btrfs: free path at an earlier point in btrfs_get_extent
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .raid_name      = "raid10",
41                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
42                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52                 .raid_name      = "raid1",
53                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
54                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55         },
56         [BTRFS_RAID_DUP] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 2,
59                 .devs_max       = 1,
60                 .devs_min       = 1,
61                 .tolerated_failures = 0,
62                 .devs_increment = 1,
63                 .ncopies        = 2,
64                 .raid_name      = "dup",
65                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
66                 .mindev_error   = 0,
67         },
68         [BTRFS_RAID_RAID0] = {
69                 .sub_stripes    = 1,
70                 .dev_stripes    = 1,
71                 .devs_max       = 0,
72                 .devs_min       = 2,
73                 .tolerated_failures = 0,
74                 .devs_increment = 1,
75                 .ncopies        = 1,
76                 .raid_name      = "raid0",
77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
78                 .mindev_error   = 0,
79         },
80         [BTRFS_RAID_SINGLE] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 1,
84                 .devs_min       = 1,
85                 .tolerated_failures = 0,
86                 .devs_increment = 1,
87                 .ncopies        = 1,
88                 .raid_name      = "single",
89                 .bg_flag        = 0,
90                 .mindev_error   = 0,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 2,
100                 .raid_name      = "raid5",
101                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
102                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103         },
104         [BTRFS_RAID_RAID6] = {
105                 .sub_stripes    = 1,
106                 .dev_stripes    = 1,
107                 .devs_max       = 0,
108                 .devs_min       = 3,
109                 .tolerated_failures = 2,
110                 .devs_increment = 1,
111                 .ncopies        = 3,
112                 .raid_name      = "raid6",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
114                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115         },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120         if (type >= BTRFS_NR_RAID_TYPES)
121                 return NULL;
122
123         return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127                                 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133                              enum btrfs_map_op op,
134                              u64 logical, u64 *length,
135                              struct btrfs_bio **bbio_ret,
136                              int mirror_num, int need_raid_map);
137
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236         return &fs_uuids;
237 }
238
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249         struct btrfs_fs_devices *fs_devs;
250
251         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252         if (!fs_devs)
253                 return ERR_PTR(-ENOMEM);
254
255         mutex_init(&fs_devs->device_list_mutex);
256
257         INIT_LIST_HEAD(&fs_devs->devices);
258         INIT_LIST_HEAD(&fs_devs->resized_devices);
259         INIT_LIST_HEAD(&fs_devs->alloc_list);
260         INIT_LIST_HEAD(&fs_devs->fs_list);
261         if (fsid)
262                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264         return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269         rcu_string_free(device->name);
270         bio_put(device->flush_bio);
271         kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276         struct btrfs_device *device;
277         WARN_ON(fs_devices->opened);
278         while (!list_empty(&fs_devices->devices)) {
279                 device = list_entry(fs_devices->devices.next,
280                                     struct btrfs_device, dev_list);
281                 list_del(&device->dev_list);
282                 btrfs_free_device(device);
283         }
284         kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288                                  enum kobject_action action)
289 {
290         int ret;
291
292         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293         if (ret)
294                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295                         action,
296                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297                         &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302         struct btrfs_fs_devices *fs_devices;
303
304         while (!list_empty(&fs_uuids)) {
305                 fs_devices = list_entry(fs_uuids.next,
306                                         struct btrfs_fs_devices, fs_list);
307                 list_del(&fs_devices->fs_list);
308                 free_fs_devices(fs_devices);
309         }
310 }
311
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319         struct btrfs_device *dev;
320
321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322         if (!dev)
323                 return ERR_PTR(-ENOMEM);
324
325         /*
326          * Preallocate a bio that's always going to be used for flushing device
327          * barriers and matches the device lifespan
328          */
329         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330         if (!dev->flush_bio) {
331                 kfree(dev);
332                 return ERR_PTR(-ENOMEM);
333         }
334
335         INIT_LIST_HEAD(&dev->dev_list);
336         INIT_LIST_HEAD(&dev->dev_alloc_list);
337         INIT_LIST_HEAD(&dev->resized_list);
338
339         spin_lock_init(&dev->io_lock);
340
341         atomic_set(&dev->reada_in_flight, 0);
342         atomic_set(&dev->dev_stats_ccnt, 0);
343         btrfs_device_data_ordered_init(dev);
344         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347         return dev;
348 }
349
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358                 u64 devid, const u8 *uuid)
359 {
360         struct btrfs_device *dev;
361
362         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363                 if (dev->devid == devid &&
364                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365                         return dev;
366                 }
367         }
368         return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373         struct btrfs_fs_devices *fs_devices;
374
375         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377                         return fs_devices;
378         }
379         return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384                       int flush, struct block_device **bdev,
385                       struct buffer_head **bh)
386 {
387         int ret;
388
389         *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391         if (IS_ERR(*bdev)) {
392                 ret = PTR_ERR(*bdev);
393                 goto error;
394         }
395
396         if (flush)
397                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399         if (ret) {
400                 blkdev_put(*bdev, flags);
401                 goto error;
402         }
403         invalidate_bdev(*bdev);
404         *bh = btrfs_read_dev_super(*bdev);
405         if (IS_ERR(*bh)) {
406                 ret = PTR_ERR(*bh);
407                 blkdev_put(*bdev, flags);
408                 goto error;
409         }
410
411         return 0;
412
413 error:
414         *bdev = NULL;
415         *bh = NULL;
416         return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420                         struct bio *head, struct bio *tail)
421 {
422
423         struct bio *old_head;
424
425         old_head = pending_bios->head;
426         pending_bios->head = head;
427         if (pending_bios->tail)
428                 tail->bi_next = old_head;
429         else
430                 pending_bios->tail = tail;
431 }
432
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446         struct btrfs_fs_info *fs_info = device->fs_info;
447         struct bio *pending;
448         struct backing_dev_info *bdi;
449         struct btrfs_pending_bios *pending_bios;
450         struct bio *tail;
451         struct bio *cur;
452         int again = 0;
453         unsigned long num_run;
454         unsigned long batch_run = 0;
455         unsigned long last_waited = 0;
456         int force_reg = 0;
457         int sync_pending = 0;
458         struct blk_plug plug;
459
460         /*
461          * this function runs all the bios we've collected for
462          * a particular device.  We don't want to wander off to
463          * another device without first sending all of these down.
464          * So, setup a plug here and finish it off before we return
465          */
466         blk_start_plug(&plug);
467
468         bdi = device->bdev->bd_bdi;
469
470 loop:
471         spin_lock(&device->io_lock);
472
473 loop_lock:
474         num_run = 0;
475
476         /* take all the bios off the list at once and process them
477          * later on (without the lock held).  But, remember the
478          * tail and other pointers so the bios can be properly reinserted
479          * into the list if we hit congestion
480          */
481         if (!force_reg && device->pending_sync_bios.head) {
482                 pending_bios = &device->pending_sync_bios;
483                 force_reg = 1;
484         } else {
485                 pending_bios = &device->pending_bios;
486                 force_reg = 0;
487         }
488
489         pending = pending_bios->head;
490         tail = pending_bios->tail;
491         WARN_ON(pending && !tail);
492
493         /*
494          * if pending was null this time around, no bios need processing
495          * at all and we can stop.  Otherwise it'll loop back up again
496          * and do an additional check so no bios are missed.
497          *
498          * device->running_pending is used to synchronize with the
499          * schedule_bio code.
500          */
501         if (device->pending_sync_bios.head == NULL &&
502             device->pending_bios.head == NULL) {
503                 again = 0;
504                 device->running_pending = 0;
505         } else {
506                 again = 1;
507                 device->running_pending = 1;
508         }
509
510         pending_bios->head = NULL;
511         pending_bios->tail = NULL;
512
513         spin_unlock(&device->io_lock);
514
515         while (pending) {
516
517                 rmb();
518                 /* we want to work on both lists, but do more bios on the
519                  * sync list than the regular list
520                  */
521                 if ((num_run > 32 &&
522                     pending_bios != &device->pending_sync_bios &&
523                     device->pending_sync_bios.head) ||
524                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525                     device->pending_bios.head)) {
526                         spin_lock(&device->io_lock);
527                         requeue_list(pending_bios, pending, tail);
528                         goto loop_lock;
529                 }
530
531                 cur = pending;
532                 pending = pending->bi_next;
533                 cur->bi_next = NULL;
534
535                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537                 /*
538                  * if we're doing the sync list, record that our
539                  * plug has some sync requests on it
540                  *
541                  * If we're doing the regular list and there are
542                  * sync requests sitting around, unplug before
543                  * we add more
544                  */
545                 if (pending_bios == &device->pending_sync_bios) {
546                         sync_pending = 1;
547                 } else if (sync_pending) {
548                         blk_finish_plug(&plug);
549                         blk_start_plug(&plug);
550                         sync_pending = 0;
551                 }
552
553                 btrfsic_submit_bio(cur);
554                 num_run++;
555                 batch_run++;
556
557                 cond_resched();
558
559                 /*
560                  * we made progress, there is more work to do and the bdi
561                  * is now congested.  Back off and let other work structs
562                  * run instead
563                  */
564                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565                     fs_info->fs_devices->open_devices > 1) {
566                         struct io_context *ioc;
567
568                         ioc = current->io_context;
569
570                         /*
571                          * the main goal here is that we don't want to
572                          * block if we're going to be able to submit
573                          * more requests without blocking.
574                          *
575                          * This code does two great things, it pokes into
576                          * the elevator code from a filesystem _and_
577                          * it makes assumptions about how batching works.
578                          */
579                         if (ioc && ioc->nr_batch_requests > 0 &&
580                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581                             (last_waited == 0 ||
582                              ioc->last_waited == last_waited)) {
583                                 /*
584                                  * we want to go through our batch of
585                                  * requests and stop.  So, we copy out
586                                  * the ioc->last_waited time and test
587                                  * against it before looping
588                                  */
589                                 last_waited = ioc->last_waited;
590                                 cond_resched();
591                                 continue;
592                         }
593                         spin_lock(&device->io_lock);
594                         requeue_list(pending_bios, pending, tail);
595                         device->running_pending = 1;
596
597                         spin_unlock(&device->io_lock);
598                         btrfs_queue_work(fs_info->submit_workers,
599                                          &device->work);
600                         goto done;
601                 }
602         }
603
604         cond_resched();
605         if (again)
606                 goto loop;
607
608         spin_lock(&device->io_lock);
609         if (device->pending_bios.head || device->pending_sync_bios.head)
610                 goto loop_lock;
611         spin_unlock(&device->io_lock);
612
613 done:
614         blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619         struct btrfs_device *device;
620
621         device = container_of(work, struct btrfs_device, work);
622         run_scheduled_bios(device);
623 }
624
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:       Optional. When provided will it release all unmounted devices
629  *              matching this path only.
630  *  skip_dev:   Optional. Will skip this device when searching for the stale
631  *              devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634                                      struct btrfs_device *skip_device)
635 {
636         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637         struct btrfs_device *device, *tmp_device;
638
639         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 if (fs_devices->opened) {
642                         mutex_unlock(&fs_devices->device_list_mutex);
643                         continue;
644                 }
645
646                 list_for_each_entry_safe(device, tmp_device,
647                                          &fs_devices->devices, dev_list) {
648                         int not_found = 0;
649
650                         if (skip_device && skip_device == device)
651                                 continue;
652                         if (path && !device->name)
653                                 continue;
654
655                         rcu_read_lock();
656                         if (path)
657                                 not_found = strcmp(rcu_str_deref(device->name),
658                                                    path);
659                         rcu_read_unlock();
660                         if (not_found)
661                                 continue;
662
663                         /* delete the stale device */
664                         fs_devices->num_devices--;
665                         list_del(&device->dev_list);
666                         btrfs_free_device(device);
667
668                         if (fs_devices->num_devices == 0)
669                                 break;
670                 }
671                 mutex_unlock(&fs_devices->device_list_mutex);
672                 if (fs_devices->num_devices == 0) {
673                         btrfs_sysfs_remove_fsid(fs_devices);
674                         list_del(&fs_devices->fs_list);
675                         free_fs_devices(fs_devices);
676                 }
677         }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681                         struct btrfs_device *device, fmode_t flags,
682                         void *holder)
683 {
684         struct request_queue *q;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         struct btrfs_super_block *disk_super;
688         u64 devid;
689         int ret;
690
691         if (device->bdev)
692                 return -EINVAL;
693         if (!device->name)
694                 return -EINVAL;
695
696         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697                                     &bdev, &bh);
698         if (ret)
699                 return ret;
700
701         disk_super = (struct btrfs_super_block *)bh->b_data;
702         devid = btrfs_stack_device_id(&disk_super->dev_item);
703         if (devid != device->devid)
704                 goto error_brelse;
705
706         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707                 goto error_brelse;
708
709         device->generation = btrfs_super_generation(disk_super);
710
711         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713                 fs_devices->seeding = 1;
714         } else {
715                 if (bdev_read_only(bdev))
716                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717                 else
718                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719         }
720
721         q = bdev_get_queue(bdev);
722         if (!blk_queue_nonrot(q))
723                 fs_devices->rotating = 1;
724
725         device->bdev = bdev;
726         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727         device->mode = flags;
728
729         fs_devices->open_devices++;
730         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731             device->devid != BTRFS_DEV_REPLACE_DEVID) {
732                 fs_devices->rw_devices++;
733                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734         }
735         brelse(bh);
736
737         return 0;
738
739 error_brelse:
740         brelse(bh);
741         blkdev_put(bdev, flags);
742
743         return -EINVAL;
744 }
745
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754                            struct btrfs_super_block *disk_super,
755                            bool *new_device_added)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices;
759         struct rcu_string *name;
760         u64 found_transid = btrfs_super_generation(disk_super);
761         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763         fs_devices = find_fsid(disk_super->fsid);
764         if (!fs_devices) {
765                 fs_devices = alloc_fs_devices(disk_super->fsid);
766                 if (IS_ERR(fs_devices))
767                         return ERR_CAST(fs_devices);
768
769                 mutex_lock(&fs_devices->device_list_mutex);
770                 list_add(&fs_devices->fs_list, &fs_uuids);
771
772                 device = NULL;
773         } else {
774                 mutex_lock(&fs_devices->device_list_mutex);
775                 device = find_device(fs_devices, devid,
776                                 disk_super->dev_item.uuid);
777         }
778
779         if (!device) {
780                 if (fs_devices->opened) {
781                         mutex_unlock(&fs_devices->device_list_mutex);
782                         return ERR_PTR(-EBUSY);
783                 }
784
785                 device = btrfs_alloc_device(NULL, &devid,
786                                             disk_super->dev_item.uuid);
787                 if (IS_ERR(device)) {
788                         mutex_unlock(&fs_devices->device_list_mutex);
789                         /* we can safely leave the fs_devices entry around */
790                         return device;
791                 }
792
793                 name = rcu_string_strdup(path, GFP_NOFS);
794                 if (!name) {
795                         btrfs_free_device(device);
796                         mutex_unlock(&fs_devices->device_list_mutex);
797                         return ERR_PTR(-ENOMEM);
798                 }
799                 rcu_assign_pointer(device->name, name);
800
801                 list_add_rcu(&device->dev_list, &fs_devices->devices);
802                 fs_devices->num_devices++;
803
804                 device->fs_devices = fs_devices;
805                 *new_device_added = true;
806
807                 if (disk_super->label[0])
808                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809                                 disk_super->label, devid, found_transid, path);
810                 else
811                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812                                 disk_super->fsid, devid, found_transid, path);
813
814         } else if (!device->name || strcmp(device->name->str, path)) {
815                 /*
816                  * When FS is already mounted.
817                  * 1. If you are here and if the device->name is NULL that
818                  *    means this device was missing at time of FS mount.
819                  * 2. If you are here and if the device->name is different
820                  *    from 'path' that means either
821                  *      a. The same device disappeared and reappeared with
822                  *         different name. or
823                  *      b. The missing-disk-which-was-replaced, has
824                  *         reappeared now.
825                  *
826                  * We must allow 1 and 2a above. But 2b would be a spurious
827                  * and unintentional.
828                  *
829                  * Further in case of 1 and 2a above, the disk at 'path'
830                  * would have missed some transaction when it was away and
831                  * in case of 2a the stale bdev has to be updated as well.
832                  * 2b must not be allowed at all time.
833                  */
834
835                 /*
836                  * For now, we do allow update to btrfs_fs_device through the
837                  * btrfs dev scan cli after FS has been mounted.  We're still
838                  * tracking a problem where systems fail mount by subvolume id
839                  * when we reject replacement on a mounted FS.
840                  */
841                 if (!fs_devices->opened && found_transid < device->generation) {
842                         /*
843                          * That is if the FS is _not_ mounted and if you
844                          * are here, that means there is more than one
845                          * disk with same uuid and devid.We keep the one
846                          * with larger generation number or the last-in if
847                          * generation are equal.
848                          */
849                         mutex_unlock(&fs_devices->device_list_mutex);
850                         return ERR_PTR(-EEXIST);
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_string_free(device->name);
859                 rcu_assign_pointer(device->name, name);
860                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861                         fs_devices->missing_devices--;
862                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863                 }
864         }
865
866         /*
867          * Unmount does not free the btrfs_device struct but would zero
868          * generation along with most of the other members. So just update
869          * it back. We need it to pick the disk with largest generation
870          * (as above).
871          */
872         if (!fs_devices->opened)
873                 device->generation = found_transid;
874
875         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877         mutex_unlock(&fs_devices->device_list_mutex);
878         return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883         struct btrfs_fs_devices *fs_devices;
884         struct btrfs_device *device;
885         struct btrfs_device *orig_dev;
886
887         fs_devices = alloc_fs_devices(orig->fsid);
888         if (IS_ERR(fs_devices))
889                 return fs_devices;
890
891         mutex_lock(&orig->device_list_mutex);
892         fs_devices->total_devices = orig->total_devices;
893
894         /* We have held the volume lock, it is safe to get the devices. */
895         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896                 struct rcu_string *name;
897
898                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899                                             orig_dev->uuid);
900                 if (IS_ERR(device))
901                         goto error;
902
903                 /*
904                  * This is ok to do without rcu read locked because we hold the
905                  * uuid mutex so nothing we touch in here is going to disappear.
906                  */
907                 if (orig_dev->name) {
908                         name = rcu_string_strdup(orig_dev->name->str,
909                                         GFP_KERNEL);
910                         if (!name) {
911                                 btrfs_free_device(device);
912                                 goto error;
913                         }
914                         rcu_assign_pointer(device->name, name);
915                 }
916
917                 list_add(&device->dev_list, &fs_devices->devices);
918                 device->fs_devices = fs_devices;
919                 fs_devices->num_devices++;
920         }
921         mutex_unlock(&orig->device_list_mutex);
922         return fs_devices;
923 error:
924         mutex_unlock(&orig->device_list_mutex);
925         free_fs_devices(fs_devices);
926         return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935         struct btrfs_device *device, *next;
936         struct btrfs_device *latest_dev = NULL;
937
938         mutex_lock(&uuid_mutex);
939 again:
940         /* This is the initialized path, it is safe to release the devices. */
941         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943                                                         &device->dev_state)) {
944                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945                              &device->dev_state) &&
946                              (!latest_dev ||
947                               device->generation > latest_dev->generation)) {
948                                 latest_dev = device;
949                         }
950                         continue;
951                 }
952
953                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954                         /*
955                          * In the first step, keep the device which has
956                          * the correct fsid and the devid that is used
957                          * for the dev_replace procedure.
958                          * In the second step, the dev_replace state is
959                          * read from the device tree and it is known
960                          * whether the procedure is really active or
961                          * not, which means whether this device is
962                          * used or whether it should be removed.
963                          */
964                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965                                                   &device->dev_state)) {
966                                 continue;
967                         }
968                 }
969                 if (device->bdev) {
970                         blkdev_put(device->bdev, device->mode);
971                         device->bdev = NULL;
972                         fs_devices->open_devices--;
973                 }
974                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                         list_del_init(&device->dev_alloc_list);
976                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978                                       &device->dev_state))
979                                 fs_devices->rw_devices--;
980                 }
981                 list_del_init(&device->dev_list);
982                 fs_devices->num_devices--;
983                 btrfs_free_device(device);
984         }
985
986         if (fs_devices->seed) {
987                 fs_devices = fs_devices->seed;
988                 goto again;
989         }
990
991         fs_devices->latest_bdev = latest_dev->bdev;
992
993         mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998         struct btrfs_device *device;
999
1000         device = container_of(head, struct btrfs_device, rcu);
1001         btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006         if (!device->bdev)
1007                 return;
1008
1009         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010                 sync_blockdev(device->bdev);
1011                 invalidate_bdev(device->bdev);
1012         }
1013
1014         blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020         struct btrfs_device *new_device;
1021         struct rcu_string *name;
1022
1023         if (device->bdev)
1024                 fs_devices->open_devices--;
1025
1026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028                 list_del_init(&device->dev_alloc_list);
1029                 fs_devices->rw_devices--;
1030         }
1031
1032         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033                 fs_devices->missing_devices--;
1034
1035         btrfs_close_bdev(device);
1036
1037         new_device = btrfs_alloc_device(NULL, &device->devid,
1038                                         device->uuid);
1039         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041         /* Safe because we are under uuid_mutex */
1042         if (device->name) {
1043                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044                 BUG_ON(!name); /* -ENOMEM */
1045                 rcu_assign_pointer(new_device->name, name);
1046         }
1047
1048         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049         new_device->fs_devices = device->fs_devices;
1050
1051         call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_device *device, *tmp;
1057
1058         if (--fs_devices->opened > 0)
1059                 return 0;
1060
1061         mutex_lock(&fs_devices->device_list_mutex);
1062         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063                 btrfs_close_one_device(device);
1064         }
1065         mutex_unlock(&fs_devices->device_list_mutex);
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         lockdep_assert_held(&uuid_mutex);
1146
1147         mutex_lock(&fs_devices->device_list_mutex);
1148         if (fs_devices->opened) {
1149                 fs_devices->opened++;
1150                 ret = 0;
1151         } else {
1152                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153                 ret = open_fs_devices(fs_devices, flags, holder);
1154         }
1155         mutex_unlock(&fs_devices->device_list_mutex);
1156
1157         return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162         kunmap(page);
1163         put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167                                  struct page **page,
1168                                  struct btrfs_super_block **disk_super)
1169 {
1170         void *p;
1171         pgoff_t index;
1172
1173         /* make sure our super fits in the device */
1174         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175                 return 1;
1176
1177         /* make sure our super fits in the page */
1178         if (sizeof(**disk_super) > PAGE_SIZE)
1179                 return 1;
1180
1181         /* make sure our super doesn't straddle pages on disk */
1182         index = bytenr >> PAGE_SHIFT;
1183         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184                 return 1;
1185
1186         /* pull in the page with our super */
1187         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188                                    index, GFP_KERNEL);
1189
1190         if (IS_ERR_OR_NULL(*page))
1191                 return 1;
1192
1193         p = kmap(*page);
1194
1195         /* align our pointer to the offset of the super block */
1196         *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200                 btrfs_release_disk_super(*page);
1201                 return 1;
1202         }
1203
1204         if ((*disk_super)->label[0] &&
1205                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217                                            void *holder)
1218 {
1219         struct btrfs_super_block *disk_super;
1220         bool new_device_added = false;
1221         struct btrfs_device *device = NULL;
1222         struct block_device *bdev;
1223         struct page *page;
1224         u64 bytenr;
1225
1226         lockdep_assert_held(&uuid_mutex);
1227
1228         /*
1229          * we would like to check all the supers, but that would make
1230          * a btrfs mount succeed after a mkfs from a different FS.
1231          * So, we need to add a special mount option to scan for
1232          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233          */
1234         bytenr = btrfs_sb_offset(0);
1235         flags |= FMODE_EXCL;
1236
1237         bdev = blkdev_get_by_path(path, flags, holder);
1238         if (IS_ERR(bdev))
1239                 return ERR_CAST(bdev);
1240
1241         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242                 device = ERR_PTR(-EINVAL);
1243                 goto error_bdev_put;
1244         }
1245
1246         device = device_list_add(path, disk_super, &new_device_added);
1247         if (!IS_ERR(device)) {
1248                 if (new_device_added)
1249                         btrfs_free_stale_devices(path, device);
1250         }
1251
1252         btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255         blkdev_put(bdev, flags);
1256
1257         return device;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261                                    struct btrfs_device *device,
1262                                    u64 *start, u64 len)
1263 {
1264         struct btrfs_fs_info *fs_info = device->fs_info;
1265         struct extent_map *em;
1266         struct list_head *search_list = &fs_info->pinned_chunks;
1267         int ret = 0;
1268         u64 physical_start = *start;
1269
1270         if (transaction)
1271                 search_list = &transaction->pending_chunks;
1272 again:
1273         list_for_each_entry(em, search_list, list) {
1274                 struct map_lookup *map;
1275                 int i;
1276
1277                 map = em->map_lookup;
1278                 for (i = 0; i < map->num_stripes; i++) {
1279                         u64 end;
1280
1281                         if (map->stripes[i].dev != device)
1282                                 continue;
1283                         if (map->stripes[i].physical >= physical_start + len ||
1284                             map->stripes[i].physical + em->orig_block_len <=
1285                             physical_start)
1286                                 continue;
1287                         /*
1288                          * Make sure that while processing the pinned list we do
1289                          * not override our *start with a lower value, because
1290                          * we can have pinned chunks that fall within this
1291                          * device hole and that have lower physical addresses
1292                          * than the pending chunks we processed before. If we
1293                          * do not take this special care we can end up getting
1294                          * 2 pending chunks that start at the same physical
1295                          * device offsets because the end offset of a pinned
1296                          * chunk can be equal to the start offset of some
1297                          * pending chunk.
1298                          */
1299                         end = map->stripes[i].physical + em->orig_block_len;
1300                         if (end > *start) {
1301                                 *start = end;
1302                                 ret = 1;
1303                         }
1304                 }
1305         }
1306         if (search_list != &fs_info->pinned_chunks) {
1307                 search_list = &fs_info->pinned_chunks;
1308                 goto again;
1309         }
1310
1311         return ret;
1312 }
1313
1314
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:       the device which we search the free space in
1318  * @num_bytes:    the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:        store the start of the free space.
