Merge tag 'libnvdimm-for-4.19_misc' of gitolite.kernel.org:pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53         int i;
54
55         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56                 init_waitqueue_head(wait_table + i);
57         return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78         return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84                         (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166                 pgoff_t index, void *entry, bool wake_all)
167 {
168         struct exceptional_entry_key key;
169         wait_queue_head_t *wq;
170
171         wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173         /*
174          * Checking for locked entry and prepare_to_wait_exclusive() happens
175          * under the i_pages lock, ditto for entry handling in our callers.
176          * So at this point all tasks that could have seen our entry locked
177          * must be in the waitqueue and the following check will see them.
178          */
179         if (waitqueue_active(wq))
180                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189         unsigned long entry = (unsigned long)
190                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191         return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212         unsigned long entry = (unsigned long)
213                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217         return (void *)entry;
218 }
219
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *get_unlocked_mapping_entry(struct address_space *mapping,
230                                         pgoff_t index, void ***slotp)
231 {
232         void *entry, **slot;
233         struct wait_exceptional_entry_queue ewait;
234         wait_queue_head_t *wq;
235
236         init_wait(&ewait.wait);
237         ewait.wait.func = wake_exceptional_entry_func;
238
239         for (;;) {
240                 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
241                                           &slot);
242                 if (!entry ||
243                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
244                     !slot_locked(mapping, slot)) {
245                         if (slotp)
246                                 *slotp = slot;
247                         return entry;
248                 }
249
250                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
251                 prepare_to_wait_exclusive(wq, &ewait.wait,
252                                           TASK_UNINTERRUPTIBLE);
253                 xa_unlock_irq(&mapping->i_pages);
254                 schedule();
255                 finish_wait(wq, &ewait.wait);
256                 xa_lock_irq(&mapping->i_pages);
257         }
258 }
259
260 static void dax_unlock_mapping_entry(struct address_space *mapping,
261                                      pgoff_t index)
262 {
263         void *entry, **slot;
264
265         xa_lock_irq(&mapping->i_pages);
266         entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
267         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
268                          !slot_locked(mapping, slot))) {
269                 xa_unlock_irq(&mapping->i_pages);
270                 return;
271         }
272         unlock_slot(mapping, slot);
273         xa_unlock_irq(&mapping->i_pages);
274         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
275 }
276
277 static void put_locked_mapping_entry(struct address_space *mapping,
278                 pgoff_t index)
279 {
280         dax_unlock_mapping_entry(mapping, index);
281 }
282
283 /*
284  * Called when we are done with radix tree entry we looked up via
285  * get_unlocked_mapping_entry() and which we didn't lock in the end.
286  */
287 static void put_unlocked_mapping_entry(struct address_space *mapping,
288                                        pgoff_t index, void *entry)
289 {
290         if (!entry)
291                 return;
292
293         /* We have to wake up next waiter for the radix tree entry lock */
294         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
295 }
296
297 static unsigned long dax_entry_size(void *entry)
298 {
299         if (dax_is_zero_entry(entry))
300                 return 0;
301         else if (dax_is_empty_entry(entry))
302                 return 0;
303         else if (dax_is_pmd_entry(entry))
304                 return PMD_SIZE;
305         else
306                 return PAGE_SIZE;
307 }
308
309 static unsigned long dax_radix_end_pfn(void *entry)
310 {
311         return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312 }
313
314 /*
315  * Iterate through all mapped pfns represented by an entry, i.e. skip
316  * 'empty' and 'zero' entries.
317  */
318 #define for_each_mapped_pfn(entry, pfn) \
319         for (pfn = dax_radix_pfn(entry); \
320                         pfn < dax_radix_end_pfn(entry); pfn++)
321
322 static void dax_associate_entry(void *entry, struct address_space *mapping)
323 {
324         unsigned long pfn;
325
326         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
327                 return;
328
329         for_each_mapped_pfn(entry, pfn) {
330                 struct page *page = pfn_to_page(pfn);
331
332                 WARN_ON_ONCE(page->mapping);
333                 page->mapping = mapping;
334         }
335 }
336
337 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
338                 bool trunc)
339 {
340         unsigned long pfn;
341
342         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
343                 return;
344
345         for_each_mapped_pfn(entry, pfn) {
346                 struct page *page = pfn_to_page(pfn);
347
348                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
349                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
350                 page->mapping = NULL;
351         }
352 }
353
354 static struct page *dax_busy_page(void *entry)
355 {
356         unsigned long pfn;
357
358         for_each_mapped_pfn(entry, pfn) {
359                 struct page *page = pfn_to_page(pfn);
360
361                 if (page_ref_count(page) > 1)
362                         return page;
363         }
364         return NULL;
365 }
366
367 /*
368  * Find radix tree entry at given index. If it points to an exceptional entry,
369  * return it with the radix tree entry locked. If the radix tree doesn't
370  * contain given index, create an empty exceptional entry for the index and
371  * return with it locked.
372  *
373  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
374  * either return that locked entry or will return an error.  This error will
375  * happen if there are any 4k entries within the 2MiB range that we are
376  * requesting.
377  *
378  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
379  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
380  * insertion will fail if it finds any 4k entries already in the tree, and a
381  * 4k insertion will cause an existing 2MiB entry to be unmapped and
382  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
383  * well as 2MiB empty entries.
384  *
385  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
386  * real storage backing them.  We will leave these real 2MiB DAX entries in
387  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
388  *
389  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
390  * persistent memory the benefit is doubtful. We can add that later if we can
391  * show it helps.
