Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
49
50 static int __init init_dax_wait_table(void)
51 {
52         int i;
53
54         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55                 init_waitqueue_head(wait_table + i);
56         return 0;
57 }
58 fs_initcall(init_dax_wait_table);
59
60 /*
61  * We use lowest available bit in exceptional entry for locking, one bit for
62  * the entry size (PMD) and two more to tell us if the entry is a zero page or
63  * an empty entry that is just used for locking.  In total four special bits.
64  *
65  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67  * block allocation.
68  */
69 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75 static unsigned long dax_radix_sector(void *entry)
76 {
77         return (unsigned long)entry >> RADIX_DAX_SHIFT;
78 }
79
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81 {
82         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83                         ((unsigned long)sector << RADIX_DAX_SHIFT) |
84                         RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * We do not necessarily hold the mapping->tree_lock when we call this
162  * function so it is possible that 'entry' is no longer a valid item in the
163  * radix tree.  This is okay because all we really need to do is to find the
164  * correct waitqueue where tasks might be waiting for that old 'entry' and
165  * wake them.
166  */
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168                 pgoff_t index, void *entry, bool wake_all)
169 {
170         struct exceptional_entry_key key;
171         wait_queue_head_t *wq;
172
173         wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175         /*
176          * Checking for locked entry and prepare_to_wait_exclusive() happens
177          * under mapping->tree_lock, ditto for entry handling in our callers.
178          * So at this point all tasks that could have seen our entry locked
179          * must be in the waitqueue and the following check will see them.
180          */
181         if (waitqueue_active(wq))
182                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183 }
184
185 /*
186  * Check whether the given slot is locked. The function must be called with
187  * mapping->tree_lock held
188  */
189 static inline int slot_locked(struct address_space *mapping, void **slot)
190 {
191         unsigned long entry = (unsigned long)
192                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193         return entry & RADIX_DAX_ENTRY_LOCK;
194 }
195
196 /*
197  * Mark the given slot is locked. The function must be called with
198  * mapping->tree_lock held
199  */
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
201 {
202         unsigned long entry = (unsigned long)
203                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205         entry |= RADIX_DAX_ENTRY_LOCK;
206         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207         return (void *)entry;
208 }
209
210 /*
211  * Mark the given slot is unlocked. The function must be called with
212  * mapping->tree_lock held
213  */
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
215 {
216         unsigned long entry = (unsigned long)
217                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221         return (void *)entry;
222 }
223
224 /*
225  * Lookup entry in radix tree, wait for it to become unlocked if it is
226  * exceptional entry and return it. The caller must call
227  * put_unlocked_mapping_entry() when he decided not to lock the entry or
228  * put_locked_mapping_entry() when he locked the entry and now wants to
229  * unlock it.
230  *
231  * The function must be called with mapping->tree_lock held.
232  */
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234                                         pgoff_t index, void ***slotp)
235 {
236         void *entry, **slot;
237         struct wait_exceptional_entry_queue ewait;
238         wait_queue_head_t *wq;
239
240         init_wait(&ewait.wait);
241         ewait.wait.func = wake_exceptional_entry_func;
242
243         for (;;) {
244                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
245                                           &slot);
246                 if (!entry ||
247                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248                     !slot_locked(mapping, slot)) {
249                         if (slotp)
250                                 *slotp = slot;
251                         return entry;
252                 }
253
254                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255                 prepare_to_wait_exclusive(wq, &ewait.wait,
256                                           TASK_UNINTERRUPTIBLE);
257                 spin_unlock_irq(&mapping->tree_lock);
258                 schedule();
259                 finish_wait(wq, &ewait.wait);
260                 spin_lock_irq(&mapping->tree_lock);
261         }
262 }
263
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
265                                      pgoff_t index)
266 {
267         void *entry, **slot;
268
269         spin_lock_irq(&mapping->tree_lock);
270         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272                          !slot_locked(mapping, slot))) {
273                 spin_unlock_irq(&mapping->tree_lock);
274                 return;
275         }
276         unlock_slot(mapping, slot);
277         spin_unlock_irq(&mapping->tree_lock);
278         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279 }
280
281 static void put_locked_mapping_entry(struct address_space *mapping,
282                 pgoff_t index)
283 {
284         dax_unlock_mapping_entry(mapping, index);
285 }
286
287 /*
288  * Called when we are done with radix tree entry we looked up via
289  * get_unlocked_mapping_entry() and which we didn't lock in the end.
290  */
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292                                        pgoff_t index, void *entry)
293 {
294         if (!entry)
295                 return;
296
297         /* We have to wake up next waiter for the radix tree entry lock */
298         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299 }
300
301 /*
302  * Find radix tree entry at given index. If it points to an exceptional entry,
303  * return it with the radix tree entry locked. If the radix tree doesn't
304  * contain given index, create an empty exceptional entry for the index and
305  * return with it locked.
306  *
307  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308  * either return that locked entry or will return an error.  This error will
309  * happen if there are any 4k entries within the 2MiB range that we are
310  * requesting.
311  *
312  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
314  * insertion will fail if it finds any 4k entries already in the tree, and a
315  * 4k insertion will cause an existing 2MiB entry to be unmapped and
316  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
317  * well as 2MiB empty entries.
318  *
319  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320  * real storage backing them.  We will leave these real 2MiB DAX entries in
321  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322  *
323  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324  * persistent memory the benefit is doubtful. We can add that later if we can
325  * show it helps.
