Merge tag 'random-6.12-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / btrfs / tree-checker.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4  */
5
6 /*
7  * The module is used to catch unexpected/corrupted tree block data.
8  * Such behavior can be caused either by a fuzzed image or bugs.
9  *
10  * The objective is to do leaf/node validation checks when tree block is read
11  * from disk, and check *every* possible member, so other code won't
12  * need to checking them again.
13  *
14  * Due to the potential and unwanted damage, every checker needs to be
15  * carefully reviewed otherwise so it does not prevent mount of valid images.
16  */
17
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "compression.h"
25 #include "volumes.h"
26 #include "misc.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "inode-item.h"
31 #include "dir-item.h"
32 #include "extent-tree.h"
33
34 /*
35  * Error message should follow the following format:
36  * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37  *
38  * @type:       leaf or node
39  * @identifier: the necessary info to locate the leaf/node.
40  *              It's recommended to decode key.objecitd/offset if it's
41  *              meaningful.
42  * @reason:     describe the error
43  * @bad_value:  optional, it's recommended to output bad value and its
44  *              expected value (range).
45  *
46  * Since comma is used to separate the components, only space is allowed
47  * inside each component.
48  */
49
50 /*
51  * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52  * Allows callers to customize the output.
53  */
54 __printf(3, 4)
55 __cold
56 static void generic_err(const struct extent_buffer *eb, int slot,
57                         const char *fmt, ...)
58 {
59         const struct btrfs_fs_info *fs_info = eb->fs_info;
60         struct va_format vaf;
61         va_list args;
62
63         va_start(args, fmt);
64
65         vaf.fmt = fmt;
66         vaf.va = &args;
67
68         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
69         btrfs_crit(fs_info,
70                 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
71                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
72                 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73         va_end(args);
74 }
75
76 /*
77  * Customized reporter for extent data item, since its key objectid and
78  * offset has its own meaning.
79  */
80 __printf(3, 4)
81 __cold
82 static void file_extent_err(const struct extent_buffer *eb, int slot,
83                             const char *fmt, ...)
84 {
85         const struct btrfs_fs_info *fs_info = eb->fs_info;
86         struct btrfs_key key;
87         struct va_format vaf;
88         va_list args;
89
90         btrfs_item_key_to_cpu(eb, &key, slot);
91         va_start(args, fmt);
92
93         vaf.fmt = fmt;
94         vaf.va = &args;
95
96         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
97         btrfs_crit(fs_info,
98         "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
100                 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101                 key.objectid, key.offset, &vaf);
102         va_end(args);
103 }
104
105 /*
106  * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107  * Else return 1
108  */
109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)                     \
110 ({                                                                            \
111         if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
112                                  (alignment))))                               \
113                 file_extent_err((leaf), (slot),                               \
114         "invalid %s for file extent, have %llu, should be aligned to %u",     \
115                         (#name), btrfs_file_extent_##name((leaf), (fi)),      \
116                         (alignment));                                         \
117         (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
118 })
119
120 static u64 file_extent_end(struct extent_buffer *leaf,
121                            struct btrfs_key *key,
122                            struct btrfs_file_extent_item *extent)
123 {
124         u64 end;
125         u64 len;
126
127         if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
128                 len = btrfs_file_extent_ram_bytes(leaf, extent);
129                 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130         } else {
131                 len = btrfs_file_extent_num_bytes(leaf, extent);
132                 end = key->offset + len;
133         }
134         return end;
135 }
136
137 /*
138  * Customized report for dir_item, the only new important information is
139  * key->objectid, which represents inode number
140  */
141 __printf(3, 4)
142 __cold
143 static void dir_item_err(const struct extent_buffer *eb, int slot,
144                          const char *fmt, ...)
145 {
146         const struct btrfs_fs_info *fs_info = eb->fs_info;
147         struct btrfs_key key;
148         struct va_format vaf;
149         va_list args;
150
151         btrfs_item_key_to_cpu(eb, &key, slot);
152         va_start(args, fmt);
153
154         vaf.fmt = fmt;
155         vaf.va = &args;
156
157         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
158         btrfs_crit(fs_info,
159                 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
161                 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162                 key.objectid, &vaf);
163         va_end(args);
164 }
165
166 /*
167  * This functions checks prev_key->objectid, to ensure current key and prev_key
168  * share the same objectid as inode number.
169  *
170  * This is to detect missing INODE_ITEM in subvolume trees.
171  *
172  * Return true if everything is OK or we don't need to check.
173  * Return false if anything is wrong.
174  */
175 static bool check_prev_ino(struct extent_buffer *leaf,
176                            struct btrfs_key *key, int slot,
177                            struct btrfs_key *prev_key)
178 {
179         /* No prev key, skip check */
180         if (slot == 0)
181                 return true;
182
183         /* Only these key->types needs to be checked */
184         ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185                key->type == BTRFS_INODE_REF_KEY ||
186                key->type == BTRFS_DIR_INDEX_KEY ||
187                key->type == BTRFS_DIR_ITEM_KEY ||
188                key->type == BTRFS_EXTENT_DATA_KEY);
189
190         /*
191          * Only subvolume trees along with their reloc trees need this check.
192          * Things like log tree doesn't follow this ino requirement.
193          */
194         if (!is_fstree(btrfs_header_owner(leaf)))
195                 return true;
196
197         if (key->objectid == prev_key->objectid)
198                 return true;
199
200         /* Error found */
201         dir_item_err(leaf, slot,
202                 "invalid previous key objectid, have %llu expect %llu",
203                 prev_key->objectid, key->objectid);
204         return false;
205 }
206 static int check_extent_data_item(struct extent_buffer *leaf,
207                                   struct btrfs_key *key, int slot,
208                                   struct btrfs_key *prev_key)
209 {
210         struct btrfs_fs_info *fs_info = leaf->fs_info;
211         struct btrfs_file_extent_item *fi;
212         u32 sectorsize = fs_info->sectorsize;
213         u32 item_size = btrfs_item_size(leaf, slot);
214         u64 extent_end;
215
216         if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
217                 file_extent_err(leaf, slot,
218 "unaligned file_offset for file extent, have %llu should be aligned to %u",
219                         key->offset, sectorsize);
220                 return -EUCLEAN;
221         }
222
223         /*
224          * Previous key must have the same key->objectid (ino).
225          * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
226          * But if objectids mismatch, it means we have a missing
227          * INODE_ITEM.
228          */
229         if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
230                 return -EUCLEAN;
231
232         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
233
234         /*
235          * Make sure the item contains at least inline header, so the file
236          * extent type is not some garbage.
237          */
238         if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
239                 file_extent_err(leaf, slot,
240                                 "invalid item size, have %u expect [%zu, %u)",
241                                 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
242                                 SZ_4K);
243                 return -EUCLEAN;
244         }
245         if (unlikely(btrfs_file_extent_type(leaf, fi) >=
246                      BTRFS_NR_FILE_EXTENT_TYPES)) {
247                 file_extent_err(leaf, slot,
248                 "invalid type for file extent, have %u expect range [0, %u]",
249                         btrfs_file_extent_type(leaf, fi),
250                         BTRFS_NR_FILE_EXTENT_TYPES - 1);
251                 return -EUCLEAN;
252         }
253
254         /*
255          * Support for new compression/encryption must introduce incompat flag,
256          * and must be caught in open_ctree().
257          */
258         if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
259                      BTRFS_NR_COMPRESS_TYPES)) {
260                 file_extent_err(leaf, slot,
261         "invalid compression for file extent, have %u expect range [0, %u]",
262                         btrfs_file_extent_compression(leaf, fi),
263                         BTRFS_NR_COMPRESS_TYPES - 1);
264                 return -EUCLEAN;
265         }
266         if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
267                 file_extent_err(leaf, slot,
268                         "invalid encryption for file extent, have %u expect 0",
269                         btrfs_file_extent_encryption(leaf, fi));
270                 return -EUCLEAN;
271         }
272         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
273                 /* Inline extent must have 0 as key offset */
274                 if (unlikely(key->offset)) {
275                         file_extent_err(leaf, slot,
276                 "invalid file_offset for inline file extent, have %llu expect 0",
277                                 key->offset);
278                         return -EUCLEAN;
279                 }
280
281                 /* Compressed inline extent has no on-disk size, skip it */
282                 if (btrfs_file_extent_compression(leaf, fi) !=
283                     BTRFS_COMPRESS_NONE)
284                         return 0;
285
286                 /* Uncompressed inline extent size must match item size */
287                 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
288                                           btrfs_file_extent_ram_bytes(leaf, fi))) {
289                         file_extent_err(leaf, slot,
290         "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
291                                 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
292                                 btrfs_file_extent_ram_bytes(leaf, fi));
293                         return -EUCLEAN;
294                 }
295                 return 0;
296         }
297
298         /* Regular or preallocated extent has fixed item size */
299         if (unlikely(item_size != sizeof(*fi))) {
300                 file_extent_err(leaf, slot,
301         "invalid item size for reg/prealloc file extent, have %u expect %zu",
302                         item_size, sizeof(*fi));
303                 return -EUCLEAN;
304         }
305         if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
306                      CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
307                      CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
308                      CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
309                      CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
310                 return -EUCLEAN;
311
312         /* Catch extent end overflow */
313         if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
314                                         key->offset, &extent_end))) {
315                 file_extent_err(leaf, slot,
316         "extent end overflow, have file offset %llu extent num bytes %llu",
317                                 key->offset,
318                                 btrfs_file_extent_num_bytes(leaf, fi));
319                 return -EUCLEAN;
320         }
321
322         /*
323          * Check that no two consecutive file extent items, in the same leaf,
324          * present ranges that overlap each other.