392  */
393 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
394                 unsigned long size_flag)
395 {
396         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
397         void *entry, **slot;
398
399 restart:
400         xa_lock_irq(&mapping->i_pages);
401         entry = get_unlocked_mapping_entry(mapping, index, &slot);
402
403         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
404                 entry = ERR_PTR(-EIO);
405                 goto out_unlock;
406         }
407
408         if (entry) {
409                 if (size_flag & RADIX_DAX_PMD) {
410                         if (dax_is_pte_entry(entry)) {
411                                 put_unlocked_mapping_entry(mapping, index,
412                                                 entry);
413                                 entry = ERR_PTR(-EEXIST);
414                                 goto out_unlock;
415                         }
416                 } else { /* trying to grab a PTE entry */
417                         if (dax_is_pmd_entry(entry) &&
418                             (dax_is_zero_entry(entry) ||
419                              dax_is_empty_entry(entry))) {
420                                 pmd_downgrade = true;
421                         }
422                 }
423         }
424
425         /* No entry for given index? Make sure radix tree is big enough. */
426         if (!entry || pmd_downgrade) {
427                 int err;
428
429                 if (pmd_downgrade) {
430                         /*
431                          * Make sure 'entry' remains valid while we drop
432                          * the i_pages lock.
433                          */
434                         entry = lock_slot(mapping, slot);
435                 }
436
437                 xa_unlock_irq(&mapping->i_pages);
438                 /*
439                  * Besides huge zero pages the only other thing that gets
440                  * downgraded are empty entries which don't need to be
441                  * unmapped.
442                  */
443                 if (pmd_downgrade && dax_is_zero_entry(entry))
444                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
445                                                         PG_PMD_NR, false);
446
447                 err = radix_tree_preload(
448                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
449                 if (err) {
450                         if (pmd_downgrade)
451                                 put_locked_mapping_entry(mapping, index);
452                         return ERR_PTR(err);
453                 }
454                 xa_lock_irq(&mapping->i_pages);
455
456                 if (!entry) {
457                         /*
458                          * We needed to drop the i_pages lock while calling
459                          * radix_tree_preload() and we didn't have an entry to
460                          * lock.  See if another thread inserted an entry at
461                          * our index during this time.
462                          */
463                         entry = __radix_tree_lookup(&mapping->i_pages, index,
464                                         NULL, &slot);
465                         if (entry) {
466                                 radix_tree_preload_end();
467                                 xa_unlock_irq(&mapping->i_pages);
468                                 goto restart;
469                         }
470                 }
471
472                 if (pmd_downgrade) {
473                         dax_disassociate_entry(entry, mapping, false);
474                         radix_tree_delete(&mapping->i_pages, index);
475                         mapping->nrexceptional--;
476                         dax_wake_mapping_entry_waiter(mapping, index, entry,
477                                         true);
478                 }
479
480                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
481
482                 err = __radix_tree_insert(&mapping->i_pages, index,
483                                 dax_radix_order(entry), entry);
484                 radix_tree_preload_end();
485                 if (err) {
486                         xa_unlock_irq(&mapping->i_pages);
487                         /*
488                          * Our insertion of a DAX entry failed, most likely
489                          * because we were inserting a PMD entry and it
490                          * collided with a PTE sized entry at a different
491                          * index in the PMD range.  We haven't inserted
492                          * anything into the radix tree and have no waiters to
493                          * wake.
494                          */
495                         return ERR_PTR(err);
496                 }
497                 /* Good, we have inserted empty locked entry into the tree. */
498                 mapping->nrexceptional++;
499                 xa_unlock_irq(&mapping->i_pages);
500                 return entry;
501         }
502         entry = lock_slot(mapping, slot);
503  out_unlock:
504         xa_unlock_irq(&mapping->i_pages);
505         return entry;
506 }
507
508 /**
509  * dax_layout_busy_page - find first pinned page in @mapping
510  * @mapping: address space to scan for a page with ref count > 1
511  *
512  * DAX requires ZONE_DEVICE mapped pages. These pages are never
513  * 'onlined' to the page allocator so they are considered idle when
514  * page->count == 1. A filesystem uses this interface to determine if
515  * any page in the mapping is busy, i.e. for DMA, or other
516  * get_user_pages() usages.
517  *
518  * It is expected that the filesystem is holding locks to block the
519  * establishment of new mappings in this address_space. I.e. it expects
520  * to be able to run unmap_mapping_range() and subsequently not race
521  * mapping_mapped() becoming true.
522  */
523 struct page *dax_layout_busy_page(struct address_space *mapping)
524 {
525         pgoff_t indices[PAGEVEC_SIZE];
526         struct page *page = NULL;
527         struct pagevec pvec;
528         pgoff_t index, end;
529         unsigned i;
530
531         /*
532          * In the 'limited' case get_user_pages() for dax is disabled.
533          */
534         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
535                 return NULL;
536
537         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
538                 return NULL;
539
540         pagevec_init(&pvec);
541         index = 0;
542         end = -1;
543
544         /*
545          * If we race get_user_pages_fast() here either we'll see the
546          * elevated page count in the pagevec_lookup and wait, or
547          * get_user_pages_fast() will see that the page it took a reference
548          * against is no longer mapped in the page tables and bail to the
549          * get_user_pages() slow path.  The slow path is protected by
550          * pte_lock() and pmd_lock(). New references are not taken without
551          * holding those locks, and unmap_mapping_range() will not zero the
552          * pte or pmd without holding the respective lock, so we are
553          * guaranteed to either see new references or prevent new
554          * references from being established.