1321  * @len:          the size of the free space. that we find, or the size
1322  *                of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337                                struct btrfs_device *device, u64 num_bytes,
1338                                u64 search_start, u64 *start, u64 *len)
1339 {
1340         struct btrfs_fs_info *fs_info = device->fs_info;
1341         struct btrfs_root *root = fs_info->dev_root;
1342         struct btrfs_key key;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353
1354         /*
1355          * We don't want to overwrite the superblock on the drive nor any area
1356          * used by the boot loader (grub for example), so we make sure to start
1357          * at an offset of at least 1MB.
1358          */
1359         search_start = max_t(u64, search_start, SZ_1M);
1360
1361         path = btrfs_alloc_path();
1362         if (!path)
1363                 return -ENOMEM;
1364
1365         max_hole_start = search_start;
1366         max_hole_size = 0;
1367
1368 again:
1369         if (search_start >= search_end ||
1370                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371                 ret = -ENOSPC;
1372                 goto out;
1373         }
1374
1375         path->reada = READA_FORWARD;
1376         path->search_commit_root = 1;
1377         path->skip_locking = 1;
1378
1379         key.objectid = device->devid;
1380         key.offset = search_start;
1381         key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384         if (ret < 0)
1385                 goto out;
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388                 if (ret < 0)
1389                         goto out;
1390         }
1391
1392         while (1) {
1393                 l = path->nodes[0];
1394                 slot = path->slots[0];
1395                 if (slot >= btrfs_header_nritems(l)) {
1396                         ret = btrfs_next_leaf(root, path);
1397                         if (ret == 0)
1398                                 continue;
1399                         if (ret < 0)
1400                                 goto out;
1401
1402                         break;
1403                 }
1404                 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406                 if (key.objectid < device->devid)
1407                         goto next;
1408
1409                 if (key.objectid > device->devid)
1410                         break;
1411
1412                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413                         goto next;
1414
1415                 if (key.offset > search_start) {
1416                         hole_size = key.offset - search_start;
1417
1418                         /*
1419                          * Have to check before we set max_hole_start, otherwise
1420                          * we could end up sending back this offset anyway.
1421                          */
1422                         if (contains_pending_extent(transaction, device,
1423                                                     &search_start,
1424                                                     hole_size)) {
1425                                 if (key.offset >= search_start) {
1426                                         hole_size = key.offset - search_start;
1427                                 } else {
1428                                         WARN_ON_ONCE(1);
1429                                         hole_size = 0;
1430                                 }
1431                         }
1432
1433                         if (hole_size > max_hole_size) {
1434                                 max_hole_start = search_start;
1435                                 max_hole_size = hole_size;
1436                         }
1437
1438                         /*
1439                          * If this free space is greater than which we need,
1440                          * it must be the max free space that we have found
1441                          * until now, so max_hole_start must point to the start
1442                          * of this free space and the length of this free space
1443                          * is stored in max_hole_size. Thus, we return
1444                          * max_hole_start and max_hole_size and go back to the
1445                          * caller.
1446                          */
1447                         if (hole_size >= num_bytes) {
1448                                 ret = 0;
1449                                 goto out;
1450                         }
1451                 }
1452
1453                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454                 extent_end = key.offset + btrfs_dev_extent_length(l,
1455                                                                   dev_extent);
1456                 if (extent_end > search_start)
1457                         search_start = extent_end;
1458 next:
1459                 path->slots[0]++;
1460                 cond_resched();
1461         }
1462
1463         /*
1464          * At this point, search_start should be the end of
1465          * allocated dev extents, and when shrinking the device,
1466          * search_end may be smaller than search_start.
1467          */
1468         if (search_end > search_start) {
1469                 hole_size = search_end - search_start;
1470
1471                 if (contains_pending_extent(transaction, device, &search_start,
1472                                             hole_size)) {
1473                         btrfs_release_path(path);
1474                         goto again;
1475                 }
1476
1477                 if (hole_size > max_hole_size) {
1478                         max_hole_start = search_start;
1479                         max_hole_size = hole_size;
1480                 }
1481         }
1482
1483         /* See above. */
1484         if (max_hole_size < num_bytes)
1485                 ret = -ENOSPC;
1486         else
1487                 ret = 0;
1488
1489 out:
1490         btrfs_free_path(path);
1491         *start = max_hole_start;
1492         if (len)
1493                 *len = max_hole_size;
1494         return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498                          struct btrfs_device *device, u64 num_bytes,
1499                          u64 *start, u64 *len)
1500 {
1501         /* FIXME use last free of some kind */
1502         return find_free_dev_extent_start(trans->transaction, device,
1503                                           num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507                           struct btrfs_device *device,
1508                           u64 start, u64 *dev_extent_len)
1509 {
1510         struct btrfs_fs_info *fs_info = device->fs_info;
1511         struct btrfs_root *root = fs_info->dev_root;
1512         int ret;
1513         struct btrfs_path *path;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(fs_info, ret,
1556                                       "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569         int ret;
1570         struct btrfs_path *path;
1571         struct btrfs_fs_info *fs_info = device->fs_info;
1572         struct btrfs_root *root = fs_info->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595                                         BTRFS_CHUNK_TREE_OBJECTID);
1596         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601         btrfs_mark_buffer_dirty(leaf);
1602 out:
1603         btrfs_free_path(path);
1604         return ret;
1605 }
1606
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609         struct extent_map_tree *em_tree;
1610         struct extent_map *em;
1611         struct rb_node *n;
1612         u64 ret = 0;
1613
1614         em_tree = &fs_info->mapping_tree.map_tree;
1615         read_lock(&em_tree->lock);
1616         n = rb_last(&em_tree->map);
1617         if (n) {
1618                 em = rb_entry(n, struct extent_map, rb_node);
1619                 ret = em->start + em->len;
1620         }
1621         read_unlock(&em_tree->lock);
1622
1623         return ret;
1624 }
1625
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627                                     u64 *devid_ret)
1628 {
1629         int ret;
1630         struct btrfs_key key;
1631         struct btrfs_key found_key;
1632         struct btrfs_path *path;
1633
1634         path = btrfs_alloc_path();
1635         if (!path)
1636                 return -ENOMEM;
1637
1638         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639         key.type = BTRFS_DEV_ITEM_KEY;
1640         key.offset = (u64)-1;
1641
1642         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643         if (ret < 0)
1644                 goto error;
1645
1646         BUG_ON(ret == 0); /* Corruption */
1647
1648         ret = btrfs_previous_item(fs_info->chunk_root, path,
1649                                   BTRFS_DEV_ITEMS_OBJECTID,
1650                                   BTRFS_DEV_ITEM_KEY);
1651         if (ret) {
1652                 *devid_ret = 1;
1653         } else {
1654                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655                                       path->slots[0]);
1656                 *devid_ret = found_key.offset + 1;
1657         }
1658         ret = 0;
1659 error:
1660         btrfs_free_path(path);
1661         return ret;
1662 }
1663
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669                             struct btrfs_device *device)
1670 {
1671         int ret;
1672         struct btrfs_path *path;
1673         struct btrfs_dev_item *dev_item;
1674         struct extent_buffer *leaf;
1675         struct btrfs_key key;
1676         unsigned long ptr;
1677
1678         path = btrfs_alloc_path();
1679         if (!path)
1680                 return -ENOMEM;
1681
1682         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683         key.type = BTRFS_DEV_ITEM_KEY;
1684         key.offset = device->devid;
1685
1686         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687                                       &key, sizeof(*dev_item));
1688         if (ret)
1689                 goto out;
1690
1691         leaf = path->nodes[0];
1692         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694         btrfs_set_device_id(leaf, dev_item, device->devid);
1695         btrfs_set_device_generation(leaf, dev_item, 0);
1696         btrfs_set_device_type(leaf, dev_item, device->type);
1697         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700         btrfs_set_device_total_bytes(leaf, dev_item,
1701                                      btrfs_device_get_disk_total_bytes(device));
1702         btrfs_set_device_bytes_used(leaf, dev_item,
1703                                     btrfs_device_get_bytes_used(device));
1704         btrfs_set_device_group(leaf, dev_item, 0);
1705         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707         btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709         ptr = btrfs_device_uuid(dev_item);
1710         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711         ptr = btrfs_device_fsid(dev_item);
1712         write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713         btrfs_mark_buffer_dirty(leaf);
1714
1715         ret = 0;
1716 out:
1717         btrfs_free_path(path);
1718         return ret;
1719 }
1720
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727         struct file *filp;
1728
1729         filp = filp_open(path_name, O_RDWR, 0);
1730         if (IS_ERR(filp))
1731                 return;
1732         file_update_time(filp);
1733         filp_close(filp, NULL);
1734 }
1735
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737                              struct btrfs_device *device)
1738 {
1739         struct btrfs_root *root = fs_info->chunk_root;
1740         int ret;
1741         struct btrfs_path *path;
1742         struct btrfs_key key;
1743         struct btrfs_trans_handle *trans;
1744
1745         path = btrfs_alloc_path();
1746         if (!path)
1747                 return -ENOMEM;
1748
1749         trans = btrfs_start_transaction(root, 0);
1750         if (IS_ERR(trans)) {
1751                 btrfs_free_path(path);
1752                 return PTR_ERR(trans);
1753         }
1754         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755         key.type = BTRFS_DEV_ITEM_KEY;
1756         key.offset = device->devid;
1757
1758         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759         if (ret) {
1760                 if (ret > 0)
1761                         ret = -ENOENT;
1762                 btrfs_abort_transaction(trans, ret);
1763                 btrfs_end_transaction(trans);
1764                 goto out;
1765         }
1766
1767         ret = btrfs_del_item(trans, root, path);
1768         if (ret) {
1769                 btrfs_abort_transaction(trans, ret);
1770                 btrfs_end_transaction(trans);
1771         }
1772
1773 out:
1774         btrfs_free_path(path);
1775         if (!ret)
1776                 ret = btrfs_commit_transaction(trans);
1777         return ret;
1778 }
1779
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786                 u64 num_devices)
1787 {
1788         u64 all_avail;
1789         unsigned seq;
1790         int i;
1791
1792         do {
1793                 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795                 all_avail = fs_info->avail_data_alloc_bits |
1796                             fs_info->avail_system_alloc_bits |
1797                             fs_info->avail_metadata_alloc_bits;
1798         } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802                         continue;
1803
1804                 if (num_devices < btrfs_raid_array[i].devs_min) {
1805                         int ret = btrfs_raid_array[i].mindev_error;
1806
1807                         if (ret)
1808                                 return ret;
1809                 }
1810         }
1811
1812         return 0;
1813 }
1814
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818         struct btrfs_device *next_device;
1819
1820         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821                 if (next_device != device &&
1822                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823                     && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837                                      struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_fs_info *fs_info = device->fs_info;
1840         struct btrfs_device *next_device;
1841
1842         if (this_dev)
1843                 next_device = this_dev;
1844         else
1845                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846                                                                 device);
1847         ASSERT(next_device);
1848
1849         if (fs_info->sb->s_bdev &&
1850                         (fs_info->sb->s_bdev == device->bdev))
1851                 fs_info->sb->s_bdev = next_device->bdev;
1852
1853         if (fs_info->fs_devices->latest_bdev == device->bdev)
1854                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
1857 /*
1858  * Return btrfs_fs_devices::num_devices excluding the device that's being
1859  * currently replaced.
1860  */
1861 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1862 {
1863         u64 num_devices = fs_info->fs_devices->num_devices;
1864
1865         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1866         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867                 ASSERT(num_devices > 1);
1868                 num_devices--;
1869         }
1870         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1871
1872         return num_devices;
1873 }
1874
1875 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1876                 u64 devid)
1877 {
1878         struct btrfs_device *device;
1879         struct btrfs_fs_devices *cur_devices;
1880         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1881         u64 num_devices;
1882         int ret = 0;
1883
1884         mutex_lock(&uuid_mutex);
1885
1886         num_devices = btrfs_num_devices(fs_info);
1887
1888         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1889         if (ret)
1890                 goto out;
1891
1892         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1893                                            &device);
1894         if (ret)
1895                 goto out;
1896
1897         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1898                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1899                 goto out;
1900         }
1901
1902         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1903             fs_info->fs_devices->rw_devices == 1) {
1904                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1905                 goto out;
1906         }
1907
1908         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1909                 mutex_lock(&fs_info->chunk_mutex);
1910                 list_del_init(&device->dev_alloc_list);
1911                 device->fs_devices->rw_devices--;
1912                 mutex_unlock(&fs_info->chunk_mutex);
1913         }
1914
1915         mutex_unlock(&uuid_mutex);
1916         ret = btrfs_shrink_device(device, 0);
1917         mutex_lock(&uuid_mutex);
1918         if (ret)
1919                 goto error_undo;
1920
1921         /*
1922          * TODO: the superblock still includes this device in its num_devices
1923          * counter although write_all_supers() is not locked out. This
1924          * could give a filesystem state which requires a degraded mount.
1925          */
1926         ret = btrfs_rm_dev_item(fs_info, device);
1927         if (ret)
1928                 goto error_undo;
1929
1930         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1931         btrfs_scrub_cancel_dev(fs_info, device);
1932
1933         /*
1934          * the device list mutex makes sure that we don't change
1935          * the device list while someone else is writing out all
1936          * the device supers. Whoever is writing all supers, should
1937          * lock the device list mutex before getting the number of
1938          * devices in the super block (super_copy). Conversely,
1939          * whoever updates the number of devices in the super block
1940          * (super_copy) should hold the device list mutex.
1941          */
1942
1943         /*
1944          * In normal cases the cur_devices == fs_devices. But in case
1945          * of deleting a seed device, the cur_devices should point to
1946          * its own fs_devices listed under the fs_devices->seed.
1947          */
1948         cur_devices = device->fs_devices;
1949         mutex_lock(&fs_devices->device_list_mutex);
1950         list_del_rcu(&device->dev_list);
1951
1952         cur_devices->num_devices--;
1953         cur_devices->total_devices--;
1954         /* Update total_devices of the parent fs_devices if it's seed */
1955         if (cur_devices != fs_devices)
1956                 fs_devices->total_devices--;
1957
1958         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1959                 cur_devices->missing_devices--;
1960
1961         btrfs_assign_next_active_device(device, NULL);
1962
1963         if (device->bdev) {
1964                 cur_devices->open_devices--;
1965                 /* remove sysfs entry */
1966                 btrfs_sysfs_rm_device_link(fs_devices, device);
1967         }
1968
1969         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1970         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1971         mutex_unlock(&fs_devices->device_list_mutex);
1972
1973         /*
1974          * at this point, the device is zero sized and detached from
1975          * the devices list.  All that's left is to zero out the old
1976          * supers and free the device.
1977          */
1978         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1979                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1980
1981         btrfs_close_bdev(device);
1982         call_rcu(&device->rcu, free_device_rcu);
1983
1984         if (cur_devices->open_devices == 0) {
1985                 while (fs_devices) {
1986                         if (fs_devices->seed == cur_devices) {
1987                                 fs_devices->seed = cur_devices->seed;
1988                                 break;
1989                         }
1990                         fs_devices = fs_devices->seed;
1991                 }
1992                 cur_devices->seed = NULL;
1993                 close_fs_devices(cur_devices);
1994                 free_fs_devices(cur_devices);
1995         }
1996
1997 out:
1998         mutex_unlock(&uuid_mutex);
1999         return ret;
2000
2001 error_undo:
2002         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2003                 mutex_lock(&fs_info->chunk_mutex);
2004                 list_add(&device->dev_alloc_list,
2005                          &fs_devices->alloc_list);
2006                 device->fs_devices->rw_devices++;
2007                 mutex_unlock(&fs_info->chunk_mutex);
2008         }
2009         goto out;
2010 }
2011
2012 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2013 {
2014         struct btrfs_fs_devices *fs_devices;
2015
2016         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2017
2018         /*
2019          * in case of fs with no seed, srcdev->fs_devices will point
2020          * to fs_devices of fs_info. However when the dev being replaced is
2021          * a seed dev it will point to the seed's local fs_devices. In short
2022          * srcdev will have its correct fs_devices in both the cases.
2023          */
2024         fs_devices = srcdev->fs_devices;
2025
2026         list_del_rcu(&srcdev->dev_list);
2027         list_del(&srcdev->dev_alloc_list);
2028         fs_devices->num_devices--;
2029         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2030                 fs_devices->missing_devices--;
2031
2032         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2033                 fs_devices->rw_devices--;
2034
2035         if (srcdev->bdev)
2036                 fs_devices->open_devices--;
2037 }
2038
2039 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2040                                       struct btrfs_device *srcdev)
2041 {
2042         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2043
2044         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2045                 /* zero out the old super if it is writable */
2046                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2047         }
2048
2049         btrfs_close_bdev(srcdev);
2050         call_rcu(&srcdev->rcu, free_device_rcu);
2051
2052         /* if this is no devs we rather delete the fs_devices */
2053         if (!fs_devices->num_devices) {
2054                 struct btrfs_fs_devices *tmp_fs_devices;
2055
2056                 /*
2057                  * On a mounted FS, num_devices can't be zero unless it's a
2058                  * seed. In case of a seed device being replaced, the replace
2059                  * target added to the sprout FS, so there will be no more
2060                  * device left under the seed FS.
2061                  */
2062                 ASSERT(fs_devices->seeding);
2063
2064                 tmp_fs_devices = fs_info->fs_devices;
2065                 while (tmp_fs_devices) {
2066                         if (tmp_fs_devices->seed == fs_devices) {
2067                                 tmp_fs_devices->seed = fs_devices->seed;
2068                                 break;
2069                         }
2070                         tmp_fs_devices = tmp_fs_devices->seed;
2071                 }
2072                 fs_devices->seed = NULL;
2073                 close_fs_devices(fs_devices);
2074                 free_fs_devices(fs_devices);
2075         }
2076 }
2077
2078 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2079 {
2080         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2081
2082         WARN_ON(!tgtdev);
2083         mutex_lock(&fs_devices->device_list_mutex);
2084
2085         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2086
2087         if (tgtdev->bdev)
2088                 fs_devices->open_devices--;
2089
2090         fs_devices->num_devices--;
2091
2092         btrfs_assign_next_active_device(tgtdev, NULL);
2093
2094         list_del_rcu(&tgtdev->dev_list);
2095
2096         mutex_unlock(&fs_devices->device_list_mutex);
2097
2098         /*
2099          * The update_dev_time() with in btrfs_scratch_superblocks()
2100          * may lead to a call to btrfs_show_devname() which will try
2101          * to hold device_list_mutex. And here this device
2102          * is already out of device list, so we don't have to hold
2103          * the device_list_mutex lock.
2104          */
2105         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2106
2107         btrfs_close_bdev(tgtdev);
2108         call_rcu(&tgtdev->rcu, free_device_rcu);
2109 }
2110
2111 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2112                                      const char *device_path,
2113                                      struct btrfs_device **device)
2114 {
2115         int ret = 0;
2116         struct btrfs_super_block *disk_super;
2117         u64 devid;
2118         u8 *dev_uuid;
2119         struct block_device *bdev;
2120         struct buffer_head *bh;
2121
2122         *device = NULL;
2123         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2124                                     fs_info->bdev_holder, 0, &bdev, &bh);
2125         if (ret)
2126                 return ret;
2127         disk_super = (struct btrfs_super_block *)bh->b_data;
2128         devid = btrfs_stack_device_id(&disk_super->dev_item);
2129         dev_uuid = disk_super->dev_item.uuid;
2130         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2131         brelse(bh);
2132         if (!*device)
2133                 ret = -ENOENT;
2134         blkdev_put(bdev, FMODE_READ);
2135         return ret;
2136 }
2137
2138 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2139                                          const char *device_path,
2140                                          struct btrfs_device **device)
2141 {
2142         *device = NULL;
2143         if (strcmp(device_path, "missing") == 0) {
2144                 struct list_head *devices;
2145                 struct btrfs_device *tmp;
2146
2147                 devices = &fs_info->fs_devices->devices;
2148                 list_for_each_entry(tmp, devices, dev_list) {
2149                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2150                                         &tmp->dev_state) && !tmp->bdev) {
2151                                 *device = tmp;
2152                                 break;
2153                         }
2154                 }
2155
2156                 if (!*device)
2157                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2158
2159                 return 0;
2160         } else {
2161                 return btrfs_find_device_by_path(fs_info, device_path, device);
2162         }
2163 }
2164
2165 /*
2166  * Lookup a device given by device id, or the path if the id is 0.
2167  */
2168 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2169                                  const char *devpath,
2170                                  struct btrfs_device **device)
2171 {
2172         int ret;
2173
2174         if (devid) {
2175                 ret = 0;
2176                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2177                 if (!*device)
2178                         ret = -ENOENT;
2179         } else {
2180                 if (!devpath || !devpath[0])
2181                         return -EINVAL;
2182
2183                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2184                                                            device);
2185         }
2186         return ret;
2187 }
2188
2189 /*
2190  * does all the dirty work required for changing file system's UUID.
2191  */
2192 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2193 {
2194         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2195         struct btrfs_fs_devices *old_devices;
2196         struct btrfs_fs_devices *seed_devices;
2197         struct btrfs_super_block *disk_super = fs_info->super_copy;
2198         struct btrfs_device *device;
2199         u64 super_flags;
2200
2201         lockdep_assert_held(&uuid_mutex);
2202         if (!fs_devices->seeding)
2203                 return -EINVAL;
2204
2205         seed_devices = alloc_fs_devices(NULL);
2206         if (IS_ERR(seed_devices))
2207                 return PTR_ERR(seed_devices);
2208
2209         old_devices = clone_fs_devices(fs_devices);
2210         if (IS_ERR(old_devices)) {
2211                 kfree(seed_devices);
2212                 return PTR_ERR(old_devices);
2213         }
2214
2215         list_add(&old_devices->fs_list, &fs_uuids);
2216
2217         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218         seed_devices->opened = 1;
2219         INIT_LIST_HEAD(&seed_devices->devices);
2220         INIT_LIST_HEAD(&seed_devices->alloc_list);
2221         mutex_init(&seed_devices->device_list_mutex);
2222
2223         mutex_lock(&fs_devices->device_list_mutex);
2224         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225                               synchronize_rcu);
2226         list_for_each_entry(device, &seed_devices->devices, dev_list)
2227                 device->fs_devices = seed_devices;
2228
2229         mutex_lock(&fs_info->chunk_mutex);
2230         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2231         mutex_unlock(&fs_info->chunk_mutex);
2232
2233         fs_devices->seeding = 0;
2234         fs_devices->num_devices = 0;
2235         fs_devices->open_devices = 0;
2236         fs_devices->missing_devices = 0;
2237         fs_devices->rotating = 0;
2238         fs_devices->seed = seed_devices;
2239
2240         generate_random_uuid(fs_devices->fsid);
2241         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2242         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2243         mutex_unlock(&fs_devices->device_list_mutex);
2244
2245         super_flags = btrfs_super_flags(disk_super) &
2246                       ~BTRFS_SUPER_FLAG_SEEDING;
2247         btrfs_set_super_flags(disk_super, super_flags);
2248
2249         return 0;
2250 }
2251
2252 /*
2253  * Store the expected generation for seed devices in device items.