326  */
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328                 unsigned long size_flag)
329 {
330         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
331         void *entry, **slot;
332
333 restart:
334         spin_lock_irq(&mapping->tree_lock);
335         entry = get_unlocked_mapping_entry(mapping, index, &slot);
336
337         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338                 entry = ERR_PTR(-EIO);
339                 goto out_unlock;
340         }
341
342         if (entry) {
343                 if (size_flag & RADIX_DAX_PMD) {
344                         if (dax_is_pte_entry(entry)) {
345                                 put_unlocked_mapping_entry(mapping, index,
346                                                 entry);
347                                 entry = ERR_PTR(-EEXIST);
348                                 goto out_unlock;
349                         }
350                 } else { /* trying to grab a PTE entry */
351                         if (dax_is_pmd_entry(entry) &&
352                             (dax_is_zero_entry(entry) ||
353                              dax_is_empty_entry(entry))) {
354                                 pmd_downgrade = true;
355                         }
356                 }
357         }
358
359         /* No entry for given index? Make sure radix tree is big enough. */
360         if (!entry || pmd_downgrade) {
361                 int err;
362
363                 if (pmd_downgrade) {
364                         /*
365                          * Make sure 'entry' remains valid while we drop
366                          * mapping->tree_lock.
367                          */
368                         entry = lock_slot(mapping, slot);
369                 }
370
371                 spin_unlock_irq(&mapping->tree_lock);
372                 /*
373                  * Besides huge zero pages the only other thing that gets
374                  * downgraded are empty entries which don't need to be
375                  * unmapped.
376                  */
377                 if (pmd_downgrade && dax_is_zero_entry(entry))
378                         unmap_mapping_range(mapping,
379                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
381                 err = radix_tree_preload(
382                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
383                 if (err) {
384                         if (pmd_downgrade)
385                                 put_locked_mapping_entry(mapping, index);
386                         return ERR_PTR(err);
387                 }
388                 spin_lock_irq(&mapping->tree_lock);
389
390                 if (!entry) {
391                         /*
392                          * We needed to drop the page_tree lock while calling
393                          * radix_tree_preload() and we didn't have an entry to
394                          * lock.  See if another thread inserted an entry at
395                          * our index during this time.
396                          */
397                         entry = __radix_tree_lookup(&mapping->page_tree, index,
398                                         NULL, &slot);
399                         if (entry) {
400                                 radix_tree_preload_end();
401                                 spin_unlock_irq(&mapping->tree_lock);
402                                 goto restart;
403                         }
404                 }
405
406                 if (pmd_downgrade) {
407                         radix_tree_delete(&mapping->page_tree, index);
408                         mapping->nrexceptional--;
409                         dax_wake_mapping_entry_waiter(mapping, index, entry,
410                                         true);
411                 }
412
413                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415                 err = __radix_tree_insert(&mapping->page_tree, index,
416                                 dax_radix_order(entry), entry);
417                 radix_tree_preload_end();
418                 if (err) {
419                         spin_unlock_irq(&mapping->tree_lock);
420                         /*
421                          * Our insertion of a DAX entry failed, most likely
422                          * because we were inserting a PMD entry and it
423                          * collided with a PTE sized entry at a different
424                          * index in the PMD range.  We haven't inserted
425                          * anything into the radix tree and have no waiters to
426                          * wake.
427                          */
428                         return ERR_PTR(err);
429                 }
430                 /* Good, we have inserted empty locked entry into the tree. */
431                 mapping->nrexceptional++;
432                 spin_unlock_irq(&mapping->tree_lock);
433                 return entry;
434         }
435         entry = lock_slot(mapping, slot);
436  out_unlock:
437         spin_unlock_irq(&mapping->tree_lock);
438         return entry;
439 }
440
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442                                           pgoff_t index, bool trunc)
443 {
444         int ret = 0;
445         void *entry;
446         struct radix_tree_root *page_tree = &mapping->page_tree;
447
448         spin_lock_irq(&mapping->tree_lock);
449         entry = get_unlocked_mapping_entry(mapping, index, NULL);
450         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
451                 goto out;
452         if (!trunc &&
453             (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454              radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455                 goto out;
456         radix_tree_delete(page_tree, index);
457         mapping->nrexceptional--;
458         ret = 1;
459 out:
460         put_unlocked_mapping_entry(mapping, index, entry);
461         spin_unlock_irq(&mapping->tree_lock);
462         return ret;
463 }
464 /*
465  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466  * entry to get unlocked before deleting it.
467  */
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
471
472         /*
473          * This gets called from truncate / punch_hole path. As such, the caller
474          * must hold locks protecting against concurrent modifications of the
475          * radix tree (usually fs-private i_mmap_sem for writing). Since the
476          * caller has seen exceptional entry for this index, we better find it
477          * at that index as well...
478          */
479         WARN_ON_ONCE(!ret);
480         return ret;
481 }
482
483 /*
484  * Invalidate exceptional DAX entry if it is clean.
485  */
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487                                       pgoff_t index)
488 {
489         return __dax_invalidate_mapping_entry(mapping, index, false);
490 }
491
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493                 sector_t sector, size_t size, struct page *to,
494                 unsigned long vaddr)
495 {
496         void *vto, *kaddr;
497         pgoff_t pgoff;
498         pfn_t pfn;
499         long rc;
500         int id;
501
502         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503         if (rc)
504                 return rc;
505
506         id = dax_read_lock();
507         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508         if (rc < 0) {
509                 dax_read_unlock(id);
510                 return rc;
511         }
512         vto = kmap_atomic(to);
513         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
514         kunmap_atomic(vto);
515         dax_read_unlock(id);
516         return 0;
517 }
518
519 /*
520  * By this point grab_mapping_entry() has ensured that we have a locked entry
521  * of the appropriate size so we don't have to worry about downgrading PMDs to
522  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
523  * already in the tree, we will skip the insertion and just dirty the PMD as
524  * appropriate.