325          */
326         if (slot > 0 &&
327             prev_key->objectid == key->objectid &&
328             prev_key->type == BTRFS_EXTENT_DATA_KEY) {
329                 struct btrfs_file_extent_item *prev_fi;
330                 u64 prev_end;
331
332                 prev_fi = btrfs_item_ptr(leaf, slot - 1,
333                                          struct btrfs_file_extent_item);
334                 prev_end = file_extent_end(leaf, prev_key, prev_fi);
335                 if (unlikely(prev_end > key->offset)) {
336                         file_extent_err(leaf, slot - 1,
337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
338                                         prev_end, key->offset);
339                         return -EUCLEAN;
340                 }
341         }
342
343         /*
344          * For non-compressed data extents, ram_bytes should match its
345          * disk_num_bytes.
346          * However we do not really utilize ram_bytes in this case, so this check
347          * is only optional for DEBUG builds for developers to catch the
348          * unexpected behaviors.
349          */
350         if (IS_ENABLED(CONFIG_BTRFS_DEBUG) &&
351             btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE &&
352             btrfs_file_extent_disk_bytenr(leaf, fi)) {
353                 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) !=
354                             btrfs_file_extent_disk_num_bytes(leaf, fi)))
355                         file_extent_err(leaf, slot,
356 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent",
357                                         btrfs_file_extent_ram_bytes(leaf, fi),
358                                         btrfs_file_extent_disk_num_bytes(leaf, fi));
359         }
360
361         return 0;
362 }
363
364 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
365                            int slot, struct btrfs_key *prev_key)
366 {
367         struct btrfs_fs_info *fs_info = leaf->fs_info;
368         u32 sectorsize = fs_info->sectorsize;
369         const u32 csumsize = fs_info->csum_size;
370
371         if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
372                 generic_err(leaf, slot,
373                 "invalid key objectid for csum item, have %llu expect %llu",
374                         key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
375                 return -EUCLEAN;
376         }
377         if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
378                 generic_err(leaf, slot,
379         "unaligned key offset for csum item, have %llu should be aligned to %u",
380                         key->offset, sectorsize);
381                 return -EUCLEAN;
382         }
383         if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
384                 generic_err(leaf, slot,
385         "unaligned item size for csum item, have %u should be aligned to %u",
386                         btrfs_item_size(leaf, slot), csumsize);
387                 return -EUCLEAN;
388         }
389         if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
390                 u64 prev_csum_end;
391                 u32 prev_item_size;
392
393                 prev_item_size = btrfs_item_size(leaf, slot - 1);
394                 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
395                 prev_csum_end += prev_key->offset;
396                 if (unlikely(prev_csum_end > key->offset)) {
397                         generic_err(leaf, slot - 1,
398 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
399                                     prev_csum_end, key->offset);
400                         return -EUCLEAN;
401                 }
402         }
403         return 0;
404 }
405
406 /* Inode item error output has the same format as dir_item_err() */
407 #define inode_item_err(eb, slot, fmt, ...)                      \
408         dir_item_err(eb, slot, fmt, __VA_ARGS__)
409
410 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
411                            int slot)
412 {
413         struct btrfs_key item_key;
414         bool is_inode_item;
415
416         btrfs_item_key_to_cpu(leaf, &item_key, slot);
417         is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
418
419         /* For XATTR_ITEM, location key should be all 0 */
420         if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
421                 if (unlikely(key->objectid != 0 || key->type != 0 ||
422                              key->offset != 0))
423                         return -EUCLEAN;
424                 return 0;
425         }
426
427         if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
428                       key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
429                      key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
430                      key->objectid != BTRFS_FREE_INO_OBJECTID)) {
431                 if (is_inode_item) {
432                         generic_err(leaf, slot,
433         "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
434                                 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
435                                 BTRFS_FIRST_FREE_OBJECTID,
436                                 BTRFS_LAST_FREE_OBJECTID,
437                                 BTRFS_FREE_INO_OBJECTID);
438                 } else {
439                         dir_item_err(leaf, slot,
440 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
441                                 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
442                                 BTRFS_FIRST_FREE_OBJECTID,
443                                 BTRFS_LAST_FREE_OBJECTID,
444                                 BTRFS_FREE_INO_OBJECTID);
445                 }
446                 return -EUCLEAN;
447         }
448         if (unlikely(key->offset != 0)) {
449                 if (is_inode_item)
450                         inode_item_err(leaf, slot,
451                                        "invalid key offset: has %llu expect 0",
452                                        key->offset);
453                 else
454                         dir_item_err(leaf, slot,
455                                 "invalid location key offset:has %llu expect 0",
456                                 key->offset);
457                 return -EUCLEAN;
458         }
459         return 0;
460 }
461
462 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
463                           int slot)
464 {
465         struct btrfs_key item_key;
466         bool is_root_item;
467
468         btrfs_item_key_to_cpu(leaf, &item_key, slot);
469         is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
470
471         /*
472          * Bad rootid for reloc trees.
473          *
474          * Reloc trees are only for subvolume trees, other trees only need
475          * to be COWed to be relocated.
476          */
477         if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
478                      !is_fstree(key->offset))) {
479                 generic_err(leaf, slot,
480                 "invalid reloc tree for root %lld, root id is not a subvolume tree",
481                             key->offset);
482                 return -EUCLEAN;
483         }
484
485         /* No such tree id */
486         if (unlikely(key->objectid == 0)) {
487                 if (is_root_item)
488                         generic_err(leaf, slot, "invalid root id 0");
489                 else
490                         dir_item_err(leaf, slot,
491                                      "invalid location key root id 0");
492                 return -EUCLEAN;
493         }
494
495         /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
496         if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
497                 dir_item_err(leaf, slot,
498                 "invalid location key objectid, have %llu expect [%llu, %llu]",
499                                 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
500                                 BTRFS_LAST_FREE_OBJECTID);
501                 return -EUCLEAN;
502         }
503
504         /*
505          * ROOT_ITEM with non-zero offset means this is a snapshot, created at
506          * @offset transid.
507          * Furthermore, for location key in DIR_ITEM, its offset is always -1.
508          *
509          * So here we only check offset for reloc tree whose key->offset must
510          * be a valid tree.
511          */
512         if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
513                      key->offset == 0)) {
514                 generic_err(leaf, slot, "invalid root id 0 for reloc tree");
515                 return -EUCLEAN;
516         }
517         return 0;
518 }
519
520 static int check_dir_item(struct extent_buffer *leaf,
521                           struct btrfs_key *key, struct btrfs_key *prev_key,
522                           int slot)
523 {
524         struct btrfs_fs_info *fs_info = leaf->fs_info;
525         struct btrfs_dir_item *di;
526         u32 item_size = btrfs_item_size(leaf, slot);
527         u32 cur = 0;
528
529         if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
530                 return -EUCLEAN;
531
532         di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
533         while (cur < item_size) {
534                 struct btrfs_key location_key;
535                 u32 name_len;
536                 u32 data_len;
537                 u32 max_name_len;
538                 u32 total_size;
539                 u32 name_hash;
540                 u8 dir_type;
541                 int ret;
542
543                 /* header itself should not cross item boundary */
544                 if (unlikely(cur + sizeof(*di) > item_size)) {
545                         dir_item_err(leaf, slot,
546                 "dir item header crosses item boundary, have %zu boundary %u",
547                                 cur + sizeof(*di), item_size);
548                         return -EUCLEAN;
549                 }
550
551                 /* Location key check */
552                 btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
553                 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
554                         ret = check_root_key(leaf, &location_key, slot);
555                         if (unlikely(ret < 0))
556                                 return ret;
557                 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
558                            location_key.type == 0) {
559                         ret = check_inode_key(leaf, &location_key, slot);
560                         if (unlikely(ret < 0))
561                                 return ret;
562                 } else {
563                         dir_item_err(leaf, slot,
564                         "invalid location key type, have %u, expect %u or %u",
565                                      location_key.type, BTRFS_ROOT_ITEM_KEY,
566                                      BTRFS_INODE_ITEM_KEY);
567                         return -EUCLEAN;
568                 }
569
570                 /* dir type check */
571                 dir_type = btrfs_dir_ftype(leaf, di);
572                 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN ||
573                              dir_type >= BTRFS_FT_MAX)) {
574                         dir_item_err(leaf, slot,
575                         "invalid dir item type, have %u expect (0, %u)",
576                                 dir_type, BTRFS_FT_MAX);
577                         return -EUCLEAN;
578                 }
579
580                 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
581                              dir_type != BTRFS_FT_XATTR)) {
582                         dir_item_err(leaf, slot,
583                 "invalid dir item type for XATTR key, have %u expect %u",
584                                 dir_type, BTRFS_FT_XATTR);
585                         return -EUCLEAN;
586                 }
587                 if (unlikely(dir_type == BTRFS_FT_XATTR &&
588                              key->type != BTRFS_XATTR_ITEM_KEY)) {
589                         dir_item_err(leaf, slot,
590                         "xattr dir type found for non-XATTR key");
591                         return -EUCLEAN;
592                 }
593                 if (dir_type == BTRFS_FT_XATTR)
594                         max_name_len = XATTR_NAME_MAX;
595                 else
596                         max_name_len = BTRFS_NAME_LEN;
597
598                 /* Name/data length check */
599                 name_len = btrfs_dir_name_len(leaf, di);
600                 data_len = btrfs_dir_data_len(leaf, di);
601                 if (unlikely(name_len > max_name_len)) {
602                         dir_item_err(leaf, slot,
603                         "dir item name len too long, have %u max %u",
604                                 name_len, max_name_len);
605                         return -EUCLEAN;
606                 }
607                 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
608                         dir_item_err(leaf, slot,
609                         "dir item name and data len too long, have %u max %u",
610                                 name_len + data_len,
611                                 BTRFS_MAX_XATTR_SIZE(fs_info));
612                         return -EUCLEAN;
613                 }
614
615                 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
616                         dir_item_err(leaf, slot,
617                         "dir item with invalid data len, have %u expect 0",
618                                 data_len);
619                         return -EUCLEAN;
620                 }
621
622                 total_size = sizeof(*di) + name_len + data_len;
623
624                 /* header and name/data should not cross item boundary */
625                 if (unlikely(cur + total_size > item_size)) {
626                         dir_item_err(leaf, slot,
627                 "dir item data crosses item boundary, have %u boundary %u",
628                                 cur + total_size, item_size);
629                         return -EUCLEAN;
630                 }
631
632                 /*
633                  * Special check for XATTR/DIR_ITEM, as key->offset is name
634                  * hash, should match its name
635                  */
636                 if (key->type == BTRFS_DIR_ITEM_KEY ||
637                     key->type == BTRFS_XATTR_ITEM_KEY) {
638                         char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
639
640                         read_extent_buffer(leaf, namebuf,
641                                         (unsigned long)(di + 1), name_len);
642                         name_hash = btrfs_name_hash(namebuf, name_len);
643                         if (unlikely(key->offset != name_hash)) {
644                                 dir_item_err(leaf, slot,
645                 "name hash mismatch with key, have 0x%016x expect 0x%016llx",
646                                         name_hash, key->offset);
647                                 return -EUCLEAN;
648                         }
649                 }
650                 cur += total_size;
651                 di = (struct btrfs_dir_item *)((void *)di + total_size);
652         }
653         return 0;
654 }
655
656 __printf(3, 4)
657 __cold
658 static void block_group_err(const struct extent_buffer *eb, int slot,
659                             const char *fmt, ...)