555          */
556         unmap_mapping_range(mapping, 0, 0, 1);
557
558         while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
559                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
560                                 indices)) {
561                 for (i = 0; i < pagevec_count(&pvec); i++) {
562                         struct page *pvec_ent = pvec.pages[i];
563                         void *entry;
564
565                         index = indices[i];
566                         if (index >= end)
567                                 break;
568
569                         if (WARN_ON_ONCE(
570                              !radix_tree_exceptional_entry(pvec_ent)))
571                                 continue;
572
573                         xa_lock_irq(&mapping->i_pages);
574                         entry = get_unlocked_mapping_entry(mapping, index, NULL);
575                         if (entry)
576                                 page = dax_busy_page(entry);
577                         put_unlocked_mapping_entry(mapping, index, entry);
578                         xa_unlock_irq(&mapping->i_pages);
579                         if (page)
580                                 break;
581                 }
582
583                 /*
584                  * We don't expect normal struct page entries to exist in our
585                  * tree, but we keep these pagevec calls so that this code is
586                  * consistent with the common pattern for handling pagevecs
587                  * throughout the kernel.
588                  */
589                 pagevec_remove_exceptionals(&pvec);
590                 pagevec_release(&pvec);
591                 index++;
592
593                 if (page)
594                         break;
595         }
596         return page;
597 }
598 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
599
600 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
601                                           pgoff_t index, bool trunc)
602 {
603         int ret = 0;
604         void *entry;
605         struct radix_tree_root *pages = &mapping->i_pages;
606
607         xa_lock_irq(pages);
608         entry = get_unlocked_mapping_entry(mapping, index, NULL);
609         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
610                 goto out;
611         if (!trunc &&
612             (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
613              radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
614                 goto out;
615         dax_disassociate_entry(entry, mapping, trunc);
616         radix_tree_delete(pages, index);
617         mapping->nrexceptional--;
618         ret = 1;
619 out:
620         put_unlocked_mapping_entry(mapping, index, entry);
621         xa_unlock_irq(pages);
622         return ret;
623 }
624 /*
625  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
626  * entry to get unlocked before deleting it.
627  */
628 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
629 {
630         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
631
632         /*
633          * This gets called from truncate / punch_hole path. As such, the caller
634          * must hold locks protecting against concurrent modifications of the
635          * radix tree (usually fs-private i_mmap_sem for writing). Since the
636          * caller has seen exceptional entry for this index, we better find it
637          * at that index as well...
638          */
639         WARN_ON_ONCE(!ret);
640         return ret;
641 }
642
643 /*
644  * Invalidate exceptional DAX entry if it is clean.
645  */
646 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
647                                       pgoff_t index)
648 {
649         return __dax_invalidate_mapping_entry(mapping, index, false);
650 }
651
652 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
653                 sector_t sector, size_t size, struct page *to,
654                 unsigned long vaddr)
655 {
656         void *vto, *kaddr;
657         pgoff_t pgoff;
658         long rc;
659         int id;
660
661         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
662         if (rc)
663                 return rc;
664
665         id = dax_read_lock();
666         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
667         if (rc < 0) {
668                 dax_read_unlock(id);
669                 return rc;
670         }
671         vto = kmap_atomic(to);
672         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
673         kunmap_atomic(vto);
674         dax_read_unlock(id);
675         return 0;
676 }
677
678 /*
679  * By this point grab_mapping_entry() has ensured that we have a locked entry
680  * of the appropriate size so we don't have to worry about downgrading PMDs to
681  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
682  * already in the tree, we will skip the insertion and just dirty the PMD as
683  * appropriate.
684  */
685 static void *dax_insert_mapping_entry(struct address_space *mapping,
686                                       struct vm_fault *vmf,
687                                       void *entry, pfn_t pfn_t,
688                                       unsigned long flags, bool dirty)
689 {
690         struct radix_tree_root *pages = &mapping->i_pages;
691         unsigned long pfn = pfn_t_to_pfn(pfn_t);
692         pgoff_t index = vmf->pgoff;
693         void *new_entry;
694
695         if (dirty)
696                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
697
698         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
699                 /* we are replacing a zero page with block mapping */
700                 if (dax_is_pmd_entry(entry))
701                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
702                                                         PG_PMD_NR, false);
703                 else /* pte entry */
704                         unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
705         }
706
707         xa_lock_irq(pages);
708         new_entry = dax_radix_locked_entry(pfn, flags);
709         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
710                 dax_disassociate_entry(entry, mapping, false);
711                 dax_associate_entry(new_entry, mapping);
712         }
713
714         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
715                 /*
716                  * Only swap our new entry into the radix tree if the current
717                  * entry is a zero page or an empty entry.  If a normal PTE or
718                  * PMD entry is already in the tree, we leave it alone.  This
719                  * means that if we are trying to insert a PTE and the
720                  * existing entry is a PMD, we will just leave the PMD in the
721                  * tree and dirty it if necessary.
722                  */
723                 struct radix_tree_node *node;
724                 void **slot;
725                 void *ret;
726
727                 ret = __radix_tree_lookup(pages, index, &node, &slot);
728                 WARN_ON_ONCE(ret != entry);
729                 __radix_tree_replace(pages, node, slot,
730                                      new_entry, NULL);
731                 entry = new_entry;
732         }
733
734         if (dirty)
735                 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
736
737         xa_unlock_irq(pages);
738         return entry;
739 }
740
741 static inline unsigned long
742 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
743 {
744         unsigned long address;
745
746         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
747         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
748         return address;
749 }
750
751 /* Walk all mappings of a given index of a file and writeprotect them */
752 static void dax_mapping_entry_mkclean(struct address_space *mapping,
753                                       pgoff_t index, unsigned long pfn)
754 {
755         struct vm_area_struct *vma;
756         pte_t pte, *ptep = NULL;
757         pmd_t *pmdp = NULL;
758         spinlock_t *ptl;
759
760         i_mmap_lock_read(mapping);
761         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
762                 unsigned long address, start, end;
763
764                 cond_resched();
765
766                 if (!(vma->vm_flags & VM_SHARED))
767                         continue;
768
769                 address = pgoff_address(index, vma);
770
771                 /*
772                  * Note because we provide start/end to follow_pte_pmd it will
773                  * call mmu_notifier_invalidate_range_start() on our behalf
774                  * before taking any lock.