525  */
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527                                       struct vm_fault *vmf,
528                                       void *entry, sector_t sector,
529                                       unsigned long flags, bool dirty)
530 {
531         struct radix_tree_root *page_tree = &mapping->page_tree;
532         void *new_entry;
533         pgoff_t index = vmf->pgoff;
534
535         if (dirty)
536                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
537
538         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539                 /* we are replacing a zero page with block mapping */
540                 if (dax_is_pmd_entry(entry))
541                         unmap_mapping_range(mapping,
542                                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543                                         PMD_SIZE, 0);
544                 else /* pte entry */
545                         unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546                                         PAGE_SIZE, 0);
547         }
548
549         spin_lock_irq(&mapping->tree_lock);
550         new_entry = dax_radix_locked_entry(sector, flags);
551
552         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
553                 /*
554                  * Only swap our new entry into the radix tree if the current
555                  * entry is a zero page or an empty entry.  If a normal PTE or
556                  * PMD entry is already in the tree, we leave it alone.  This
557                  * means that if we are trying to insert a PTE and the
558                  * existing entry is a PMD, we will just leave the PMD in the
559                  * tree and dirty it if necessary.
560                  */
561                 struct radix_tree_node *node;
562                 void **slot;
563                 void *ret;
564
565                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566                 WARN_ON_ONCE(ret != entry);
567                 __radix_tree_replace(page_tree, node, slot,
568                                      new_entry, NULL);
569                 entry = new_entry;
570         }
571
572         if (dirty)
573                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
574
575         spin_unlock_irq(&mapping->tree_lock);
576         return entry;
577 }
578
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581 {
582         unsigned long address;
583
584         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586         return address;
587 }
588
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591                                       pgoff_t index, unsigned long pfn)
592 {
593         struct vm_area_struct *vma;
594         pte_t pte, *ptep = NULL;
595         pmd_t *pmdp = NULL;
596         spinlock_t *ptl;
597
598         i_mmap_lock_read(mapping);
599         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600                 unsigned long address, start, end;
601
602                 cond_resched();
603
604                 if (!(vma->vm_flags & VM_SHARED))
605                         continue;
606
607                 address = pgoff_address(index, vma);
608
609                 /*
610                  * Note because we provide start/end to follow_pte_pmd it will
611                  * call mmu_notifier_invalidate_range_start() on our behalf
612                  * before taking any lock.
613                  */
614                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
615                         continue;
616
617                 /*
618                  * No need to call mmu_notifier_invalidate_range() as we are
619                  * downgrading page table protection not changing it to point
620                  * to a new page.
621                  *
622                  * See Documentation/vm/mmu_notifier.txt
623                  */
624                 if (pmdp) {
625 #ifdef CONFIG_FS_DAX_PMD
626                         pmd_t pmd;
627
628                         if (pfn != pmd_pfn(*pmdp))
629                                 goto unlock_pmd;
630                         if (!pmd_dirty(*pmdp)
631                                         && !pmd_access_permitted(*pmdp, WRITE))
632                                 goto unlock_pmd;
633
634                         flush_cache_page(vma, address, pfn);
635                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
636                         pmd = pmd_wrprotect(pmd);
637                         pmd = pmd_mkclean(pmd);
638                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
639 unlock_pmd:
640                         spin_unlock(ptl);
641 #endif
642                 } else {
643                         if (pfn != pte_pfn(*ptep))
644                                 goto unlock_pte;
645                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
646                                 goto unlock_pte;
647
648                         flush_cache_page(vma, address, pfn);
649                         pte = ptep_clear_flush(vma, address, ptep);
650                         pte = pte_wrprotect(pte);
651                         pte = pte_mkclean(pte);
652                         set_pte_at(vma->vm_mm, address, ptep, pte);
653 unlock_pte:
654                         pte_unmap_unlock(ptep, ptl);
655                 }
656
657                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
658         }
659         i_mmap_unlock_read(mapping);
660 }
661
662 static int dax_writeback_one(struct block_device *bdev,
663                 struct dax_device *dax_dev, struct address_space *mapping,
664                 pgoff_t index, void *entry)
665 {
666         struct radix_tree_root *page_tree = &mapping->page_tree;
667         void *entry2, **slot, *kaddr;
668         long ret = 0, id;
669         sector_t sector;
670         pgoff_t pgoff;
671         size_t size;
672         pfn_t pfn;
673
674         /*
675          * A page got tagged dirty in DAX mapping? Something is seriously
676          * wrong.
677          */
678         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
679                 return -EIO;
680
681         spin_lock_irq(&mapping->tree_lock);
682         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
683         /* Entry got punched out / reallocated? */
684         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
685                 goto put_unlocked;
686         /*
687          * Entry got reallocated elsewhere? No need to writeback. We have to
688          * compare sectors as we must not bail out due to difference in lockbit
689          * or entry type.