660 {
661         const struct btrfs_fs_info *fs_info = eb->fs_info;
662         struct btrfs_key key;
663         struct va_format vaf;
664         va_list args;
665
666         btrfs_item_key_to_cpu(eb, &key, slot);
667         va_start(args, fmt);
668
669         vaf.fmt = fmt;
670         vaf.va = &args;
671
672         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
673         btrfs_crit(fs_info,
674         "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
675                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
676                 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
677                 key.objectid, key.offset, &vaf);
678         va_end(args);
679 }
680
681 static int check_block_group_item(struct extent_buffer *leaf,
682                                   struct btrfs_key *key, int slot)
683 {
684         struct btrfs_fs_info *fs_info = leaf->fs_info;
685         struct btrfs_block_group_item bgi;
686         u32 item_size = btrfs_item_size(leaf, slot);
687         u64 chunk_objectid;
688         u64 flags;
689         u64 type;
690
691         /*
692          * Here we don't really care about alignment since extent allocator can
693          * handle it.  We care more about the size.
694          */
695         if (unlikely(key->offset == 0)) {
696                 block_group_err(leaf, slot,
697                                 "invalid block group size 0");
698                 return -EUCLEAN;
699         }
700
701         if (unlikely(item_size != sizeof(bgi))) {
702                 block_group_err(leaf, slot,
703                         "invalid item size, have %u expect %zu",
704                                 item_size, sizeof(bgi));
705                 return -EUCLEAN;
706         }
707
708         read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
709                            sizeof(bgi));
710         chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
711         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
712                 /*
713                  * We don't init the nr_global_roots until we load the global
714                  * roots, so this could be 0 at mount time.  If it's 0 we'll
715                  * just assume we're fine, and later we'll check against our
716                  * actual value.
717                  */
718                 if (unlikely(fs_info->nr_global_roots &&
719                              chunk_objectid >= fs_info->nr_global_roots)) {
720                         block_group_err(leaf, slot,
721         "invalid block group global root id, have %llu, needs to be <= %llu",
722                                         chunk_objectid,
723                                         fs_info->nr_global_roots);
724                         return -EUCLEAN;
725                 }
726         } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
727                 block_group_err(leaf, slot,
728                 "invalid block group chunk objectid, have %llu expect %llu",
729                                 btrfs_stack_block_group_chunk_objectid(&bgi),
730                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
731                 return -EUCLEAN;
732         }
733
734         if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
735                 block_group_err(leaf, slot,
736                         "invalid block group used, have %llu expect [0, %llu)",
737                                 btrfs_stack_block_group_used(&bgi), key->offset);
738                 return -EUCLEAN;
739         }
740
741         flags = btrfs_stack_block_group_flags(&bgi);
742         if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
743                 block_group_err(leaf, slot,
744 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
745                         flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
746                         hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
747                 return -EUCLEAN;
748         }
749
750         type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
751         if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
752                      type != BTRFS_BLOCK_GROUP_METADATA &&
753                      type != BTRFS_BLOCK_GROUP_SYSTEM &&
754                      type != (BTRFS_BLOCK_GROUP_METADATA |
755                               BTRFS_BLOCK_GROUP_DATA))) {
756                 block_group_err(leaf, slot,
757 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
758                         type, hweight64(type),
759                         BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
760                         BTRFS_BLOCK_GROUP_SYSTEM,
761                         BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
762                 return -EUCLEAN;
763         }
764         return 0;
765 }
766
767 __printf(4, 5)
768 __cold
769 static void chunk_err(const struct extent_buffer *leaf,
770                       const struct btrfs_chunk *chunk, u64 logical,
771                       const char *fmt, ...)
772 {
773         const struct btrfs_fs_info *fs_info = leaf->fs_info;
774         bool is_sb;
775         struct va_format vaf;
776         va_list args;
777         int i;
778         int slot = -1;
779
780         /* Only superblock eb is able to have such small offset */
781         is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
782
783         if (!is_sb) {
784                 /*
785                  * Get the slot number by iterating through all slots, this
786                  * would provide better readability.
787                  */
788                 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
789                         if (btrfs_item_ptr_offset(leaf, i) ==
790                                         (unsigned long)chunk) {
791                                 slot = i;
792                                 break;
793                         }
794                 }
795         }
796         va_start(args, fmt);
797         vaf.fmt = fmt;
798         vaf.va = &args;
799
800         if (is_sb)
801                 btrfs_crit(fs_info,
802                 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
803                            logical, &vaf);
804         else
805                 btrfs_crit(fs_info,
806         "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
807                            BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
808                            logical, &vaf);
809         va_end(args);
810 }
811
812 /*
813  * The common chunk check which could also work on super block sys chunk array.
814  *
815  * Return -EUCLEAN if anything is corrupted.
816  * Return 0 if everything is OK.
817  */
818 int btrfs_check_chunk_valid(struct extent_buffer *leaf,
819                             struct btrfs_chunk *chunk, u64 logical)
820 {
821         struct btrfs_fs_info *fs_info = leaf->fs_info;
822         u64 length;
823         u64 chunk_end;
824         u64 stripe_len;
825         u16 num_stripes;
826         u16 sub_stripes;
827         u64 type;
828         u64 features;
829         bool mixed = false;
830         int raid_index;
831         int nparity;
832         int ncopies;
833
834         length = btrfs_chunk_length(leaf, chunk);
835         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
836         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
837         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
838         type = btrfs_chunk_type(leaf, chunk);
839         raid_index = btrfs_bg_flags_to_raid_index(type);
840         ncopies = btrfs_raid_array[raid_index].ncopies;
841         nparity = btrfs_raid_array[raid_index].nparity;
842
843         if (unlikely(!num_stripes)) {
844                 chunk_err(leaf, chunk, logical,
845                           "invalid chunk num_stripes, have %u", num_stripes);
846                 return -EUCLEAN;
847         }
848         if (unlikely(num_stripes < ncopies)) {
849                 chunk_err(leaf, chunk, logical,
850                           "invalid chunk num_stripes < ncopies, have %u < %d",
851                           num_stripes, ncopies);
852                 return -EUCLEAN;
853         }
854         if (unlikely(nparity && num_stripes == nparity)) {
855                 chunk_err(leaf, chunk, logical,
856                           "invalid chunk num_stripes == nparity, have %u == %d",
857                           num_stripes, nparity);
858                 return -EUCLEAN;
859         }
860         if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
861                 chunk_err(leaf, chunk, logical,
862                 "invalid chunk logical, have %llu should aligned to %u",
863                           logical, fs_info->sectorsize);
864                 return -EUCLEAN;
865         }
866         if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
867                 chunk_err(leaf, chunk, logical,
868                           "invalid chunk sectorsize, have %u expect %u",
869                           btrfs_chunk_sector_size(leaf, chunk),
870                           fs_info->sectorsize);
871                 return -EUCLEAN;
872         }
873         if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
874                 chunk_err(leaf, chunk, logical,
875                           "invalid chunk length, have %llu", length);
876                 return -EUCLEAN;
877         }
878         if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
879                 chunk_err(leaf, chunk, logical,
880 "invalid chunk logical start and length, have logical start %llu length %llu",
881                           logical, length);
882                 return -EUCLEAN;
883         }
884         if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
885                 chunk_err(leaf, chunk, logical,
886                           "invalid chunk stripe length: %llu",
887                           stripe_len);
888                 return -EUCLEAN;
889         }
890         /*
891          * We artificially limit the chunk size, so that the number of stripes
892          * inside a chunk can be fit into a U32.  The current limit (256G) is
893          * way too large for real world usage anyway, and it's also much larger
894          * than our existing limit (10G).