2254  */
2255 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2256                                struct btrfs_fs_info *fs_info)
2257 {
2258         struct btrfs_root *root = fs_info->chunk_root;
2259         struct btrfs_path *path;
2260         struct extent_buffer *leaf;
2261         struct btrfs_dev_item *dev_item;
2262         struct btrfs_device *device;
2263         struct btrfs_key key;
2264         u8 fs_uuid[BTRFS_FSID_SIZE];
2265         u8 dev_uuid[BTRFS_UUID_SIZE];
2266         u64 devid;
2267         int ret;
2268
2269         path = btrfs_alloc_path();
2270         if (!path)
2271                 return -ENOMEM;
2272
2273         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274         key.offset = 0;
2275         key.type = BTRFS_DEV_ITEM_KEY;
2276
2277         while (1) {
2278                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279                 if (ret < 0)
2280                         goto error;
2281
2282                 leaf = path->nodes[0];
2283 next_slot:
2284                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285                         ret = btrfs_next_leaf(root, path);
2286                         if (ret > 0)
2287                                 break;
2288                         if (ret < 0)
2289                                 goto error;
2290                         leaf = path->nodes[0];
2291                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292                         btrfs_release_path(path);
2293                         continue;
2294                 }
2295
2296                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298                     key.type != BTRFS_DEV_ITEM_KEY)
2299                         break;
2300
2301                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302                                           struct btrfs_dev_item);
2303                 devid = btrfs_device_id(leaf, dev_item);
2304                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2305                                    BTRFS_UUID_SIZE);
2306                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2307                                    BTRFS_FSID_SIZE);
2308                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2309                 BUG_ON(!device); /* Logic error */
2310
2311                 if (device->fs_devices->seeding) {
2312                         btrfs_set_device_generation(leaf, dev_item,
2313                                                     device->generation);
2314                         btrfs_mark_buffer_dirty(leaf);
2315                 }
2316
2317                 path->slots[0]++;
2318                 goto next_slot;
2319         }
2320         ret = 0;
2321 error:
2322         btrfs_free_path(path);
2323         return ret;
2324 }
2325
2326 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2327 {
2328         struct btrfs_root *root = fs_info->dev_root;
2329         struct request_queue *q;
2330         struct btrfs_trans_handle *trans;
2331         struct btrfs_device *device;
2332         struct block_device *bdev;
2333         struct super_block *sb = fs_info->sb;
2334         struct rcu_string *name;
2335         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2336         u64 orig_super_total_bytes;
2337         u64 orig_super_num_devices;
2338         int seeding_dev = 0;
2339         int ret = 0;
2340         bool unlocked = false;
2341
2342         if (sb_rdonly(sb) && !fs_devices->seeding)
2343                 return -EROFS;
2344
2345         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2346                                   fs_info->bdev_holder);
2347         if (IS_ERR(bdev))
2348                 return PTR_ERR(bdev);
2349
2350         if (fs_devices->seeding) {
2351                 seeding_dev = 1;
2352                 down_write(&sb->s_umount);
2353                 mutex_lock(&uuid_mutex);
2354         }
2355
2356         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2357
2358         mutex_lock(&fs_devices->device_list_mutex);
2359         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2360                 if (device->bdev == bdev) {
2361                         ret = -EEXIST;
2362                         mutex_unlock(
2363                                 &fs_devices->device_list_mutex);
2364                         goto error;
2365                 }
2366         }
2367         mutex_unlock(&fs_devices->device_list_mutex);
2368
2369         device = btrfs_alloc_device(fs_info, NULL, NULL);
2370         if (IS_ERR(device)) {
2371                 /* we can safely leave the fs_devices entry around */
2372                 ret = PTR_ERR(device);
2373                 goto error;
2374         }
2375
2376         name = rcu_string_strdup(device_path, GFP_KERNEL);
2377         if (!name) {
2378                 ret = -ENOMEM;
2379                 goto error_free_device;
2380         }
2381         rcu_assign_pointer(device->name, name);
2382
2383         trans = btrfs_start_transaction(root, 0);
2384         if (IS_ERR(trans)) {
2385                 ret = PTR_ERR(trans);
2386                 goto error_free_device;
2387         }
2388
2389         q = bdev_get_queue(bdev);
2390         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2391         device->generation = trans->transid;
2392         device->io_width = fs_info->sectorsize;
2393         device->io_align = fs_info->sectorsize;
2394         device->sector_size = fs_info->sectorsize;
2395         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2396                                          fs_info->sectorsize);
2397         device->disk_total_bytes = device->total_bytes;
2398         device->commit_total_bytes = device->total_bytes;
2399         device->fs_info = fs_info;
2400         device->bdev = bdev;
2401         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2402         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2403         device->mode = FMODE_EXCL;
2404         device->dev_stats_valid = 1;
2405         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2406
2407         if (seeding_dev) {
2408                 sb->s_flags &= ~SB_RDONLY;
2409                 ret = btrfs_prepare_sprout(fs_info);
2410                 if (ret) {
2411                         btrfs_abort_transaction(trans, ret);
2412                         goto error_trans;
2413                 }
2414         }
2415
2416         device->fs_devices = fs_devices;
2417
2418         mutex_lock(&fs_devices->device_list_mutex);
2419         mutex_lock(&fs_info->chunk_mutex);
2420         list_add_rcu(&device->dev_list, &fs_devices->devices);
2421         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2422         fs_devices->num_devices++;
2423         fs_devices->open_devices++;
2424         fs_devices->rw_devices++;
2425         fs_devices->total_devices++;
2426         fs_devices->total_rw_bytes += device->total_bytes;
2427
2428         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2429
2430         if (!blk_queue_nonrot(q))
2431                 fs_devices->rotating = 1;
2432
2433         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2434         btrfs_set_super_total_bytes(fs_info->super_copy,
2435                 round_down(orig_super_total_bytes + device->total_bytes,
2436                            fs_info->sectorsize));
2437
2438         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2439         btrfs_set_super_num_devices(fs_info->super_copy,
2440                                     orig_super_num_devices + 1);
2441
2442         /* add sysfs device entry */
2443         btrfs_sysfs_add_device_link(fs_devices, device);
2444
2445         /*
2446          * we've got more storage, clear any full flags on the space
2447          * infos
2448          */
2449         btrfs_clear_space_info_full(fs_info);
2450
2451         mutex_unlock(&fs_info->chunk_mutex);
2452         mutex_unlock(&fs_devices->device_list_mutex);
2453
2454         if (seeding_dev) {
2455                 mutex_lock(&fs_info->chunk_mutex);
2456                 ret = init_first_rw_device(trans, fs_info);
2457                 mutex_unlock(&fs_info->chunk_mutex);
2458                 if (ret) {
2459                         btrfs_abort_transaction(trans, ret);
2460                         goto error_sysfs;
2461                 }
2462         }
2463
2464         ret = btrfs_add_dev_item(trans, device);
2465         if (ret) {
2466                 btrfs_abort_transaction(trans, ret);
2467                 goto error_sysfs;
2468         }
2469
2470         if (seeding_dev) {
2471                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2472
2473                 ret = btrfs_finish_sprout(trans, fs_info);
2474                 if (ret) {
2475                         btrfs_abort_transaction(trans, ret);
2476                         goto error_sysfs;
2477                 }
2478
2479                 /* Sprouting would change fsid of the mounted root,
2480                  * so rename the fsid on the sysfs
2481                  */
2482                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2483                                                 fs_info->fsid);
2484                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2485                         btrfs_warn(fs_info,
2486                                    "sysfs: failed to create fsid for sprout");
2487         }
2488
2489         ret = btrfs_commit_transaction(trans);
2490
2491         if (seeding_dev) {
2492                 mutex_unlock(&uuid_mutex);
2493                 up_write(&sb->s_umount);
2494                 unlocked = true;
2495
2496                 if (ret) /* transaction commit */
2497                         return ret;
2498
2499                 ret = btrfs_relocate_sys_chunks(fs_info);
2500                 if (ret < 0)
2501                         btrfs_handle_fs_error(fs_info, ret,
2502                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2503                 trans = btrfs_attach_transaction(root);
2504                 if (IS_ERR(trans)) {
2505                         if (PTR_ERR(trans) == -ENOENT)
2506                                 return 0;
2507                         ret = PTR_ERR(trans);
2508                         trans = NULL;
2509                         goto error_sysfs;
2510                 }
2511                 ret = btrfs_commit_transaction(trans);
2512         }
2513
2514         /* Update ctime/mtime for libblkid */
2515         update_dev_time(device_path);
2516         return ret;
2517
2518 error_sysfs:
2519         btrfs_sysfs_rm_device_link(fs_devices, device);
2520         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2521         mutex_lock(&fs_info->chunk_mutex);
2522         list_del_rcu(&device->dev_list);
2523         list_del(&device->dev_alloc_list);
2524         fs_info->fs_devices->num_devices--;
2525         fs_info->fs_devices->open_devices--;
2526         fs_info->fs_devices->rw_devices--;
2527         fs_info->fs_devices->total_devices--;
2528         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2529         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2530         btrfs_set_super_total_bytes(fs_info->super_copy,
2531                                     orig_super_total_bytes);
2532         btrfs_set_super_num_devices(fs_info->super_copy,
2533                                     orig_super_num_devices);
2534         mutex_unlock(&fs_info->chunk_mutex);
2535         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2536 error_trans:
2537         if (seeding_dev)
2538                 sb->s_flags |= SB_RDONLY;
2539         if (trans)
2540                 btrfs_end_transaction(trans);
2541 error_free_device:
2542         btrfs_free_device(device);
2543 error:
2544         blkdev_put(bdev, FMODE_EXCL);
2545         if (seeding_dev && !unlocked) {
2546                 mutex_unlock(&uuid_mutex);
2547                 up_write(&sb->s_umount);
2548         }
2549         return ret;
2550 }
2551
2552 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2553                                         struct btrfs_device *device)
2554 {
2555         int ret;
2556         struct btrfs_path *path;
2557         struct btrfs_root *root = device->fs_info->chunk_root;
2558         struct btrfs_dev_item *dev_item;
2559         struct extent_buffer *leaf;
2560         struct btrfs_key key;
2561
2562         path = btrfs_alloc_path();
2563         if (!path)
2564                 return -ENOMEM;
2565
2566         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2567         key.type = BTRFS_DEV_ITEM_KEY;
2568         key.offset = device->devid;
2569
2570         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2571         if (ret < 0)
2572                 goto out;
2573
2574         if (ret > 0) {
2575                 ret = -ENOENT;
2576                 goto out;
2577         }
2578
2579         leaf = path->nodes[0];
2580         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2581
2582         btrfs_set_device_id(leaf, dev_item, device->devid);
2583         btrfs_set_device_type(leaf, dev_item, device->type);
2584         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2585         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2586         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2587         btrfs_set_device_total_bytes(leaf, dev_item,
2588                                      btrfs_device_get_disk_total_bytes(device));
2589         btrfs_set_device_bytes_used(leaf, dev_item,
2590                                     btrfs_device_get_bytes_used(device));
2591         btrfs_mark_buffer_dirty(leaf);
2592
2593 out:
2594         btrfs_free_path(path);
2595         return ret;
2596 }
2597
2598 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2599                       struct btrfs_device *device, u64 new_size)
2600 {
2601         struct btrfs_fs_info *fs_info = device->fs_info;
2602         struct btrfs_super_block *super_copy = fs_info->super_copy;
2603         struct btrfs_fs_devices *fs_devices;
2604         u64 old_total;
2605         u64 diff;
2606
2607         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2608                 return -EACCES;
2609
2610         new_size = round_down(new_size, fs_info->sectorsize);
2611
2612         mutex_lock(&fs_info->chunk_mutex);
2613         old_total = btrfs_super_total_bytes(super_copy);
2614         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2615
2616         if (new_size <= device->total_bytes ||
2617             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2618                 mutex_unlock(&fs_info->chunk_mutex);
2619                 return -EINVAL;
2620         }
2621
2622         fs_devices = fs_info->fs_devices;
2623
2624         btrfs_set_super_total_bytes(super_copy,
2625                         round_down(old_total + diff, fs_info->sectorsize));
2626         device->fs_devices->total_rw_bytes += diff;
2627
2628         btrfs_device_set_total_bytes(device, new_size);
2629         btrfs_device_set_disk_total_bytes(device, new_size);
2630         btrfs_clear_space_info_full(device->fs_info);
2631         if (list_empty(&device->resized_list))
2632                 list_add_tail(&device->resized_list,
2633                               &fs_devices->resized_devices);
2634         mutex_unlock(&fs_info->chunk_mutex);
2635
2636         return btrfs_update_device(trans, device);
2637 }
2638
2639 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2640 {
2641         struct btrfs_fs_info *fs_info = trans->fs_info;
2642         struct btrfs_root *root = fs_info->chunk_root;
2643         int ret;
2644         struct btrfs_path *path;
2645         struct btrfs_key key;
2646
2647         path = btrfs_alloc_path();
2648         if (!path)
2649                 return -ENOMEM;
2650
2651         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2652         key.offset = chunk_offset;
2653         key.type = BTRFS_CHUNK_ITEM_KEY;
2654
2655         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2656         if (ret < 0)
2657                 goto out;
2658         else if (ret > 0) { /* Logic error or corruption */
2659                 btrfs_handle_fs_error(fs_info, -ENOENT,
2660                                       "Failed lookup while freeing chunk.");
2661                 ret = -ENOENT;
2662                 goto out;
2663         }
2664
2665         ret = btrfs_del_item(trans, root, path);
2666         if (ret < 0)
2667                 btrfs_handle_fs_error(fs_info, ret,
2668                                       "Failed to delete chunk item.");
2669 out:
2670         btrfs_free_path(path);
2671         return ret;
2672 }
2673
2674 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2675 {
2676         struct btrfs_super_block *super_copy = fs_info->super_copy;
2677         struct btrfs_disk_key *disk_key;
2678         struct btrfs_chunk *chunk;
2679         u8 *ptr;
2680         int ret = 0;
2681         u32 num_stripes;
2682         u32 array_size;
2683         u32 len = 0;
2684         u32 cur;
2685         struct btrfs_key key;
2686
2687         mutex_lock(&fs_info->chunk_mutex);
2688         array_size = btrfs_super_sys_array_size(super_copy);
2689
2690         ptr = super_copy->sys_chunk_array;
2691         cur = 0;
2692
2693         while (cur < array_size) {
2694                 disk_key = (struct btrfs_disk_key *)ptr;
2695                 btrfs_disk_key_to_cpu(&key, disk_key);
2696
2697                 len = sizeof(*disk_key);
2698
2699                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2700                         chunk = (struct btrfs_chunk *)(ptr + len);
2701                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2702                         len += btrfs_chunk_item_size(num_stripes);
2703                 } else {
2704                         ret = -EIO;
2705                         break;
2706                 }
2707                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2708                     key.offset == chunk_offset) {
2709                         memmove(ptr, ptr + len, array_size - (cur + len));
2710                         array_size -= len;
2711                         btrfs_set_super_sys_array_size(super_copy, array_size);
2712                 } else {
2713                         ptr += len;
2714                         cur += len;
2715                 }
2716         }
2717         mutex_unlock(&fs_info->chunk_mutex);
2718         return ret;
2719 }
2720
2721 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2722                                         u64 logical, u64 length)
2723 {
2724         struct extent_map_tree *em_tree;
2725         struct extent_map *em;
2726
2727         em_tree = &fs_info->mapping_tree.map_tree;
2728         read_lock(&em_tree->lock);
2729         em = lookup_extent_mapping(em_tree, logical, length);
2730         read_unlock(&em_tree->lock);
2731
2732         if (!em) {
2733                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2734                            logical, length);
2735                 return ERR_PTR(-EINVAL);
2736         }
2737
2738         if (em->start > logical || em->start + em->len < logical) {
2739                 btrfs_crit(fs_info,
2740                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2741                            logical, length, em->start, em->start + em->len);
2742                 free_extent_map(em);
2743                 return ERR_PTR(-EINVAL);
2744         }
2745
2746         /* callers are responsible for dropping em's ref. */
2747         return em;
2748 }
2749
2750 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2751 {
2752         struct btrfs_fs_info *fs_info = trans->fs_info;
2753         struct extent_map *em;
2754         struct map_lookup *map;
2755         u64 dev_extent_len = 0;
2756         int i, ret = 0;
2757         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2758
2759         em = get_chunk_map(fs_info, chunk_offset, 1);
2760         if (IS_ERR(em)) {
2761                 /*
2762                  * This is a logic error, but we don't want to just rely on the
2763                  * user having built with ASSERT enabled, so if ASSERT doesn't
2764                  * do anything we still error out.
2765                  */
2766                 ASSERT(0);
2767                 return PTR_ERR(em);
2768         }
2769         map = em->map_lookup;
2770         mutex_lock(&fs_info->chunk_mutex);
2771         check_system_chunk(trans, map->type);
2772         mutex_unlock(&fs_info->chunk_mutex);
2773
2774         /*
2775          * Take the device list mutex to prevent races with the final phase of
2776          * a device replace operation that replaces the device object associated
2777          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2778          */
2779         mutex_lock(&fs_devices->device_list_mutex);
2780         for (i = 0; i < map->num_stripes; i++) {
2781                 struct btrfs_device *device = map->stripes[i].dev;
2782                 ret = btrfs_free_dev_extent(trans, device,
2783                                             map->stripes[i].physical,
2784                                             &dev_extent_len);
2785                 if (ret) {
2786                         mutex_unlock(&fs_devices->device_list_mutex);
2787                         btrfs_abort_transaction(trans, ret);
2788                         goto out;
2789                 }
2790
2791                 if (device->bytes_used > 0) {
2792                         mutex_lock(&fs_info->chunk_mutex);
2793                         btrfs_device_set_bytes_used(device,
2794                                         device->bytes_used - dev_extent_len);
2795                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2796                         btrfs_clear_space_info_full(fs_info);
2797                         mutex_unlock(&fs_info->chunk_mutex);
2798                 }
2799
2800                 if (map->stripes[i].dev) {
2801                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2802                         if (ret) {
2803                                 mutex_unlock(&fs_devices->device_list_mutex);
2804                                 btrfs_abort_transaction(trans, ret);
2805                                 goto out;
2806                         }
2807                 }
2808         }
2809         mutex_unlock(&fs_devices->device_list_mutex);
2810
2811         ret = btrfs_free_chunk(trans, chunk_offset);
2812         if (ret) {
2813                 btrfs_abort_transaction(trans, ret);
2814                 goto out;
2815         }
2816
2817         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2818
2819         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2820                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2821                 if (ret) {
2822                         btrfs_abort_transaction(trans, ret);
2823                         goto out;
2824                 }
2825         }
2826
2827         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2828         if (ret) {
2829                 btrfs_abort_transaction(trans, ret);
2830                 goto out;
2831         }
2832
2833 out:
2834         /* once for us */
2835         free_extent_map(em);
2836         return ret;
2837 }
2838
2839 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2840 {
2841         struct btrfs_root *root = fs_info->chunk_root;
2842         struct btrfs_trans_handle *trans;
2843         int ret;
2844
2845         /*
2846          * Prevent races with automatic removal of unused block groups.
2847          * After we relocate and before we remove the chunk with offset
2848          * chunk_offset, automatic removal of the block group can kick in,
2849          * resulting in a failure when calling btrfs_remove_chunk() below.
2850          *
2851          * Make sure to acquire this mutex before doing a tree search (dev
2852          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2853          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2854          * we release the path used to search the chunk/dev tree and before
2855          * the current task acquires this mutex and calls us.
2856          */
2857         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2858
2859         ret = btrfs_can_relocate(fs_info, chunk_offset);
2860         if (ret)
2861                 return -ENOSPC;
2862
2863         /* step one, relocate all the extents inside this chunk */
2864         btrfs_scrub_pause(fs_info);
2865         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2866         btrfs_scrub_continue(fs_info);
2867         if (ret)
2868                 return ret;
2869
2870         /*
2871          * We add the kobjects here (and after forcing data chunk creation)
2872          * since relocation is the only place we'll create chunks of a new
2873          * type at runtime.  The only place where we'll remove the last
2874          * chunk of a type is the call immediately below this one.  Even
2875          * so, we're protected against races with the cleaner thread since
2876          * we're covered by the delete_unused_bgs_mutex.
2877          */
2878         btrfs_add_raid_kobjects(fs_info);
2879
2880         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2881                                                      chunk_offset);
2882         if (IS_ERR(trans)) {
2883                 ret = PTR_ERR(trans);
2884                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2885                 return ret;
2886         }
2887
2888         /*
2889          * step two, delete the device extents and the
2890          * chunk tree entries
2891          */
2892         ret = btrfs_remove_chunk(trans, chunk_offset);
2893         btrfs_end_transaction(trans);
2894         return ret;
2895 }
2896
2897 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2898 {
2899         struct btrfs_root *chunk_root = fs_info->chunk_root;
2900         struct btrfs_path *path;
2901         struct extent_buffer *leaf;
2902         struct btrfs_chunk *chunk;
2903         struct btrfs_key key;
2904         struct btrfs_key found_key;
2905         u64 chunk_type;
2906         bool retried = false;
2907         int failed = 0;
2908         int ret;
2909
2910         path = btrfs_alloc_path();
2911         if (!path)
2912                 return -ENOMEM;
2913
2914 again:
2915         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2916         key.offset = (u64)-1;
2917         key.type = BTRFS_CHUNK_ITEM_KEY;
2918
2919         while (1) {
2920                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2921                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2922                 if (ret < 0) {
2923                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2924                         goto error;
2925                 }
2926                 BUG_ON(ret == 0); /* Corruption */
2927
2928                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2929                                           key.type);
2930                 if (ret)
2931                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2932                 if (ret < 0)
2933                         goto error;
2934                 if (ret > 0)
2935                         break;
2936
2937                 leaf = path->nodes[0];
2938                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2939
2940                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2941                                        struct btrfs_chunk);
2942                 chunk_type = btrfs_chunk_type(leaf, chunk);
2943                 btrfs_release_path(path);
2944
2945                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2946                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2947                         if (ret == -ENOSPC)
2948                                 failed++;
2949                         else
2950                                 BUG_ON(ret);
2951                 }
2952                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2953
2954                 if (found_key.offset == 0)
2955                         break;
2956                 key.offset = found_key.offset - 1;
2957         }
2958         ret = 0;
2959         if (failed && !retried) {
2960                 failed = 0;
2961                 retried = true;
2962                 goto again;
2963         } else if (WARN_ON(failed && retried)) {
2964                 ret = -ENOSPC;
2965         }
2966 error:
2967         btrfs_free_path(path);
2968         return ret;
2969 }
2970
2971 /*
2972  * return 1 : allocate a data chunk successfully,
2973  * return <0: errors during allocating a data chunk,
2974  * return 0 : no need to allocate a data chunk.
2975  */
2976 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2977                                       u64 chunk_offset)
2978 {
2979         struct btrfs_block_group_cache *cache;
2980         u64 bytes_used;
2981         u64 chunk_type;
2982
2983         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2984         ASSERT(cache);
2985         chunk_type = cache->flags;
2986         btrfs_put_block_group(cache);
2987
2988         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2989                 spin_lock(&fs_info->data_sinfo->lock);
2990                 bytes_used = fs_info->data_sinfo->bytes_used;
2991                 spin_unlock(&fs_info->data_sinfo->lock);
2992
2993                 if (!bytes_used) {
2994                         struct btrfs_trans_handle *trans;
2995                         int ret;
2996
2997                         trans = btrfs_join_transaction(fs_info->tree_root);
2998                         if (IS_ERR(trans))
2999                                 return PTR_ERR(trans);
3000
3001                         ret = btrfs_force_chunk_alloc(trans,
3002                                                       BTRFS_BLOCK_GROUP_DATA);
3003                         btrfs_end_transaction(trans);
3004                         if (ret < 0)
3005                                 return ret;
3006
3007                         btrfs_add_raid_kobjects(fs_info);
3008
3009                         return 1;
3010                 }
3011         }
3012         return 0;
3013 }
3014
3015 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3016                                struct btrfs_balance_control *bctl)
3017 {
3018         struct btrfs_root *root = fs_info->tree_root;
3019         struct btrfs_trans_handle *trans;
3020         struct btrfs_balance_item *item;
3021         struct btrfs_disk_balance_args disk_bargs;
3022         struct btrfs_path *path;
3023         struct extent_buffer *leaf;
3024         struct btrfs_key key;
3025         int ret, err;
3026
3027         path = btrfs_alloc_path();
3028         if (!path)
3029                 return -ENOMEM;
3030
3031         trans = btrfs_start_transaction(root, 0);
3032         if (IS_ERR(trans)) {
3033                 btrfs_free_path(path);
3034                 return PTR_ERR(trans);
3035         }
3036
3037         key.objectid = BTRFS_BALANCE_OBJECTID;
3038         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3039         key.offset = 0;
3040
3041         ret = btrfs_insert_empty_item(trans, root, path, &key,
3042                                       sizeof(*item));
3043         if (ret)
3044                 goto out;
3045
3046         leaf = path->nodes[0];
3047         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3048
3049         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3050
3051         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3052         btrfs_set_balance_data(leaf, item, &disk_bargs);
3053         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3054         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3055         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3056         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3057
3058         btrfs_set_balance_flags(leaf, item, bctl->flags);
3059
3060         btrfs_mark_buffer_dirty(leaf);
3061 out:
3062         btrfs_free_path(path);
3063         err = btrfs_commit_transaction(trans);
3064         if (err && !ret)
3065                 ret = err;
3066         return ret;
3067 }
3068
3069 static int del_balance_item(struct btrfs_fs_info *fs_info)
3070 {
3071         struct btrfs_root *root = fs_info->tree_root;
3072         struct btrfs_trans_handle *trans;
3073         struct btrfs_path *path;
3074         struct btrfs_key key;
3075         int ret, err;
3076
3077         path = btrfs_alloc_path();
3078         if (!path)
3079                 return -ENOMEM;
3080
3081         trans = btrfs_start_transaction(root, 0);
3082         if (IS_ERR(trans)) {
3083                 btrfs_free_path(path);
3084                 return PTR_ERR(trans);
3085         }
3086
3087         key.objectid = BTRFS_BALANCE_OBJECTID;
3088         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3089         key.offset = 0;
3090
3091         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3092         if (ret < 0)
3093                 goto out;
3094         if (ret > 0) {
3095                 ret = -ENOENT;
3096                 goto out;
3097         }
3098
3099         ret = btrfs_del_item(trans, root, path);
3100 out:
3101         btrfs_free_path(path);
3102         err = btrfs_commit_transaction(trans);
3103         if (err && !ret)
3104                 ret = err;
3105         return ret;
3106 }
3107
3108 /*
3109  * This is a heuristic used to reduce the number of chunks balanced on
3110  * resume after balance was interrupted.
3111  */
3112 static void update_balance_args(struct btrfs_balance_control *bctl)
3113 {
3114         /*
3115          * Turn on soft mode for chunk types that were being converted.
3116          */
3117         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3118                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3119         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3120                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3121         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3122                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3123
3124         /*
3125          * Turn on usage filter if is not already used.  The idea is
3126          * that chunks that we have already balanced should be
3127          * reasonably full.  Don't do it for chunks that are being
3128          * converted - that will keep us from relocating unconverted
3129          * (albeit full) chunks.
3130          */
3131         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135                 bctl->data.usage = 90;
3136         }
3137         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141                 bctl->sys.usage = 90;
3142         }
3143         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147                 bctl->meta.usage = 90;
3148         }
3149 }
3150
3151 /*
3152  * Clear the balance status in fs_info and delete the balance item from disk.
3153  */
3154 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3155 {
3156         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3157         int ret;
3158
3159         BUG_ON(!fs_info->balance_ctl);
3160
3161         spin_lock(&fs_info->balance_lock);
3162         fs_info->balance_ctl = NULL;
3163         spin_unlock(&fs_info->balance_lock);
3164
3165         kfree(bctl);
3166         ret = del_balance_item(fs_info);
3167         if (ret)
3168                 btrfs_handle_fs_error(fs_info, ret, NULL);
3169 }
3170
3171 /*
3172  * Balance filters.  Return 1 if chunk should be filtered out
3173  * (should not be balanced).