690          */
691         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
692                 goto put_unlocked;
693         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
694                                 dax_is_zero_entry(entry))) {
695                 ret = -EIO;
696                 goto put_unlocked;
697         }
698
699         /* Another fsync thread may have already written back this entry */
700         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
701                 goto put_unlocked;
702         /* Lock the entry to serialize with page faults */
703         entry = lock_slot(mapping, slot);
704         /*
705          * We can clear the tag now but we have to be careful so that concurrent
706          * dax_writeback_one() calls for the same index cannot finish before we
707          * actually flush the caches. This is achieved as the calls will look
708          * at the entry only under tree_lock and once they do that they will
709          * see the entry locked and wait for it to unlock.
710          */
711         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
712         spin_unlock_irq(&mapping->tree_lock);
713
714         /*
715          * Even if dax_writeback_mapping_range() was given a wbc->range_start
716          * in the middle of a PMD, the 'index' we are given will be aligned to
717          * the start index of the PMD, as will the sector we pull from
718          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
719          * worry about partial PMD writebacks.
720          */
721         sector = dax_radix_sector(entry);
722         size = PAGE_SIZE << dax_radix_order(entry);
723
724         id = dax_read_lock();
725         ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
726         if (ret)
727                 goto dax_unlock;
728
729         /*
730          * dax_direct_access() may sleep, so cannot hold tree_lock over
731          * its invocation.
732          */
733         ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
734         if (ret < 0)
735                 goto dax_unlock;
736
737         if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
738                 ret = -EIO;
739                 goto dax_unlock;
740         }
741
742         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
743         dax_flush(dax_dev, kaddr, size);
744         /*
745          * After we have flushed the cache, we can clear the dirty tag. There
746          * cannot be new dirty data in the pfn after the flush has completed as
747          * the pfn mappings are writeprotected and fault waits for mapping
748          * entry lock.
749          */
750         spin_lock_irq(&mapping->tree_lock);
751         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
752         spin_unlock_irq(&mapping->tree_lock);
753         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
754  dax_unlock:
755         dax_read_unlock(id);
756         put_locked_mapping_entry(mapping, index);
757         return ret;
758
759  put_unlocked:
760         put_unlocked_mapping_entry(mapping, index, entry2);
761         spin_unlock_irq(&mapping->tree_lock);
762         return ret;
763 }
764
765 /*
766  * Flush the mapping to the persistent domain within the byte range of [start,
767  * end]. This is required by data integrity operations to ensure file data is
768  * on persistent storage prior to completion of the operation.
769  */
770 int dax_writeback_mapping_range(struct address_space *mapping,
771                 struct block_device *bdev, struct writeback_control *wbc)
772 {
773         struct inode *inode = mapping->host;
774         pgoff_t start_index, end_index;
775         pgoff_t indices[PAGEVEC_SIZE];
776         struct dax_device *dax_dev;
777         struct pagevec pvec;
778         bool done = false;
779         int i, ret = 0;
780
781         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
782                 return -EIO;
783
784         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
785                 return 0;
786
787         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
788         if (!dax_dev)
789                 return -EIO;
790
791         start_index = wbc->range_start >> PAGE_SHIFT;
792         end_index = wbc->range_end >> PAGE_SHIFT;
793
794         trace_dax_writeback_range(inode, start_index, end_index);
795
796         tag_pages_for_writeback(mapping, start_index, end_index);
797
798         pagevec_init(&pvec);
799         while (!done) {
800                 pvec.nr = find_get_entries_tag(mapping, start_index,
801                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
802                                 pvec.pages, indices);
803
804                 if (pvec.nr == 0)
805                         break;
806
807                 for (i = 0; i < pvec.nr; i++) {
808                         if (indices[i] > end_index) {
809                                 done = true;
810                                 break;
811                         }
812
813                         ret = dax_writeback_one(bdev, dax_dev, mapping,
814                                         indices[i], pvec.pages[i]);
815                         if (ret < 0) {
816                                 mapping_set_error(mapping, ret);
817                                 goto out;
818                         }
819                 }
820                 start_index = indices[pvec.nr - 1] + 1;
821         }
822 out:
823         put_dax(dax_dev);
824         trace_dax_writeback_range_done(inode, start_index, end_index);
825         return (ret < 0 ? ret : 0);
826 }
827 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
828
829 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
830 {
831         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
832 }
833
834 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
835                          pfn_t *pfnp)
836 {
837         const sector_t sector = dax_iomap_sector(iomap, pos);
838         pgoff_t pgoff;
839         void *kaddr;
840         int id, rc;
841         long length;
842
843         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
844         if (rc)
845                 return rc;
846         id = dax_read_lock();
847         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
848                                    &kaddr, pfnp);
849         if (length < 0) {
850                 rc = length;
851                 goto out;
852         }
853         rc = -EINVAL;
854         if (PFN_PHYS(length) < size)
855                 goto out;
856         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
857                 goto out;
858         /* For larger pages we need devmap */
859         if (length > 1 && !pfn_t_devmap(*pfnp))
860                 goto out;
861         rc = 0;
862 out:
863         dax_read_unlock(id);
864         return rc;
865 }
866
867 /*
868  * The user has performed a load from a hole in the file.  Allocating a new
869  * page in the file would cause excessive storage usage for workloads with
870  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
871  * If this page is ever written to we will re-fault and change the mapping to
872  * point to real DAX storage instead.