895          *
896          * Thus it should be a good way to catch obvious bitflips.
897          */
898         if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
899                 chunk_err(leaf, chunk, logical,
900                           "chunk length too large: have %llu limit %llu",
901                           length, btrfs_stripe_nr_to_offset(U32_MAX));
902                 return -EUCLEAN;
903         }
904         if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
905                               BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
906                 chunk_err(leaf, chunk, logical,
907                           "unrecognized chunk type: 0x%llx",
908                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
909                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
910                           btrfs_chunk_type(leaf, chunk));
911                 return -EUCLEAN;
912         }
913
914         if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
915                      (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
916                 chunk_err(leaf, chunk, logical,
917                 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
918                           type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
919                 return -EUCLEAN;
920         }
921         if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
922                 chunk_err(leaf, chunk, logical,
923         "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
924                           type, BTRFS_BLOCK_GROUP_TYPE_MASK);
925                 return -EUCLEAN;
926         }
927
928         if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
929                      (type & (BTRFS_BLOCK_GROUP_METADATA |
930                               BTRFS_BLOCK_GROUP_DATA)))) {
931                 chunk_err(leaf, chunk, logical,
932                           "system chunk with data or metadata type: 0x%llx",
933                           type);
934                 return -EUCLEAN;
935         }
936
937         features = btrfs_super_incompat_flags(fs_info->super_copy);
938         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
939                 mixed = true;
940
941         if (!mixed) {
942                 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
943                              (type & BTRFS_BLOCK_GROUP_DATA))) {
944                         chunk_err(leaf, chunk, logical,
945                         "mixed chunk type in non-mixed mode: 0x%llx", type);
946                         return -EUCLEAN;
947                 }
948         }
949
950         if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
951                       sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
952                      (type & BTRFS_BLOCK_GROUP_RAID1 &&
953                       num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
954                      (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
955                       num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
956                      (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
957                       num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
958                      (type & BTRFS_BLOCK_GROUP_RAID5 &&
959                       num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
960                      (type & BTRFS_BLOCK_GROUP_RAID6 &&
961                       num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
962                      (type & BTRFS_BLOCK_GROUP_DUP &&
963                       num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
964                      ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
965                       num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
966                 chunk_err(leaf, chunk, logical,
967                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
968                         num_stripes, sub_stripes,
969                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
970                 return -EUCLEAN;
971         }
972
973         return 0;
974 }
975
976 /*
977  * Enhanced version of chunk item checker.
978  *
979  * The common btrfs_check_chunk_valid() doesn't check item size since it needs
980  * to work on super block sys_chunk_array which doesn't have full item ptr.
981  */
982 static int check_leaf_chunk_item(struct extent_buffer *leaf,
983                                  struct btrfs_chunk *chunk,
984                                  struct btrfs_key *key, int slot)
985 {
986         int num_stripes;
987
988         if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
989                 chunk_err(leaf, chunk, key->offset,
990                         "invalid chunk item size: have %u expect [%zu, %u)",
991                         btrfs_item_size(leaf, slot),
992                         sizeof(struct btrfs_chunk),
993                         BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
994                 return -EUCLEAN;
995         }
996
997         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
998         /* Let btrfs_check_chunk_valid() handle this error type */
999         if (num_stripes == 0)
1000                 goto out;
1001
1002         if (unlikely(btrfs_chunk_item_size(num_stripes) !=
1003                      btrfs_item_size(leaf, slot))) {
1004                 chunk_err(leaf, chunk, key->offset,
1005                         "invalid chunk item size: have %u expect %lu",
1006                         btrfs_item_size(leaf, slot),
1007                         btrfs_chunk_item_size(num_stripes));
1008                 return -EUCLEAN;
1009         }
1010 out:
1011         return btrfs_check_chunk_valid(leaf, chunk, key->offset);
1012 }
1013
1014 __printf(3, 4)
1015 __cold
1016 static void dev_item_err(const struct extent_buffer *eb, int slot,
1017                          const char *fmt, ...)
1018 {
1019         struct btrfs_key key;
1020         struct va_format vaf;
1021         va_list args;
1022
1023         btrfs_item_key_to_cpu(eb, &key, slot);
1024         va_start(args, fmt);
1025
1026         vaf.fmt = fmt;
1027         vaf.va = &args;
1028
1029         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1030         btrfs_crit(eb->fs_info,
1031         "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1032                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1033                 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1034                 key.objectid, &vaf);
1035         va_end(args);
1036 }
1037
1038 static int check_dev_item(struct extent_buffer *leaf,
1039                           struct btrfs_key *key, int slot)
1040 {
1041         struct btrfs_dev_item *ditem;
1042         const u32 item_size = btrfs_item_size(leaf, slot);
1043
1044         if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1045                 dev_item_err(leaf, slot,
1046                              "invalid objectid: has=%llu expect=%llu",
1047                              key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1048                 return -EUCLEAN;
1049         }
1050
1051         if (unlikely(item_size != sizeof(*ditem))) {
1052                 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1053                              item_size, sizeof(*ditem));
1054                 return -EUCLEAN;
1055         }
1056
1057         ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1058         if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1059                 dev_item_err(leaf, slot,
1060                              "devid mismatch: key has=%llu item has=%llu",
1061                              key->offset, btrfs_device_id(leaf, ditem));
1062                 return -EUCLEAN;
1063         }
1064
1065         /*
1066          * For device total_bytes, we don't have reliable way to check it, as
1067          * it can be 0 for device removal. Device size check can only be done
1068          * by dev extents check.
1069          */
1070         if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1071                      btrfs_device_total_bytes(leaf, ditem))) {
1072                 dev_item_err(leaf, slot,
1073                              "invalid bytes used: have %llu expect [0, %llu]",
1074                              btrfs_device_bytes_used(leaf, ditem),
1075                              btrfs_device_total_bytes(leaf, ditem));
1076                 return -EUCLEAN;
1077         }
1078         /*
1079          * Remaining members like io_align/type/gen/dev_group aren't really
1080          * utilized.  Skip them to make later usage of them easier.
1081          */
1082         return 0;
1083 }
1084
1085 static int check_inode_item(struct extent_buffer *leaf,
1086                             struct btrfs_key *key, int slot)
1087 {
1088         struct btrfs_fs_info *fs_info = leaf->fs_info;
1089         struct btrfs_inode_item *iitem;
1090         u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1091         u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1092         const u32 item_size = btrfs_item_size(leaf, slot);
1093         u32 mode;
1094         int ret;
1095         u32 flags;
1096         u32 ro_flags;
1097
1098         ret = check_inode_key(leaf, key, slot);
1099         if (unlikely(ret < 0))
1100                 return ret;
1101
1102         if (unlikely(item_size != sizeof(*iitem))) {
1103                 generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1104                             item_size, sizeof(*iitem));
1105                 return -EUCLEAN;
1106         }
1107
1108         iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1109
1110         /* Here we use super block generation + 1 to handle log tree */
1111         if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1112                 inode_item_err(leaf, slot,
1113                         "invalid inode generation: has %llu expect (0, %llu]",
1114                                btrfs_inode_generation(leaf, iitem),
1115                                super_gen + 1);
1116                 return -EUCLEAN;
1117         }
1118         /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1119         if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1120                 inode_item_err(leaf, slot,
1121                         "invalid inode transid: has %llu expect [0, %llu]",
1122                                btrfs_inode_transid(leaf, iitem), super_gen + 1);
1123                 return -EUCLEAN;
1124         }
1125
1126         /*
1127          * For size and nbytes it's better not to be too strict, as for dir
1128          * item its size/nbytes can easily get wrong, but doesn't affect
1129          * anything in the fs. So here we skip the check.
1130          */
1131         mode = btrfs_inode_mode(leaf, iitem);
1132         if (unlikely(mode & ~valid_mask)) {
1133                 inode_item_err(leaf, slot,
1134                                "unknown mode bit detected: 0x%x",
1135                                mode & ~valid_mask);
1136                 return -EUCLEAN;
1137         }
1138
1139         /*
1140          * S_IFMT is not bit mapped so we can't completely rely on
1141          * is_power_of_2/has_single_bit_set, but it can save us from checking
1142          * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1143          */
1144         if (!has_single_bit_set(mode & S_IFMT)) {
1145                 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1146                         inode_item_err(leaf, slot,
1147                         "invalid mode: has 0%o expect valid S_IF* bit(s)",
1148                                        mode & S_IFMT);
1149                         return -EUCLEAN;
1150                 }
1151         }
1152         if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1153                 inode_item_err(leaf, slot,
1154                        "invalid nlink: has %u expect no more than 1 for dir",
1155                         btrfs_inode_nlink(leaf, iitem));
1156                 return -EUCLEAN;
1157         }
1158         btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1159         if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1160                 inode_item_err(leaf, slot,
1161                                "unknown incompat flags detected: 0x%x", flags);
1162                 return -EUCLEAN;
1163         }
1164         if (unlikely(!sb_rdonly(fs_info->sb) &&
1165                      (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1166                 inode_item_err(leaf, slot,
1167                         "unknown ro-compat flags detected on writeable mount: 0x%x",
1168                         ro_flags);
1169                 return -EUCLEAN;
1170         }
1171         return 0;
1172 }
1173
1174 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1175                            int slot)
1176 {
1177         struct btrfs_fs_info *fs_info = leaf->fs_info;
1178         struct btrfs_root_item ri = { 0 };
1179         const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1180                                      BTRFS_ROOT_SUBVOL_DEAD;
1181         int ret;
1182
1183         ret = check_root_key(leaf, key, slot);
1184         if (unlikely(ret < 0))
1185                 return ret;
1186
1187         if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1188                      btrfs_item_size(leaf, slot) !=
1189                      btrfs_legacy_root_item_size())) {
1190                 generic_err(leaf, slot,
1191                             "invalid root item size, have %u expect %zu or %u",
1192                             btrfs_item_size(leaf, slot), sizeof(ri),
1193                             btrfs_legacy_root_item_size());
1194                 return -EUCLEAN;
1195         }
1196
1197         /*
1198          * For legacy root item, the members starting at generation_v2 will be
1199          * all filled with 0.