3174  */
3175 static int chunk_profiles_filter(u64 chunk_type,
3176                                  struct btrfs_balance_args *bargs)
3177 {
3178         chunk_type = chunk_to_extended(chunk_type) &
3179                                 BTRFS_EXTENDED_PROFILE_MASK;
3180
3181         if (bargs->profiles & chunk_type)
3182                 return 0;
3183
3184         return 1;
3185 }
3186
3187 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3188                               struct btrfs_balance_args *bargs)
3189 {
3190         struct btrfs_block_group_cache *cache;
3191         u64 chunk_used;
3192         u64 user_thresh_min;
3193         u64 user_thresh_max;
3194         int ret = 1;
3195
3196         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3197         chunk_used = btrfs_block_group_used(&cache->item);
3198
3199         if (bargs->usage_min == 0)
3200                 user_thresh_min = 0;
3201         else
3202                 user_thresh_min = div_factor_fine(cache->key.offset,
3203                                         bargs->usage_min);
3204
3205         if (bargs->usage_max == 0)
3206                 user_thresh_max = 1;
3207         else if (bargs->usage_max > 100)
3208                 user_thresh_max = cache->key.offset;
3209         else
3210                 user_thresh_max = div_factor_fine(cache->key.offset,
3211                                         bargs->usage_max);
3212
3213         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3214                 ret = 0;
3215
3216         btrfs_put_block_group(cache);
3217         return ret;
3218 }
3219
3220 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3221                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3222 {
3223         struct btrfs_block_group_cache *cache;
3224         u64 chunk_used, user_thresh;
3225         int ret = 1;
3226
3227         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228         chunk_used = btrfs_block_group_used(&cache->item);
3229
3230         if (bargs->usage_min == 0)
3231                 user_thresh = 1;
3232         else if (bargs->usage > 100)
3233                 user_thresh = cache->key.offset;
3234         else
3235                 user_thresh = div_factor_fine(cache->key.offset,
3236                                               bargs->usage);
3237
3238         if (chunk_used < user_thresh)
3239                 ret = 0;
3240
3241         btrfs_put_block_group(cache);
3242         return ret;
3243 }
3244
3245 static int chunk_devid_filter(struct extent_buffer *leaf,
3246                               struct btrfs_chunk *chunk,
3247                               struct btrfs_balance_args *bargs)
3248 {
3249         struct btrfs_stripe *stripe;
3250         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3251         int i;
3252
3253         for (i = 0; i < num_stripes; i++) {
3254                 stripe = btrfs_stripe_nr(chunk, i);
3255                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3256                         return 0;
3257         }
3258
3259         return 1;
3260 }
3261
3262 /* [pstart, pend) */
3263 static int chunk_drange_filter(struct extent_buffer *leaf,
3264                                struct btrfs_chunk *chunk,
3265                                struct btrfs_balance_args *bargs)
3266 {
3267         struct btrfs_stripe *stripe;
3268         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3269         u64 stripe_offset;
3270         u64 stripe_length;
3271         int factor;
3272         int i;
3273
3274         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3275                 return 0;
3276
3277         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3278              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3279                 factor = num_stripes / 2;
3280         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3281                 factor = num_stripes - 1;
3282         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3283                 factor = num_stripes - 2;
3284         } else {
3285                 factor = num_stripes;
3286         }
3287
3288         for (i = 0; i < num_stripes; i++) {
3289                 stripe = btrfs_stripe_nr(chunk, i);
3290                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3291                         continue;
3292
3293                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3294                 stripe_length = btrfs_chunk_length(leaf, chunk);
3295                 stripe_length = div_u64(stripe_length, factor);
3296
3297                 if (stripe_offset < bargs->pend &&
3298                     stripe_offset + stripe_length > bargs->pstart)
3299                         return 0;
3300         }
3301
3302         return 1;
3303 }
3304
3305 /* [vstart, vend) */
3306 static int chunk_vrange_filter(struct extent_buffer *leaf,
3307                                struct btrfs_chunk *chunk,
3308                                u64 chunk_offset,
3309                                struct btrfs_balance_args *bargs)
3310 {
3311         if (chunk_offset < bargs->vend &&
3312             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3313                 /* at least part of the chunk is inside this vrange */
3314                 return 0;
3315
3316         return 1;
3317 }
3318
3319 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3320                                struct btrfs_chunk *chunk,
3321                                struct btrfs_balance_args *bargs)
3322 {
3323         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3324
3325         if (bargs->stripes_min <= num_stripes
3326                         && num_stripes <= bargs->stripes_max)
3327                 return 0;
3328
3329         return 1;
3330 }
3331
3332 static int chunk_soft_convert_filter(u64 chunk_type,
3333                                      struct btrfs_balance_args *bargs)
3334 {
3335         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3336                 return 0;
3337
3338         chunk_type = chunk_to_extended(chunk_type) &
3339                                 BTRFS_EXTENDED_PROFILE_MASK;
3340
3341         if (bargs->target == chunk_type)
3342                 return 1;
3343
3344         return 0;
3345 }
3346
3347 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3348                                 struct extent_buffer *leaf,
3349                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3350 {
3351         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3352         struct btrfs_balance_args *bargs = NULL;
3353         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3354
3355         /* type filter */
3356         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3357               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3358                 return 0;
3359         }
3360
3361         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3362                 bargs = &bctl->data;
3363         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3364                 bargs = &bctl->sys;
3365         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3366                 bargs = &bctl->meta;
3367
3368         /* profiles filter */
3369         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3370             chunk_profiles_filter(chunk_type, bargs)) {
3371                 return 0;
3372         }
3373
3374         /* usage filter */
3375         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3376             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3377                 return 0;
3378         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3379             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3380                 return 0;
3381         }
3382
3383         /* devid filter */
3384         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3385             chunk_devid_filter(leaf, chunk, bargs)) {
3386                 return 0;
3387         }
3388
3389         /* drange filter, makes sense only with devid filter */
3390         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3391             chunk_drange_filter(leaf, chunk, bargs)) {
3392                 return 0;
3393         }
3394
3395         /* vrange filter */
3396         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3397             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3398                 return 0;
3399         }
3400
3401         /* stripes filter */
3402         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3403             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3404                 return 0;
3405         }
3406
3407         /* soft profile changing mode */
3408         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3409             chunk_soft_convert_filter(chunk_type, bargs)) {
3410                 return 0;
3411         }
3412
3413         /*
3414          * limited by count, must be the last filter
3415          */
3416         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3417                 if (bargs->limit == 0)
3418                         return 0;
3419                 else
3420                         bargs->limit--;
3421         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3422                 /*
3423                  * Same logic as the 'limit' filter; the minimum cannot be
3424                  * determined here because we do not have the global information
3425                  * about the count of all chunks that satisfy the filters.
3426                  */
3427                 if (bargs->limit_max == 0)
3428                         return 0;
3429                 else
3430                         bargs->limit_max--;
3431         }
3432
3433         return 1;
3434 }
3435
3436 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3437 {
3438         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3439         struct btrfs_root *chunk_root = fs_info->chunk_root;
3440         struct btrfs_root *dev_root = fs_info->dev_root;
3441         struct list_head *devices;
3442         struct btrfs_device *device;
3443         u64 old_size;
3444         u64 size_to_free;
3445         u64 chunk_type;
3446         struct btrfs_chunk *chunk;
3447         struct btrfs_path *path = NULL;
3448         struct btrfs_key key;
3449         struct btrfs_key found_key;
3450         struct btrfs_trans_handle *trans;
3451         struct extent_buffer *leaf;
3452         int slot;
3453         int ret;
3454         int enospc_errors = 0;
3455         bool counting = true;
3456         /* The single value limit and min/max limits use the same bytes in the */
3457         u64 limit_data = bctl->data.limit;
3458         u64 limit_meta = bctl->meta.limit;
3459         u64 limit_sys = bctl->sys.limit;
3460         u32 count_data = 0;
3461         u32 count_meta = 0;
3462         u32 count_sys = 0;
3463         int chunk_reserved = 0;
3464
3465         /* step one make some room on all the devices */
3466         devices = &fs_info->fs_devices->devices;
3467         list_for_each_entry(device, devices, dev_list) {
3468                 old_size = btrfs_device_get_total_bytes(device);
3469                 size_to_free = div_factor(old_size, 1);
3470                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3471                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3472                     btrfs_device_get_total_bytes(device) -
3473                     btrfs_device_get_bytes_used(device) > size_to_free ||
3474                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3475                         continue;
3476
3477                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3478                 if (ret == -ENOSPC)
3479                         break;
3480                 if (ret) {
3481                         /* btrfs_shrink_device never returns ret > 0 */
3482                         WARN_ON(ret > 0);
3483                         goto error;
3484                 }
3485
3486                 trans = btrfs_start_transaction(dev_root, 0);
3487                 if (IS_ERR(trans)) {
3488                         ret = PTR_ERR(trans);
3489                         btrfs_info_in_rcu(fs_info,
3490                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3491                                           rcu_str_deref(device->name), ret,
3492                                           old_size, old_size - size_to_free);
3493                         goto error;
3494                 }
3495
3496                 ret = btrfs_grow_device(trans, device, old_size);
3497                 if (ret) {
3498                         btrfs_end_transaction(trans);
3499                         /* btrfs_grow_device never returns ret > 0 */
3500                         WARN_ON(ret > 0);
3501                         btrfs_info_in_rcu(fs_info,
3502                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3503                                           rcu_str_deref(device->name), ret,
3504                                           old_size, old_size - size_to_free);
3505                         goto error;
3506                 }
3507
3508                 btrfs_end_transaction(trans);
3509         }
3510
3511         /* step two, relocate all the chunks */
3512         path = btrfs_alloc_path();
3513         if (!path) {
3514                 ret = -ENOMEM;
3515                 goto error;
3516         }
3517
3518         /* zero out stat counters */
3519         spin_lock(&fs_info->balance_lock);
3520         memset(&bctl->stat, 0, sizeof(bctl->stat));
3521         spin_unlock(&fs_info->balance_lock);
3522 again:
3523         if (!counting) {
3524                 /*
3525                  * The single value limit and min/max limits use the same bytes
3526                  * in the
3527                  */
3528                 bctl->data.limit = limit_data;
3529                 bctl->meta.limit = limit_meta;
3530                 bctl->sys.limit = limit_sys;
3531         }
3532         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3533         key.offset = (u64)-1;
3534         key.type = BTRFS_CHUNK_ITEM_KEY;
3535
3536         while (1) {
3537                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3538                     atomic_read(&fs_info->balance_cancel_req)) {
3539                         ret = -ECANCELED;
3540                         goto error;
3541                 }
3542
3543                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3544                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3545                 if (ret < 0) {
3546                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547                         goto error;
3548                 }
3549
3550                 /*
3551                  * this shouldn't happen, it means the last relocate
3552                  * failed
3553                  */
3554                 if (ret == 0)
3555                         BUG(); /* FIXME break ? */
3556
3557                 ret = btrfs_previous_item(chunk_root, path, 0,
3558                                           BTRFS_CHUNK_ITEM_KEY);
3559                 if (ret) {
3560                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3561                         ret = 0;
3562                         break;
3563                 }
3564
3565                 leaf = path->nodes[0];
3566                 slot = path->slots[0];
3567                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3568
3569                 if (found_key.objectid != key.objectid) {
3570                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3571                         break;
3572                 }
3573
3574                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3575                 chunk_type = btrfs_chunk_type(leaf, chunk);
3576
3577                 if (!counting) {
3578                         spin_lock(&fs_info->balance_lock);
3579                         bctl->stat.considered++;
3580                         spin_unlock(&fs_info->balance_lock);
3581                 }
3582
3583                 ret = should_balance_chunk(fs_info, leaf, chunk,
3584                                            found_key.offset);
3585
3586                 btrfs_release_path(path);
3587                 if (!ret) {
3588                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589                         goto loop;
3590                 }
3591
3592                 if (counting) {
3593                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3594                         spin_lock(&fs_info->balance_lock);
3595                         bctl->stat.expected++;
3596                         spin_unlock(&fs_info->balance_lock);
3597
3598                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3599                                 count_data++;
3600                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3601                                 count_sys++;
3602                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3603                                 count_meta++;
3604
3605                         goto loop;
3606                 }
3607
3608                 /*
3609                  * Apply limit_min filter, no need to check if the LIMITS
3610                  * filter is used, limit_min is 0 by default
3611                  */
3612                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3613                                         count_data < bctl->data.limit_min)
3614                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3615                                         count_meta < bctl->meta.limit_min)
3616                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3617                                         count_sys < bctl->sys.limit_min)) {
3618                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3619                         goto loop;
3620                 }
3621
3622                 if (!chunk_reserved) {
3623                         /*
3624                          * We may be relocating the only data chunk we have,
3625                          * which could potentially end up with losing data's
3626                          * raid profile, so lets allocate an empty one in
3627                          * advance.
3628                          */
3629                         ret = btrfs_may_alloc_data_chunk(fs_info,
3630                                                          found_key.offset);
3631                         if (ret < 0) {
3632                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3633                                 goto error;
3634                         } else if (ret == 1) {
3635                                 chunk_reserved = 1;
3636                         }
3637                 }
3638
3639                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3640                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3641                 if (ret && ret != -ENOSPC)
3642                         goto error;
3643                 if (ret == -ENOSPC) {
3644                         enospc_errors++;
3645                 } else {
3646                         spin_lock(&fs_info->balance_lock);
3647                         bctl->stat.completed++;
3648                         spin_unlock(&fs_info->balance_lock);
3649                 }
3650 loop:
3651                 if (found_key.offset == 0)
3652                         break;
3653                 key.offset = found_key.offset - 1;
3654         }
3655
3656         if (counting) {
3657                 btrfs_release_path(path);
3658                 counting = false;
3659                 goto again;
3660         }
3661 error:
3662         btrfs_free_path(path);
3663         if (enospc_errors) {
3664                 btrfs_info(fs_info, "%d enospc errors during balance",
3665                            enospc_errors);
3666                 if (!ret)
3667                         ret = -ENOSPC;
3668         }
3669
3670         return ret;
3671 }
3672
3673 /**
3674  * alloc_profile_is_valid - see if a given profile is valid and reduced
3675  * @flags: profile to validate
3676  * @extended: if true @flags is treated as an extended profile
3677  */
3678 static int alloc_profile_is_valid(u64 flags, int extended)
3679 {
3680         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3681                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3682
3683         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3684
3685         /* 1) check that all other bits are zeroed */
3686         if (flags & ~mask)
3687                 return 0;
3688
3689         /* 2) see if profile is reduced */
3690         if (flags == 0)
3691                 return !extended; /* "0" is valid for usual profiles */
3692
3693         /* true if exactly one bit set */
3694         return (flags & (flags - 1)) == 0;
3695 }
3696
3697 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3698 {
3699         /* cancel requested || normal exit path */
3700         return atomic_read(&fs_info->balance_cancel_req) ||
3701                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3702                  atomic_read(&fs_info->balance_cancel_req) == 0);
3703 }
3704
3705 /* Non-zero return value signifies invalidity */
3706 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3707                 u64 allowed)
3708 {
3709         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3710                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3711                  (bctl_arg->target & ~allowed)));
3712 }
3713
3714 /*
3715  * Should be called with balance mutexe held
3716  */
3717 int btrfs_balance(struct btrfs_fs_info *fs_info,
3718                   struct btrfs_balance_control *bctl,
3719                   struct btrfs_ioctl_balance_args *bargs)
3720 {
3721         u64 meta_target, data_target;
3722         u64 allowed;
3723         int mixed = 0;
3724         int ret;
3725         u64 num_devices;
3726         unsigned seq;
3727
3728         if (btrfs_fs_closing(fs_info) ||
3729             atomic_read(&fs_info->balance_pause_req) ||
3730             atomic_read(&fs_info->balance_cancel_req)) {
3731                 ret = -EINVAL;
3732                 goto out;
3733         }
3734
3735         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3736         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3737                 mixed = 1;
3738
3739         /*
3740          * In case of mixed groups both data and meta should be picked,
3741          * and identical options should be given for both of them.
3742          */
3743         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3744         if (mixed && (bctl->flags & allowed)) {
3745                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3746                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3747                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3748                         btrfs_err(fs_info,
3749           "balance: mixed groups data and metadata options must be the same");
3750                         ret = -EINVAL;
3751                         goto out;
3752                 }
3753         }
3754
3755         num_devices = btrfs_num_devices(fs_info);
3756
3757         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3758         if (num_devices > 1)
3759                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3760         if (num_devices > 2)
3761                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3762         if (num_devices > 3)
3763                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3764                             BTRFS_BLOCK_GROUP_RAID6);
3765         if (validate_convert_profile(&bctl->data, allowed)) {
3766                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3767
3768                 btrfs_err(fs_info,
3769                           "balance: invalid convert data profile %s",
3770                           get_raid_name(index));
3771                 ret = -EINVAL;
3772                 goto out;
3773         }
3774         if (validate_convert_profile(&bctl->meta, allowed)) {
3775                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3776
3777                 btrfs_err(fs_info,
3778                           "balance: invalid convert metadata profile %s",
3779                           get_raid_name(index));
3780                 ret = -EINVAL;
3781                 goto out;
3782         }
3783         if (validate_convert_profile(&bctl->sys, allowed)) {
3784                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3785
3786                 btrfs_err(fs_info,
3787                           "balance: invalid convert system profile %s",
3788                           get_raid_name(index));
3789                 ret = -EINVAL;
3790                 goto out;
3791         }
3792
3793         /* allow to reduce meta or sys integrity only if force set */
3794         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3795                         BTRFS_BLOCK_GROUP_RAID10 |
3796                         BTRFS_BLOCK_GROUP_RAID5 |
3797                         BTRFS_BLOCK_GROUP_RAID6;
3798         do {
3799                 seq = read_seqbegin(&fs_info->profiles_lock);
3800
3801                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3802                      (fs_info->avail_system_alloc_bits & allowed) &&
3803                      !(bctl->sys.target & allowed)) ||
3804                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3805                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3806                      !(bctl->meta.target & allowed))) {
3807                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3808                                 btrfs_info(fs_info,
3809                                 "balance: force reducing metadata integrity");
3810                         } else {
3811                                 btrfs_err(fs_info,
3812         "balance: reduces metadata integrity, use --force if you want this");
3813                                 ret = -EINVAL;
3814                                 goto out;
3815                         }
3816                 }
3817         } while (read_seqretry(&fs_info->profiles_lock, seq));
3818
3819         /* if we're not converting, the target field is uninitialized */
3820         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3821                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3822         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3823                 bctl->data.target : fs_info->avail_data_alloc_bits;
3824         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3825                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3826                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3827                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3828
3829                 btrfs_warn(fs_info,
3830         "balance: metadata profile %s has lower redundancy than data profile %s",
3831                            get_raid_name(meta_index), get_raid_name(data_index));
3832         }
3833
3834         ret = insert_balance_item(fs_info, bctl);
3835         if (ret && ret != -EEXIST)
3836                 goto out;
3837
3838         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3839                 BUG_ON(ret == -EEXIST);
3840                 BUG_ON(fs_info->balance_ctl);
3841                 spin_lock(&fs_info->balance_lock);
3842                 fs_info->balance_ctl = bctl;
3843                 spin_unlock(&fs_info->balance_lock);
3844         } else {
3845                 BUG_ON(ret != -EEXIST);
3846                 spin_lock(&fs_info->balance_lock);
3847                 update_balance_args(bctl);
3848                 spin_unlock(&fs_info->balance_lock);
3849         }
3850
3851         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3852         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3853         mutex_unlock(&fs_info->balance_mutex);
3854
3855         ret = __btrfs_balance(fs_info);
3856
3857         mutex_lock(&fs_info->balance_mutex);
3858         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3859
3860         if (bargs) {
3861                 memset(bargs, 0, sizeof(*bargs));
3862                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3863         }
3864
3865         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3866             balance_need_close(fs_info)) {
3867                 reset_balance_state(fs_info);
3868                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3869         }
3870
3871         wake_up(&fs_info->balance_wait_q);
3872
3873         return ret;
3874 out:
3875         if (bctl->flags & BTRFS_BALANCE_RESUME)
3876                 reset_balance_state(fs_info);
3877         else
3878                 kfree(bctl);
3879         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3880
3881         return ret;
3882 }
3883
3884 static int balance_kthread(void *data)
3885 {
3886         struct btrfs_fs_info *fs_info = data;
3887         int ret = 0;
3888
3889         mutex_lock(&fs_info->balance_mutex);
3890         if (fs_info->balance_ctl) {
3891                 btrfs_info(fs_info, "balance: resuming");
3892                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3893         }
3894         mutex_unlock(&fs_info->balance_mutex);
3895
3896         return ret;
3897 }
3898
3899 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3900 {
3901         struct task_struct *tsk;
3902
3903         mutex_lock(&fs_info->balance_mutex);
3904         if (!fs_info->balance_ctl) {
3905                 mutex_unlock(&fs_info->balance_mutex);
3906                 return 0;
3907         }
3908         mutex_unlock(&fs_info->balance_mutex);
3909
3910         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3911                 btrfs_info(fs_info, "balance: resume skipped");
3912                 return 0;
3913         }
3914
3915         /*
3916          * A ro->rw remount sequence should continue with the paused balance
3917          * regardless of who pauses it, system or the user as of now, so set
3918          * the resume flag.
3919          */
3920         spin_lock(&fs_info->balance_lock);
3921         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3922         spin_unlock(&fs_info->balance_lock);
3923
3924         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3925         return PTR_ERR_OR_ZERO(tsk);
3926 }
3927
3928 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3929 {
3930         struct btrfs_balance_control *bctl;
3931         struct btrfs_balance_item *item;
3932         struct btrfs_disk_balance_args disk_bargs;
3933         struct btrfs_path *path;
3934         struct extent_buffer *leaf;
3935         struct btrfs_key key;
3936         int ret;
3937
3938         path = btrfs_alloc_path();
3939         if (!path)
3940                 return -ENOMEM;
3941
3942         key.objectid = BTRFS_BALANCE_OBJECTID;
3943         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3944         key.offset = 0;
3945
3946         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3947         if (ret < 0)
3948                 goto out;
3949         if (ret > 0) { /* ret = -ENOENT; */
3950                 ret = 0;
3951                 goto out;
3952         }
3953
3954         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3955         if (!bctl) {
3956                 ret = -ENOMEM;
3957                 goto out;
3958         }
3959
3960         leaf = path->nodes[0];
3961         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3962
3963         bctl->flags = btrfs_balance_flags(leaf, item);
3964         bctl->flags |= BTRFS_BALANCE_RESUME;
3965
3966         btrfs_balance_data(leaf, item, &disk_bargs);
3967         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3968         btrfs_balance_meta(leaf, item, &disk_bargs);
3969         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3970         btrfs_balance_sys(leaf, item, &disk_bargs);
3971         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3972
3973         /*
3974          * This should never happen, as the paused balance state is recovered
3975          * during mount without any chance of other exclusive ops to collide.
3976          *
3977          * This gives the exclusive op status to balance and keeps in paused
3978          * state until user intervention (cancel or umount). If the ownership
3979          * cannot be assigned, show a message but do not fail. The balance
3980          * is in a paused state and must have fs_info::balance_ctl properly
3981          * set up.
3982          */
3983         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3984                 btrfs_warn(fs_info,
3985         "balance: cannot set exclusive op status, resume manually");
3986
3987         mutex_lock(&fs_info->balance_mutex);
3988         BUG_ON(fs_info->balance_ctl);
3989         spin_lock(&fs_info->balance_lock);
3990         fs_info->balance_ctl = bctl;
3991         spin_unlock(&fs_info->balance_lock);
3992         mutex_unlock(&fs_info->balance_mutex);
3993 out:
3994         btrfs_free_path(path);
3995         return ret;
3996 }
3997
3998 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3999 {
4000         int ret = 0;
4001
4002         mutex_lock(&fs_info->balance_mutex);
4003         if (!fs_info->balance_ctl) {
4004                 mutex_unlock(&fs_info->balance_mutex);
4005                 return -ENOTCONN;
4006         }
4007
4008         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4009                 atomic_inc(&fs_info->balance_pause_req);
4010                 mutex_unlock(&fs_info->balance_mutex);
4011
4012                 wait_event(fs_info->balance_wait_q,
4013                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4014
4015                 mutex_lock(&fs_info->balance_mutex);
4016                 /* we are good with balance_ctl ripped off from under us */
4017                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4018                 atomic_dec(&fs_info->balance_pause_req);
4019         } else {
4020                 ret = -ENOTCONN;
4021         }
4022
4023         mutex_unlock(&fs_info->balance_mutex);
4024         return ret;
4025 }
4026
4027 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4028 {
4029         mutex_lock(&fs_info->balance_mutex);
4030         if (!fs_info->balance_ctl) {
4031                 mutex_unlock(&fs_info->balance_mutex);
4032                 return -ENOTCONN;
4033         }
4034
4035         /*
4036          * A paused balance with the item stored on disk can be resumed at
4037          * mount time if the mount is read-write. Otherwise it's still paused
4038          * and we must not allow cancelling as it deletes the item.
4039          */
4040         if (sb_rdonly(fs_info->sb)) {
4041                 mutex_unlock(&fs_info->balance_mutex);
4042                 return -EROFS;
4043         }
4044
4045         atomic_inc(&fs_info->balance_cancel_req);
4046         /*
4047          * if we are running just wait and return, balance item is
4048          * deleted in btrfs_balance in this case
4049          */
4050         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4051                 mutex_unlock(&fs_info->balance_mutex);
4052                 wait_event(fs_info->balance_wait_q,
4053                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4054                 mutex_lock(&fs_info->balance_mutex);
4055         } else {
4056                 mutex_unlock(&fs_info->balance_mutex);
4057                 /*
4058                  * Lock released to allow other waiters to continue, we'll
4059                  * reexamine the status again.