873  */
874 static int dax_load_hole(struct address_space *mapping, void *entry,
875                          struct vm_fault *vmf)
876 {
877         struct inode *inode = mapping->host;
878         unsigned long vaddr = vmf->address;
879         int ret = VM_FAULT_NOPAGE;
880         struct page *zero_page;
881         void *entry2;
882
883         zero_page = ZERO_PAGE(0);
884         if (unlikely(!zero_page)) {
885                 ret = VM_FAULT_OOM;
886                 goto out;
887         }
888
889         entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
890                         RADIX_DAX_ZERO_PAGE, false);
891         if (IS_ERR(entry2)) {
892                 ret = VM_FAULT_SIGBUS;
893                 goto out;
894         }
895
896         vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
897 out:
898         trace_dax_load_hole(inode, vmf, ret);
899         return ret;
900 }
901
902 static bool dax_range_is_aligned(struct block_device *bdev,
903                                  unsigned int offset, unsigned int length)
904 {
905         unsigned short sector_size = bdev_logical_block_size(bdev);
906
907         if (!IS_ALIGNED(offset, sector_size))
908                 return false;
909         if (!IS_ALIGNED(length, sector_size))
910                 return false;
911
912         return true;
913 }
914
915 int __dax_zero_page_range(struct block_device *bdev,
916                 struct dax_device *dax_dev, sector_t sector,
917                 unsigned int offset, unsigned int size)
918 {
919         if (dax_range_is_aligned(bdev, offset, size)) {
920                 sector_t start_sector = sector + (offset >> 9);
921
922                 return blkdev_issue_zeroout(bdev, start_sector,
923                                 size >> 9, GFP_NOFS, 0);
924         } else {
925                 pgoff_t pgoff;
926                 long rc, id;
927                 void *kaddr;
928                 pfn_t pfn;
929
930                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
931                 if (rc)
932                         return rc;
933
934                 id = dax_read_lock();
935                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
936                                 &pfn);
937                 if (rc < 0) {
938                         dax_read_unlock(id);
939                         return rc;
940                 }
941                 memset(kaddr + offset, 0, size);
942                 dax_flush(dax_dev, kaddr + offset, size);
943                 dax_read_unlock(id);
944         }
945         return 0;
946 }
947 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
948
949 static loff_t
950 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
951                 struct iomap *iomap)
952 {
953         struct block_device *bdev = iomap->bdev;
954         struct dax_device *dax_dev = iomap->dax_dev;
955         struct iov_iter *iter = data;
956         loff_t end = pos + length, done = 0;
957         ssize_t ret = 0;
958         int id;
959
960         if (iov_iter_rw(iter) == READ) {
961                 end = min(end, i_size_read(inode));
962                 if (pos >= end)
963                         return 0;
964
965                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
966                         return iov_iter_zero(min(length, end - pos), iter);
967         }
968
969         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
970                 return -EIO;
971
972         /*
973          * Write can allocate block for an area which has a hole page mapped
974          * into page tables. We have to tear down these mappings so that data
975          * written by write(2) is visible in mmap.
976          */
977         if (iomap->flags & IOMAP_F_NEW) {
978                 invalidate_inode_pages2_range(inode->i_mapping,
979                                               pos >> PAGE_SHIFT,
980                                               (end - 1) >> PAGE_SHIFT);
981         }
982
983         id = dax_read_lock();
984         while (pos < end) {
985                 unsigned offset = pos & (PAGE_SIZE - 1);
986                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
987                 const sector_t sector = dax_iomap_sector(iomap, pos);
988                 ssize_t map_len;
989                 pgoff_t pgoff;
990                 void *kaddr;
991                 pfn_t pfn;
992
993                 if (fatal_signal_pending(current)) {
994                         ret = -EINTR;
995                         break;
996                 }
997
998                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
999                 if (ret)
1000                         break;
1001
1002                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1003                                 &kaddr, &pfn);
1004                 if (map_len < 0) {
1005                         ret = map_len;
1006                         break;
1007                 }
1008
1009                 map_len = PFN_PHYS(map_len);
1010                 kaddr += offset;
1011                 map_len -= offset;
1012                 if (map_len > end - pos)
1013                         map_len = end - pos;
1014
1015                 /*
1016                  * The userspace address for the memory copy has already been
1017                  * validated via access_ok() in either vfs_read() or
1018                  * vfs_write(), depending on which operation we are doing.
1019                  */
1020                 if (iov_iter_rw(iter) == WRITE)
1021                         map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1022                                         map_len, iter);
1023                 else
1024                         map_len = copy_to_iter(kaddr, map_len, iter);
1025                 if (map_len <= 0) {
1026                         ret = map_len ? map_len : -EFAULT;
1027                         break;
1028                 }
1029
1030                 pos += map_len;
1031                 length -= map_len;
1032                 done += map_len;
1033         }
1034         dax_read_unlock(id);
1035
1036         return done ? done : ret;
1037 }
1038
1039 /**
1040  * dax_iomap_rw - Perform I/O to a DAX file
1041  * @iocb:       The control block for this I/O
1042  * @iter:       The addresses to do I/O from or to
1043  * @ops:        iomap ops passed from the file system
1044  *
1045  * This function performs read and write operations to directly mapped
1046  * persistent memory.  The callers needs to take care of read/write exclusion
1047  * and evicting any page cache pages in the region under I/O.
