Merge tag 'net-5.11-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         /* Clear root port wake on bits if wakeup not allowed. */
986         if (!do_wakeup)
987                 xhci_disable_port_wake_on_bits(xhci);
988
989         if (!HCD_HW_ACCESSIBLE(hcd))
990                 return 0;
991
992         xhci_dbc_suspend(xhci);
993
994         /* Don't poll the roothubs on bus suspend. */
995         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997         del_timer_sync(&hcd->rh_timer);
998         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999         del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002                 usleep_range(1000, 1500);
1003
1004         spin_lock_irq(&xhci->lock);
1005         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007         /* step 1: stop endpoint */
1008         /* skipped assuming that port suspend has done */
1009
1010         /* step 2: clear Run/Stop bit */
1011         command = readl(&xhci->op_regs->command);
1012         command &= ~CMD_RUN;
1013         writel(command, &xhci->op_regs->command);
1014
1015         /* Some chips from Fresco Logic need an extraordinary delay */
1016         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018         if (xhci_handshake(&xhci->op_regs->status,
1019                       STS_HALT, STS_HALT, delay)) {
1020                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021                 spin_unlock_irq(&xhci->lock);
1022                 return -ETIMEDOUT;
1023         }
1024         xhci_clear_command_ring(xhci);
1025
1026         /* step 3: save registers */
1027         xhci_save_registers(xhci);
1028
1029         /* step 4: set CSS flag */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_CSS;
1032         writel(command, &xhci->op_regs->command);
1033         xhci->broken_suspend = 0;
1034         if (xhci_handshake(&xhci->op_regs->status,
1035                                 STS_SAVE, 0, 20 * 1000)) {
1036         /*
1037          * AMD SNPS xHC 3.0 occasionally does not clear the
1038          * SSS bit of USBSTS and when driver tries to poll
1039          * to see if the xHC clears BIT(8) which never happens
1040          * and driver assumes that controller is not responding
1041          * and times out. To workaround this, its good to check
1042          * if SRE and HCE bits are not set (as per xhci
1043          * Section 5.4.2) and bypass the timeout.
1044          */
1045                 res = readl(&xhci->op_regs->status);
1046                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047                     (((res & STS_SRE) == 0) &&
1048                                 ((res & STS_HCE) == 0))) {
1049                         xhci->broken_suspend = 1;
1050                 } else {
1051                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052                         spin_unlock_irq(&xhci->lock);
1053                         return -ETIMEDOUT;
1054                 }
1055         }
1056         spin_unlock_irq(&xhci->lock);
1057
1058         /*
1059          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060          * is about to be suspended.
1061          */
1062         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063                         (!(xhci_all_ports_seen_u0(xhci)))) {
1064                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066                                 "%s: compliance mode recovery timer deleted",
1067                                 __func__);
1068         }
1069
1070         /* step 5: remove core well power */
1071         /* synchronize irq when using MSI-X */
1072         xhci_msix_sync_irqs(xhci);
1073
1074         return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086         u32                     command, temp = 0;
1087         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1088         struct usb_hcd          *secondary_hcd;
1089         int                     retval = 0;
1090         bool                    comp_timer_running = false;
1091
1092         if (!hcd->state)
1093                 return 0;
1094
1095         /* Wait a bit if either of the roothubs need to settle from the
1096          * transition into bus suspend.
1097          */
1098
1099         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101                 msleep(100);
1102
1103         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106         spin_lock_irq(&xhci->lock);
1107         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108                 hibernated = true;
1109
1110         if (!hibernated) {
1111                 /*
1112                  * Some controllers might lose power during suspend, so wait
1113                  * for controller not ready bit to clear, just as in xHC init.
1114                  */
1115                 retval = xhci_handshake(&xhci->op_regs->status,
1116                                         STS_CNR, 0, 10 * 1000 * 1000);
1117                 if (retval) {
1118                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1119                                   retval);
1120                         spin_unlock_irq(&xhci->lock);
1121                         return retval;
1122                 }
1123                 /* step 1: restore register */
1124                 xhci_restore_registers(xhci);
1125                 /* step 2: initialize command ring buffer */
1126                 xhci_set_cmd_ring_deq(xhci);
1127                 /* step 3: restore state and start state*/
1128                 /* step 3: set CRS flag */
1129                 command = readl(&xhci->op_regs->command);
1130                 command |= CMD_CRS;
1131                 writel(command, &xhci->op_regs->command);
1132                 /*
1133                  * Some controllers take up to 55+ ms to complete the controller
1134                  * restore so setting the timeout to 100ms. Xhci specification
1135                  * doesn't mention any timeout value.