1200          * And since we allow geneartion_v2 as 0, it will still pass the check.
1201          */
1202         read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1203                            btrfs_item_size(leaf, slot));
1204
1205         /* Generation related */
1206         if (unlikely(btrfs_root_generation(&ri) >
1207                      btrfs_super_generation(fs_info->super_copy) + 1)) {
1208                 generic_err(leaf, slot,
1209                         "invalid root generation, have %llu expect (0, %llu]",
1210                             btrfs_root_generation(&ri),
1211                             btrfs_super_generation(fs_info->super_copy) + 1);
1212                 return -EUCLEAN;
1213         }
1214         if (unlikely(btrfs_root_generation_v2(&ri) >
1215                      btrfs_super_generation(fs_info->super_copy) + 1)) {
1216                 generic_err(leaf, slot,
1217                 "invalid root v2 generation, have %llu expect (0, %llu]",
1218                             btrfs_root_generation_v2(&ri),
1219                             btrfs_super_generation(fs_info->super_copy) + 1);
1220                 return -EUCLEAN;
1221         }
1222         if (unlikely(btrfs_root_last_snapshot(&ri) >
1223                      btrfs_super_generation(fs_info->super_copy) + 1)) {
1224                 generic_err(leaf, slot,
1225                 "invalid root last_snapshot, have %llu expect (0, %llu]",
1226                             btrfs_root_last_snapshot(&ri),
1227                             btrfs_super_generation(fs_info->super_copy) + 1);
1228                 return -EUCLEAN;
1229         }
1230
1231         /* Alignment and level check */
1232         if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1233                 generic_err(leaf, slot,
1234                 "invalid root bytenr, have %llu expect to be aligned to %u",
1235                             btrfs_root_bytenr(&ri), fs_info->sectorsize);
1236                 return -EUCLEAN;
1237         }
1238         if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1239                 generic_err(leaf, slot,
1240                             "invalid root level, have %u expect [0, %u]",
1241                             btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1242                 return -EUCLEAN;
1243         }
1244         if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1245                 generic_err(leaf, slot,
1246                             "invalid root level, have %u expect [0, %u]",
1247                             btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1248                 return -EUCLEAN;
1249         }
1250
1251         /* Flags check */
1252         if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1253                 generic_err(leaf, slot,
1254                             "invalid root flags, have 0x%llx expect mask 0x%llx",
1255                             btrfs_root_flags(&ri), valid_root_flags);
1256                 return -EUCLEAN;
1257         }
1258         return 0;
1259 }
1260
1261 __printf(3,4)
1262 __cold
1263 static void extent_err(const struct extent_buffer *eb, int slot,
1264                        const char *fmt, ...)
1265 {
1266         struct btrfs_key key;
1267         struct va_format vaf;
1268         va_list args;
1269         u64 bytenr;
1270         u64 len;
1271
1272         btrfs_item_key_to_cpu(eb, &key, slot);
1273         bytenr = key.objectid;
1274         if (key.type == BTRFS_METADATA_ITEM_KEY ||
1275             key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1276             key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1277                 len = eb->fs_info->nodesize;
1278         else
1279                 len = key.offset;
1280         va_start(args, fmt);
1281
1282         vaf.fmt = fmt;
1283         vaf.va = &args;
1284
1285         dump_page(folio_page(eb->folios[0], 0), "eb page dump");
1286         btrfs_crit(eb->fs_info,
1287         "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1288                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1289                 eb->start, slot, bytenr, len, &vaf);
1290         va_end(args);
1291 }
1292
1293 static bool is_valid_dref_root(u64 rootid)
1294 {
1295         /*
1296          * The following tree root objectids are allowed to have a data backref:
1297          * - subvolume trees
1298          * - data reloc tree
1299          * - tree root
1300          *   For v1 space cache
1301          */
1302         return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID ||
1303                rootid == BTRFS_ROOT_TREE_OBJECTID;
1304 }
1305
1306 static int check_extent_item(struct extent_buffer *leaf,
1307                              struct btrfs_key *key, int slot,
1308                              struct btrfs_key *prev_key)
1309 {
1310         struct btrfs_fs_info *fs_info = leaf->fs_info;
1311         struct btrfs_extent_item *ei;
1312         bool is_tree_block = false;
1313         unsigned long ptr;      /* Current pointer inside inline refs */
1314         unsigned long end;      /* Extent item end */
1315         const u32 item_size = btrfs_item_size(leaf, slot);
1316         u8 last_type = 0;
1317         u64 last_seq = U64_MAX;
1318         u64 flags;
1319         u64 generation;
1320         u64 total_refs;         /* Total refs in btrfs_extent_item */
1321         u64 inline_refs = 0;    /* found total inline refs */
1322
1323         if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1324                      !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1325                 generic_err(leaf, slot,
1326 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1327                 return -EUCLEAN;
1328         }
1329         /* key->objectid is the bytenr for both key types */
1330         if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1331                 generic_err(leaf, slot,
1332                 "invalid key objectid, have %llu expect to be aligned to %u",
1333                            key->objectid, fs_info->sectorsize);
1334                 return -EUCLEAN;
1335         }
1336
1337         /* key->offset is tree level for METADATA_ITEM_KEY */
1338         if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1339                      key->offset >= BTRFS_MAX_LEVEL)) {
1340                 extent_err(leaf, slot,
1341                            "invalid tree level, have %llu expect [0, %u]",
1342                            key->offset, BTRFS_MAX_LEVEL - 1);
1343                 return -EUCLEAN;
1344         }
1345
1346         /*
1347          * EXTENT/METADATA_ITEM consists of:
1348          * 1) One btrfs_extent_item
1349          *    Records the total refs, type and generation of the extent.
1350          *
1351          * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1352          *    Records the first key and level of the tree block.
1353          *
1354          * 2) Zero or more btrfs_extent_inline_ref(s)
1355          *    Each inline ref has one btrfs_extent_inline_ref shows:
1356          *    2.1) The ref type, one of the 4
1357          *         TREE_BLOCK_REF       Tree block only
1358          *         SHARED_BLOCK_REF     Tree block only
1359          *         EXTENT_DATA_REF      Data only
1360          *         SHARED_DATA_REF      Data only
1361          *    2.2) Ref type specific data
1362          *         Either using btrfs_extent_inline_ref::offset, or specific
1363          *         data structure.
1364          *
1365          *    All above inline items should follow the order:
1366          *
1367          *    - All btrfs_extent_inline_ref::type should be in an ascending
1368          *      order
1369          *
1370          *    - Within the same type, the items should follow a descending
1371          *      order by their sequence number. The sequence number is
1372          *      determined by:
1373          *      * btrfs_extent_inline_ref::offset for all types  other than
1374          *        EXTENT_DATA_REF
1375          *      * hash_extent_data_ref() for EXTENT_DATA_REF
1376          */
1377         if (unlikely(item_size < sizeof(*ei))) {
1378                 extent_err(leaf, slot,
1379                            "invalid item size, have %u expect [%zu, %u)",
1380                            item_size, sizeof(*ei),
1381                            BTRFS_LEAF_DATA_SIZE(fs_info));
1382                 return -EUCLEAN;
1383         }
1384         end = item_size + btrfs_item_ptr_offset(leaf, slot);
1385
1386         /* Checks against extent_item */
1387         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1388         flags = btrfs_extent_flags(leaf, ei);
1389         total_refs = btrfs_extent_refs(leaf, ei);
1390         generation = btrfs_extent_generation(leaf, ei);
1391         if (unlikely(generation >
1392                      btrfs_super_generation(fs_info->super_copy) + 1)) {
1393                 extent_err(leaf, slot,
1394                            "invalid generation, have %llu expect (0, %llu]",
1395                            generation,
1396                            btrfs_super_generation(fs_info->super_copy) + 1);
1397                 return -EUCLEAN;
1398         }
1399         if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1400                                                   BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1401                 extent_err(leaf, slot,
1402                 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1403                         flags, BTRFS_EXTENT_FLAG_DATA |
1404                         BTRFS_EXTENT_FLAG_TREE_BLOCK);
1405                 return -EUCLEAN;
1406         }
1407         is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1408         if (is_tree_block) {
1409                 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1410                              key->offset != fs_info->nodesize)) {
1411                         extent_err(leaf, slot,
1412                                    "invalid extent length, have %llu expect %u",
1413                                    key->offset, fs_info->nodesize);
1414                         return -EUCLEAN;
1415                 }
1416         } else {
1417                 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1418                         extent_err(leaf, slot,
1419                         "invalid key type, have %u expect %u for data backref",
1420                                    key->type, BTRFS_EXTENT_ITEM_KEY);
1421                         return -EUCLEAN;
1422                 }
1423                 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1424                         extent_err(leaf, slot,
1425                         "invalid extent length, have %llu expect aligned to %u",
1426                                    key->offset, fs_info->sectorsize);
1427                         return -EUCLEAN;
1428                 }
1429                 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1430                         extent_err(leaf, slot,
1431                         "invalid extent flag, data has full backref set");
1432                         return -EUCLEAN;
1433                 }
1434         }
1435         ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1436
1437         /* Check the special case of btrfs_tree_block_info */
1438         if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1439                 struct btrfs_tree_block_info *info;
1440
1441                 info = (struct btrfs_tree_block_info *)ptr;
1442                 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1443                         extent_err(leaf, slot,
1444                         "invalid tree block info level, have %u expect [0, %u]",
1445                                    btrfs_tree_block_level(leaf, info),
1446                                    BTRFS_MAX_LEVEL - 1);
1447                         return -EUCLEAN;
1448                 }
1449                 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1450         }
1451
1452         /* Check inline refs */
1453         while (ptr < end) {
1454                 struct btrfs_extent_inline_ref *iref;
1455                 struct btrfs_extent_data_ref *dref;
1456                 struct btrfs_shared_data_ref *sref;
1457                 u64 seq;
1458                 u64 dref_root;
1459                 u64 dref_objectid;
1460                 u64 dref_offset;
1461                 u64 inline_offset;
1462                 u8 inline_type;
1463
1464                 if (unlikely(ptr + sizeof(*iref) > end)) {
1465                         extent_err(leaf, slot,
1466 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1467                                    ptr, sizeof(*iref), end);
1468                         return -EUCLEAN;
1469                 }
1470                 iref = (struct btrfs_extent_inline_ref *)ptr;
1471                 inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1472                 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1473                 seq = inline_offset;
1474                 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1475                         extent_err(leaf, slot,
1476 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1477                                    ptr, btrfs_extent_inline_ref_size(inline_type), end);
1478                         return -EUCLEAN;
1479                 }
1480
1481                 switch (inline_type) {
1482                 /* inline_offset is subvolid of the owner, no need to check */
1483                 case BTRFS_TREE_BLOCK_REF_KEY:
1484                         inline_refs++;
1485                         break;
1486                 /* Contains parent bytenr */
1487                 case BTRFS_SHARED_BLOCK_REF_KEY:
1488                         if (unlikely(!IS_ALIGNED(inline_offset,
1489                                                  fs_info->sectorsize))) {
1490                                 extent_err(leaf, slot,
1491                 "invalid tree parent bytenr, have %llu expect aligned to %u",
1492                                            inline_offset, fs_info->sectorsize);
1493                                 return -EUCLEAN;
1494                         }
1495                         inline_refs++;
1496                         break;
1497                 /*
1498                  * Contains owner subvolid, owner key objectid, adjusted offset.