775                  */
776                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
777                         continue;
778
779                 /*
780                  * No need to call mmu_notifier_invalidate_range() as we are
781                  * downgrading page table protection not changing it to point
782                  * to a new page.
783                  *
784                  * See Documentation/vm/mmu_notifier.rst
785                  */
786                 if (pmdp) {
787 #ifdef CONFIG_FS_DAX_PMD
788                         pmd_t pmd;
789
790                         if (pfn != pmd_pfn(*pmdp))
791                                 goto unlock_pmd;
792                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
793                                 goto unlock_pmd;
794
795                         flush_cache_page(vma, address, pfn);
796                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
797                         pmd = pmd_wrprotect(pmd);
798                         pmd = pmd_mkclean(pmd);
799                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
800 unlock_pmd:
801 #endif
802                         spin_unlock(ptl);
803                 } else {
804                         if (pfn != pte_pfn(*ptep))
805                                 goto unlock_pte;
806                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
807                                 goto unlock_pte;
808
809                         flush_cache_page(vma, address, pfn);
810                         pte = ptep_clear_flush(vma, address, ptep);
811                         pte = pte_wrprotect(pte);
812                         pte = pte_mkclean(pte);
813                         set_pte_at(vma->vm_mm, address, ptep, pte);
814 unlock_pte:
815                         pte_unmap_unlock(ptep, ptl);
816                 }
817
818                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
819         }
820         i_mmap_unlock_read(mapping);
821 }
822
823 static int dax_writeback_one(struct dax_device *dax_dev,
824                 struct address_space *mapping, pgoff_t index, void *entry)
825 {
826         struct radix_tree_root *pages = &mapping->i_pages;
827         void *entry2, **slot;
828         unsigned long pfn;
829         long ret = 0;
830         size_t size;
831
832         /*
833          * A page got tagged dirty in DAX mapping? Something is seriously
834          * wrong.
835          */
836         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
837                 return -EIO;
838
839         xa_lock_irq(pages);
840         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
841         /* Entry got punched out / reallocated? */
842         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
843                 goto put_unlocked;
844         /*
845          * Entry got reallocated elsewhere? No need to writeback. We have to
846          * compare pfns as we must not bail out due to difference in lockbit
847          * or entry type.
848          */
849         if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
850                 goto put_unlocked;
851         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
852                                 dax_is_zero_entry(entry))) {
853                 ret = -EIO;
854                 goto put_unlocked;
855         }
856
857         /* Another fsync thread may have already written back this entry */
858         if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
859                 goto put_unlocked;
860         /* Lock the entry to serialize with page faults */
861         entry = lock_slot(mapping, slot);
862         /*
863          * We can clear the tag now but we have to be careful so that concurrent
864          * dax_writeback_one() calls for the same index cannot finish before we
865          * actually flush the caches. This is achieved as the calls will look
866          * at the entry only under the i_pages lock and once they do that
867          * they will see the entry locked and wait for it to unlock.
868          */
869         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
870         xa_unlock_irq(pages);
871
872         /*
873          * Even if dax_writeback_mapping_range() was given a wbc->range_start
874          * in the middle of a PMD, the 'index' we are given will be aligned to
875          * the start index of the PMD, as will the pfn we pull from 'entry'.
876          * This allows us to flush for PMD_SIZE and not have to worry about
877          * partial PMD writebacks.
878          */
879         pfn = dax_radix_pfn(entry);
880         size = PAGE_SIZE << dax_radix_order(entry);
881
882         dax_mapping_entry_mkclean(mapping, index, pfn);
883         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
884         /*
885          * After we have flushed the cache, we can clear the dirty tag. There
886          * cannot be new dirty data in the pfn after the flush has completed as
887          * the pfn mappings are writeprotected and fault waits for mapping
888          * entry lock.
889          */
890         xa_lock_irq(pages);
891         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
892         xa_unlock_irq(pages);
893         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
894         put_locked_mapping_entry(mapping, index);
895         return ret;
896
897  put_unlocked:
898         put_unlocked_mapping_entry(mapping, index, entry2);
899         xa_unlock_irq(pages);
900         return ret;
901 }
902
903 /*
904  * Flush the mapping to the persistent domain within the byte range of [start,
905  * end]. This is required by data integrity operations to ensure file data is
906  * on persistent storage prior to completion of the operation.