4060                  */
4061                 mutex_lock(&fs_info->balance_mutex);
4062
4063                 if (fs_info->balance_ctl) {
4064                         reset_balance_state(fs_info);
4065                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4066                         btrfs_info(fs_info, "balance: canceled");
4067                 }
4068         }
4069
4070         BUG_ON(fs_info->balance_ctl ||
4071                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4072         atomic_dec(&fs_info->balance_cancel_req);
4073         mutex_unlock(&fs_info->balance_mutex);
4074         return 0;
4075 }
4076
4077 static int btrfs_uuid_scan_kthread(void *data)
4078 {
4079         struct btrfs_fs_info *fs_info = data;
4080         struct btrfs_root *root = fs_info->tree_root;
4081         struct btrfs_key key;
4082         struct btrfs_path *path = NULL;
4083         int ret = 0;
4084         struct extent_buffer *eb;
4085         int slot;
4086         struct btrfs_root_item root_item;
4087         u32 item_size;
4088         struct btrfs_trans_handle *trans = NULL;
4089
4090         path = btrfs_alloc_path();
4091         if (!path) {
4092                 ret = -ENOMEM;
4093                 goto out;
4094         }
4095
4096         key.objectid = 0;
4097         key.type = BTRFS_ROOT_ITEM_KEY;
4098         key.offset = 0;
4099
4100         while (1) {
4101                 ret = btrfs_search_forward(root, &key, path,
4102                                 BTRFS_OLDEST_GENERATION);
4103                 if (ret) {
4104                         if (ret > 0)
4105                                 ret = 0;
4106                         break;
4107                 }
4108
4109                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4110                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4111                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4112                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4113                         goto skip;
4114
4115                 eb = path->nodes[0];
4116                 slot = path->slots[0];
4117                 item_size = btrfs_item_size_nr(eb, slot);
4118                 if (item_size < sizeof(root_item))
4119                         goto skip;
4120
4121                 read_extent_buffer(eb, &root_item,
4122                                    btrfs_item_ptr_offset(eb, slot),
4123                                    (int)sizeof(root_item));
4124                 if (btrfs_root_refs(&root_item) == 0)
4125                         goto skip;
4126
4127                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4128                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4129                         if (trans)
4130                                 goto update_tree;
4131
4132                         btrfs_release_path(path);
4133                         /*
4134                          * 1 - subvol uuid item
4135                          * 1 - received_subvol uuid item
4136                          */
4137                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4138                         if (IS_ERR(trans)) {
4139                                 ret = PTR_ERR(trans);
4140                                 break;
4141                         }
4142                         continue;
4143                 } else {
4144                         goto skip;
4145                 }
4146 update_tree:
4147                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4148                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4149                                                   BTRFS_UUID_KEY_SUBVOL,
4150                                                   key.objectid);
4151                         if (ret < 0) {
4152                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4153                                         ret);
4154                                 break;
4155                         }
4156                 }
4157
4158                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4159                         ret = btrfs_uuid_tree_add(trans,
4160                                                   root_item.received_uuid,
4161                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4162                                                   key.objectid);
4163                         if (ret < 0) {
4164                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4165                                         ret);
4166                                 break;
4167                         }
4168                 }
4169
4170 skip:
4171                 if (trans) {
4172                         ret = btrfs_end_transaction(trans);
4173                         trans = NULL;
4174                         if (ret)
4175                                 break;
4176                 }
4177
4178                 btrfs_release_path(path);
4179                 if (key.offset < (u64)-1) {
4180                         key.offset++;
4181                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4182                         key.offset = 0;
4183                         key.type = BTRFS_ROOT_ITEM_KEY;
4184                 } else if (key.objectid < (u64)-1) {
4185                         key.offset = 0;
4186                         key.type = BTRFS_ROOT_ITEM_KEY;
4187                         key.objectid++;
4188                 } else {
4189                         break;
4190                 }
4191                 cond_resched();
4192         }
4193
4194 out:
4195         btrfs_free_path(path);
4196         if (trans && !IS_ERR(trans))
4197                 btrfs_end_transaction(trans);
4198         if (ret)
4199                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4200         else
4201                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4202         up(&fs_info->uuid_tree_rescan_sem);
4203         return 0;
4204 }
4205
4206 /*
4207  * Callback for btrfs_uuid_tree_iterate().
4208  * returns:
4209  * 0    check succeeded, the entry is not outdated.
4210  * < 0  if an error occurred.
4211  * > 0  if the check failed, which means the caller shall remove the entry.
4212  */
4213 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4214                                        u8 *uuid, u8 type, u64 subid)
4215 {
4216         struct btrfs_key key;
4217         int ret = 0;
4218         struct btrfs_root *subvol_root;
4219
4220         if (type != BTRFS_UUID_KEY_SUBVOL &&
4221             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4222                 goto out;
4223
4224         key.objectid = subid;
4225         key.type = BTRFS_ROOT_ITEM_KEY;
4226         key.offset = (u64)-1;
4227         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4228         if (IS_ERR(subvol_root)) {
4229                 ret = PTR_ERR(subvol_root);
4230                 if (ret == -ENOENT)
4231                         ret = 1;
4232                 goto out;
4233         }
4234
4235         switch (type) {
4236         case BTRFS_UUID_KEY_SUBVOL:
4237                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4238                         ret = 1;
4239                 break;
4240         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4241                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4242                            BTRFS_UUID_SIZE))
4243                         ret = 1;
4244                 break;
4245         }
4246
4247 out:
4248         return ret;
4249 }
4250
4251 static int btrfs_uuid_rescan_kthread(void *data)
4252 {
4253         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4254         int ret;
4255
4256         /*
4257          * 1st step is to iterate through the existing UUID tree and
4258          * to delete all entries that contain outdated data.
4259          * 2nd step is to add all missing entries to the UUID tree.
4260          */
4261         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4262         if (ret < 0) {
4263                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4264                 up(&fs_info->uuid_tree_rescan_sem);
4265                 return ret;
4266         }
4267         return btrfs_uuid_scan_kthread(data);
4268 }
4269
4270 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4271 {
4272         struct btrfs_trans_handle *trans;
4273         struct btrfs_root *tree_root = fs_info->tree_root;
4274         struct btrfs_root *uuid_root;
4275         struct task_struct *task;
4276         int ret;
4277
4278         /*
4279          * 1 - root node
4280          * 1 - root item
4281          */
4282         trans = btrfs_start_transaction(tree_root, 2);
4283         if (IS_ERR(trans))
4284                 return PTR_ERR(trans);
4285
4286         uuid_root = btrfs_create_tree(trans, fs_info,
4287                                       BTRFS_UUID_TREE_OBJECTID);
4288         if (IS_ERR(uuid_root)) {
4289                 ret = PTR_ERR(uuid_root);
4290                 btrfs_abort_transaction(trans, ret);
4291                 btrfs_end_transaction(trans);
4292                 return ret;
4293         }
4294
4295         fs_info->uuid_root = uuid_root;
4296
4297         ret = btrfs_commit_transaction(trans);
4298         if (ret)
4299                 return ret;
4300
4301         down(&fs_info->uuid_tree_rescan_sem);
4302         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4303         if (IS_ERR(task)) {
4304                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4305                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4306                 up(&fs_info->uuid_tree_rescan_sem);
4307                 return PTR_ERR(task);
4308         }
4309
4310         return 0;
4311 }
4312
4313 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4314 {
4315         struct task_struct *task;
4316
4317         down(&fs_info->uuid_tree_rescan_sem);
4318         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4319         if (IS_ERR(task)) {
4320                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4322                 up(&fs_info->uuid_tree_rescan_sem);
4323                 return PTR_ERR(task);
4324         }
4325
4326         return 0;
4327 }
4328
4329 /*
4330  * shrinking a device means finding all of the device extents past
4331  * the new size, and then following the back refs to the chunks.
4332  * The chunk relocation code actually frees the device extent
4333  */
4334 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4335 {
4336         struct btrfs_fs_info *fs_info = device->fs_info;
4337         struct btrfs_root *root = fs_info->dev_root;
4338         struct btrfs_trans_handle *trans;
4339         struct btrfs_dev_extent *dev_extent = NULL;
4340         struct btrfs_path *path;
4341         u64 length;
4342         u64 chunk_offset;
4343         int ret;
4344         int slot;
4345         int failed = 0;
4346         bool retried = false;
4347         bool checked_pending_chunks = false;
4348         struct extent_buffer *l;
4349         struct btrfs_key key;
4350         struct btrfs_super_block *super_copy = fs_info->super_copy;
4351         u64 old_total = btrfs_super_total_bytes(super_copy);
4352         u64 old_size = btrfs_device_get_total_bytes(device);
4353         u64 diff;
4354
4355         new_size = round_down(new_size, fs_info->sectorsize);
4356         diff = round_down(old_size - new_size, fs_info->sectorsize);
4357
4358         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4359                 return -EINVAL;
4360
4361         path = btrfs_alloc_path();
4362         if (!path)
4363                 return -ENOMEM;
4364
4365         path->reada = READA_BACK;
4366
4367         mutex_lock(&fs_info->chunk_mutex);
4368
4369         btrfs_device_set_total_bytes(device, new_size);
4370         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4371                 device->fs_devices->total_rw_bytes -= diff;
4372                 atomic64_sub(diff, &fs_info->free_chunk_space);
4373         }
4374         mutex_unlock(&fs_info->chunk_mutex);
4375
4376 again:
4377         key.objectid = device->devid;
4378         key.offset = (u64)-1;
4379         key.type = BTRFS_DEV_EXTENT_KEY;
4380
4381         do {
4382                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4383                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4384                 if (ret < 0) {
4385                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4386                         goto done;
4387                 }
4388
4389                 ret = btrfs_previous_item(root, path, 0, key.type);
4390                 if (ret)
4391                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4392                 if (ret < 0)
4393                         goto done;
4394                 if (ret) {
4395                         ret = 0;
4396                         btrfs_release_path(path);
4397                         break;
4398                 }
4399
4400                 l = path->nodes[0];
4401                 slot = path->slots[0];
4402                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4403
4404                 if (key.objectid != device->devid) {
4405                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4406                         btrfs_release_path(path);
4407                         break;
4408                 }
4409
4410                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4411                 length = btrfs_dev_extent_length(l, dev_extent);
4412
4413                 if (key.offset + length <= new_size) {
4414                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4415                         btrfs_release_path(path);
4416                         break;
4417                 }
4418
4419                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4420                 btrfs_release_path(path);
4421
4422                 /*
4423                  * We may be relocating the only data chunk we have,
4424                  * which could potentially end up with losing data's
4425                  * raid profile, so lets allocate an empty one in
4426                  * advance.
4427                  */
4428                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4429                 if (ret < 0) {
4430                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431                         goto done;
4432                 }
4433
4434                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4436                 if (ret && ret != -ENOSPC)
4437                         goto done;
4438                 if (ret == -ENOSPC)
4439                         failed++;
4440         } while (key.offset-- > 0);
4441
4442         if (failed && !retried) {
4443                 failed = 0;
4444                 retried = true;
4445                 goto again;
4446         } else if (failed && retried) {
4447                 ret = -ENOSPC;
4448                 goto done;
4449         }
4450
4451         /* Shrinking succeeded, else we would be at "done". */
4452         trans = btrfs_start_transaction(root, 0);
4453         if (IS_ERR(trans)) {
4454                 ret = PTR_ERR(trans);
4455                 goto done;
4456         }
4457
4458         mutex_lock(&fs_info->chunk_mutex);
4459
4460         /*
4461          * We checked in the above loop all device extents that were already in
4462          * the device tree. However before we have updated the device's
4463          * total_bytes to the new size, we might have had chunk allocations that
4464          * have not complete yet (new block groups attached to transaction
4465          * handles), and therefore their device extents were not yet in the
4466          * device tree and we missed them in the loop above. So if we have any
4467          * pending chunk using a device extent that overlaps the device range
4468          * that we can not use anymore, commit the current transaction and
4469          * repeat the search on the device tree - this way we guarantee we will
4470          * not have chunks using device extents that end beyond 'new_size'.
4471          */
4472         if (!checked_pending_chunks) {
4473                 u64 start = new_size;
4474                 u64 len = old_size - new_size;
4475
4476                 if (contains_pending_extent(trans->transaction, device,
4477                                             &start, len)) {
4478                         mutex_unlock(&fs_info->chunk_mutex);
4479                         checked_pending_chunks = true;
4480                         failed = 0;
4481                         retried = false;
4482                         ret = btrfs_commit_transaction(trans);
4483                         if (ret)
4484                                 goto done;
4485                         goto again;
4486                 }
4487         }
4488
4489         btrfs_device_set_disk_total_bytes(device, new_size);
4490         if (list_empty(&device->resized_list))
4491                 list_add_tail(&device->resized_list,
4492                               &fs_info->fs_devices->resized_devices);
4493
4494         WARN_ON(diff > old_total);
4495         btrfs_set_super_total_bytes(super_copy,
4496                         round_down(old_total - diff, fs_info->sectorsize));
4497         mutex_unlock(&fs_info->chunk_mutex);
4498
4499         /* Now btrfs_update_device() will change the on-disk size. */
4500         ret = btrfs_update_device(trans, device);
4501         if (ret < 0) {
4502                 btrfs_abort_transaction(trans, ret);
4503                 btrfs_end_transaction(trans);
4504         } else {
4505                 ret = btrfs_commit_transaction(trans);
4506         }
4507 done:
4508         btrfs_free_path(path);
4509         if (ret) {
4510                 mutex_lock(&fs_info->chunk_mutex);
4511                 btrfs_device_set_total_bytes(device, old_size);
4512                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4513                         device->fs_devices->total_rw_bytes += diff;
4514                 atomic64_add(diff, &fs_info->free_chunk_space);
4515                 mutex_unlock(&fs_info->chunk_mutex);
4516         }
4517         return ret;
4518 }
4519
4520 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4521                            struct btrfs_key *key,
4522                            struct btrfs_chunk *chunk, int item_size)
4523 {
4524         struct btrfs_super_block *super_copy = fs_info->super_copy;
4525         struct btrfs_disk_key disk_key;
4526         u32 array_size;
4527         u8 *ptr;
4528
4529         mutex_lock(&fs_info->chunk_mutex);
4530         array_size = btrfs_super_sys_array_size(super_copy);
4531         if (array_size + item_size + sizeof(disk_key)
4532                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4533                 mutex_unlock(&fs_info->chunk_mutex);
4534                 return -EFBIG;
4535         }
4536
4537         ptr = super_copy->sys_chunk_array + array_size;
4538         btrfs_cpu_key_to_disk(&disk_key, key);
4539         memcpy(ptr, &disk_key, sizeof(disk_key));
4540         ptr += sizeof(disk_key);
4541         memcpy(ptr, chunk, item_size);
4542         item_size += sizeof(disk_key);
4543         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4544         mutex_unlock(&fs_info->chunk_mutex);
4545
4546         return 0;
4547 }
4548
4549 /*
4550  * sort the devices in descending order by max_avail, total_avail
4551  */
4552 static int btrfs_cmp_device_info(const void *a, const void *b)
4553 {
4554         const struct btrfs_device_info *di_a = a;
4555         const struct btrfs_device_info *di_b = b;
4556
4557         if (di_a->max_avail > di_b->max_avail)
4558                 return -1;
4559         if (di_a->max_avail < di_b->max_avail)
4560                 return 1;
4561         if (di_a->total_avail > di_b->total_avail)
4562                 return -1;
4563         if (di_a->total_avail < di_b->total_avail)
4564                 return 1;
4565         return 0;
4566 }
4567
4568 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 {
4570         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4571                 return;
4572
4573         btrfs_set_fs_incompat(info, RAID56);
4574 }
4575
4576 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4577                         - sizeof(struct btrfs_chunk))           \
4578                         / sizeof(struct btrfs_stripe) + 1)
4579
4580 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4581                                 - 2 * sizeof(struct btrfs_disk_key)     \
4582                                 - 2 * sizeof(struct btrfs_chunk))       \
4583                                 / sizeof(struct btrfs_stripe) + 1)
4584
4585 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4586                                u64 start, u64 type)
4587 {
4588         struct btrfs_fs_info *info = trans->fs_info;
4589         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4590         struct btrfs_device *device;
4591         struct map_lookup *map = NULL;
4592         struct extent_map_tree *em_tree;
4593         struct extent_map *em;
4594         struct btrfs_device_info *devices_info = NULL;
4595         u64 total_avail;
4596         int num_stripes;        /* total number of stripes to allocate */
4597         int data_stripes;       /* number of stripes that count for
4598                                    block group size */
4599         int sub_stripes;        /* sub_stripes info for map */
4600         int dev_stripes;        /* stripes per dev */
4601         int devs_max;           /* max devs to use */
4602         int devs_min;           /* min devs needed */
4603         int devs_increment;     /* ndevs has to be a multiple of this */
4604         int ncopies;            /* how many copies to data has */
4605         int ret;
4606         u64 max_stripe_size;
4607         u64 max_chunk_size;
4608         u64 stripe_size;
4609         u64 num_bytes;
4610         int ndevs;
4611         int i;
4612         int j;
4613         int index;
4614
4615         BUG_ON(!alloc_profile_is_valid(type, 0));
4616
4617         if (list_empty(&fs_devices->alloc_list)) {
4618                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4619                         btrfs_debug(info, "%s: no writable device", __func__);
4620                 return -ENOSPC;
4621         }
4622
4623         index = btrfs_bg_flags_to_raid_index(type);
4624
4625         sub_stripes = btrfs_raid_array[index].sub_stripes;
4626         dev_stripes = btrfs_raid_array[index].dev_stripes;
4627         devs_max = btrfs_raid_array[index].devs_max;
4628         devs_min = btrfs_raid_array[index].devs_min;
4629         devs_increment = btrfs_raid_array[index].devs_increment;
4630         ncopies = btrfs_raid_array[index].ncopies;
4631
4632         if (type & BTRFS_BLOCK_GROUP_DATA) {
4633                 max_stripe_size = SZ_1G;
4634                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4635                 if (!devs_max)
4636                         devs_max = BTRFS_MAX_DEVS(info);
4637         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4638                 /* for larger filesystems, use larger metadata chunks */
4639                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640                         max_stripe_size = SZ_1G;
4641                 else
4642                         max_stripe_size = SZ_256M;
4643                 max_chunk_size = max_stripe_size;
4644                 if (!devs_max)
4645                         devs_max = BTRFS_MAX_DEVS(info);
4646         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4647                 max_stripe_size = SZ_32M;
4648                 max_chunk_size = 2 * max_stripe_size;
4649                 if (!devs_max)
4650                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4651         } else {
4652                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4653                        type);
4654                 BUG_ON(1);
4655         }
4656
4657         /* we don't want a chunk larger than 10% of writeable space */
4658         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659                              max_chunk_size);
4660
4661         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4662                                GFP_NOFS);
4663         if (!devices_info)
4664                 return -ENOMEM;
4665
4666         /*
4667          * in the first pass through the devices list, we gather information
4668          * about the available holes on each device.
4669          */
4670         ndevs = 0;
4671         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4672                 u64 max_avail;
4673                 u64 dev_offset;
4674
4675                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4676                         WARN(1, KERN_ERR
4677                                "BTRFS: read-only device in alloc_list\n");
4678                         continue;
4679                 }
4680
4681                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4682                                         &device->dev_state) ||
4683                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4684                         continue;
4685
4686                 if (device->total_bytes > device->bytes_used)
4687                         total_avail = device->total_bytes - device->bytes_used;
4688                 else
4689                         total_avail = 0;
4690
4691                 /* If there is no space on this device, skip it. */
4692                 if (total_avail == 0)
4693                         continue;
4694
4695                 ret = find_free_dev_extent(trans, device,
4696                                            max_stripe_size * dev_stripes,
4697                                            &dev_offset, &max_avail);
4698                 if (ret && ret != -ENOSPC)
4699                         goto error;
4700
4701                 if (ret == 0)
4702                         max_avail = max_stripe_size * dev_stripes;
4703
4704                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4705                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4706                                 btrfs_debug(info,
4707                         "%s: devid %llu has no free space, have=%llu want=%u",
4708                                             __func__, device->devid, max_avail,
4709                                             BTRFS_STRIPE_LEN * dev_stripes);
4710                         continue;
4711                 }
4712
4713                 if (ndevs == fs_devices->rw_devices) {
4714                         WARN(1, "%s: found more than %llu devices\n",
4715                              __func__, fs_devices->rw_devices);
4716                         break;
4717                 }
4718                 devices_info[ndevs].dev_offset = dev_offset;
4719                 devices_info[ndevs].max_avail = max_avail;
4720                 devices_info[ndevs].total_avail = total_avail;
4721                 devices_info[ndevs].dev = device;
4722                 ++ndevs;
4723         }
4724
4725         /*
4726          * now sort the devices by hole size / available space
4727          */
4728         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729              btrfs_cmp_device_info, NULL);
4730
4731         /* round down to number of usable stripes */
4732         ndevs = round_down(ndevs, devs_increment);
4733
4734         if (ndevs < devs_min) {
4735                 ret = -ENOSPC;
4736                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4737                         btrfs_debug(info,
4738         "%s: not enough devices with free space: have=%d minimum required=%d",
4739                                     __func__, ndevs, devs_min);
4740                 }
4741                 goto error;
4742         }
4743
4744         ndevs = min(ndevs, devs_max);
4745
4746         /*
4747          * The primary goal is to maximize the number of stripes, so use as
4748          * many devices as possible, even if the stripes are not maximum sized.
4749          *
4750          * The DUP profile stores more than one stripe per device, the
4751          * max_avail is the total size so we have to adjust.
4752          */
4753         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4754         num_stripes = ndevs * dev_stripes;
4755
4756         /*
4757          * this will have to be fixed for RAID1 and RAID10 over
4758          * more drives
4759          */
4760         data_stripes = num_stripes / ncopies;
4761
4762         if (type & BTRFS_BLOCK_GROUP_RAID5)
4763                 data_stripes = num_stripes - 1;
4764
4765         if (type & BTRFS_BLOCK_GROUP_RAID6)
4766                 data_stripes = num_stripes - 2;
4767
4768         /*
4769          * Use the number of data stripes to figure out how big this chunk
4770          * is really going to be in terms of logical address space,
4771          * and compare that answer with the max chunk size
4772          */
4773         if (stripe_size * data_stripes > max_chunk_size) {
4774                 stripe_size = div_u64(max_chunk_size, data_stripes);
4775
4776                 /* bump the answer up to a 16MB boundary */
4777                 stripe_size = round_up(stripe_size, SZ_16M);
4778
4779                 /*
4780                  * But don't go higher than the limits we found while searching
4781                  * for free extents
4782                  */
4783                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4784                                   stripe_size);
4785         }
4786
4787         /* align to BTRFS_STRIPE_LEN */
4788         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4789
4790         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4791         if (!map) {
4792                 ret = -ENOMEM;
4793                 goto error;
4794         }
4795         map->num_stripes = num_stripes;
4796
4797         for (i = 0; i < ndevs; ++i) {
4798                 for (j = 0; j < dev_stripes; ++j) {
4799                         int s = i * dev_stripes + j;
4800                         map->stripes[s].dev = devices_info[i].dev;
4801                         map->stripes[s].physical = devices_info[i].dev_offset +
4802                                                    j * stripe_size;
4803                 }
4804         }
4805         map->stripe_len = BTRFS_STRIPE_LEN;
4806         map->io_align = BTRFS_STRIPE_LEN;
4807         map->io_width = BTRFS_STRIPE_LEN;
4808         map->type = type;
4809         map->sub_stripes = sub_stripes;
4810
4811         num_bytes = stripe_size * data_stripes;
4812
4813         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4814
4815         em = alloc_extent_map();
4816         if (!em) {
4817                 kfree(map);
4818                 ret = -ENOMEM;
4819                 goto error;
4820         }
4821         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4822         em->map_lookup = map;
4823         em->start = start;
4824         em->len = num_bytes;
4825         em->block_start = 0;
4826         em->block_len = em->len;
4827         em->orig_block_len = stripe_size;
4828
4829         em_tree = &info->mapping_tree.map_tree;
4830         write_lock(&em_tree->lock);
4831         ret = add_extent_mapping(em_tree, em, 0);
4832         if (ret) {
4833                 write_unlock(&em_tree->lock);
4834                 free_extent_map(em);
4835                 goto error;
4836         }
4837
4838         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4839         refcount_inc(&em->refs);
4840         write_unlock(&em_tree->lock);
4841
4842         ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4843         if (ret)
4844                 goto error_del_extent;
4845
4846         for (i = 0; i < map->num_stripes; i++) {
4847                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4848                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4849         }
4850
4851         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4852
4853         free_extent_map(em);
4854         check_raid56_incompat_flag(info, type);
4855
4856         kfree(devices_info);
4857         return 0;
4858
4859 error_del_extent:
4860         write_lock(&em_tree->lock);
4861         remove_extent_mapping(em_tree, em);
4862         write_unlock(&em_tree->lock);
4863
4864         /* One for our allocation */
4865         free_extent_map(em);
4866         /* One for the tree reference */
4867         free_extent_map(em);
4868         /* One for the pending_chunks list reference */
4869         free_extent_map(em);
4870 error:
4871         kfree(devices_info);
4872         return ret;
4873 }
4874
4875 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4876                              u64 chunk_offset, u64 chunk_size)
4877 {
4878         struct btrfs_fs_info *fs_info = trans->fs_info;
4879         struct btrfs_root *extent_root = fs_info->extent_root;
4880         struct btrfs_root *chunk_root = fs_info->chunk_root;
4881         struct btrfs_key key;
4882         struct btrfs_device *device;
4883         struct btrfs_chunk *chunk;
4884         struct btrfs_stripe *stripe;
4885         struct extent_map *em;
4886         struct map_lookup *map;
4887         size_t item_size;
4888         u64 dev_offset;
4889         u64 stripe_size;
4890         int i = 0;
4891         int ret = 0;
4892
4893         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4894         if (IS_ERR(em))
4895                 return PTR_ERR(em);
4896
4897         map = em->map_lookup;
4898         item_size = btrfs_chunk_item_size(map->num_stripes);
4899         stripe_size = em->orig_block_len;
4900
4901         chunk = kzalloc(item_size, GFP_NOFS);
4902         if (!chunk) {
4903                 ret = -ENOMEM;
4904                 goto out;
4905         }
4906
4907         /*
4908          * Take the device list mutex to prevent races with the final phase of
4909          * a device replace operation that replaces the device object associated
4910          * with the map's stripes, because the device object's id can change
4911          * at any time during that final phase of the device replace operation
4912          * (dev-replace.c:btrfs_dev_replace_finishing()).
