                 }
59         }
60         rc = -ENOMEM;
61 out:
62         return rc;
63 }
64
65 /**
66  * ecryptfs_msg_ctx_free_to_alloc
67  * @msg_ctx: The context to move from the free list to the alloc list
68  *
69  * Must be called with ecryptfs_msg_ctx_lists_mux held.
70  */
71 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
72 {
73         list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
74         msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
75         msg_ctx->counter = ++ecryptfs_msg_counter;
76 }
77
78 /**
79  * ecryptfs_msg_ctx_alloc_to_free
80  * @msg_ctx: The context to move from the alloc list to the free list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
84 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86         list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
87         kfree(msg_ctx->msg);
88         msg_ctx->msg = NULL;
89         msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
90 }
91
92 /**
93  * ecryptfs_find_daemon_by_euid
94  * @daemon: If return value is zero, points to the desired daemon pointer
95  *
96  * Must be called with ecryptfs_daemon_hash_mux held.
97  *
98  * Search the hash list for the current effective user id.
99  *
100  * Returns zero if the user id exists in the list; non-zero otherwise.
101  */
102 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
103 {
104         int rc;
105
106         hlist_for_each_entry(*daemon,
107                             &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
108                             euid_chain) {
109                 if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
110                         rc = 0;
111                         goto out;
112                 }
113         }
114         rc = -EINVAL;
115 out:
116         return rc;
117 }
118
119 /**
120  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
121  * @daemon: Pointer to set to newly allocated daemon struct
122  * @file: File used when opening /dev/ecryptfs
123  *
124  * Must be called ceremoniously while in possession of
125  * ecryptfs_sacred_daemon_hash_mux
126  *
127  * Returns zero on success; non-zero otherwise
128  */
129 int
130 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
131 {
132         int rc = 0;
133
134         (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
135         if (!(*daemon)) {
136                 rc = -ENOMEM;
137                 goto out;
138         }
139         (*daemon)->file = file;
140         mutex_init(&(*daemon)->mux);
141         INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
142         init_waitqueue_head(&(*daemon)->wait);
143         (*daemon)->num_queued_msg_ctx = 0;
144         hlist_add_head(&(*daemon)->euid_chain,
145                        &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
146 out:
147         return rc;
148 }
149
150 /*
151  * ecryptfs_exorcise_daemon - Destroy the daemon struct
152  *
153  * Must be called ceremoniously while in possession of
154  * ecryptfs_daemon_hash_mux and the daemon's own mux.
155  */
156 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
157 {
158         struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
159         int rc = 0;
160
161         mutex_lock(&daemon->mux);
162         if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
163             || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
164                 rc = -EBUSY;
165                 mutex_unlock(&daemon->mux);
166                 goto out;
167         }
168         list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
169                                  &daemon->msg_ctx_out_queue, daemon_out_list) {
170                 list_del(&msg_ctx->daemon_out_list);
171                 daemon->num_queued_msg_ctx--;
172                 printk(KERN_WARNING "%s: Warning: dropping message that is in "
173                        "the out queue of a dying daemon\n", __func__);
174                 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
175         }
176         hlist_del(&daemon->euid_chain);
177         mutex_unlock(&daemon->mux);
178         kfree_sensitive(daemon);
179 out:
180         return rc;
181 }
182
183 /**
184  * ecryptfs_process_response
185  * @daemon: eCryptfs daemon object
186  * @msg: The ecryptfs message received; the caller should sanity check
187  *       msg->data_len and free the memory
188  * @seq: The sequence number of the message; must match the sequence
189  *       number for the existing message context waiting for this
190  *       response
191  *
192  * Processes a response message after sending an operation request to
193  * userspace. Some other process is awaiting this response. Before
194  * sending out its first communications, the other process allocated a
195  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
196  * response message contains this index so that we can copy over the
197  * response message into the msg_ctx that the process holds a
198  * reference to. The other process is going to wake up, check to see
199  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
200  * proceed to read off and process the response message. Returns zero
201  * upon delivery to desired context element; non-zero upon delivery
202  * failure or error.