1499                  * The only obvious corruption can happen in that offset.
1500                  */
1501                 case BTRFS_EXTENT_DATA_REF_KEY:
1502                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1503                         dref_root = btrfs_extent_data_ref_root(leaf, dref);
1504                         dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1505                         dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1506                         seq = hash_extent_data_ref(
1507                                         btrfs_extent_data_ref_root(leaf, dref),
1508                                         btrfs_extent_data_ref_objectid(leaf, dref),
1509                                         btrfs_extent_data_ref_offset(leaf, dref));
1510                         if (unlikely(!is_valid_dref_root(dref_root))) {
1511                                 extent_err(leaf, slot,
1512                                            "invalid data ref root value %llu",
1513                                            dref_root);
1514                                 return -EUCLEAN;
1515                         }
1516                         if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID ||
1517                                      dref_objectid > BTRFS_LAST_FREE_OBJECTID)) {
1518                                 extent_err(leaf, slot,
1519                                            "invalid data ref objectid value %llu",
1520                                            dref_root);
1521                                 return -EUCLEAN;
1522                         }
1523                         if (unlikely(!IS_ALIGNED(dref_offset,
1524                                                  fs_info->sectorsize))) {
1525                                 extent_err(leaf, slot,
1526                 "invalid data ref offset, have %llu expect aligned to %u",
1527                                            dref_offset, fs_info->sectorsize);
1528                                 return -EUCLEAN;
1529                         }
1530                         inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1531                         break;
1532                 /* Contains parent bytenr and ref count */
1533                 case BTRFS_SHARED_DATA_REF_KEY:
1534                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
1535                         if (unlikely(!IS_ALIGNED(inline_offset,
1536                                                  fs_info->sectorsize))) {
1537                                 extent_err(leaf, slot,
1538                 "invalid data parent bytenr, have %llu expect aligned to %u",
1539                                            inline_offset, fs_info->sectorsize);
1540                                 return -EUCLEAN;
1541                         }
1542                         inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1543                         break;
1544                 case BTRFS_EXTENT_OWNER_REF_KEY:
1545                         WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1546                         break;
1547                 default:
1548                         extent_err(leaf, slot, "unknown inline ref type: %u",
1549                                    inline_type);
1550                         return -EUCLEAN;
1551                 }
1552                 if (inline_type < last_type) {
1553                         extent_err(leaf, slot,
1554                                    "inline ref out-of-order: has type %u, prev type %u",
1555                                    inline_type, last_type);
1556                         return -EUCLEAN;
1557                 }
1558                 /* Type changed, allow the sequence starts from U64_MAX again. */
1559                 if (inline_type > last_type)
1560                         last_seq = U64_MAX;
1561                 if (seq > last_seq) {
1562                         extent_err(leaf, slot,
1563 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1564                                    inline_type, inline_offset, seq,
1565                                    last_type, last_seq);
1566                         return -EUCLEAN;
1567                 }
1568                 last_type = inline_type;
1569                 last_seq = seq;
1570                 ptr += btrfs_extent_inline_ref_size(inline_type);
1571         }
1572         /* No padding is allowed */
1573         if (unlikely(ptr != end)) {
1574                 extent_err(leaf, slot,
1575                            "invalid extent item size, padding bytes found");
1576                 return -EUCLEAN;
1577         }
1578
1579         /* Finally, check the inline refs against total refs */
1580         if (unlikely(inline_refs > total_refs)) {
1581                 extent_err(leaf, slot,
1582                         "invalid extent refs, have %llu expect >= inline %llu",
1583                            total_refs, inline_refs);
1584                 return -EUCLEAN;
1585         }
1586
1587         if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1588             (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1589                 u64 prev_end = prev_key->objectid;
1590
1591                 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1592                         prev_end += fs_info->nodesize;
1593                 else
1594                         prev_end += prev_key->offset;
1595
1596                 if (unlikely(prev_end > key->objectid)) {
1597                         extent_err(leaf, slot,
1598         "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1599                                    prev_key->objectid, prev_key->type,
1600                                    prev_key->offset, key->objectid, key->type,
1601                                    key->offset);
1602                         return -EUCLEAN;
1603                 }
1604         }
1605
1606         return 0;
1607 }
1608
1609 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1610                                    struct btrfs_key *key, int slot)
1611 {
1612         u32 expect_item_size = 0;
1613
1614         if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1615                 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1616
1617         if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1618                 generic_err(leaf, slot,
1619                 "invalid item size, have %u expect %u for key type %u",
1620                             btrfs_item_size(leaf, slot),
1621                             expect_item_size, key->type);
1622                 return -EUCLEAN;
1623         }
1624         if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1625                 generic_err(leaf, slot,
1626 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1627                             key->objectid, leaf->fs_info->sectorsize);
1628                 return -EUCLEAN;
1629         }
1630         if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1631                      !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1632                 extent_err(leaf, slot,
1633                 "invalid tree parent bytenr, have %llu expect aligned to %u",
1634                            key->offset, leaf->fs_info->sectorsize);
1635                 return -EUCLEAN;
1636         }
1637         return 0;
1638 }
1639
1640 static int check_extent_data_ref(struct extent_buffer *leaf,
1641                                  struct btrfs_key *key, int slot)
1642 {
1643         struct btrfs_extent_data_ref *dref;
1644         unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1645         const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1646
1647         if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1648                 generic_err(leaf, slot,
1649         "invalid item size, have %u expect aligned to %zu for key type %u",
1650                             btrfs_item_size(leaf, slot),
1651                             sizeof(*dref), key->type);
1652                 return -EUCLEAN;
1653         }
1654         if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1655                 generic_err(leaf, slot,
1656 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1657                             key->objectid, leaf->fs_info->sectorsize);
1658                 return -EUCLEAN;
1659         }
1660         for (; ptr < end; ptr += sizeof(*dref)) {
1661                 u64 root;
1662                 u64 objectid;
1663                 u64 offset;
1664
1665                 /*
1666                  * We cannot check the extent_data_ref hash due to possible
1667                  * overflow from the leaf due to hash collisions.