1048  */
1049 ssize_t
1050 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1051                 const struct iomap_ops *ops)
1052 {
1053         struct address_space *mapping = iocb->ki_filp->f_mapping;
1054         struct inode *inode = mapping->host;
1055         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1056         unsigned flags = 0;
1057
1058         if (iov_iter_rw(iter) == WRITE) {
1059                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1060                 flags |= IOMAP_WRITE;
1061         } else {
1062                 lockdep_assert_held(&inode->i_rwsem);
1063         }
1064
1065         while (iov_iter_count(iter)) {
1066                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1067                                 iter, dax_iomap_actor);
1068                 if (ret <= 0)
1069                         break;
1070                 pos += ret;
1071                 done += ret;
1072         }
1073
1074         iocb->ki_pos += done;
1075         return done ? done : ret;
1076 }
1077 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1078
1079 static int dax_fault_return(int error)
1080 {
1081         if (error == 0)
1082                 return VM_FAULT_NOPAGE;
1083         if (error == -ENOMEM)
1084                 return VM_FAULT_OOM;
1085         return VM_FAULT_SIGBUS;
1086 }
1087
1088 /*
1089  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1090  * flushed on write-faults (non-cow), but not read-faults.
1091  */
1092 static bool dax_fault_is_synchronous(unsigned long flags,
1093                 struct vm_area_struct *vma, struct iomap *iomap)
1094 {
1095         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1096                 && (iomap->flags & IOMAP_F_DIRTY);
1097 }
1098
1099 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1100                                const struct iomap_ops *ops)
1101 {
1102         struct vm_area_struct *vma = vmf->vma;
1103         struct address_space *mapping = vma->vm_file->f_mapping;
1104         struct inode *inode = mapping->host;
1105         unsigned long vaddr = vmf->address;
1106         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1107         struct iomap iomap = { 0 };
1108         unsigned flags = IOMAP_FAULT;
1109         int error, major = 0;
1110         bool write = vmf->flags & FAULT_FLAG_WRITE;
1111         bool sync;
1112         int vmf_ret = 0;
1113         void *entry;
1114         pfn_t pfn;
1115
1116         trace_dax_pte_fault(inode, vmf, vmf_ret);
1117         /*
1118          * Check whether offset isn't beyond end of file now. Caller is supposed
1119          * to hold locks serializing us with truncate / punch hole so this is
1120          * a reliable test.
1121          */
1122         if (pos >= i_size_read(inode)) {
1123                 vmf_ret = VM_FAULT_SIGBUS;
1124                 goto out;
1125         }
1126
1127         if (write && !vmf->cow_page)
1128                 flags |= IOMAP_WRITE;
1129
1130         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1131         if (IS_ERR(entry)) {
1132                 vmf_ret = dax_fault_return(PTR_ERR(entry));
1133                 goto out;
1134         }
1135
1136         /*
1137          * It is possible, particularly with mixed reads & writes to private
1138          * mappings, that we have raced with a PMD fault that overlaps with
1139          * the PTE we need to set up.  If so just return and the fault will be
1140          * retried.
1141          */
1142         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1143                 vmf_ret = VM_FAULT_NOPAGE;
1144                 goto unlock_entry;
1145         }
1146
1147         /*
1148          * Note that we don't bother to use iomap_apply here: DAX required
1149          * the file system block size to be equal the page size, which means
1150          * that we never have to deal with more than a single extent here.
1151          */
1152         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1153         if (error) {
1154                 vmf_ret = dax_fault_return(error);
1155                 goto unlock_entry;
1156         }
1157         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1158                 error = -EIO;   /* fs corruption? */
1159                 goto error_finish_iomap;
1160         }
1161
1162         if (vmf->cow_page) {
1163                 sector_t sector = dax_iomap_sector(&iomap, pos);
1164
1165                 switch (iomap.type) {
1166                 case IOMAP_HOLE:
1167                 case IOMAP_UNWRITTEN:
1168                         clear_user_highpage(vmf->cow_page, vaddr);
1169                         break;
1170                 case IOMAP_MAPPED:
1171                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1172                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1173                         break;
1174                 default:
1175                         WARN_ON_ONCE(1);
1176                         error = -EIO;
1177                         break;
1178                 }
1179
1180                 if (error)
1181                         goto error_finish_iomap;
1182
1183                 __SetPageUptodate(vmf->cow_page);
1184                 vmf_ret = finish_fault(vmf);
1185                 if (!vmf_ret)
1186                         vmf_ret = VM_FAULT_DONE_COW;
1187                 goto finish_iomap;
1188         }
1189
1190         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1191
1192         switch (iomap.type) {
1193         case IOMAP_MAPPED:
1194                 if (iomap.flags & IOMAP_F_NEW) {
1195                         count_vm_event(PGMAJFAULT);
1196                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1197                         major = VM_FAULT_MAJOR;
1198                 }
1199                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1200                 if (error < 0)
1201                         goto error_finish_iomap;
1202
1203                 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1204                                                  dax_iomap_sector(&iomap, pos),
1205                                                  0, write && !sync);
1206                 if (IS_ERR(entry)) {
1207                         error = PTR_ERR(entry);
1208                         goto error_finish_iomap;
1209                 }
1210
1211                 /*
1212                  * If we are doing synchronous page fault and inode needs fsync,
1213                  * we can insert PTE into page tables only after that happens.
1214                  * Skip insertion for now and return the pfn so that caller can
1215                  * insert it after fsync is done.