4913          */
4914         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4915         for (i = 0; i < map->num_stripes; i++) {
4916                 device = map->stripes[i].dev;
4917                 dev_offset = map->stripes[i].physical;
4918
4919                 ret = btrfs_update_device(trans, device);
4920                 if (ret)
4921                         break;
4922                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4923                                              dev_offset, stripe_size);
4924                 if (ret)
4925                         break;
4926         }
4927         if (ret) {
4928                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4929                 goto out;
4930         }
4931
4932         stripe = &chunk->stripe;
4933         for (i = 0; i < map->num_stripes; i++) {
4934                 device = map->stripes[i].dev;
4935                 dev_offset = map->stripes[i].physical;
4936
4937                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4938                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4939                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4940                 stripe++;
4941         }
4942         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4943
4944         btrfs_set_stack_chunk_length(chunk, chunk_size);
4945         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4946         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4947         btrfs_set_stack_chunk_type(chunk, map->type);
4948         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4949         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4950         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4951         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4952         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4953
4954         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4955         key.type = BTRFS_CHUNK_ITEM_KEY;
4956         key.offset = chunk_offset;
4957
4958         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4959         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4960                 /*
4961                  * TODO: Cleanup of inserted chunk root in case of
4962                  * failure.
4963                  */
4964                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4965         }
4966
4967 out:
4968         kfree(chunk);
4969         free_extent_map(em);
4970         return ret;
4971 }
4972
4973 /*
4974  * Chunk allocation falls into two parts. The first part does works
4975  * that make the new allocated chunk useable, but not do any operation
4976  * that modifies the chunk tree. The second part does the works that
4977  * require modifying the chunk tree. This division is important for the
4978  * bootstrap process of adding storage to a seed btrfs.
4979  */
4980 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4981 {
4982         u64 chunk_offset;
4983
4984         lockdep_assert_held(&trans->fs_info->chunk_mutex);
4985         chunk_offset = find_next_chunk(trans->fs_info);
4986         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4987 }
4988
4989 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4990                                          struct btrfs_fs_info *fs_info)
4991 {
4992         u64 chunk_offset;
4993         u64 sys_chunk_offset;
4994         u64 alloc_profile;
4995         int ret;
4996
4997         chunk_offset = find_next_chunk(fs_info);
4998         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4999         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5000         if (ret)
5001                 return ret;
5002
5003         sys_chunk_offset = find_next_chunk(fs_info);
5004         alloc_profile = btrfs_system_alloc_profile(fs_info);
5005         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5006         return ret;
5007 }
5008
5009 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5010 {
5011         int max_errors;
5012
5013         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5014                          BTRFS_BLOCK_GROUP_RAID10 |
5015                          BTRFS_BLOCK_GROUP_RAID5 |
5016                          BTRFS_BLOCK_GROUP_DUP)) {
5017                 max_errors = 1;
5018         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5019                 max_errors = 2;
5020         } else {
5021                 max_errors = 0;
5022         }
5023
5024         return max_errors;
5025 }
5026
5027 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5028 {
5029         struct extent_map *em;
5030         struct map_lookup *map;
5031         int readonly = 0;
5032         int miss_ndevs = 0;
5033         int i;
5034
5035         em = get_chunk_map(fs_info, chunk_offset, 1);
5036         if (IS_ERR(em))
5037                 return 1;
5038
5039         map = em->map_lookup;
5040         for (i = 0; i < map->num_stripes; i++) {
5041                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5042                                         &map->stripes[i].dev->dev_state)) {
5043                         miss_ndevs++;
5044                         continue;
5045                 }
5046                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5047                                         &map->stripes[i].dev->dev_state)) {
5048                         readonly = 1;
5049                         goto end;
5050                 }
5051         }
5052
5053         /*
5054          * If the number of missing devices is larger than max errors,
5055          * we can not write the data into that chunk successfully, so
5056          * set it readonly.
5057          */
5058         if (miss_ndevs > btrfs_chunk_max_errors(map))
5059                 readonly = 1;
5060 end:
5061         free_extent_map(em);
5062         return readonly;
5063 }
5064
5065 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5066 {
5067         extent_map_tree_init(&tree->map_tree);
5068 }
5069
5070 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5071 {
5072         struct extent_map *em;
5073
5074         while (1) {
5075                 write_lock(&tree->map_tree.lock);
5076                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5077                 if (em)
5078                         remove_extent_mapping(&tree->map_tree, em);
5079                 write_unlock(&tree->map_tree.lock);
5080                 if (!em)
5081                         break;
5082                 /* once for us */
5083                 free_extent_map(em);
5084                 /* once for the tree */
5085                 free_extent_map(em);
5086         }
5087 }
5088
5089 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5090 {
5091         struct extent_map *em;
5092         struct map_lookup *map;
5093         int ret;
5094
5095         em = get_chunk_map(fs_info, logical, len);
5096         if (IS_ERR(em))
5097                 /*
5098                  * We could return errors for these cases, but that could get
5099                  * ugly and we'd probably do the same thing which is just not do
5100                  * anything else and exit, so return 1 so the callers don't try
5101                  * to use other copies.
5102                  */
5103                 return 1;
5104
5105         map = em->map_lookup;
5106         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5107                 ret = map->num_stripes;
5108         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5109                 ret = map->sub_stripes;
5110         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5111                 ret = 2;
5112         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5113                 /*
5114                  * There could be two corrupted data stripes, we need
5115                  * to loop retry in order to rebuild the correct data.
5116                  *
5117                  * Fail a stripe at a time on every retry except the
5118                  * stripe under reconstruction.
5119                  */
5120                 ret = map->num_stripes;
5121         else
5122                 ret = 1;
5123         free_extent_map(em);
5124
5125         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5126         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5127             fs_info->dev_replace.tgtdev)
5128                 ret++;
5129         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5130
5131         return ret;
5132 }
5133
5134 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5135                                     u64 logical)
5136 {
5137         struct extent_map *em;
5138         struct map_lookup *map;
5139         unsigned long len = fs_info->sectorsize;
5140
5141         em = get_chunk_map(fs_info, logical, len);
5142
5143         if (!WARN_ON(IS_ERR(em))) {
5144                 map = em->map_lookup;
5145                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5146                         len = map->stripe_len * nr_data_stripes(map);
5147                 free_extent_map(em);
5148         }
5149         return len;
5150 }
5151
5152 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5153 {
5154         struct extent_map *em;
5155         struct map_lookup *map;
5156         int ret = 0;
5157
5158         em = get_chunk_map(fs_info, logical, len);
5159
5160         if(!WARN_ON(IS_ERR(em))) {
5161                 map = em->map_lookup;
5162                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5163                         ret = 1;
5164                 free_extent_map(em);
5165         }
5166         return ret;
5167 }
5168
5169 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5170                             struct map_lookup *map, int first,
5171                             int dev_replace_is_ongoing)
5172 {
5173         int i;
5174         int num_stripes;
5175         int preferred_mirror;
5176         int tolerance;
5177         struct btrfs_device *srcdev;
5178
5179         ASSERT((map->type &
5180                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5181
5182         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5183                 num_stripes = map->sub_stripes;
5184         else
5185                 num_stripes = map->num_stripes;
5186
5187         preferred_mirror = first + current->pid % num_stripes;
5188
5189         if (dev_replace_is_ongoing &&
5190             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5191              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5192                 srcdev = fs_info->dev_replace.srcdev;
5193         else
5194                 srcdev = NULL;
5195
5196         /*
5197          * try to avoid the drive that is the source drive for a
5198          * dev-replace procedure, only choose it if no other non-missing
5199          * mirror is available
5200          */
5201         for (tolerance = 0; tolerance < 2; tolerance++) {
5202                 if (map->stripes[preferred_mirror].dev->bdev &&
5203                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5204                         return preferred_mirror;
5205                 for (i = first; i < first + num_stripes; i++) {
5206                         if (map->stripes[i].dev->bdev &&
5207                             (tolerance || map->stripes[i].dev != srcdev))
5208                                 return i;
5209                 }
5210         }
5211
5212         /* we couldn't find one that doesn't fail.  Just return something
5213          * and the io error handling code will clean up eventually
5214          */
5215         return preferred_mirror;
5216 }
5217
5218 static inline int parity_smaller(u64 a, u64 b)
5219 {
5220         return a > b;
5221 }
5222
5223 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5224 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5225 {
5226         struct btrfs_bio_stripe s;
5227         int i;
5228         u64 l;
5229         int again = 1;
5230
5231         while (again) {
5232                 again = 0;
5233                 for (i = 0; i < num_stripes - 1; i++) {
5234                         if (parity_smaller(bbio->raid_map[i],
5235                                            bbio->raid_map[i+1])) {
5236                                 s = bbio->stripes[i];
5237                                 l = bbio->raid_map[i];
5238                                 bbio->stripes[i] = bbio->stripes[i+1];
5239                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5240                                 bbio->stripes[i+1] = s;
5241                                 bbio->raid_map[i+1] = l;
5242
5243                                 again = 1;
5244                         }
5245                 }
5246         }
5247 }
5248
5249 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5250 {
5251         struct btrfs_bio *bbio = kzalloc(
5252                  /* the size of the btrfs_bio */
5253                 sizeof(struct btrfs_bio) +
5254                 /* plus the variable array for the stripes */
5255                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5256                 /* plus the variable array for the tgt dev */
5257                 sizeof(int) * (real_stripes) +
5258                 /*
5259                  * plus the raid_map, which includes both the tgt dev
5260                  * and the stripes
5261                  */
5262                 sizeof(u64) * (total_stripes),
5263                 GFP_NOFS|__GFP_NOFAIL);
5264
5265         atomic_set(&bbio->error, 0);
5266         refcount_set(&bbio->refs, 1);
5267
5268         return bbio;
5269 }
5270
5271 void btrfs_get_bbio(struct btrfs_bio *bbio)
5272 {
5273         WARN_ON(!refcount_read(&bbio->refs));
5274         refcount_inc(&bbio->refs);
5275 }
5276
5277 void btrfs_put_bbio(struct btrfs_bio *bbio)
5278 {
5279         if (!bbio)
5280                 return;
5281         if (refcount_dec_and_test(&bbio->refs))
5282                 kfree(bbio);
5283 }
5284
5285 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5286 /*
5287  * Please note that, discard won't be sent to target device of device
5288  * replace.
5289  */
5290 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5291                                          u64 logical, u64 length,
5292                                          struct btrfs_bio **bbio_ret)
5293 {
5294         struct extent_map *em;
5295         struct map_lookup *map;
5296         struct btrfs_bio *bbio;
5297         u64 offset;
5298         u64 stripe_nr;
5299         u64 stripe_nr_end;
5300         u64 stripe_end_offset;
5301         u64 stripe_cnt;
5302         u64 stripe_len;
5303         u64 stripe_offset;
5304         u64 num_stripes;
5305         u32 stripe_index;
5306         u32 factor = 0;
5307         u32 sub_stripes = 0;
5308         u64 stripes_per_dev = 0;
5309         u32 remaining_stripes = 0;
5310         u32 last_stripe = 0;
5311         int ret = 0;
5312         int i;
5313
5314         /* discard always return a bbio */
5315         ASSERT(bbio_ret);
5316
5317         em = get_chunk_map(fs_info, logical, length);
5318         if (IS_ERR(em))
5319                 return PTR_ERR(em);
5320
5321         map = em->map_lookup;
5322         /* we don't discard raid56 yet */
5323         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5324                 ret = -EOPNOTSUPP;
5325                 goto out;
5326         }
5327
5328         offset = logical - em->start;
5329         length = min_t(u64, em->len - offset, length);
5330
5331         stripe_len = map->stripe_len;
5332         /*
5333          * stripe_nr counts the total number of stripes we have to stride
5334          * to get to this block
5335          */
5336         stripe_nr = div64_u64(offset, stripe_len);
5337
5338         /* stripe_offset is the offset of this block in its stripe */
5339         stripe_offset = offset - stripe_nr * stripe_len;
5340
5341         stripe_nr_end = round_up(offset + length, map->stripe_len);
5342         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5343         stripe_cnt = stripe_nr_end - stripe_nr;
5344         stripe_end_offset = stripe_nr_end * map->stripe_len -
5345                             (offset + length);
5346         /*
5347          * after this, stripe_nr is the number of stripes on this
5348          * device we have to walk to find the data, and stripe_index is
5349          * the number of our device in the stripe array
5350          */
5351         num_stripes = 1;
5352         stripe_index = 0;
5353         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5354                          BTRFS_BLOCK_GROUP_RAID10)) {
5355                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5356                         sub_stripes = 1;
5357                 else
5358                         sub_stripes = map->sub_stripes;
5359
5360                 factor = map->num_stripes / sub_stripes;
5361                 num_stripes = min_t(u64, map->num_stripes,
5362                                     sub_stripes * stripe_cnt);
5363                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5364                 stripe_index *= sub_stripes;
5365                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5366                                               &remaining_stripes);
5367                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5368                 last_stripe *= sub_stripes;
5369         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5370                                 BTRFS_BLOCK_GROUP_DUP)) {
5371                 num_stripes = map->num_stripes;
5372         } else {
5373                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5374                                         &stripe_index);
5375         }
5376
5377         bbio = alloc_btrfs_bio(num_stripes, 0);
5378         if (!bbio) {
5379                 ret = -ENOMEM;
5380                 goto out;
5381         }
5382
5383         for (i = 0; i < num_stripes; i++) {
5384                 bbio->stripes[i].physical =
5385                         map->stripes[stripe_index].physical +
5386                         stripe_offset + stripe_nr * map->stripe_len;
5387                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5388
5389                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5390                                  BTRFS_BLOCK_GROUP_RAID10)) {
5391                         bbio->stripes[i].length = stripes_per_dev *
5392                                 map->stripe_len;
5393
5394                         if (i / sub_stripes < remaining_stripes)
5395                                 bbio->stripes[i].length +=
5396                                         map->stripe_len;
5397
5398                         /*
5399                          * Special for the first stripe and
5400                          * the last stripe:
5401                          *
5402                          * |-------|...|-------|
5403                          *     |----------|
5404                          *    off     end_off
5405                          */
5406                         if (i < sub_stripes)
5407                                 bbio->stripes[i].length -=
5408                                         stripe_offset;
5409
5410                         if (stripe_index >= last_stripe &&
5411                             stripe_index <= (last_stripe +
5412                                              sub_stripes - 1))
5413                                 bbio->stripes[i].length -=
5414                                         stripe_end_offset;
5415
5416                         if (i == sub_stripes - 1)
5417                                 stripe_offset = 0;
5418                 } else {
5419                         bbio->stripes[i].length = length;
5420                 }
5421
5422                 stripe_index++;
5423                 if (stripe_index == map->num_stripes) {
5424                         stripe_index = 0;
5425                         stripe_nr++;
5426                 }
5427         }
5428
5429         *bbio_ret = bbio;
5430         bbio->map_type = map->type;
5431         bbio->num_stripes = num_stripes;
5432 out:
5433         free_extent_map(em);
5434         return ret;
5435 }
5436
5437 /*
5438  * In dev-replace case, for repair case (that's the only case where the mirror
5439  * is selected explicitly when calling btrfs_map_block), blocks left of the
5440  * left cursor can also be read from the target drive.
5441  *
5442  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5443  * array of stripes.
5444  * For READ, it also needs to be supported using the same mirror number.
5445  *
5446  * If the requested block is not left of the left cursor, EIO is returned. This
5447  * can happen because btrfs_num_copies() returns one more in the dev-replace
5448  * case.
5449  */
5450 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5451                                          u64 logical, u64 length,
5452                                          u64 srcdev_devid, int *mirror_num,
5453                                          u64 *physical)
5454 {
5455         struct btrfs_bio *bbio = NULL;
5456         int num_stripes;
5457         int index_srcdev = 0;
5458         int found = 0;
5459         u64 physical_of_found = 0;
5460         int i;
5461         int ret = 0;
5462
5463         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5464                                 logical, &length, &bbio, 0, 0);
5465         if (ret) {
5466                 ASSERT(bbio == NULL);
5467                 return ret;
5468         }
5469
5470         num_stripes = bbio->num_stripes;
5471         if (*mirror_num > num_stripes) {
5472                 /*
5473                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5474                  * that means that the requested area is not left of the left
5475                  * cursor
5476                  */
5477                 btrfs_put_bbio(bbio);
5478                 return -EIO;
5479         }
5480
5481         /*
5482          * process the rest of the function using the mirror_num of the source
5483          * drive. Therefore look it up first.  At the end, patch the device
5484          * pointer to the one of the target drive.
5485          */
5486         for (i = 0; i < num_stripes; i++) {
5487                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5488                         continue;
5489
5490                 /*
5491                  * In case of DUP, in order to keep it simple, only add the
5492                  * mirror with the lowest physical address
5493                  */
5494                 if (found &&
5495                     physical_of_found <= bbio->stripes[i].physical)
5496                         continue;
5497
5498                 index_srcdev = i;
5499                 found = 1;
5500                 physical_of_found = bbio->stripes[i].physical;
5501         }
5502
5503         btrfs_put_bbio(bbio);
5504
5505         ASSERT(found);
5506         if (!found)
5507                 return -EIO;
5508
5509         *mirror_num = index_srcdev + 1;
5510         *physical = physical_of_found;
5511         return ret;
5512 }
5513
5514 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5515                                       struct btrfs_bio **bbio_ret,
5516                                       struct btrfs_dev_replace *dev_replace,
5517                                       int *num_stripes_ret, int *max_errors_ret)
5518 {
5519         struct btrfs_bio *bbio = *bbio_ret;
5520         u64 srcdev_devid = dev_replace->srcdev->devid;
5521         int tgtdev_indexes = 0;
5522         int num_stripes = *num_stripes_ret;
5523         int max_errors = *max_errors_ret;
5524         int i;
5525
5526         if (op == BTRFS_MAP_WRITE) {
5527                 int index_where_to_add;
5528
5529                 /*
5530                  * duplicate the write operations while the dev replace
5531                  * procedure is running. Since the copying of the old disk to
5532                  * the new disk takes place at run time while the filesystem is
5533                  * mounted writable, the regular write operations to the old
5534                  * disk have to be duplicated to go to the new disk as well.
5535                  *
5536                  * Note that device->missing is handled by the caller, and that
5537                  * the write to the old disk is already set up in the stripes
5538                  * array.
5539                  */
5540                 index_where_to_add = num_stripes;
5541                 for (i = 0; i < num_stripes; i++) {
5542                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5543                                 /* write to new disk, too */
5544                                 struct btrfs_bio_stripe *new =
5545                                         bbio->stripes + index_where_to_add;
5546                                 struct btrfs_bio_stripe *old =
5547                                         bbio->stripes + i;
5548
5549                                 new->physical = old->physical;
5550                                 new->length = old->length;
5551                                 new->dev = dev_replace->tgtdev;
5552                                 bbio->tgtdev_map[i] = index_where_to_add;
5553                                 index_where_to_add++;
5554                                 max_errors++;
5555                                 tgtdev_indexes++;
5556                         }
5557                 }
5558                 num_stripes = index_where_to_add;
5559         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5560                 int index_srcdev = 0;
5561                 int found = 0;
5562                 u64 physical_of_found = 0;
5563
5564                 /*
5565                  * During the dev-replace procedure, the target drive can also
5566                  * be used to read data in case it is needed to repair a corrupt
5567                  * block elsewhere. This is possible if the requested area is
5568                  * left of the left cursor. In this area, the target drive is a
5569                  * full copy of the source drive.
5570                  */
5571                 for (i = 0; i < num_stripes; i++) {
5572                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5573                                 /*
5574                                  * In case of DUP, in order to keep it simple,
5575                                  * only add the mirror with the lowest physical
5576                                  * address
5577                                  */
5578                                 if (found &&
5579                                     physical_of_found <=
5580                                      bbio->stripes[i].physical)
5581                                         continue;
5582                                 index_srcdev = i;
5583                                 found = 1;
5584                                 physical_of_found = bbio->stripes[i].physical;
5585                         }
5586                 }
5587                 if (found) {
5588                         struct btrfs_bio_stripe *tgtdev_stripe =
5589                                 bbio->stripes + num_stripes;
5590
5591                         tgtdev_stripe->physical = physical_of_found;
5592                         tgtdev_stripe->length =
5593                                 bbio->stripes[index_srcdev].length;
5594                         tgtdev_stripe->dev = dev_replace->tgtdev;
5595                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5596
5597                         tgtdev_indexes++;
5598                         num_stripes++;
5599                 }
5600         }
5601
5602         *num_stripes_ret = num_stripes;
5603         *max_errors_ret = max_errors;
5604         bbio->num_tgtdevs = tgtdev_indexes;
5605         *bbio_ret = bbio;
5606 }
5607
5608 static bool need_full_stripe(enum btrfs_map_op op)
5609 {
5610         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5611 }
5612
5613 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5614                              enum btrfs_map_op op,
5615                              u64 logical, u64 *length,
5616                              struct btrfs_bio **bbio_ret,
5617                              int mirror_num, int need_raid_map)
5618 {
5619         struct extent_map *em;
5620         struct map_lookup *map;
5621         u64 offset;
5622         u64 stripe_offset;
5623         u64 stripe_nr;
5624         u64 stripe_len;
5625         u32 stripe_index;
5626         int i;
5627         int ret = 0;
5628         int num_stripes;
5629         int max_errors = 0;
5630         int tgtdev_indexes = 0;
5631         struct btrfs_bio *bbio = NULL;
5632         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5633         int dev_replace_is_ongoing = 0;
5634         int num_alloc_stripes;
5635         int patch_the_first_stripe_for_dev_replace = 0;
5636         u64 physical_to_patch_in_first_stripe = 0;
5637         u64 raid56_full_stripe_start = (u64)-1;
5638
5639         if (op == BTRFS_MAP_DISCARD)
5640                 return __btrfs_map_block_for_discard(fs_info, logical,
5641                                                      *length, bbio_ret);
5642
5643         em = get_chunk_map(fs_info, logical, *length);
5644         if (IS_ERR(em))
5645                 return PTR_ERR(em);
5646
5647         map = em->map_lookup;
5648         offset = logical - em->start;
5649
5650         stripe_len = map->stripe_len;
5651         stripe_nr = offset;
5652         /*
5653          * stripe_nr counts the total number of stripes we have to stride
5654          * to get to this block
5655          */
5656         stripe_nr = div64_u64(stripe_nr, stripe_len);
5657
5658         stripe_offset = stripe_nr * stripe_len;
5659         if (offset < stripe_offset) {
5660                 btrfs_crit(fs_info,
5661                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5662                            stripe_offset, offset, em->start, logical,
5663                            stripe_len);
5664                 free_extent_map(em);
5665                 return -EINVAL;
5666         }
5667
5668         /* stripe_offset is the offset of this block in its stripe*/
5669         stripe_offset = offset - stripe_offset;
5670
5671         /* if we're here for raid56, we need to know the stripe aligned start */
5672         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5673                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5674                 raid56_full_stripe_start = offset;
5675
5676                 /* allow a write of a full stripe, but make sure we don't
5677                  * allow straddling of stripes
5678                  */
5679                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5680                                 full_stripe_len);
5681                 raid56_full_stripe_start *= full_stripe_len;
5682         }
5683
5684         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5685                 u64 max_len;
5686                 /* For writes to RAID[56], allow a full stripeset across all disks.
5687                    For other RAID types and for RAID[56] reads, just allow a single
5688                    stripe (on a single disk). */
5689                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5690                     (op == BTRFS_MAP_WRITE)) {
5691                         max_len = stripe_len * nr_data_stripes(map) -
5692                                 (offset - raid56_full_stripe_start);
5693                 } else {
5694                         /* we limit the length of each bio to what fits in a stripe */
5695                         max_len = stripe_len - stripe_offset;
5696                 }
5697                 *length = min_t(u64, em->len - offset, max_len);
5698         } else {
5699                 *length = em->len - offset;
5700         }
5701
5702         /* This is for when we're called from btrfs_merge_bio_hook() and all
5703            it cares about is the length */
5704         if (!bbio_ret)
5705                 goto out;
5706
5707         btrfs_dev_replace_read_lock(dev_replace);
5708         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5709         if (!dev_replace_is_ongoing)
5710                 btrfs_dev_replace_read_unlock(dev_replace);
5711         else
5712                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5713
5714         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5715             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5716                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5717                                                     dev_replace->srcdev->devid,
5718                                                     &mirror_num,
5719                                             &physical_to_patch_in_first_stripe);
5720                 if (ret)
5721                         goto out;
5722                 else
5723                         patch_the_first_stripe_for_dev_replace = 1;
5724         } else if (mirror_num > map->num_stripes) {
5725                 mirror_num = 0;
5726         }
5727
5728         num_stripes = 1;
5729         stripe_index = 0;
5730         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5731                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5732                                 &stripe_index);
5733                 if (!need_full_stripe(op))
5734                         mirror_num = 1;
5735         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5736                 if (need_full_stripe(op))
5737                         num_stripes = map->num_stripes;
5738                 else if (mirror_num)
5739                         stripe_index = mirror_num - 1;
5740                 else {
5741                         stripe_index = find_live_mirror(fs_info, map, 0,
5742                                             dev_replace_is_ongoing);
5743                         mirror_num = stripe_index + 1;
5744                 }
5745
5746         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5747                 if (need_full_stripe(op)) {
5748                         num_stripes = map->num_stripes;
5749                 } else if (mirror_num) {
5750                         stripe_index = mirror_num - 1;
5751                 } else {
5752                         mirror_num = 1;
5753                 }
5754
5755         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5756                 u32 factor = map->num_stripes / map->sub_stripes;
5757
5758                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5759                 stripe_index *= map->sub_stripes;
5760
5761                 if (need_full_stripe(op))
5762                         num_stripes = map->sub_stripes;
5763                 else if (mirror_num)
5764                         stripe_index += mirror_num - 1;
5765                 else {
5766                         int old_stripe_index = stripe_index;
5767                         stripe_index = find_live_mirror(fs_info, map,
5768                                               stripe_index,
5769                                               dev_replace_is_ongoing);
5770                         mirror_num = stripe_index - old_stripe_index + 1;
5771                 }
5772
5773         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5774                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5775                         /* push stripe_nr back to the start of the full stripe */
5776                         stripe_nr = div64_u64(raid56_full_stripe_start,
5777                                         stripe_len * nr_data_stripes(map));
5778
5779                         /* RAID[56] write or recovery. Return all stripes */
5780                         num_stripes = map->num_stripes;
5781                         max_errors = nr_parity_stripes(map);
5782
5783                         *length = map->stripe_len;
5784                         stripe_index = 0;
5785                         stripe_offset = 0;
5786                 } else {
5787                         /*
5788                          * Mirror #0 or #1 means the original data block.