203  *
204  * Returns zero on success; non-zero otherwise
205  */
206 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
207                               struct ecryptfs_message *msg, u32 seq)
208 {
209         struct ecryptfs_msg_ctx *msg_ctx;
210         size_t msg_size;
211         int rc;
212
213         if (msg->index >= ecryptfs_message_buf_len) {
214                 rc = -EINVAL;
215                 printk(KERN_ERR "%s: Attempt to reference "
216                        "context buffer at index [%d]; maximum "
217                        "allowable is [%d]\n", __func__, msg->index,
218                        (ecryptfs_message_buf_len - 1));
219                 goto out;
220         }
221         msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
222         mutex_lock(&msg_ctx->mux);
223         if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
224                 rc = -EINVAL;
225                 printk(KERN_WARNING "%s: Desired context element is not "
226                        "pending a response\n", __func__);
227                 goto unlock;
228         } else if (msg_ctx->counter != seq) {
229                 rc = -EINVAL;
230                 printk(KERN_WARNING "%s: Invalid message sequence; "
231                        "expected [%d]; received [%d]\n", __func__,
232                        msg_ctx->counter, seq);
233                 goto unlock;
234         }
235         msg_size = (sizeof(*msg) + msg->data_len);
236         msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL);
237         if (!msg_ctx->msg) {
238                 rc = -ENOMEM;
239                 goto unlock;
240         }
241         msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
242         wake_up_process(msg_ctx->task);
243         rc = 0;
244 unlock:
245         mutex_unlock(&msg_ctx->mux);
246 out:
247         return rc;
248 }
249
250 /**
251  * ecryptfs_send_message_locked
252  * @data: The data to send
253  * @data_len: The length of data
254  * @msg_type: Type of message
255  * @msg_ctx: The message context allocated for the send
256  *
257  * Must be called with ecryptfs_daemon_hash_mux held.
258  *
259  * Returns zero on success; non-zero otherwise
260  */
261 static int
262 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
263                              struct ecryptfs_msg_ctx **msg_ctx)
264 {
265         struct ecryptfs_daemon *daemon;
266         int rc;
267
268         rc = ecryptfs_find_daemon_by_euid(&daemon);
269         if (rc) {
270                 rc = -ENOTCONN;
271                 goto out;
272         }
273         mutex_lock(&ecryptfs_msg_ctx_lists_mux);
274         rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
275         if (rc) {
276                 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
277                 printk(KERN_WARNING "%s: Could not claim a free "
278                        "context element\n", __func__);
279                 goto out;
280         }
281         ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
282         mutex_unlock(&(*msg_ctx)->mux);
283         mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
284         rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
285                                    daemon);
286         if (rc)
287                 printk(KERN_ERR "%s: Error attempting to send message to "
288                        "userspace daemon; rc = [%d]\n", __func__, rc);
289 out:
290         return rc;
291 }
292
293 /**
294  * ecryptfs_send_message
295  * @data: The data to send
296  * @data_len: The length of data
297  * @msg_ctx: The message context allocated for the send
298  *
299  * Grabs ecryptfs_daemon_hash_mux.
300  *
301  * Returns zero on success; non-zero otherwise
302  */
303 int ecryptfs_send_message(char *data, int data_len,
304                           struct ecryptfs_msg_ctx **msg_ctx)
305 {
306         int rc;
307
308         mutex_lock(&ecryptfs_daemon_hash_mux);
309         rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
310                                           msg_ctx);
311         mutex_unlock(&ecryptfs_daemon_hash_mux);
312         return rc;
313 }
314
315 /**
316  * ecryptfs_wait_for_response
317  * @msg_ctx: The context that was assigned when sending a message
318  * @msg: The incoming message from userspace; not set if rc != 0
319  *
320  * Sleeps until awaken by ecryptfs_receive_message or until the amount
321  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
322  * returned, msg will point to a valid message from userspace; a
323  * non-zero value is returned upon failure to receive a message or an
324  * error occurs. Callee must free @msg on success.