1668                  */
1669                 dref = (struct btrfs_extent_data_ref *)ptr;
1670                 root = btrfs_extent_data_ref_root(leaf, dref);
1671                 objectid = btrfs_extent_data_ref_objectid(leaf, dref);
1672                 offset = btrfs_extent_data_ref_offset(leaf, dref);
1673                 if (unlikely(!is_valid_dref_root(root))) {
1674                         extent_err(leaf, slot,
1675                                    "invalid extent data backref root value %llu",
1676                                    root);
1677                         return -EUCLEAN;
1678                 }
1679                 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID ||
1680                              objectid > BTRFS_LAST_FREE_OBJECTID)) {
1681                         extent_err(leaf, slot,
1682                                    "invalid extent data backref objectid value %llu",
1683                                    root);
1684                         return -EUCLEAN;
1685                 }
1686                 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1687                         extent_err(leaf, slot,
1688         "invalid extent data backref offset, have %llu expect aligned to %u",
1689                                    offset, leaf->fs_info->sectorsize);
1690                         return -EUCLEAN;
1691                 }
1692         }
1693         return 0;
1694 }
1695
1696 #define inode_ref_err(eb, slot, fmt, args...)                   \
1697         inode_item_err(eb, slot, fmt, ##args)
1698 static int check_inode_ref(struct extent_buffer *leaf,
1699                            struct btrfs_key *key, struct btrfs_key *prev_key,
1700                            int slot)
1701 {
1702         struct btrfs_inode_ref *iref;
1703         unsigned long ptr;
1704         unsigned long end;
1705
1706         if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1707                 return -EUCLEAN;
1708         /* namelen can't be 0, so item_size == sizeof() is also invalid */
1709         if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1710                 inode_ref_err(leaf, slot,
1711                         "invalid item size, have %u expect (%zu, %u)",
1712                         btrfs_item_size(leaf, slot),
1713                         sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1714                 return -EUCLEAN;
1715         }
1716
1717         ptr = btrfs_item_ptr_offset(leaf, slot);
1718         end = ptr + btrfs_item_size(leaf, slot);
1719         while (ptr < end) {
1720                 u16 namelen;
1721
1722                 if (unlikely(ptr + sizeof(iref) > end)) {
1723                         inode_ref_err(leaf, slot,
1724                         "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1725                                 ptr, end, sizeof(iref));
1726                         return -EUCLEAN;
1727                 }
1728
1729                 iref = (struct btrfs_inode_ref *)ptr;
1730                 namelen = btrfs_inode_ref_name_len(leaf, iref);
1731                 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1732                         inode_ref_err(leaf, slot,
1733                                 "inode ref overflow, ptr %lu end %lu namelen %u",
1734                                 ptr, end, namelen);
1735                         return -EUCLEAN;
1736                 }
1737
1738                 /*
1739                  * NOTE: In theory we should record all found index numbers
1740                  * to find any duplicated indexes, but that will be too time
1741                  * consuming for inodes with too many hard links.
1742                  */
1743                 ptr += sizeof(*iref) + namelen;
1744         }
1745         return 0;
1746 }
1747
1748 static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1749                                     const struct btrfs_key *key, int slot)
1750 {
1751         if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1752                 generic_err(leaf, slot,
1753 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1754                             key->objectid, leaf->fs_info->sectorsize);
1755                 return -EUCLEAN;
1756         }
1757
1758         if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1759                 generic_err(leaf, slot,
1760         "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1761                 return -EUCLEAN;
1762         }
1763
1764         return 0;
1765 }
1766
1767 static int check_dev_extent_item(const struct extent_buffer *leaf,
1768                                  const struct btrfs_key *key,
1769                                  int slot,
1770                                  struct btrfs_key *prev_key)
1771 {
1772         struct btrfs_dev_extent *de;
1773         const u32 sectorsize = leaf->fs_info->sectorsize;
1774
1775         de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
1776         /* Basic fixed member checks. */
1777         if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) !=
1778                      BTRFS_CHUNK_TREE_OBJECTID)) {
1779                 generic_err(leaf, slot,
1780                             "invalid dev extent chunk tree id, has %llu expect %llu",
1781                             btrfs_dev_extent_chunk_tree(leaf, de),
1782                             BTRFS_CHUNK_TREE_OBJECTID);
1783                 return -EUCLEAN;
1784         }
1785         if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) !=
1786                      BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
1787                 generic_err(leaf, slot,
1788                             "invalid dev extent chunk objectid, has %llu expect %llu",
1789                             btrfs_dev_extent_chunk_objectid(leaf, de),
1790                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1791                 return -EUCLEAN;
1792         }
1793         /* Alignment check. */
1794         if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
1795                 generic_err(leaf, slot,
1796                             "invalid dev extent key.offset, has %llu not aligned to %u",
1797                             key->offset, sectorsize);
1798                 return -EUCLEAN;
1799         }
1800         if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de),
1801                                  sectorsize))) {
1802                 generic_err(leaf, slot,
1803                             "invalid dev extent chunk offset, has %llu not aligned to %u",
1804                             btrfs_dev_extent_chunk_objectid(leaf, de),
1805                             sectorsize);
1806                 return -EUCLEAN;
1807         }
1808         if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de),
1809                                  sectorsize))) {
1810                 generic_err(leaf, slot,
1811                             "invalid dev extent length, has %llu not aligned to %u",
1812                             btrfs_dev_extent_length(leaf, de), sectorsize);
1813                 return -EUCLEAN;
1814         }
1815         /* Overlap check with previous dev extent. */
1816         if (slot && prev_key->objectid == key->objectid &&
1817             prev_key->type == key->type) {
1818                 struct btrfs_dev_extent *prev_de;
1819                 u64 prev_len;
1820
1821                 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent);
1822                 prev_len = btrfs_dev_extent_length(leaf, prev_de);
1823                 if (unlikely(prev_key->offset + prev_len > key->offset)) {
1824                         generic_err(leaf, slot,
1825                 "dev extent overlap, prev offset %llu len %llu current offset %llu",
1826                                     prev_key->objectid, prev_len, key->offset);
1827                         return -EUCLEAN;
1828                 }
1829         }
1830         return 0;
1831 }
1832
1833 /*
1834  * Common point to switch the item-specific validation.
1835  */
1836 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1837                                                     struct btrfs_key *key,
1838                                                     int slot,
1839                                                     struct btrfs_key *prev_key)
1840 {
1841         int ret = 0;
1842         struct btrfs_chunk *chunk;
1843
1844         switch (key->type) {
1845         case BTRFS_EXTENT_DATA_KEY:
1846                 ret = check_extent_data_item(leaf, key, slot, prev_key);
1847                 break;
1848         case BTRFS_EXTENT_CSUM_KEY:
1849                 ret = check_csum_item(leaf, key, slot, prev_key);
1850                 break;
1851         case BTRFS_DIR_ITEM_KEY:
1852         case BTRFS_DIR_INDEX_KEY:
1853         case BTRFS_XATTR_ITEM_KEY:
1854                 ret = check_dir_item(leaf, key, prev_key, slot);
1855                 break;
1856         case BTRFS_INODE_REF_KEY:
1857                 ret = check_inode_ref(leaf, key, prev_key, slot);
1858                 break;
1859         case BTRFS_BLOCK_GROUP_ITEM_KEY:
1860                 ret = check_block_group_item(leaf, key, slot);
1861                 break;
1862         case BTRFS_CHUNK_ITEM_KEY:
1863                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1864                 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1865                 break;
1866         case BTRFS_DEV_ITEM_KEY:
1867                 ret = check_dev_item(leaf, key, slot);
1868                 break;
1869         case BTRFS_DEV_EXTENT_KEY:
1870                 ret = check_dev_extent_item(leaf, key, slot, prev_key);
1871                 break;
1872         case BTRFS_INODE_ITEM_KEY:
1873                 ret = check_inode_item(leaf, key, slot);
1874                 break;
1875         case BTRFS_ROOT_ITEM_KEY:
1876                 ret = check_root_item(leaf, key, slot);
1877                 break;
1878         case BTRFS_EXTENT_ITEM_KEY:
1879         case BTRFS_METADATA_ITEM_KEY:
1880                 ret = check_extent_item(leaf, key, slot, prev_key);
1881                 break;
1882         case BTRFS_TREE_BLOCK_REF_KEY:
1883         case BTRFS_SHARED_DATA_REF_KEY:
1884         case BTRFS_SHARED_BLOCK_REF_KEY:
1885                 ret = check_simple_keyed_refs(leaf, key, slot);
1886                 break;
1887         case BTRFS_EXTENT_DATA_REF_KEY:
1888                 ret = check_extent_data_ref(leaf, key, slot);
1889                 break;
1890         case BTRFS_RAID_STRIPE_KEY:
1891                 ret = check_raid_stripe_extent(leaf, key, slot);
1892                 break;
1893         }
1894
1895         if (ret)
1896                 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1897         return BTRFS_TREE_BLOCK_CLEAN;
1898 }
1899
1900 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1901 {
1902         struct btrfs_fs_info *fs_info = leaf->fs_info;
1903         /* No valid key type is 0, so all key should be larger than this key */
1904         struct btrfs_key prev_key = {0, 0, 0};
1905         struct btrfs_key key;
1906         u32 nritems = btrfs_header_nritems(leaf);
1907         int slot;
1908
1909         if (unlikely(btrfs_header_level(leaf) != 0)) {
1910                 generic_err(leaf, 0,
1911                         "invalid level for leaf, have %d expect 0",
1912                         btrfs_header_level(leaf));
1913                 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1914         }
1915
1916         if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) {
1917                 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set");
1918                 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
1919         }
1920
1921         /*
1922          * Extent buffers from a relocation tree have a owner field that
1923          * corresponds to the subvolume tree they are based on. So just from an
1924          * extent buffer alone we can not find out what is the id of the
1925          * corresponding subvolume tree, so we can not figure out if the extent
1926          * buffer corresponds to the root of the relocation tree or not. So
1927          * skip this check for relocation trees.