5789                          * Mirror #2 is RAID5 parity block.
5790                          * Mirror #3 is RAID6 Q block.
5791                          */
5792                         stripe_nr = div_u64_rem(stripe_nr,
5793                                         nr_data_stripes(map), &stripe_index);
5794                         if (mirror_num > 1)
5795                                 stripe_index = nr_data_stripes(map) +
5796                                                 mirror_num - 2;
5797
5798                         /* We distribute the parity blocks across stripes */
5799                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5800                                         &stripe_index);
5801                         if (!need_full_stripe(op) && mirror_num <= 1)
5802                                 mirror_num = 1;
5803                 }
5804         } else {
5805                 /*
5806                  * after this, stripe_nr is the number of stripes on this
5807                  * device we have to walk to find the data, and stripe_index is
5808                  * the number of our device in the stripe array
5809                  */
5810                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5811                                 &stripe_index);
5812                 mirror_num = stripe_index + 1;
5813         }
5814         if (stripe_index >= map->num_stripes) {
5815                 btrfs_crit(fs_info,
5816                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5817                            stripe_index, map->num_stripes);
5818                 ret = -EINVAL;
5819                 goto out;
5820         }
5821
5822         num_alloc_stripes = num_stripes;
5823         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5824                 if (op == BTRFS_MAP_WRITE)
5825                         num_alloc_stripes <<= 1;
5826                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5827                         num_alloc_stripes++;
5828                 tgtdev_indexes = num_stripes;
5829         }
5830
5831         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5832         if (!bbio) {
5833                 ret = -ENOMEM;
5834                 goto out;
5835         }
5836         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5837                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5838
5839         /* build raid_map */
5840         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5841             (need_full_stripe(op) || mirror_num > 1)) {
5842                 u64 tmp;
5843                 unsigned rot;
5844
5845                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5846                                  sizeof(struct btrfs_bio_stripe) *
5847                                  num_alloc_stripes +
5848                                  sizeof(int) * tgtdev_indexes);
5849
5850                 /* Work out the disk rotation on this stripe-set */
5851                 div_u64_rem(stripe_nr, num_stripes, &rot);
5852
5853                 /* Fill in the logical address of each stripe */
5854                 tmp = stripe_nr * nr_data_stripes(map);
5855                 for (i = 0; i < nr_data_stripes(map); i++)
5856                         bbio->raid_map[(i+rot) % num_stripes] =
5857                                 em->start + (tmp + i) * map->stripe_len;
5858
5859                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5860                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5861                         bbio->raid_map[(i+rot+1) % num_stripes] =
5862                                 RAID6_Q_STRIPE;
5863         }
5864
5865
5866         for (i = 0; i < num_stripes; i++) {
5867                 bbio->stripes[i].physical =
5868                         map->stripes[stripe_index].physical +
5869                         stripe_offset +
5870                         stripe_nr * map->stripe_len;
5871                 bbio->stripes[i].dev =
5872                         map->stripes[stripe_index].dev;
5873                 stripe_index++;
5874         }
5875
5876         if (need_full_stripe(op))
5877                 max_errors = btrfs_chunk_max_errors(map);
5878
5879         if (bbio->raid_map)
5880                 sort_parity_stripes(bbio, num_stripes);
5881
5882         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5883             need_full_stripe(op)) {
5884                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5885                                           &max_errors);
5886         }
5887
5888         *bbio_ret = bbio;
5889         bbio->map_type = map->type;
5890         bbio->num_stripes = num_stripes;
5891         bbio->max_errors = max_errors;
5892         bbio->mirror_num = mirror_num;
5893
5894         /*
5895          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5896          * mirror_num == num_stripes + 1 && dev_replace target drive is
5897          * available as a mirror
5898          */
5899         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5900                 WARN_ON(num_stripes > 1);
5901                 bbio->stripes[0].dev = dev_replace->tgtdev;
5902                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5903                 bbio->mirror_num = map->num_stripes + 1;
5904         }
5905 out:
5906         if (dev_replace_is_ongoing) {
5907                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5908                 btrfs_dev_replace_read_unlock(dev_replace);
5909         }
5910         free_extent_map(em);
5911         return ret;
5912 }
5913
5914 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5915                       u64 logical, u64 *length,
5916                       struct btrfs_bio **bbio_ret, int mirror_num)
5917 {
5918         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5919                                  mirror_num, 0);
5920 }
5921
5922 /* For Scrub/replace */
5923 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5924                      u64 logical, u64 *length,
5925                      struct btrfs_bio **bbio_ret)
5926 {
5927         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5928 }
5929
5930 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5931                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5932 {
5933         struct extent_map *em;
5934         struct map_lookup *map;
5935         u64 *buf;
5936         u64 bytenr;
5937         u64 length;
5938         u64 stripe_nr;
5939         u64 rmap_len;
5940         int i, j, nr = 0;
5941
5942         em = get_chunk_map(fs_info, chunk_start, 1);
5943         if (IS_ERR(em))
5944                 return -EIO;
5945
5946         map = em->map_lookup;
5947         length = em->len;
5948         rmap_len = map->stripe_len;
5949
5950         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5951                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5952         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5953                 length = div_u64(length, map->num_stripes);
5954         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5955                 length = div_u64(length, nr_data_stripes(map));
5956                 rmap_len = map->stripe_len * nr_data_stripes(map);
5957         }
5958
5959         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5960         BUG_ON(!buf); /* -ENOMEM */
5961
5962         for (i = 0; i < map->num_stripes; i++) {
5963                 if (map->stripes[i].physical > physical ||
5964                     map->stripes[i].physical + length <= physical)
5965                         continue;
5966
5967                 stripe_nr = physical - map->stripes[i].physical;
5968                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5969
5970                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5971                         stripe_nr = stripe_nr * map->num_stripes + i;
5972                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5973                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5974                         stripe_nr = stripe_nr * map->num_stripes + i;
5975                 } /* else if RAID[56], multiply by nr_data_stripes().
5976                    * Alternatively, just use rmap_len below instead of
5977                    * map->stripe_len */
5978
5979                 bytenr = chunk_start + stripe_nr * rmap_len;
5980                 WARN_ON(nr >= map->num_stripes);
5981                 for (j = 0; j < nr; j++) {
5982                         if (buf[j] == bytenr)
5983                                 break;
5984                 }
5985                 if (j == nr) {
5986                         WARN_ON(nr >= map->num_stripes);
5987                         buf[nr++] = bytenr;
5988                 }
5989         }
5990
5991         *logical = buf;
5992         *naddrs = nr;
5993         *stripe_len = rmap_len;
5994
5995         free_extent_map(em);
5996         return 0;
5997 }
5998
5999 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6000 {
6001         bio->bi_private = bbio->private;
6002         bio->bi_end_io = bbio->end_io;
6003         bio_endio(bio);
6004
6005         btrfs_put_bbio(bbio);
6006 }
6007
6008 static void btrfs_end_bio(struct bio *bio)
6009 {
6010         struct btrfs_bio *bbio = bio->bi_private;
6011         int is_orig_bio = 0;
6012
6013         if (bio->bi_status) {
6014                 atomic_inc(&bbio->error);
6015                 if (bio->bi_status == BLK_STS_IOERR ||
6016                     bio->bi_status == BLK_STS_TARGET) {
6017                         unsigned int stripe_index =
6018                                 btrfs_io_bio(bio)->stripe_index;
6019                         struct btrfs_device *dev;
6020
6021                         BUG_ON(stripe_index >= bbio->num_stripes);
6022                         dev = bbio->stripes[stripe_index].dev;
6023                         if (dev->bdev) {
6024                                 if (bio_op(bio) == REQ_OP_WRITE)
6025                                         btrfs_dev_stat_inc_and_print(dev,
6026                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6027                                 else
6028                                         btrfs_dev_stat_inc_and_print(dev,
6029                                                 BTRFS_DEV_STAT_READ_ERRS);
6030                                 if (bio->bi_opf & REQ_PREFLUSH)
6031                                         btrfs_dev_stat_inc_and_print(dev,
6032                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6033                         }
6034                 }
6035         }
6036
6037         if (bio == bbio->orig_bio)
6038                 is_orig_bio = 1;
6039
6040         btrfs_bio_counter_dec(bbio->fs_info);
6041
6042         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6043                 if (!is_orig_bio) {
6044                         bio_put(bio);
6045                         bio = bbio->orig_bio;
6046                 }
6047
6048                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6049                 /* only send an error to the higher layers if it is
6050                  * beyond the tolerance of the btrfs bio
6051                  */
6052                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6053                         bio->bi_status = BLK_STS_IOERR;
6054                 } else {
6055                         /*
6056                          * this bio is actually up to date, we didn't
6057                          * go over the max number of errors
6058                          */
6059                         bio->bi_status = BLK_STS_OK;
6060                 }
6061
6062                 btrfs_end_bbio(bbio, bio);
6063         } else if (!is_orig_bio) {
6064                 bio_put(bio);
6065         }
6066 }
6067
6068 /*
6069  * see run_scheduled_bios for a description of why bios are collected for
6070  * async submit.
6071  *
6072  * This will add one bio to the pending list for a device and make sure
6073  * the work struct is scheduled.
6074  */
6075 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6076                                         struct bio *bio)
6077 {
6078         struct btrfs_fs_info *fs_info = device->fs_info;
6079         int should_queue = 1;
6080         struct btrfs_pending_bios *pending_bios;
6081
6082         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6083             !device->bdev) {
6084                 bio_io_error(bio);
6085                 return;
6086         }
6087
6088         /* don't bother with additional async steps for reads, right now */
6089         if (bio_op(bio) == REQ_OP_READ) {
6090                 btrfsic_submit_bio(bio);
6091                 return;
6092         }
6093
6094         WARN_ON(bio->bi_next);
6095         bio->bi_next = NULL;
6096
6097         spin_lock(&device->io_lock);
6098         if (op_is_sync(bio->bi_opf))
6099                 pending_bios = &device->pending_sync_bios;
6100         else
6101                 pending_bios = &device->pending_bios;
6102
6103         if (pending_bios->tail)
6104                 pending_bios->tail->bi_next = bio;
6105
6106         pending_bios->tail = bio;
6107         if (!pending_bios->head)
6108                 pending_bios->head = bio;
6109         if (device->running_pending)
6110                 should_queue = 0;
6111
6112         spin_unlock(&device->io_lock);
6113
6114         if (should_queue)
6115                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6116 }
6117
6118 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6119                               u64 physical, int dev_nr, int async)
6120 {
6121         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6122         struct btrfs_fs_info *fs_info = bbio->fs_info;
6123
6124         bio->bi_private = bbio;
6125         btrfs_io_bio(bio)->stripe_index = dev_nr;
6126         bio->bi_end_io = btrfs_end_bio;
6127         bio->bi_iter.bi_sector = physical >> 9;
6128         btrfs_debug_in_rcu(fs_info,
6129         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6130                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6131                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6132                 bio->bi_iter.bi_size);
6133         bio_set_dev(bio, dev->bdev);
6134
6135         btrfs_bio_counter_inc_noblocked(fs_info);
6136
6137         if (async)
6138                 btrfs_schedule_bio(dev, bio);
6139         else
6140                 btrfsic_submit_bio(bio);
6141 }
6142
6143 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6144 {
6145         atomic_inc(&bbio->error);
6146         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6147                 /* Should be the original bio. */
6148                 WARN_ON(bio != bbio->orig_bio);
6149
6150                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6151                 bio->bi_iter.bi_sector = logical >> 9;
6152                 if (atomic_read(&bbio->error) > bbio->max_errors)
6153                         bio->bi_status = BLK_STS_IOERR;
6154                 else
6155                         bio->bi_status = BLK_STS_OK;
6156                 btrfs_end_bbio(bbio, bio);
6157         }
6158 }
6159
6160 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6161                            int mirror_num, int async_submit)
6162 {
6163         struct btrfs_device *dev;
6164         struct bio *first_bio = bio;
6165         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6166         u64 length = 0;
6167         u64 map_length;
6168         int ret;
6169         int dev_nr;
6170         int total_devs;
6171         struct btrfs_bio *bbio = NULL;
6172
6173         length = bio->bi_iter.bi_size;
6174         map_length = length;
6175
6176         btrfs_bio_counter_inc_blocked(fs_info);
6177         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6178                                 &map_length, &bbio, mirror_num, 1);
6179         if (ret) {
6180                 btrfs_bio_counter_dec(fs_info);
6181                 return errno_to_blk_status(ret);
6182         }
6183
6184         total_devs = bbio->num_stripes;
6185         bbio->orig_bio = first_bio;
6186         bbio->private = first_bio->bi_private;
6187         bbio->end_io = first_bio->bi_end_io;
6188         bbio->fs_info = fs_info;
6189         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6190
6191         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6192             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6193                 /* In this case, map_length has been set to the length of
6194                    a single stripe; not the whole write */
6195                 if (bio_op(bio) == REQ_OP_WRITE) {
6196                         ret = raid56_parity_write(fs_info, bio, bbio,
6197                                                   map_length);
6198                 } else {
6199                         ret = raid56_parity_recover(fs_info, bio, bbio,
6200                                                     map_length, mirror_num, 1);
6201                 }
6202
6203                 btrfs_bio_counter_dec(fs_info);
6204                 return errno_to_blk_status(ret);
6205         }
6206
6207         if (map_length < length) {
6208                 btrfs_crit(fs_info,
6209                            "mapping failed logical %llu bio len %llu len %llu",
6210                            logical, length, map_length);
6211                 BUG();
6212         }
6213
6214         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6215                 dev = bbio->stripes[dev_nr].dev;
6216                 if (!dev || !dev->bdev ||
6217                     (bio_op(first_bio) == REQ_OP_WRITE &&
6218                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6219                         bbio_error(bbio, first_bio, logical);
6220                         continue;
6221                 }
6222
6223                 if (dev_nr < total_devs - 1)
6224                         bio = btrfs_bio_clone(first_bio);
6225                 else
6226                         bio = first_bio;
6227
6228                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6229                                   dev_nr, async_submit);
6230         }
6231         btrfs_bio_counter_dec(fs_info);
6232         return BLK_STS_OK;
6233 }
6234
6235 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6236                                        u8 *uuid, u8 *fsid)
6237 {
6238         struct btrfs_device *device;
6239         struct btrfs_fs_devices *cur_devices;
6240
6241         cur_devices = fs_info->fs_devices;
6242         while (cur_devices) {
6243                 if (!fsid ||
6244                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6245                         device = find_device(cur_devices, devid, uuid);
6246                         if (device)
6247                                 return device;
6248                 }
6249                 cur_devices = cur_devices->seed;
6250         }
6251         return NULL;
6252 }
6253
6254 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6255                                             u64 devid, u8 *dev_uuid)
6256 {
6257         struct btrfs_device *device;
6258
6259         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6260         if (IS_ERR(device))
6261                 return device;
6262
6263         list_add(&device->dev_list, &fs_devices->devices);
6264         device->fs_devices = fs_devices;
6265         fs_devices->num_devices++;
6266
6267         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6268         fs_devices->missing_devices++;
6269
6270         return device;
6271 }
6272
6273 /**
6274  * btrfs_alloc_device - allocate struct btrfs_device
6275  * @fs_info:    used only for generating a new devid, can be NULL if
6276  *              devid is provided (i.e. @devid != NULL).
6277  * @devid:      a pointer to devid for this device.  If NULL a new devid
6278  *              is generated.
6279  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6280  *              is generated.
6281  *
6282  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283  * on error.  Returned struct is not linked onto any lists and must be
6284  * destroyed with btrfs_free_device.
6285  */
6286 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6287                                         const u64 *devid,
6288                                         const u8 *uuid)
6289 {
6290         struct btrfs_device *dev;
6291         u64 tmp;
6292
6293         if (WARN_ON(!devid && !fs_info))
6294                 return ERR_PTR(-EINVAL);
6295
6296         dev = __alloc_device();
6297         if (IS_ERR(dev))
6298                 return dev;
6299
6300         if (devid)
6301                 tmp = *devid;
6302         else {
6303                 int ret;
6304
6305                 ret = find_next_devid(fs_info, &tmp);
6306                 if (ret) {
6307                         btrfs_free_device(dev);
6308                         return ERR_PTR(ret);
6309                 }
6310         }
6311         dev->devid = tmp;
6312
6313         if (uuid)
6314                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6315         else
6316                 generate_random_uuid(dev->uuid);
6317
6318         btrfs_init_work(&dev->work, btrfs_submit_helper,
6319                         pending_bios_fn, NULL, NULL);
6320
6321         return dev;
6322 }
6323
6324 /* Return -EIO if any error, otherwise return 0. */
6325 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6326                                    struct extent_buffer *leaf,
6327                                    struct btrfs_chunk *chunk, u64 logical)
6328 {
6329         u64 length;
6330         u64 stripe_len;
6331         u16 num_stripes;
6332         u16 sub_stripes;
6333         u64 type;
6334         u64 features;
6335         bool mixed = false;
6336
6337         length = btrfs_chunk_length(leaf, chunk);
6338         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6339         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6340         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6341         type = btrfs_chunk_type(leaf, chunk);
6342
6343         if (!num_stripes) {
6344                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6345                           num_stripes);
6346                 return -EIO;
6347         }
6348         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6349                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6350                 return -EIO;
6351         }
6352         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6353                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6354                           btrfs_chunk_sector_size(leaf, chunk));
6355                 return -EIO;
6356         }
6357         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6358                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6359                 return -EIO;
6360         }
6361         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6362                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6363                           stripe_len);
6364                 return -EIO;
6365         }
6366         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6367             type) {
6368                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6369                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6370                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6371                           btrfs_chunk_type(leaf, chunk));
6372                 return -EIO;
6373         }
6374
6375         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6376                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6377                 return -EIO;
6378         }
6379
6380         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6381             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6382                 btrfs_err(fs_info,
6383                         "system chunk with data or metadata type: 0x%llx", type);
6384                 return -EIO;
6385         }
6386
6387         features = btrfs_super_incompat_flags(fs_info->super_copy);
6388         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6389                 mixed = true;
6390
6391         if (!mixed) {
6392                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6393                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6394                         btrfs_err(fs_info,
6395                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6396                         return -EIO;
6397                 }
6398         }
6399
6400         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6401             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6402             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6403             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6404             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6405             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6406              num_stripes != 1)) {
6407                 btrfs_err(fs_info,
6408                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6409                         num_stripes, sub_stripes,
6410                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6411                 return -EIO;
6412         }
6413
6414         return 0;
6415 }
6416
6417 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6418                                         u64 devid, u8 *uuid, bool error)
6419 {
6420         if (error)
6421                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6422                               devid, uuid);
6423         else
6424                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6425                               devid, uuid);
6426 }
6427
6428 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6429                           struct extent_buffer *leaf,
6430                           struct btrfs_chunk *chunk)
6431 {
6432         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6433         struct map_lookup *map;
6434         struct extent_map *em;
6435         u64 logical;
6436         u64 length;
6437         u64 devid;
6438         u8 uuid[BTRFS_UUID_SIZE];
6439         int num_stripes;
6440         int ret;
6441         int i;
6442
6443         logical = key->offset;
6444         length = btrfs_chunk_length(leaf, chunk);
6445         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6446
6447         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6448         if (ret)
6449                 return ret;
6450
6451         read_lock(&map_tree->map_tree.lock);
6452         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6453         read_unlock(&map_tree->map_tree.lock);
6454
6455         /* already mapped? */
6456         if (em && em->start <= logical && em->start + em->len > logical) {
6457                 free_extent_map(em);
6458                 return 0;
6459         } else if (em) {
6460                 free_extent_map(em);
6461         }
6462
6463         em = alloc_extent_map();
6464         if (!em)
6465                 return -ENOMEM;
6466         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6467         if (!map) {
6468                 free_extent_map(em);
6469                 return -ENOMEM;
6470         }
6471
6472         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6473         em->map_lookup = map;
6474         em->start = logical;
6475         em->len = length;
6476         em->orig_start = 0;
6477         em->block_start = 0;
6478         em->block_len = em->len;
6479
6480         map->num_stripes = num_stripes;
6481         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6482         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6483         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6484         map->type = btrfs_chunk_type(leaf, chunk);
6485         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6486         map->verified_stripes = 0;
6487         for (i = 0; i < num_stripes; i++) {
6488                 map->stripes[i].physical =
6489                         btrfs_stripe_offset_nr(leaf, chunk, i);
6490                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6491                 read_extent_buffer(leaf, uuid, (unsigned long)
6492                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6493                                    BTRFS_UUID_SIZE);
6494                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6495                                                         uuid, NULL);
6496                 if (!map->stripes[i].dev &&
6497                     !btrfs_test_opt(fs_info, DEGRADED)) {
6498                         free_extent_map(em);
6499                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6500                         return -ENOENT;
6501                 }
6502                 if (!map->stripes[i].dev) {
6503                         map->stripes[i].dev =
6504                                 add_missing_dev(fs_info->fs_devices, devid,
6505                                                 uuid);
6506                         if (IS_ERR(map->stripes[i].dev)) {
6507                                 free_extent_map(em);
6508                                 btrfs_err(fs_info,
6509                                         "failed to init missing dev %llu: %ld",
6510                                         devid, PTR_ERR(map->stripes[i].dev));
6511                                 return PTR_ERR(map->stripes[i].dev);
6512                         }
6513                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6514                 }
6515                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6516                                 &(map->stripes[i].dev->dev_state));
6517
6518         }
6519
6520         write_lock(&map_tree->map_tree.lock);
6521         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6522         write_unlock(&map_tree->map_tree.lock);
6523         if (ret < 0) {
6524                 btrfs_err(fs_info,
6525                           "failed to add chunk map, start=%llu len=%llu: %d",
6526                           em->start, em->len, ret);
6527         }
6528         free_extent_map(em);
6529
6530         return ret;
6531 }
6532
6533 static void fill_device_from_item(struct extent_buffer *leaf,
6534                                  struct btrfs_dev_item *dev_item,
6535                                  struct btrfs_device *device)
6536 {
6537         unsigned long ptr;
6538
6539         device->devid = btrfs_device_id(leaf, dev_item);
6540         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6541         device->total_bytes = device->disk_total_bytes;
6542         device->commit_total_bytes = device->disk_total_bytes;
6543         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6544         device->commit_bytes_used = device->bytes_used;
6545         device->type = btrfs_device_type(leaf, dev_item);
6546         device->io_align = btrfs_device_io_align(leaf, dev_item);
6547         device->io_width = btrfs_device_io_width(leaf, dev_item);
6548         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6549         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6550         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6551
6552         ptr = btrfs_device_uuid(dev_item);
6553         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6554 }
6555
6556 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6557                                                   u8 *fsid)
6558 {
6559         struct btrfs_fs_devices *fs_devices;
6560         int ret;
6561
6562         lockdep_assert_held(&uuid_mutex);
6563         ASSERT(fsid);
6564
6565         fs_devices = fs_info->fs_devices->seed;
6566         while (fs_devices) {
6567                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6568                         return fs_devices;
6569
6570                 fs_devices = fs_devices->seed;
6571         }
6572
6573         fs_devices = find_fsid(fsid);
6574         if (!fs_devices) {
6575                 if (!btrfs_test_opt(fs_info, DEGRADED))
6576                         return ERR_PTR(-ENOENT);
6577
6578                 fs_devices = alloc_fs_devices(fsid);
6579                 if (IS_ERR(fs_devices))
6580                         return fs_devices;
6581
6582                 fs_devices->seeding = 1;
6583                 fs_devices->opened = 1;
6584                 return fs_devices;
6585         }
6586
6587         fs_devices = clone_fs_devices(fs_devices);
6588         if (IS_ERR(fs_devices))
6589                 return fs_devices;
6590
6591         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6592         if (ret) {
6593                 free_fs_devices(fs_devices);
6594                 fs_devices = ERR_PTR(ret);
6595                 goto out;
6596         }
6597
6598         if (!fs_devices->seeding) {
6599                 close_fs_devices(fs_devices);
6600                 free_fs_devices(fs_devices);
6601                 fs_devices = ERR_PTR(-EINVAL);
6602                 goto out;
6603         }
6604
6605         fs_devices->seed = fs_info->fs_devices->seed;
6606         fs_info->fs_devices->seed = fs_devices;
6607 out:
6608         return fs_devices;
6609 }
6610
6611 static int read_one_dev(struct btrfs_fs_info *fs_info,
6612                         struct extent_buffer *leaf,
6613                         struct btrfs_dev_item *dev_item)
6614 {
6615         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6616         struct btrfs_device *device;
6617         u64 devid;
6618         int ret;
6619         u8 fs_uuid[BTRFS_FSID_SIZE];
6620         u8 dev_uuid[BTRFS_UUID_SIZE];
6621
6622         devid = btrfs_device_id(leaf, dev_item);
6623         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6624                            BTRFS_UUID_SIZE);
6625         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6626                            BTRFS_FSID_SIZE);
6627
6628         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6629                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6630                 if (IS_ERR(fs_devices))
6631                         return PTR_ERR(fs_devices);
6632         }
6633
6634         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6635         if (!device) {
6636                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6637                         btrfs_report_missing_device(fs_info, devid,
6638                                                         dev_uuid, true);
6639                         return -ENOENT;
6640                 }
6641
6642                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6643                 if (IS_ERR(device)) {
6644                         btrfs_err(fs_info,
6645                                 "failed to add missing dev %llu: %ld",
6646                                 devid, PTR_ERR(device));
6647                         return PTR_ERR(device);
6648                 }
6649                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6650         } else {
6651                 if (!device->bdev) {
6652                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6653                                 btrfs_report_missing_device(fs_info,
6654                                                 devid, dev_uuid, true);
6655                                 return -ENOENT;
6656                         }
6657                         btrfs_report_missing_device(fs_info, devid,
6658                                                         dev_uuid, false);
6659                 }
6660
6661                 if (!device->bdev &&
6662                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6663                         /*
6664                          * this happens when a device that was properly setup
6665                          * in the device info lists suddenly goes bad.