1216                  */
1217                 if (sync) {
1218                         if (WARN_ON_ONCE(!pfnp)) {
1219                                 error = -EIO;
1220                                 goto error_finish_iomap;
1221                         }
1222                         *pfnp = pfn;
1223                         vmf_ret = VM_FAULT_NEEDDSYNC | major;
1224                         goto finish_iomap;
1225                 }
1226                 trace_dax_insert_mapping(inode, vmf, entry);
1227                 if (write)
1228                         error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
1229                 else
1230                         error = vm_insert_mixed(vma, vaddr, pfn);
1231
1232                 /* -EBUSY is fine, somebody else faulted on the same PTE */
1233                 if (error == -EBUSY)
1234                         error = 0;
1235                 break;
1236         case IOMAP_UNWRITTEN:
1237         case IOMAP_HOLE:
1238                 if (!write) {
1239                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1240                         goto finish_iomap;
1241                 }
1242                 /*FALLTHRU*/
1243         default:
1244                 WARN_ON_ONCE(1);
1245                 error = -EIO;
1246                 break;
1247         }
1248
1249  error_finish_iomap:
1250         vmf_ret = dax_fault_return(error) | major;
1251  finish_iomap:
1252         if (ops->iomap_end) {
1253                 int copied = PAGE_SIZE;
1254
1255                 if (vmf_ret & VM_FAULT_ERROR)
1256                         copied = 0;
1257                 /*
1258                  * The fault is done by now and there's no way back (other
1259                  * thread may be already happily using PTE we have installed).
1260                  * Just ignore error from ->iomap_end since we cannot do much
1261                  * with it.
1262                  */
1263                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1264         }
1265  unlock_entry:
1266         put_locked_mapping_entry(mapping, vmf->pgoff);
1267  out:
1268         trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1269         return vmf_ret;
1270 }
1271
1272 #ifdef CONFIG_FS_DAX_PMD
1273 /*
1274  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1275  * more often than one might expect in the below functions.
1276  */
1277 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1278
1279 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1280                 void *entry)
1281 {
1282         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1283         unsigned long pmd_addr = vmf->address & PMD_MASK;
1284         struct inode *inode = mapping->host;
1285         struct page *zero_page;
1286         void *ret = NULL;
1287         spinlock_t *ptl;
1288         pmd_t pmd_entry;
1289
1290         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1291
1292         if (unlikely(!zero_page))
1293                 goto fallback;
1294
1295         ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1296                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1297         if (IS_ERR(ret))
1298                 goto fallback;
1299
1300         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1301         if (!pmd_none(*(vmf->pmd))) {
1302                 spin_unlock(ptl);
1303                 goto fallback;
1304         }
1305
1306         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1307         pmd_entry = pmd_mkhuge(pmd_entry);
1308         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1309         spin_unlock(ptl);
1310         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1311         return VM_FAULT_NOPAGE;
1312
1313 fallback:
1314         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1315         return VM_FAULT_FALLBACK;
1316 }
1317
1318 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1319                                const struct iomap_ops *ops)
1320 {
1321         struct vm_area_struct *vma = vmf->vma;
1322         struct address_space *mapping = vma->vm_file->f_mapping;
1323         unsigned long pmd_addr = vmf->address & PMD_MASK;
1324         bool write = vmf->flags & FAULT_FLAG_WRITE;
1325         bool sync;
1326         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1327         struct inode *inode = mapping->host;
1328         int result = VM_FAULT_FALLBACK;
1329         struct iomap iomap = { 0 };
1330         pgoff_t max_pgoff, pgoff;
1331         void *entry;
1332         loff_t pos;
1333         int error;
1334         pfn_t pfn;
1335
1336         /*
1337          * Check whether offset isn't beyond end of file now. Caller is
1338          * supposed to hold locks serializing us with truncate / punch hole so
1339          * this is a reliable test.
1340          */
1341         pgoff = linear_page_index(vma, pmd_addr);
1342         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1343
1344         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1345
1346         /*
1347          * Make sure that the faulting address's PMD offset (color) matches
1348          * the PMD offset from the start of the file.  This is necessary so
1349          * that a PMD range in the page table overlaps exactly with a PMD
1350          * range in the radix tree.
1351          */
1352         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1353             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1354                 goto fallback;
1355
1356         /* Fall back to PTEs if we're going to COW */
1357         if (write && !(vma->vm_flags & VM_SHARED))
1358                 goto fallback;
1359
1360         /* If the PMD would extend outside the VMA */
1361         if (pmd_addr < vma->vm_start)
1362                 goto fallback;
1363         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1364                 goto fallback;
1365
1366         if (pgoff >= max_pgoff) {
1367                 result = VM_FAULT_SIGBUS;
1368                 goto out;
1369         }
1370
1371         /* If the PMD would extend beyond the file size */
1372         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1373                 goto fallback;
1374
1375         /*
1376          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1377          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1378          * is already in the tree, for instance), it will return -EEXIST and
1379          * we just fall back to 4k entries.
1380          */
1381         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1382         if (IS_ERR(entry))
1383                 goto fallback;
1384
1385         /*
1386          * It is possible, particularly with mixed reads & writes to private
1387          * mappings, that we have raced with a PTE fault that overlaps with
1388          * the PMD we need to set up.  If so just return and the fault will be
1389          * retried.
1390          */
1391         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1392                         !pmd_devmap(*vmf->pmd)) {
1393                 result = 0;
1394                 goto unlock_entry;
1395         }
1396
1397         /*
1398          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1399          * setting up a mapping, so really we're using iomap_begin() as a way
1400          * to look up our filesystem block.
1401          */
1402         pos = (loff_t)pgoff << PAGE_SHIFT;
1403         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1404         if (error)
1405                 goto unlock_entry;
1406
1407         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1408                 goto finish_iomap;
1409
1410         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1411
1412         switch (iomap.type) {
1413         case IOMAP_MAPPED:
1414                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1415                 if (error < 0)
1416                         goto finish_iomap;
1417
1418                 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1419                                                 dax_iomap_sector(&iomap, pos),
1420                                                 RADIX_DAX_PMD, write && !sync);
1421                 if (IS_ERR(entry))
1422                         goto finish_iomap;
1423
1424                 /*
1425                  * If we are doing synchronous page fault and inode needs fsync,
1426                  * we can insert PMD into page tables only after that happens.