907  */
908 int dax_writeback_mapping_range(struct address_space *mapping,
909                 struct block_device *bdev, struct writeback_control *wbc)
910 {
911         struct inode *inode = mapping->host;
912         pgoff_t start_index, end_index;
913         pgoff_t indices[PAGEVEC_SIZE];
914         struct dax_device *dax_dev;
915         struct pagevec pvec;
916         bool done = false;
917         int i, ret = 0;
918
919         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
920                 return -EIO;
921
922         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
923                 return 0;
924
925         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
926         if (!dax_dev)
927                 return -EIO;
928
929         start_index = wbc->range_start >> PAGE_SHIFT;
930         end_index = wbc->range_end >> PAGE_SHIFT;
931
932         trace_dax_writeback_range(inode, start_index, end_index);
933
934         tag_pages_for_writeback(mapping, start_index, end_index);
935
936         pagevec_init(&pvec);
937         while (!done) {
938                 pvec.nr = find_get_entries_tag(mapping, start_index,
939                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
940                                 pvec.pages, indices);
941
942                 if (pvec.nr == 0)
943                         break;
944
945                 for (i = 0; i < pvec.nr; i++) {
946                         if (indices[i] > end_index) {
947                                 done = true;
948                                 break;
949                         }
950
951                         ret = dax_writeback_one(dax_dev, mapping, indices[i],
952                                         pvec.pages[i]);
953                         if (ret < 0) {
954                                 mapping_set_error(mapping, ret);
955                                 goto out;
956                         }
957                 }
958                 start_index = indices[pvec.nr - 1] + 1;
959         }
960 out:
961         put_dax(dax_dev);
962         trace_dax_writeback_range_done(inode, start_index, end_index);
963         return (ret < 0 ? ret : 0);
964 }
965 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
966
967 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
968 {
969         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
970 }
971
972 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
973                          pfn_t *pfnp)
974 {
975         const sector_t sector = dax_iomap_sector(iomap, pos);
976         pgoff_t pgoff;
977         int id, rc;
978         long length;
979
980         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
981         if (rc)
982                 return rc;
983         id = dax_read_lock();
984         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
985                                    NULL, pfnp);
986         if (length < 0) {
987                 rc = length;
988                 goto out;
989         }
990         rc = -EINVAL;
991         if (PFN_PHYS(length) < size)
992                 goto out;
993         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
994                 goto out;
995         /* For larger pages we need devmap */
996         if (length > 1 && !pfn_t_devmap(*pfnp))
997                 goto out;
998         rc = 0;
999 out:
1000         dax_read_unlock(id);
1001         return rc;
1002 }
1003
1004 /*
1005  * The user has performed a load from a hole in the file.  Allocating a new
1006  * page in the file would cause excessive storage usage for workloads with
1007  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1008  * If this page is ever written to we will re-fault and change the mapping to
1009  * point to real DAX storage instead.
1010  */
1011 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1012                          struct vm_fault *vmf)
1013 {
1014         struct inode *inode = mapping->host;
1015         unsigned long vaddr = vmf->address;
1016         vm_fault_t ret = VM_FAULT_NOPAGE;
1017         struct page *zero_page;
1018         pfn_t pfn;
1019
1020         zero_page = ZERO_PAGE(0);
1021         if (unlikely(!zero_page)) {
1022                 ret = VM_FAULT_OOM;
1023                 goto out;
1024         }
1025
1026         pfn = page_to_pfn_t(zero_page);
1027         dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1028                         false);
1029         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1030 out:
1031         trace_dax_load_hole(inode, vmf, ret);
1032         return ret;
1033 }
1034
1035 static bool dax_range_is_aligned(struct block_device *bdev,
1036                                  unsigned int offset, unsigned int length)
1037 {
1038         unsigned short sector_size = bdev_logical_block_size(bdev);
1039
1040         if (!IS_ALIGNED(offset, sector_size))
1041                 return false;
1042         if (!IS_ALIGNED(length, sector_size))
1043                 return false;
1044
1045         return true;
1046 }
1047
1048 int __dax_zero_page_range(struct block_device *bdev,
1049                 struct dax_device *dax_dev, sector_t sector,
1050                 unsigned int offset, unsigned int size)
1051 {
1052         if (dax_range_is_aligned(bdev, offset, size)) {
1053                 sector_t start_sector = sector + (offset >> 9);
1054
1055                 return blkdev_issue_zeroout(bdev, start_sector,
1056                                 size >> 9, GFP_NOFS, 0);
1057         } else {
1058                 pgoff_t pgoff;
1059                 long rc, id;
1060                 void *kaddr;
1061
1062                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1063                 if (rc)
1064                         return rc;
1065
1066                 id = dax_read_lock();
1067                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1068                 if (rc < 0) {
1069                         dax_read_unlock(id);
1070                         return rc;
1071                 }
1072                 memset(kaddr + offset, 0, size);
1073                 dax_flush(dax_dev, kaddr + offset, size);
1074                 dax_read_unlock(id);
1075         }
1076         return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1079
1080 static loff_t
1081 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1082                 struct iomap *iomap)
1083 {
1084         struct block_device *bdev = iomap->bdev;
1085         struct dax_device *dax_dev = iomap->dax_dev;
1086         struct iov_iter *iter = data;
1087         loff_t end = pos + length, done = 0;
1088         ssize_t ret = 0;
1089         size_t xfer;
1090         int id;
1091
1092         if (iov_iter_rw(iter) == READ) {
1093                 end = min(end, i_size_read(inode));
1094                 if (pos >= end)
1095                         return 0;
1096
1097                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1098                         return iov_iter_zero(min(length, end - pos), iter);
1099         }
1100
1101         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1102                 return -EIO;
1103
1104         /*
1105          * Write can allocate block for an area which has a hole page mapped
1106          * into page tables. We have to tear down these mappings so that data
1107          * written by write(2) is visible in mmap.
1108          */
1109         if (iomap->flags & IOMAP_F_NEW) {
1110                 invalidate_inode_pages2_range(inode->i_mapping,
1111                                               pos >> PAGE_SHIFT,
1112                                               (end - 1) >> PAGE_SHIFT);
1113         }
1114
1115         id = dax_read_lock();
1116         while (pos < end) {
1117                 unsigned offset = pos & (PAGE_SIZE - 1);
1118                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1119                 const sector_t sector = dax_iomap_sector(iomap, pos);
1120                 ssize_t map_len;
1121                 pgoff_t pgoff;
1122                 void *kaddr;
1123
1124                 if (fatal_signal_pending(current)) {
1125                         ret = -EINTR;
1126                         break;
1127                 }
1128
1129                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1130                 if (ret)
1131                         break;
1132
1133                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1134                                 &kaddr, NULL);
1135                 if (map_len < 0) {
1136                         ret = map_len;
1137                         break;
1138                 }
1139
1140                 map_len = PFN_PHYS(map_len);
1141                 kaddr += offset;
1142                 map_len -= offset;
1143                 if (map_len > end - pos)
1144                         map_len = end - pos;
1145
1146                 /*
1147                  * The userspace address for the memory copy has already been
1148                  * validated via access_ok() in either vfs_read() or
1149                  * vfs_write(), depending on which operation we are doing.