325  */
326 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
327                                struct ecryptfs_message **msg)
328 {
329         signed long timeout = ecryptfs_message_wait_timeout * HZ;
330         int rc = 0;
331
332 sleep:
333         timeout = schedule_timeout_interruptible(timeout);
334         mutex_lock(&ecryptfs_msg_ctx_lists_mux);
335         mutex_lock(&msg_ctx->mux);
336         if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
337                 if (timeout) {
338                         mutex_unlock(&msg_ctx->mux);
339                         mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
340                         goto sleep;
341                 }
342                 rc = -ENOMSG;
343         } else {
344                 *msg = msg_ctx->msg;
345                 msg_ctx->msg = NULL;
346         }
347         ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
348         mutex_unlock(&msg_ctx->mux);
349         mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
350         return rc;
351 }
352
353 int __init ecryptfs_init_messaging(void)
354 {
355         int i;
356         int rc = 0;
357
358         if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
359                 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
360                 printk(KERN_WARNING "%s: Specified number of users is "
361                        "too large, defaulting to [%d] users\n", __func__,
362                        ecryptfs_number_of_users);
363         }
364         mutex_lock(&ecryptfs_daemon_hash_mux);
365         ecryptfs_hash_bits = 1;
366         while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
367                 ecryptfs_hash_bits++;
368         ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
369                                         * (1 << ecryptfs_hash_bits)),
370                                        GFP_KERNEL);
371         if (!ecryptfs_daemon_hash) {
372                 rc = -ENOMEM;
373                 mutex_unlock(&ecryptfs_daemon_hash_mux);
374                 goto out;
375         }
376         for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
377                 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
378         mutex_unlock(&ecryptfs_daemon_hash_mux);
379         ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
380                                         * ecryptfs_message_buf_len),
381                                        GFP_KERNEL);
382         if (!ecryptfs_msg_ctx_arr) {
383                 kfree(ecryptfs_daemon_hash);
384                 rc = -ENOMEM;
385                 goto out;
386         }
387         mutex_lock(&ecryptfs_msg_ctx_lists_mux);
388         ecryptfs_msg_counter = 0;
389         for (i = 0; i < ecryptfs_message_buf_len; i++) {
390                 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
391                 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
392                 mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
393                 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
394                 ecryptfs_msg_ctx_arr[i].index = i;
395                 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
396                 ecryptfs_msg_ctx_arr[i].counter = 0;
397                 ecryptfs_msg_ctx_arr[i].task = NULL;
398                 ecryptfs_msg_ctx_arr[i].msg = NULL;
399                 list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
400                               &ecryptfs_msg_ctx_free_list);
401                 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
402         }
403         mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
404         rc = ecryptfs_init_ecryptfs_miscdev();
405         if (rc)
406                 ecryptfs_release_messaging();
407 out:
408         return rc;
409 }
410
411 void ecryptfs_release_messaging(void)
412 {
413         if (ecryptfs_msg_ctx_arr) {
414                 int i;
415
416                 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
417                 for (i = 0; i < ecryptfs_message_buf_len; i++) {
418                         mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
419                         kfree(ecryptfs_msg_ctx_arr[i].msg);
420                         mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
421                 }
422                 kfree(ecryptfs_msg_ctx_arr);
423                 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
424         }
425         if (ecryptfs_daemon_hash) {
426                 struct ecryptfs_daemon *daemon;
427                 struct hlist_node *n;
428                 int i;
429
430                 mutex_lock(&ecryptfs_daemon_hash_mux);
431                 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
432                         int rc;
433
434                         hlist_for_each_entry_safe(daemon, n,
435                                                   &ecryptfs_daemon_hash[i],
436                                                   euid_chain) {
437                                 rc = ecryptfs_exorcise_daemon(daemon);
438                                 if (rc)
439                                         printk(KERN_ERR "%s: Error whilst "
440                                                "attempting to destroy daemon; "
441                                                "rc = [%d]. Dazed and confused, "
442                                                "but trying to continue.\n",
443                                                __func__, rc);
444                         }
445                 }
446                 kfree(ecryptfs_daemon_hash);
447                 mutex_unlock(&ecryptfs_daemon_hash_mux);
448         }
449         ecryptfs_destroy_ecryptfs_miscdev();
450         return;
451 }