1427                  * Skip insertion for now and return the pfn so that caller can
1428                  * insert it after fsync is done.
1429                  */
1430                 if (sync) {
1431                         if (WARN_ON_ONCE(!pfnp))
1432                                 goto finish_iomap;
1433                         *pfnp = pfn;
1434                         result = VM_FAULT_NEEDDSYNC;
1435                         goto finish_iomap;
1436                 }
1437
1438                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1439                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1440                                             write);
1441                 break;
1442         case IOMAP_UNWRITTEN:
1443         case IOMAP_HOLE:
1444                 if (WARN_ON_ONCE(write))
1445                         break;
1446                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1447                 break;
1448         default:
1449                 WARN_ON_ONCE(1);
1450                 break;
1451         }
1452
1453  finish_iomap:
1454         if (ops->iomap_end) {
1455                 int copied = PMD_SIZE;
1456
1457                 if (result == VM_FAULT_FALLBACK)
1458                         copied = 0;
1459                 /*
1460                  * The fault is done by now and there's no way back (other
1461                  * thread may be already happily using PMD we have installed).
1462                  * Just ignore error from ->iomap_end since we cannot do much
1463                  * with it.
1464                  */
1465                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1466                                 &iomap);
1467         }
1468  unlock_entry:
1469         put_locked_mapping_entry(mapping, pgoff);
1470  fallback:
1471         if (result == VM_FAULT_FALLBACK) {
1472                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1473                 count_vm_event(THP_FAULT_FALLBACK);
1474         }
1475 out:
1476         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1477         return result;
1478 }
1479 #else
1480 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1481                                const struct iomap_ops *ops)
1482 {
1483         return VM_FAULT_FALLBACK;
1484 }
1485 #endif /* CONFIG_FS_DAX_PMD */
1486
1487 /**
1488  * dax_iomap_fault - handle a page fault on a DAX file
1489  * @vmf: The description of the fault
1490  * @pe_size: Size of the page to fault in
1491  * @pfnp: PFN to insert for synchronous faults if fsync is required
1492  * @ops: Iomap ops passed from the file system
1493  *
1494  * When a page fault occurs, filesystems may call this helper in
1495  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1496  * has done all the necessary locking for page fault to proceed
1497  * successfully.
1498  */
1499 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1500                     pfn_t *pfnp, const struct iomap_ops *ops)
1501 {
1502         switch (pe_size) {
1503         case PE_SIZE_PTE:
1504                 return dax_iomap_pte_fault(vmf, pfnp, ops);
1505         case PE_SIZE_PMD:
1506                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1507         default:
1508                 return VM_FAULT_FALLBACK;
1509         }
1510 }
1511 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1512
1513 /**
1514  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1515  * @vmf: The description of the fault
1516  * @pe_size: Size of entry to be inserted
1517  * @pfn: PFN to insert
1518  *
1519  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1520  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1521  * as well.
1522  */
1523 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1524                                   enum page_entry_size pe_size,
1525                                   pfn_t pfn)
1526 {
1527         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1528         void *entry, **slot;
1529         pgoff_t index = vmf->pgoff;
1530         int vmf_ret, error;
1531
1532         spin_lock_irq(&mapping->tree_lock);
1533         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1534         /* Did we race with someone splitting entry or so? */
1535         if (!entry ||
1536             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1537             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1538                 put_unlocked_mapping_entry(mapping, index, entry);
1539                 spin_unlock_irq(&mapping->tree_lock);
1540                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1541                                                       VM_FAULT_NOPAGE);
1542                 return VM_FAULT_NOPAGE;
1543         }
1544         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1545         entry = lock_slot(mapping, slot);
1546         spin_unlock_irq(&mapping->tree_lock);
1547         switch (pe_size) {
1548         case PE_SIZE_PTE:
1549                 error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1550                 vmf_ret = dax_fault_return(error);
1551                 break;
1552 #ifdef CONFIG_FS_DAX_PMD
1553         case PE_SIZE_PMD:
1554                 vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1555                         pfn, true);
1556                 break;
1557 #endif
1558         default:
1559                 vmf_ret = VM_FAULT_FALLBACK;
1560         }
1561         put_locked_mapping_entry(mapping, index);
1562         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
1563         return vmf_ret;
1564 }
1565
1566 /**
1567  * dax_finish_sync_fault - finish synchronous page fault
1568  * @vmf: The description of the fault
1569  * @pe_size: Size of entry to be inserted
1570  * @pfn: PFN to insert
1571  *
1572  * This function ensures that the file range touched by the page fault is
1573  * stored persistently on the media and handles inserting of appropriate page
1574  * table entry.
1575  */
1576 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1577                           pfn_t pfn)
1578 {
1579         int err;
1580         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1581         size_t len = 0;
1582
1583         if (pe_size == PE_SIZE_PTE)
1584                 len = PAGE_SIZE;
1585         else if (pe_size == PE_SIZE_PMD)
1586                 len = PMD_SIZE;
1587         else
1588                 WARN_ON_ONCE(1);
1589         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1590         if (err)
1591                 return VM_FAULT_SIGBUS;
1592         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1593 }
1594 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);