1150                  */
1151                 if (iov_iter_rw(iter) == WRITE)
1152                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1153                                         map_len, iter);
1154                 else
1155                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1156                                         map_len, iter);
1157
1158                 pos += xfer;
1159                 length -= xfer;
1160                 done += xfer;
1161
1162                 if (xfer == 0)
1163                         ret = -EFAULT;
1164                 if (xfer < map_len)
1165                         break;
1166         }
1167         dax_read_unlock(id);
1168
1169         return done ? done : ret;
1170 }
1171
1172 /**
1173  * dax_iomap_rw - Perform I/O to a DAX file
1174  * @iocb:       The control block for this I/O
1175  * @iter:       The addresses to do I/O from or to
1176  * @ops:        iomap ops passed from the file system
1177  *
1178  * This function performs read and write operations to directly mapped
1179  * persistent memory.  The callers needs to take care of read/write exclusion
1180  * and evicting any page cache pages in the region under I/O.
1181  */
1182 ssize_t
1183 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1184                 const struct iomap_ops *ops)
1185 {
1186         struct address_space *mapping = iocb->ki_filp->f_mapping;
1187         struct inode *inode = mapping->host;
1188         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1189         unsigned flags = 0;
1190
1191         if (iov_iter_rw(iter) == WRITE) {
1192                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1193                 flags |= IOMAP_WRITE;
1194         } else {
1195                 lockdep_assert_held(&inode->i_rwsem);
1196         }
1197
1198         while (iov_iter_count(iter)) {
1199                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1200                                 iter, dax_iomap_actor);
1201                 if (ret <= 0)
1202                         break;
1203                 pos += ret;
1204                 done += ret;
1205         }
1206
1207         iocb->ki_pos += done;
1208         return done ? done : ret;
1209 }
1210 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1211
1212 static vm_fault_t dax_fault_return(int error)
1213 {
1214         if (error == 0)
1215                 return VM_FAULT_NOPAGE;
1216         if (error == -ENOMEM)
1217                 return VM_FAULT_OOM;
1218         return VM_FAULT_SIGBUS;
1219 }
1220
1221 /*
1222  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1223  * flushed on write-faults (non-cow), but not read-faults.
1224  */
1225 static bool dax_fault_is_synchronous(unsigned long flags,
1226                 struct vm_area_struct *vma, struct iomap *iomap)
1227 {
1228         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1229                 && (iomap->flags & IOMAP_F_DIRTY);
1230 }
1231
1232 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1233                                int *iomap_errp, const struct iomap_ops *ops)
1234 {
1235         struct vm_area_struct *vma = vmf->vma;
1236         struct address_space *mapping = vma->vm_file->f_mapping;
1237         struct inode *inode = mapping->host;
1238         unsigned long vaddr = vmf->address;
1239         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1240         struct iomap iomap = { 0 };
1241         unsigned flags = IOMAP_FAULT;
1242         int error, major = 0;
1243         bool write = vmf->flags & FAULT_FLAG_WRITE;
1244         bool sync;
1245         vm_fault_t ret = 0;
1246         void *entry;
1247         pfn_t pfn;
1248
1249         trace_dax_pte_fault(inode, vmf, ret);
1250         /*
1251          * Check whether offset isn't beyond end of file now. Caller is supposed
1252          * to hold locks serializing us with truncate / punch hole so this is
1253          * a reliable test.
1254          */
1255         if (pos >= i_size_read(inode)) {
1256                 ret = VM_FAULT_SIGBUS;
1257                 goto out;
1258         }
1259
1260         if (write && !vmf->cow_page)
1261                 flags |= IOMAP_WRITE;
1262
1263         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1264         if (IS_ERR(entry)) {
1265                 ret = dax_fault_return(PTR_ERR(entry));
1266                 goto out;
1267         }
1268
1269         /*
1270          * It is possible, particularly with mixed reads & writes to private
1271          * mappings, that we have raced with a PMD fault that overlaps with
1272          * the PTE we need to set up.  If so just return and the fault will be
1273          * retried.
1274          */
1275         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1276                 ret = VM_FAULT_NOPAGE;
1277                 goto unlock_entry;
1278         }
1279
1280         /*
1281          * Note that we don't bother to use iomap_apply here: DAX required
1282          * the file system block size to be equal the page size, which means
1283          * that we never have to deal with more than a single extent here.
1284          */
1285         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1286         if (iomap_errp)
1287                 *iomap_errp = error;
1288         if (error) {
1289                 ret = dax_fault_return(error);
1290                 goto unlock_entry;
1291         }
1292         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1293                 error = -EIO;   /* fs corruption? */
1294                 goto error_finish_iomap;
1295         }
1296
1297         if (vmf->cow_page) {
1298                 sector_t sector = dax_iomap_sector(&iomap, pos);
1299
1300                 switch (iomap.type) {
1301                 case IOMAP_HOLE:
1302                 case IOMAP_UNWRITTEN:
1303                         clear_user_highpage(vmf->cow_page, vaddr);
1304                         break;
1305                 case IOMAP_MAPPED:
1306                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1307                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1308                         break;
1309                 default:
1310                         WARN_ON_ONCE(1);
1311                         error = -EIO;
1312                         break;
1313                 }
1314
1315                 if (error)
1316                         goto error_finish_iomap;
1317
1318                 __SetPageUptodate(vmf->cow_page);
1319                 ret = finish_fault(vmf);
1320                 if (!ret)
1321                         ret = VM_FAULT_DONE_COW;
1322                 goto finish_iomap;
1323         }
1324
1325         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1326
1327         switch (iomap.type) {
1328         case IOMAP_MAPPED:
1329                 if (iomap.flags & IOMAP_F_NEW) {
1330                         count_vm_event(PGMAJFAULT);
1331                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1332                         major = VM_FAULT_MAJOR;
1333                 }
1334                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1335                 if (error < 0)
1336                         goto error_finish_iomap;
1337
1338                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1339                                                  0, write && !sync);
1340
1341                 /*
1342                  * If we are doing synchronous page fault and inode needs fsync,
1343                  * we can insert PTE into page tables only after that happens.