6666                          * device->bdev is NULL, and so we have to set
6667                          * device->missing to one here
6668                          */
6669                         device->fs_devices->missing_devices++;
6670                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6671                 }
6672
6673                 /* Move the device to its own fs_devices */
6674                 if (device->fs_devices != fs_devices) {
6675                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6676                                                         &device->dev_state));
6677
6678                         list_move(&device->dev_list, &fs_devices->devices);
6679                         device->fs_devices->num_devices--;
6680                         fs_devices->num_devices++;
6681
6682                         device->fs_devices->missing_devices--;
6683                         fs_devices->missing_devices++;
6684
6685                         device->fs_devices = fs_devices;
6686                 }
6687         }
6688
6689         if (device->fs_devices != fs_info->fs_devices) {
6690                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6691                 if (device->generation !=
6692                     btrfs_device_generation(leaf, dev_item))
6693                         return -EINVAL;
6694         }
6695
6696         fill_device_from_item(leaf, dev_item, device);
6697         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6698         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6699            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6700                 device->fs_devices->total_rw_bytes += device->total_bytes;
6701                 atomic64_add(device->total_bytes - device->bytes_used,
6702                                 &fs_info->free_chunk_space);
6703         }
6704         ret = 0;
6705         return ret;
6706 }
6707
6708 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6709 {
6710         struct btrfs_root *root = fs_info->tree_root;
6711         struct btrfs_super_block *super_copy = fs_info->super_copy;
6712         struct extent_buffer *sb;
6713         struct btrfs_disk_key *disk_key;
6714         struct btrfs_chunk *chunk;
6715         u8 *array_ptr;
6716         unsigned long sb_array_offset;
6717         int ret = 0;
6718         u32 num_stripes;
6719         u32 array_size;
6720         u32 len = 0;
6721         u32 cur_offset;
6722         u64 type;
6723         struct btrfs_key key;
6724
6725         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6726         /*
6727          * This will create extent buffer of nodesize, superblock size is
6728          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6729          * overallocate but we can keep it as-is, only the first page is used.
6730          */
6731         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6732         if (IS_ERR(sb))
6733                 return PTR_ERR(sb);
6734         set_extent_buffer_uptodate(sb);
6735         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6736         /*
6737          * The sb extent buffer is artificial and just used to read the system array.
6738          * set_extent_buffer_uptodate() call does not properly mark all it's
6739          * pages up-to-date when the page is larger: extent does not cover the
6740          * whole page and consequently check_page_uptodate does not find all
6741          * the page's extents up-to-date (the hole beyond sb),
6742          * write_extent_buffer then triggers a WARN_ON.
6743          *
6744          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6745          * but sb spans only this function. Add an explicit SetPageUptodate call
6746          * to silence the warning eg. on PowerPC 64.
6747          */
6748         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6749                 SetPageUptodate(sb->pages[0]);
6750
6751         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6752         array_size = btrfs_super_sys_array_size(super_copy);
6753
6754         array_ptr = super_copy->sys_chunk_array;
6755         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6756         cur_offset = 0;
6757
6758         while (cur_offset < array_size) {
6759                 disk_key = (struct btrfs_disk_key *)array_ptr;
6760                 len = sizeof(*disk_key);
6761                 if (cur_offset + len > array_size)
6762                         goto out_short_read;
6763
6764                 btrfs_disk_key_to_cpu(&key, disk_key);
6765
6766                 array_ptr += len;
6767                 sb_array_offset += len;
6768                 cur_offset += len;
6769
6770                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6771                         chunk = (struct btrfs_chunk *)sb_array_offset;
6772                         /*
6773                          * At least one btrfs_chunk with one stripe must be
6774                          * present, exact stripe count check comes afterwards
6775                          */
6776                         len = btrfs_chunk_item_size(1);
6777                         if (cur_offset + len > array_size)
6778                                 goto out_short_read;
6779
6780                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6781                         if (!num_stripes) {
6782                                 btrfs_err(fs_info,
6783                                         "invalid number of stripes %u in sys_array at offset %u",
6784                                         num_stripes, cur_offset);
6785                                 ret = -EIO;
6786                                 break;
6787                         }
6788
6789                         type = btrfs_chunk_type(sb, chunk);
6790                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6791                                 btrfs_err(fs_info,
6792                             "invalid chunk type %llu in sys_array at offset %u",
6793                                         type, cur_offset);
6794                                 ret = -EIO;
6795                                 break;
6796                         }
6797
6798                         len = btrfs_chunk_item_size(num_stripes);
6799                         if (cur_offset + len > array_size)
6800                                 goto out_short_read;
6801
6802                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6803                         if (ret)
6804                                 break;
6805                 } else {
6806                         btrfs_err(fs_info,
6807                             "unexpected item type %u in sys_array at offset %u",
6808                                   (u32)key.type, cur_offset);
6809                         ret = -EIO;
6810                         break;
6811                 }
6812                 array_ptr += len;
6813                 sb_array_offset += len;
6814                 cur_offset += len;
6815         }
6816         clear_extent_buffer_uptodate(sb);
6817         free_extent_buffer_stale(sb);
6818         return ret;
6819
6820 out_short_read:
6821         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6822                         len, cur_offset);
6823         clear_extent_buffer_uptodate(sb);
6824         free_extent_buffer_stale(sb);
6825         return -EIO;
6826 }
6827
6828 /*
6829  * Check if all chunks in the fs are OK for read-write degraded mount
6830  *
6831  * If the @failing_dev is specified, it's accounted as missing.
6832  *
6833  * Return true if all chunks meet the minimal RW mount requirements.
6834  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6835  */
6836 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6837                                         struct btrfs_device *failing_dev)
6838 {
6839         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6840         struct extent_map *em;
6841         u64 next_start = 0;
6842         bool ret = true;
6843
6844         read_lock(&map_tree->map_tree.lock);
6845         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6846         read_unlock(&map_tree->map_tree.lock);
6847         /* No chunk at all? Return false anyway */
6848         if (!em) {
6849                 ret = false;
6850                 goto out;
6851         }
6852         while (em) {
6853                 struct map_lookup *map;
6854                 int missing = 0;
6855                 int max_tolerated;
6856                 int i;
6857
6858                 map = em->map_lookup;
6859                 max_tolerated =
6860                         btrfs_get_num_tolerated_disk_barrier_failures(
6861                                         map->type);
6862                 for (i = 0; i < map->num_stripes; i++) {
6863                         struct btrfs_device *dev = map->stripes[i].dev;
6864
6865                         if (!dev || !dev->bdev ||
6866                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6867                             dev->last_flush_error)
6868                                 missing++;
6869                         else if (failing_dev && failing_dev == dev)
6870                                 missing++;
6871                 }
6872                 if (missing > max_tolerated) {
6873                         if (!failing_dev)
6874                                 btrfs_warn(fs_info,
6875         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6876                                    em->start, missing, max_tolerated);
6877                         free_extent_map(em);
6878                         ret = false;
6879                         goto out;
6880                 }
6881                 next_start = extent_map_end(em);
6882                 free_extent_map(em);
6883
6884                 read_lock(&map_tree->map_tree.lock);
6885                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6886                                            (u64)(-1) - next_start);
6887                 read_unlock(&map_tree->map_tree.lock);
6888         }
6889 out:
6890         return ret;
6891 }
6892
6893 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6894 {
6895         struct btrfs_root *root = fs_info->chunk_root;
6896         struct btrfs_path *path;
6897         struct extent_buffer *leaf;
6898         struct btrfs_key key;
6899         struct btrfs_key found_key;
6900         int ret;
6901         int slot;
6902         u64 total_dev = 0;
6903
6904         path = btrfs_alloc_path();
6905         if (!path)
6906                 return -ENOMEM;
6907
6908         /*
6909          * uuid_mutex is needed only if we are mounting a sprout FS
6910          * otherwise we don't need it.
6911          */
6912         mutex_lock(&uuid_mutex);
6913         mutex_lock(&fs_info->chunk_mutex);
6914
6915         /*
6916          * Read all device items, and then all the chunk items. All
6917          * device items are found before any chunk item (their object id
6918          * is smaller than the lowest possible object id for a chunk
6919          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6920          */
6921         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6922         key.offset = 0;
6923         key.type = 0;
6924         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6925         if (ret < 0)
6926                 goto error;
6927         while (1) {
6928                 leaf = path->nodes[0];
6929                 slot = path->slots[0];
6930                 if (slot >= btrfs_header_nritems(leaf)) {
6931                         ret = btrfs_next_leaf(root, path);
6932                         if (ret == 0)
6933                                 continue;
6934                         if (ret < 0)
6935                                 goto error;
6936                         break;
6937                 }
6938                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6939                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6940                         struct btrfs_dev_item *dev_item;
6941                         dev_item = btrfs_item_ptr(leaf, slot,
6942                                                   struct btrfs_dev_item);
6943                         ret = read_one_dev(fs_info, leaf, dev_item);
6944                         if (ret)
6945                                 goto error;
6946                         total_dev++;
6947                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6948                         struct btrfs_chunk *chunk;
6949                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6950                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6951                         if (ret)
6952                                 goto error;
6953                 }
6954                 path->slots[0]++;
6955         }
6956
6957         /*
6958          * After loading chunk tree, we've got all device information,
6959          * do another round of validation checks.
6960          */
6961         if (total_dev != fs_info->fs_devices->total_devices) {
6962                 btrfs_err(fs_info,
6963            "super_num_devices %llu mismatch with num_devices %llu found here",
6964                           btrfs_super_num_devices(fs_info->super_copy),
6965                           total_dev);
6966                 ret = -EINVAL;
6967                 goto error;
6968         }
6969         if (btrfs_super_total_bytes(fs_info->super_copy) <
6970             fs_info->fs_devices->total_rw_bytes) {
6971                 btrfs_err(fs_info,
6972         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6973                           btrfs_super_total_bytes(fs_info->super_copy),
6974                           fs_info->fs_devices->total_rw_bytes);
6975                 ret = -EINVAL;
6976                 goto error;
6977         }
6978         ret = 0;
6979 error:
6980         mutex_unlock(&fs_info->chunk_mutex);
6981         mutex_unlock(&uuid_mutex);
6982
6983         btrfs_free_path(path);
6984         return ret;
6985 }
6986
6987 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6988 {
6989         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6990         struct btrfs_device *device;
6991
6992         while (fs_devices) {
6993                 mutex_lock(&fs_devices->device_list_mutex);
6994                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6995                         device->fs_info = fs_info;
6996                 mutex_unlock(&fs_devices->device_list_mutex);
6997
6998                 fs_devices = fs_devices->seed;
6999         }
7000 }
7001
7002 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7003 {
7004         int i;
7005
7006         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7007                 btrfs_dev_stat_reset(dev, i);
7008 }
7009
7010 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7011 {
7012         struct btrfs_key key;
7013         struct btrfs_key found_key;
7014         struct btrfs_root *dev_root = fs_info->dev_root;
7015         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7016         struct extent_buffer *eb;
7017         int slot;
7018         int ret = 0;
7019         struct btrfs_device *device;
7020         struct btrfs_path *path = NULL;
7021         int i;
7022
7023         path = btrfs_alloc_path();
7024         if (!path) {
7025                 ret = -ENOMEM;
7026                 goto out;
7027         }
7028
7029         mutex_lock(&fs_devices->device_list_mutex);
7030         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7031                 int item_size;
7032                 struct btrfs_dev_stats_item *ptr;
7033
7034                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7035                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7036                 key.offset = device->devid;
7037                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7038                 if (ret) {
7039                         __btrfs_reset_dev_stats(device);
7040                         device->dev_stats_valid = 1;
7041                         btrfs_release_path(path);
7042                         continue;
7043                 }
7044                 slot = path->slots[0];
7045                 eb = path->nodes[0];
7046                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7047                 item_size = btrfs_item_size_nr(eb, slot);
7048
7049                 ptr = btrfs_item_ptr(eb, slot,
7050                                      struct btrfs_dev_stats_item);
7051
7052                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7053                         if (item_size >= (1 + i) * sizeof(__le64))
7054                                 btrfs_dev_stat_set(device, i,
7055                                         btrfs_dev_stats_value(eb, ptr, i));
7056                         else
7057                                 btrfs_dev_stat_reset(device, i);
7058                 }
7059
7060                 device->dev_stats_valid = 1;
7061                 btrfs_dev_stat_print_on_load(device);
7062                 btrfs_release_path(path);
7063         }
7064         mutex_unlock(&fs_devices->device_list_mutex);
7065
7066 out:
7067         btrfs_free_path(path);
7068         return ret < 0 ? ret : 0;
7069 }
7070
7071 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7072                                 struct btrfs_device *device)
7073 {
7074         struct btrfs_fs_info *fs_info = trans->fs_info;
7075         struct btrfs_root *dev_root = fs_info->dev_root;
7076         struct btrfs_path *path;
7077         struct btrfs_key key;
7078         struct extent_buffer *eb;
7079         struct btrfs_dev_stats_item *ptr;
7080         int ret;
7081         int i;
7082
7083         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7084         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7085         key.offset = device->devid;
7086
7087         path = btrfs_alloc_path();
7088         if (!path)
7089                 return -ENOMEM;
7090         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7091         if (ret < 0) {
7092                 btrfs_warn_in_rcu(fs_info,
7093                         "error %d while searching for dev_stats item for device %s",
7094                               ret, rcu_str_deref(device->name));
7095                 goto out;
7096         }
7097
7098         if (ret == 0 &&
7099             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7100                 /* need to delete old one and insert a new one */
7101                 ret = btrfs_del_item(trans, dev_root, path);
7102                 if (ret != 0) {
7103                         btrfs_warn_in_rcu(fs_info,
7104                                 "delete too small dev_stats item for device %s failed %d",
7105                                       rcu_str_deref(device->name), ret);
7106                         goto out;
7107                 }
7108                 ret = 1;
7109         }
7110
7111         if (ret == 1) {
7112                 /* need to insert a new item */
7113                 btrfs_release_path(path);
7114                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7115                                               &key, sizeof(*ptr));
7116                 if (ret < 0) {
7117                         btrfs_warn_in_rcu(fs_info,
7118                                 "insert dev_stats item for device %s failed %d",
7119                                 rcu_str_deref(device->name), ret);
7120                         goto out;
7121                 }
7122         }
7123
7124         eb = path->nodes[0];
7125         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7126         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7127                 btrfs_set_dev_stats_value(eb, ptr, i,
7128                                           btrfs_dev_stat_read(device, i));
7129         btrfs_mark_buffer_dirty(eb);
7130
7131 out:
7132         btrfs_free_path(path);
7133         return ret;
7134 }
7135
7136 /*
7137  * called from commit_transaction. Writes all changed device stats to disk.
7138  */
7139 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7140                         struct btrfs_fs_info *fs_info)
7141 {
7142         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7143         struct btrfs_device *device;
7144         int stats_cnt;
7145         int ret = 0;
7146
7147         mutex_lock(&fs_devices->device_list_mutex);
7148         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7149                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7150                 if (!device->dev_stats_valid || stats_cnt == 0)
7151                         continue;
7152
7153
7154                 /*
7155                  * There is a LOAD-LOAD control dependency between the value of
7156                  * dev_stats_ccnt and updating the on-disk values which requires
7157                  * reading the in-memory counters. Such control dependencies
7158                  * require explicit read memory barriers.
7159                  *
7160                  * This memory barriers pairs with smp_mb__before_atomic in
7161                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7162                  * barrier implied by atomic_xchg in
7163                  * btrfs_dev_stats_read_and_reset
7164                  */
7165                 smp_rmb();
7166
7167                 ret = update_dev_stat_item(trans, device);
7168                 if (!ret)
7169                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7170         }
7171         mutex_unlock(&fs_devices->device_list_mutex);
7172
7173         return ret;
7174 }
7175
7176 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7177 {
7178         btrfs_dev_stat_inc(dev, index);
7179         btrfs_dev_stat_print_on_error(dev);
7180 }
7181
7182 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7183 {
7184         if (!dev->dev_stats_valid)
7185                 return;
7186         btrfs_err_rl_in_rcu(dev->fs_info,
7187                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7188                            rcu_str_deref(dev->name),
7189                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7190                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7191                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7192                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7193                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7194 }
7195
7196 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7197 {
7198         int i;
7199
7200         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7201                 if (btrfs_dev_stat_read(dev, i) != 0)
7202                         break;
7203         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7204                 return; /* all values == 0, suppress message */
7205
7206         btrfs_info_in_rcu(dev->fs_info,
7207                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7208                rcu_str_deref(dev->name),
7209                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7210                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7211                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7212                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7213                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7214 }
7215
7216 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7217                         struct btrfs_ioctl_get_dev_stats *stats)
7218 {
7219         struct btrfs_device *dev;
7220         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221         int i;
7222
7223         mutex_lock(&fs_devices->device_list_mutex);
7224         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7225         mutex_unlock(&fs_devices->device_list_mutex);
7226
7227         if (!dev) {
7228                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7229                 return -ENODEV;
7230         } else if (!dev->dev_stats_valid) {
7231                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7232                 return -ENODEV;
7233         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7234                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7235                         if (stats->nr_items > i)
7236                                 stats->values[i] =
7237                                         btrfs_dev_stat_read_and_reset(dev, i);
7238                         else
7239                                 btrfs_dev_stat_reset(dev, i);
7240                 }
7241         } else {
7242                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7243                         if (stats->nr_items > i)
7244                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7245         }
7246         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7247                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7248         return 0;
7249 }
7250
7251 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7252 {
7253         struct buffer_head *bh;
7254         struct btrfs_super_block *disk_super;
7255         int copy_num;
7256
7257         if (!bdev)
7258                 return;
7259
7260         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7261                 copy_num++) {
7262
7263                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7264                         continue;
7265
7266                 disk_super = (struct btrfs_super_block *)bh->b_data;
7267
7268                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7269                 set_buffer_dirty(bh);
7270                 sync_dirty_buffer(bh);
7271                 brelse(bh);
7272         }
7273
7274         /* Notify udev that device has changed */
7275         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7276
7277         /* Update ctime/mtime for device path for libblkid */
7278         update_dev_time(device_path);
7279 }
7280
7281 /*
7282  * Update the size of all devices, which is used for writing out the
7283  * super blocks.
7284  */
7285 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7286 {
7287         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7288         struct btrfs_device *curr, *next;
7289
7290         if (list_empty(&fs_devices->resized_devices))
7291                 return;
7292
7293         mutex_lock(&fs_devices->device_list_mutex);
7294         mutex_lock(&fs_info->chunk_mutex);
7295         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7296                                  resized_list) {
7297                 list_del_init(&curr->resized_list);
7298                 curr->commit_total_bytes = curr->disk_total_bytes;
7299         }
7300         mutex_unlock(&fs_info->chunk_mutex);
7301         mutex_unlock(&fs_devices->device_list_mutex);
7302 }
7303
7304 /* Must be invoked during the transaction commit */
7305 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7306 {
7307         struct btrfs_fs_info *fs_info = trans->fs_info;
7308         struct extent_map *em;
7309         struct map_lookup *map;
7310         struct btrfs_device *dev;
7311         int i;
7312
7313         if (list_empty(&trans->pending_chunks))
7314                 return;
7315
7316         /* In order to kick the device replace finish process */
7317         mutex_lock(&fs_info->chunk_mutex);
7318         list_for_each_entry(em, &trans->pending_chunks, list) {
7319                 map = em->map_lookup;
7320
7321                 for (i = 0; i < map->num_stripes; i++) {
7322                         dev = map->stripes[i].dev;
7323                         dev->commit_bytes_used = dev->bytes_used;
7324                 }
7325         }
7326         mutex_unlock(&fs_info->chunk_mutex);
7327 }
7328
7329 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7330 {
7331         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7332         while (fs_devices) {
7333                 fs_devices->fs_info = fs_info;
7334                 fs_devices = fs_devices->seed;
7335         }
7336 }
7337
7338 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7339 {
7340         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7341         while (fs_devices) {
7342                 fs_devices->fs_info = NULL;
7343                 fs_devices = fs_devices->seed;
7344         }
7345 }
7346
7347 /*
7348  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7349  */
7350 int btrfs_bg_type_to_factor(u64 flags)
7351 {
7352         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7353                      BTRFS_BLOCK_GROUP_RAID10))
7354                 return 2;
7355         return 1;
7356 }
7357
7358
7359 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7360 {
7361         int index = btrfs_bg_flags_to_raid_index(type);
7362         int ncopies = btrfs_raid_array[index].ncopies;
7363         int data_stripes;
7364
7365         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7366         case BTRFS_BLOCK_GROUP_RAID5:
7367                 data_stripes = num_stripes - 1;
7368                 break;
7369         case BTRFS_BLOCK_GROUP_RAID6:
7370                 data_stripes = num_stripes - 2;
7371                 break;
7372         default:
7373                 data_stripes = num_stripes / ncopies;
7374                 break;
7375         }
7376         return div_u64(chunk_len, data_stripes);
7377 }
7378
7379 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7380                                  u64 chunk_offset, u64 devid,
7381                                  u64 physical_offset, u64 physical_len)
7382 {
7383         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7384         struct extent_map *em;
7385         struct map_lookup *map;
7386         u64 stripe_len;
7387         bool found = false;
7388         int ret = 0;
7389         int i;
7390
7391         read_lock(&em_tree->lock);
7392         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7393         read_unlock(&em_tree->lock);
7394
7395         if (!em) {
7396                 btrfs_err(fs_info,
7397 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7398                           physical_offset, devid);
7399                 ret = -EUCLEAN;
7400                 goto out;
7401         }
7402
7403         map = em->map_lookup;
7404         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7405         if (physical_len != stripe_len) {
7406                 btrfs_err(fs_info,
7407 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7408                           physical_offset, devid, em->start, physical_len,
7409                           stripe_len);
7410                 ret = -EUCLEAN;
7411                 goto out;
7412         }
7413
7414         for (i = 0; i < map->num_stripes; i++) {
7415                 if (map->stripes[i].dev->devid == devid &&
7416                     map->stripes[i].physical == physical_offset) {
7417                         found = true;
7418                         if (map->verified_stripes >= map->num_stripes) {
7419                                 btrfs_err(fs_info,
7420                                 "too many dev extents for chunk %llu found",
7421                                           em->start);
7422                                 ret = -EUCLEAN;
7423                                 goto out;
7424                         }
7425                         map->verified_stripes++;
7426                         break;
7427                 }
7428         }
7429         if (!found) {
7430                 btrfs_err(fs_info,
7431         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7432                         physical_offset, devid);
7433                 ret = -EUCLEAN;
7434         }
7435 out:
7436         free_extent_map(em);
7437         return ret;
7438 }
7439
7440 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7441 {
7442         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7443         struct extent_map *em;
7444         struct rb_node *node;
7445         int ret = 0;
7446
7447         read_lock(&em_tree->lock);
7448         for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7449                 em = rb_entry(node, struct extent_map, rb_node);
7450                 if (em->map_lookup->num_stripes !=
7451                     em->map_lookup->verified_stripes) {
7452                         btrfs_err(fs_info,
7453                         "chunk %llu has missing dev extent, have %d expect %d",
7454                                   em->start, em->map_lookup->verified_stripes,
7455                                   em->map_lookup->num_stripes);
7456                         ret = -EUCLEAN;
7457                         goto out;
7458                 }
7459         }
7460 out:
7461         read_unlock(&em_tree->lock);
7462         return ret;
7463 }
7464
7465 /*
7466  * Ensure that all dev extents are mapped to correct chunk, otherwise
7467  * later chunk allocation/free would cause unexpected behavior.
7468  *
7469  * NOTE: This will iterate through the whole device tree, which should be of
7470  * the same size level as the chunk tree.  This slightly increases mount time.
7471  */
7472 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7473 {
7474         struct btrfs_path *path;
7475         struct btrfs_root *root = fs_info->dev_root;
7476         struct btrfs_key key;
7477         int ret = 0;
7478
7479         key.objectid = 1;
7480         key.type = BTRFS_DEV_EXTENT_KEY;
7481         key.offset = 0;
7482
7483         path = btrfs_alloc_path();
7484         if (!path)
7485                 return -ENOMEM;
7486
7487         path->reada = READA_FORWARD;
7488         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7489         if (ret < 0)
7490                 goto out;
7491
7492         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7493                 ret = btrfs_next_item(root, path);
7494                 if (ret < 0)
7495                         goto out;
7496                 /* No dev extents at all? Not good */
7497                 if (ret > 0) {
7498                         ret = -EUCLEAN;
7499                         goto out;
7500                 }
7501         }
7502         while (1) {
7503                 struct extent_buffer *leaf = path->nodes[0];
7504                 struct btrfs_dev_extent *dext;
7505                 int slot = path->slots[0];
7506                 u64 chunk_offset;
7507                 u64 physical_offset;
7508                 u64 physical_len;
7509                 u64 devid;
7510
7511                 btrfs_item_key_to_cpu(leaf, &key, slot);
7512                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7513                         break;
7514                 devid = key.objectid;
7515                 physical_offset = key.offset;
7516
7517                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7518                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7519                 physical_len = btrfs_dev_extent_length(leaf, dext);
7520
7521                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7522                                             physical_offset, physical_len);
7523                 if (ret < 0)
7524                         goto out;
7525                 ret = btrfs_next_item(root, path);
7526                 if (ret < 0)
7527                         goto out;
7528                 if (ret > 0) {
7529                         ret = 0;
7530                         break;
7531                 }
7532         }
7533
7534         /* Ensure all chunks have corresponding dev extents */
7535         ret = verify_chunk_dev_extent_mapping(fs_info);
7536 out:
7537         btrfs_free_path(path);
7538         return ret;
7539 }