1928          */
1929         if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1930                 u64 owner = btrfs_header_owner(leaf);
1931
1932                 /* These trees must never be empty */
1933                 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1934                              owner == BTRFS_CHUNK_TREE_OBJECTID ||
1935                              owner == BTRFS_DEV_TREE_OBJECTID ||
1936                              owner == BTRFS_FS_TREE_OBJECTID ||
1937                              owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1938                         generic_err(leaf, 0,
1939                         "invalid root, root %llu must never be empty",
1940                                     owner);
1941                         return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1942                 }
1943
1944                 /* Unknown tree */
1945                 if (unlikely(owner == 0)) {
1946                         generic_err(leaf, 0,
1947                                 "invalid owner, root 0 is not defined");
1948                         return BTRFS_TREE_BLOCK_INVALID_OWNER;
1949                 }
1950
1951                 /* EXTENT_TREE_V2 can have empty extent trees. */
1952                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1953                         return BTRFS_TREE_BLOCK_CLEAN;
1954
1955                 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1956                         generic_err(leaf, 0,
1957                         "invalid root, root %llu must never be empty",
1958                                     owner);
1959                         return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1960                 }
1961
1962                 return BTRFS_TREE_BLOCK_CLEAN;
1963         }
1964
1965         if (unlikely(nritems == 0))
1966                 return BTRFS_TREE_BLOCK_CLEAN;
1967
1968         /*
1969          * Check the following things to make sure this is a good leaf, and
1970          * leaf users won't need to bother with similar sanity checks:
1971          *
1972          * 1) key ordering
1973          * 2) item offset and size
1974          *    No overlap, no hole, all inside the leaf.
1975          * 3) item content
1976          *    If possible, do comprehensive sanity check.
1977          *    NOTE: All checks must only rely on the item data itself.
1978          */
1979         for (slot = 0; slot < nritems; slot++) {
1980                 u32 item_end_expected;
1981                 u64 item_data_end;
1982                 enum btrfs_tree_block_status ret;
1983
1984                 btrfs_item_key_to_cpu(leaf, &key, slot);
1985
1986                 /* Make sure the keys are in the right order */
1987                 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1988                         generic_err(leaf, slot,
1989         "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1990                                 prev_key.objectid, prev_key.type,
1991                                 prev_key.offset, key.objectid, key.type,
1992                                 key.offset);
1993                         return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1994                 }
1995
1996                 item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1997                                 btrfs_item_size(leaf, slot);
1998                 /*
1999                  * Make sure the offset and ends are right, remember that the
2000                  * item data starts at the end of the leaf and grows towards the
2001                  * front.
2002                  */
2003                 if (slot == 0)
2004                         item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
2005                 else
2006                         item_end_expected = btrfs_item_offset(leaf,
2007                                                                  slot - 1);
2008                 if (unlikely(item_data_end != item_end_expected)) {
2009                         generic_err(leaf, slot,
2010                                 "unexpected item end, have %llu expect %u",
2011                                 item_data_end, item_end_expected);
2012                         return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2013                 }
2014
2015                 /*
2016                  * Check to make sure that we don't point outside of the leaf,
2017                  * just in case all the items are consistent to each other, but
2018                  * all point outside of the leaf.
2019                  */
2020                 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
2021                         generic_err(leaf, slot,
2022                         "slot end outside of leaf, have %llu expect range [0, %u]",
2023                                 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
2024                         return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2025                 }
2026
2027                 /* Also check if the item pointer overlaps with btrfs item. */
2028                 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
2029                              btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
2030                         generic_err(leaf, slot,
2031                 "slot overlaps with its data, item end %lu data start %lu",
2032                                 btrfs_item_nr_offset(leaf, slot) +
2033                                 sizeof(struct btrfs_item),
2034                                 btrfs_item_ptr_offset(leaf, slot));
2035                         return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
2036                 }
2037
2038                 /* Check if the item size and content meet other criteria. */
2039                 ret = check_leaf_item(leaf, &key, slot, &prev_key);
2040                 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2041                         return ret;
2042
2043                 prev_key.objectid = key.objectid;
2044                 prev_key.type = key.type;
2045                 prev_key.offset = key.offset;
2046         }
2047
2048         return BTRFS_TREE_BLOCK_CLEAN;
2049 }
2050
2051 int btrfs_check_leaf(struct extent_buffer *leaf)
2052 {
2053         enum btrfs_tree_block_status ret;
2054
2055         ret = __btrfs_check_leaf(leaf);
2056         if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2057                 return -EUCLEAN;
2058         return 0;
2059 }
2060 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
2061
2062 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
2063 {
2064         struct btrfs_fs_info *fs_info = node->fs_info;
2065         unsigned long nr = btrfs_header_nritems(node);
2066         struct btrfs_key key, next_key;
2067         int slot;
2068         int level = btrfs_header_level(node);
2069         u64 bytenr;
2070
2071         if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) {
2072                 generic_err(node, 0, "invalid flag for node, WRITTEN not set");
2073                 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET;
2074         }
2075
2076         if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
2077                 generic_err(node, 0,
2078                         "invalid level for node, have %d expect [1, %d]",
2079                         level, BTRFS_MAX_LEVEL - 1);
2080                 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
2081         }
2082         if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
2083                 btrfs_crit(fs_info,
2084 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
2085                            btrfs_header_owner(node), node->start,
2086                            nr == 0 ? "small" : "large", nr,
2087                            BTRFS_NODEPTRS_PER_BLOCK(fs_info));
2088                 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
2089         }
2090
2091         for (slot = 0; slot < nr - 1; slot++) {
2092                 bytenr = btrfs_node_blockptr(node, slot);
2093                 btrfs_node_key_to_cpu(node, &key, slot);
2094                 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
2095
2096                 if (unlikely(!bytenr)) {
2097                         generic_err(node, slot,
2098                                 "invalid NULL node pointer");
2099                         return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2100                 }
2101                 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
2102                         generic_err(node, slot,
2103                         "unaligned pointer, have %llu should be aligned to %u",
2104                                 bytenr, fs_info->sectorsize);
2105                         return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
2106                 }
2107
2108                 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
2109                         generic_err(node, slot,
2110         "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
2111                                 key.objectid, key.type, key.offset,
2112                                 next_key.objectid, next_key.type,
2113                                 next_key.offset);
2114                         return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
2115                 }
2116         }
2117         return BTRFS_TREE_BLOCK_CLEAN;
2118 }
2119
2120 int btrfs_check_node(struct extent_buffer *node)
2121 {
2122         enum btrfs_tree_block_status ret;
2123
2124         ret = __btrfs_check_node(node);
2125         if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2126                 return -EUCLEAN;
2127         return 0;
2128 }
2129 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2130
2131 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2132 {
2133         const bool is_subvol = is_fstree(root_owner);
2134         const u64 eb_owner = btrfs_header_owner(eb);
2135
2136         /*
2137          * Skip dummy fs, as selftests don't create unique ebs for each dummy
2138          * root.
2139          */
2140         if (btrfs_is_testing(eb->fs_info))
2141                 return 0;
2142         /*
2143          * There are several call sites (backref walking, qgroup, and data
2144          * reloc) passing 0 as @root_owner, as they are not holding the
2145          * tree root.  In that case, we can not do a reliable ownership check,
2146          * so just exit.
2147          */
2148         if (root_owner == 0)
2149                 return 0;
2150         /*
2151          * These trees use key.offset as their owner, our callers don't have
2152          * the extra capacity to pass key.offset here.  So we just skip them.
2153          */
2154         if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2155             root_owner == BTRFS_TREE_RELOC_OBJECTID)
2156                 return 0;
2157
2158         if (!is_subvol) {
2159                 /* For non-subvolume trees, the eb owner should match root owner */
2160                 if (unlikely(root_owner != eb_owner)) {
2161                         btrfs_crit(eb->fs_info,
2162 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2163                                 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2164                                 root_owner, btrfs_header_bytenr(eb), eb_owner,
2165                                 root_owner);
2166                         return -EUCLEAN;
2167                 }
2168                 return 0;
2169         }
2170
2171         /*
2172          * For subvolume trees, owners can mismatch, but they should all belong
2173          * to subvolume trees.
2174          */
2175         if (unlikely(is_subvol != is_fstree(eb_owner))) {
2176                 btrfs_crit(eb->fs_info,
2177 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2178                         btrfs_header_level(eb) == 0 ? "leaf" : "node",
2179                         root_owner, btrfs_header_bytenr(eb), eb_owner,
2180                         BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2181                 return -EUCLEAN;
2182         }
2183         return 0;
2184 }
2185
2186 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2187                            struct btrfs_key *first_key, u64 parent_transid)
2188 {
2189         struct btrfs_fs_info *fs_info = eb->fs_info;
2190         int found_level;
2191         struct btrfs_key found_key;
2192         int ret;
2193
2194         found_level = btrfs_header_level(eb);
2195         if (found_level != level) {
2196                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2197                      KERN_ERR "BTRFS: tree level check failed\n");
2198                 btrfs_err(fs_info,
2199 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2200                           eb->start, level, found_level);
2201                 return -EIO;
2202         }
2203
2204         if (!first_key)
2205                 return 0;
2206
2207         /*
2208          * For live tree block (new tree blocks in current transaction),
2209          * we need proper lock context to avoid race, which is impossible here.
2210          * So we only checks tree blocks which is read from disk, whose
2211          * generation <= fs_info->last_trans_committed.
2212          */
2213         if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2214                 return 0;
2215
2216         /* We have @first_key, so this @eb must have at least one item */
2217         if (btrfs_header_nritems(eb) == 0) {
2218                 btrfs_err(fs_info,
2219                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2220                           eb->start);
2221                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2222                 return -EUCLEAN;
2223         }
2224
2225         if (found_level)
2226                 btrfs_node_key_to_cpu(eb, &found_key, 0);
2227         else
2228                 btrfs_item_key_to_cpu(eb, &found_key, 0);
2229         ret = btrfs_comp_cpu_keys(first_key, &found_key);
2230
2231         if (ret) {
2232                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2233                      KERN_ERR "BTRFS: tree first key check failed\n");
2234                 btrfs_err(fs_info,
2235 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2236                           eb->start, parent_transid, first_key->objectid,
2237                           first_key->type, first_key->offset,
2238                           found_key.objectid, found_key.type,
2239                           found_key.offset);
2240         }
2241         return ret;
2242 }