1344                  * Skip insertion for now and return the pfn so that caller can
1345                  * insert it after fsync is done.
1346                  */
1347                 if (sync) {
1348                         if (WARN_ON_ONCE(!pfnp)) {
1349                                 error = -EIO;
1350                                 goto error_finish_iomap;
1351                         }
1352                         *pfnp = pfn;
1353                         ret = VM_FAULT_NEEDDSYNC | major;
1354                         goto finish_iomap;
1355                 }
1356                 trace_dax_insert_mapping(inode, vmf, entry);
1357                 if (write)
1358                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1359                 else
1360                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1361
1362                 goto finish_iomap;
1363         case IOMAP_UNWRITTEN:
1364         case IOMAP_HOLE:
1365                 if (!write) {
1366                         ret = dax_load_hole(mapping, entry, vmf);
1367                         goto finish_iomap;
1368                 }
1369                 /*FALLTHRU*/
1370         default:
1371                 WARN_ON_ONCE(1);
1372                 error = -EIO;
1373                 break;
1374         }
1375
1376  error_finish_iomap:
1377         ret = dax_fault_return(error);
1378  finish_iomap:
1379         if (ops->iomap_end) {
1380                 int copied = PAGE_SIZE;
1381
1382                 if (ret & VM_FAULT_ERROR)
1383                         copied = 0;
1384                 /*
1385                  * The fault is done by now and there's no way back (other
1386                  * thread may be already happily using PTE we have installed).
1387                  * Just ignore error from ->iomap_end since we cannot do much
1388                  * with it.
1389                  */
1390                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1391         }
1392  unlock_entry:
1393         put_locked_mapping_entry(mapping, vmf->pgoff);
1394  out:
1395         trace_dax_pte_fault_done(inode, vmf, ret);
1396         return ret | major;
1397 }
1398
1399 #ifdef CONFIG_FS_DAX_PMD
1400 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1401                 void *entry)
1402 {
1403         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1404         unsigned long pmd_addr = vmf->address & PMD_MASK;
1405         struct inode *inode = mapping->host;
1406         struct page *zero_page;
1407         void *ret = NULL;
1408         spinlock_t *ptl;
1409         pmd_t pmd_entry;
1410         pfn_t pfn;
1411
1412         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1413
1414         if (unlikely(!zero_page))
1415                 goto fallback;
1416
1417         pfn = page_to_pfn_t(zero_page);
1418         ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1419                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1420
1421         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1422         if (!pmd_none(*(vmf->pmd))) {
1423                 spin_unlock(ptl);
1424                 goto fallback;
1425         }
1426
1427         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1428         pmd_entry = pmd_mkhuge(pmd_entry);
1429         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1430         spin_unlock(ptl);
1431         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1432         return VM_FAULT_NOPAGE;
1433
1434 fallback:
1435         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1436         return VM_FAULT_FALLBACK;
1437 }
1438
1439 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1440                                const struct iomap_ops *ops)
1441 {
1442         struct vm_area_struct *vma = vmf->vma;
1443         struct address_space *mapping = vma->vm_file->f_mapping;
1444         unsigned long pmd_addr = vmf->address & PMD_MASK;
1445         bool write = vmf->flags & FAULT_FLAG_WRITE;
1446         bool sync;
1447         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1448         struct inode *inode = mapping->host;
1449         vm_fault_t result = VM_FAULT_FALLBACK;
1450         struct iomap iomap = { 0 };
1451         pgoff_t max_pgoff, pgoff;
1452         void *entry;
1453         loff_t pos;
1454         int error;
1455         pfn_t pfn;
1456
1457         /*
1458          * Check whether offset isn't beyond end of file now. Caller is
1459          * supposed to hold locks serializing us with truncate / punch hole so
1460          * this is a reliable test.
1461          */
1462         pgoff = linear_page_index(vma, pmd_addr);
1463         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1464
1465         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1466
1467         /*
1468          * Make sure that the faulting address's PMD offset (color) matches
1469          * the PMD offset from the start of the file.  This is necessary so
1470          * that a PMD range in the page table overlaps exactly with a PMD
1471          * range in the radix tree.
1472          */
1473         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1474             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1475                 goto fallback;
1476
1477         /* Fall back to PTEs if we're going to COW */
1478         if (write && !(vma->vm_flags & VM_SHARED))
1479                 goto fallback;
1480
1481         /* If the PMD would extend outside the VMA */
1482         if (pmd_addr < vma->vm_start)
1483                 goto fallback;
1484         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1485                 goto fallback;
1486
1487         if (pgoff >= max_pgoff) {
1488                 result = VM_FAULT_SIGBUS;
1489                 goto out;
1490         }
1491
1492         /* If the PMD would extend beyond the file size */
1493         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1494                 goto fallback;
1495
1496         /*
1497          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1498          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1499          * is already in the tree, for instance), it will return -EEXIST and
1500          * we just fall back to 4k entries.
1501          */
1502         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1503         if (IS_ERR(entry))
1504                 goto fallback;
1505
1506         /*
1507          * It is possible, particularly with mixed reads & writes to private
1508          * mappings, that we have raced with a PTE fault that overlaps with
1509          * the PMD we need to set up.  If so just return and the fault will be
1510          * retried.
1511          */
1512         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1513                         !pmd_devmap(*vmf->pmd)) {
1514                 result = 0;
1515                 goto unlock_entry;
1516         }
1517
1518         /*
1519          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1520          * setting up a mapping, so really we're using iomap_begin() as a way
1521          * to look up our filesystem block.
1522          */
1523         pos = (loff_t)pgoff << PAGE_SHIFT;
1524         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1525         if (error)
1526                 goto unlock_entry;
1527
1528         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1529                 goto finish_iomap;
1530
1531         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1532
1533         switch (iomap.type) {
1534         case IOMAP_MAPPED:
1535                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1536                 if (error < 0)
1537                         goto finish_iomap;
1538
1539                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1540                                                 RADIX_DAX_PMD, write && !sync);
1541
1542                 /*
1543                  * If we are doing synchronous page fault and inode needs fsync,
1544                  * we can insert PMD into page tables only after that happens.
1545                  * Skip insertion for now and return the pfn so that caller can
1546                  * insert it after fsync is done.
1547                  */
1548                 if (sync) {
1549                         if (WARN_ON_ONCE(!pfnp))
1550                                 goto finish_iomap;
1551                         *pfnp = pfn;
1552                         result = VM_FAULT_NEEDDSYNC;
1553                         goto finish_iomap;
1554                 }
1555
1556                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1557                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1558                                             write);
1559                 break;
1560         case IOMAP_UNWRITTEN:
1561         case IOMAP_HOLE:
1562                 if (WARN_ON_ONCE(write))
1563                         break;
1564                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1565                 break;
1566         default:
1567                 WARN_ON_ONCE(1);
1568                 break;
1569         }
1570
1571  finish_iomap:
1572         if (ops->iomap_end) {
1573                 int copied = PMD_SIZE;
1574
1575                 if (result == VM_FAULT_FALLBACK)
1576                         copied = 0;
1577                 /*
1578                  * The fault is done by now and there's no way back (other
1579                  * thread may be already happily using PMD we have installed).
1580                  * Just ignore error from ->iomap_end since we cannot do much
1581                  * with it.
1582                  */
1583                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1584                                 &iomap);
1585         }
1586  unlock_entry:
1587         put_locked_mapping_entry(mapping, pgoff);
1588  fallback:
1589         if (result == VM_FAULT_FALLBACK) {
1590                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1591                 count_vm_event(THP_FAULT_FALLBACK);
1592         }
1593 out:
1594         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1595         return result;
1596 }
1597 #else
1598 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1599                                const struct iomap_ops *ops)
1600 {
1601         return VM_FAULT_FALLBACK;
1602 }
1603 #endif /* CONFIG_FS_DAX_PMD */
1604
1605 /**
1606  * dax_iomap_fault - handle a page fault on a DAX file
1607  * @vmf: The description of the fault
1608  * @pe_size: Size of the page to fault in
1609  * @pfnp: PFN to insert for synchronous faults if fsync is required
1610  * @iomap_errp: Storage for detailed error code in case of error
1611  * @ops: Iomap ops passed from the file system
1612  *
1613  * When a page fault occurs, filesystems may call this helper in
1614  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1615  * has done all the necessary locking for page fault to proceed
1616  * successfully.
1617  */
1618 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1619                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1620 {
1621         switch (pe_size) {
1622         case PE_SIZE_PTE:
1623                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1624         case PE_SIZE_PMD:
1625                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1626         default:
1627                 return VM_FAULT_FALLBACK;
1628         }
1629 }
1630 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1631
1632 /**
1633  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1634  * @vmf: The description of the fault
1635  * @pe_size: Size of entry to be inserted
1636  * @pfn: PFN to insert
1637  *
1638  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1639  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1640  * as well.
1641  */
1642 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1643                                   enum page_entry_size pe_size,
1644                                   pfn_t pfn)
1645 {
1646         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1647         void *entry, **slot;
1648         pgoff_t index = vmf->pgoff;
1649         vm_fault_t ret;
1650
1651         xa_lock_irq(&mapping->i_pages);
1652         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1653         /* Did we race with someone splitting entry or so? */
1654         if (!entry ||
1655             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1656             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1657                 put_unlocked_mapping_entry(mapping, index, entry);
1658                 xa_unlock_irq(&mapping->i_pages);
1659                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1660                                                       VM_FAULT_NOPAGE);
1661                 return VM_FAULT_NOPAGE;
1662         }
1663         radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1664         entry = lock_slot(mapping, slot);
1665         xa_unlock_irq(&mapping->i_pages);
1666         switch (pe_size) {
1667         case PE_SIZE_PTE:
1668                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1669                 break;
1670 #ifdef CONFIG_FS_DAX_PMD
1671         case PE_SIZE_PMD:
1672                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1673                         pfn, true);
1674                 break;
1675 #endif
1676         default:
1677                 ret = VM_FAULT_FALLBACK;
1678         }
1679         put_locked_mapping_entry(mapping, index);
1680         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1681         return ret;
1682 }
1683
1684 /**
1685  * dax_finish_sync_fault - finish synchronous page fault
1686  * @vmf: The description of the fault
1687  * @pe_size: Size of entry to be inserted
1688  * @pfn: PFN to insert
1689  *
1690  * This function ensures that the file range touched by the page fault is
1691  * stored persistently on the media and handles inserting of appropriate page
1692  * table entry.
1693  */
1694 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1695                 enum page_entry_size pe_size, pfn_t pfn)
1696 {
1697         int err;
1698         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1699         size_t len = 0;
1700
1701         if (pe_size == PE_SIZE_PTE)
1702                 len = PAGE_SIZE;
1703         else if (pe_size == PE_SIZE_PMD)
1704                 len = PMD_SIZE;
1705         else
1706                 WARN_ON_ONCE(1);
1707         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708         if (err)
1709                 return VM_FAULT_SIGBUS;
1710         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1711 }
1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);