1136                  */
1137                 if (xhci_handshake(&xhci->op_regs->status,
1138                               STS_RESTORE, 0, 100 * 1000)) {
1139                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140                         spin_unlock_irq(&xhci->lock);
1141                         return -ETIMEDOUT;
1142                 }
1143                 temp = readl(&xhci->op_regs->status);
1144         }
1145
1146         /* If restore operation fails, re-initialize the HC during resume */
1147         if ((temp & STS_SRE) || hibernated) {
1148
1149                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150                                 !(xhci_all_ports_seen_u0(xhci))) {
1151                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1152                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153                                 "Compliance Mode Recovery Timer deleted!");
1154                 }
1155
1156                 /* Let the USB core know _both_ roothubs lost power. */
1157                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160                 xhci_dbg(xhci, "Stop HCD\n");
1161                 xhci_halt(xhci);
1162                 xhci_zero_64b_regs(xhci);
1163                 retval = xhci_reset(xhci);
1164                 spin_unlock_irq(&xhci->lock);
1165                 if (retval)
1166                         return retval;
1167                 xhci_cleanup_msix(xhci);
1168
1169                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170                 temp = readl(&xhci->op_regs->status);
1171                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172                 temp = readl(&xhci->ir_set->irq_pending);
1173                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174
1175                 xhci_dbg(xhci, "cleaning up memory\n");
1176                 xhci_mem_cleanup(xhci);
1177                 xhci_debugfs_exit(xhci);
1178                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179                             readl(&xhci->op_regs->status));
1180
1181                 /* USB core calls the PCI reinit and start functions twice:
1182                  * first with the primary HCD, and then with the secondary HCD.
1183                  * If we don't do the same, the host will never be started.
1184                  */
1185                 if (!usb_hcd_is_primary_hcd(hcd))
1186                         secondary_hcd = hcd;
1187                 else
1188                         secondary_hcd = xhci->shared_hcd;
1189
1190                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191                 retval = xhci_init(hcd->primary_hcd);
1192                 if (retval)
1193                         return retval;
1194                 comp_timer_running = true;
1195
1196                 xhci_dbg(xhci, "Start the primary HCD\n");
1197                 retval = xhci_run(hcd->primary_hcd);
1198                 if (!retval) {
1199                         xhci_dbg(xhci, "Start the secondary HCD\n");
1200                         retval = xhci_run(secondary_hcd);
1201                 }
1202                 hcd->state = HC_STATE_SUSPENDED;
1203                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204                 goto done;
1205         }
1206
1207         /* step 4: set Run/Stop bit */
1208         command = readl(&xhci->op_regs->command);
1209         command |= CMD_RUN;
1210         writel(command, &xhci->op_regs->command);
1211         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212                   0, 250 * 1000);
1213
1214         /* step 5: walk topology and initialize portsc,
1215          * portpmsc and portli
1216          */
1217         /* this is done in bus_resume */
1218
1219         /* step 6: restart each of the previously
1220          * Running endpoints by ringing their doorbells
1221          */
1222
1223         spin_unlock_irq(&xhci->lock);
1224
1225         xhci_dbc_resume(xhci);
1226
1227  done:
1228         if (retval == 0) {
1229                 /* Resume root hubs only when have pending events. */
1230                 if (xhci_pending_portevent(xhci)) {
1231                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1232                         usb_hcd_resume_root_hub(hcd);
1233                 }
1234         }
1235
1236         /*
1237          * If system is subject to the Quirk, Compliance Mode Timer needs to
1238          * be re-initialized Always after a system resume. Ports are subject
1239          * to suffer the Compliance Mode issue again. It doesn't matter if
1240          * ports have entered previously to U0 before system's suspension.
1241          */
1242         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243                 compliance_mode_recovery_timer_init(xhci);
1244
1245         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247
1248         /* Re-enable port polling. */
1249         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251         usb_hcd_poll_rh_status(xhci->shared_hcd);
1252         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253         usb_hcd_poll_rh_status(hcd);
1254
1255         return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif  /* CONFIG_PM */
1259
1260 /*-------------------------------------------------------------------------*/
1261
1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264         void *temp;
1265         int ret = 0;
1266         unsigned int buf_len;
1267         enum dma_data_direction dir;
1268
1269         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1270         buf_len = urb->transfer_buffer_length;
1271
1272         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1273                             dev_to_node(hcd->self.sysdev));
1274
1275         if (usb_urb_dir_out(urb))
1276                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1277                                    temp, buf_len, 0);
1278
1279         urb->transfer_buffer = temp;
1280         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1281                                            urb->transfer_buffer,
1282                                            urb->transfer_buffer_length,
1283                                            dir);
1284
1285         if (dma_mapping_error(hcd->self.sysdev,
1286                               urb->transfer_dma)) {
1287                 ret = -EAGAIN;
1288                 kfree(temp);
1289         } else {
1290                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1291         }
1292
1293         return ret;
1294 }
1295
1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1297                                           struct urb *urb)
1298 {
1299         bool ret = false;
1300         unsigned int i;
1301         unsigned int len = 0;
1302         unsigned int trb_size;
1303         unsigned int max_pkt;
1304         struct scatterlist *sg;
1305         struct scatterlist *tail_sg;
1306
1307         tail_sg = urb->sg;
1308         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1309
1310         if (!urb->num_sgs)
1311                 return ret;
1312
1313         if (urb->dev->speed >= USB_SPEED_SUPER)
1314                 trb_size = TRB_CACHE_SIZE_SS;
1315         else
1316                 trb_size = TRB_CACHE_SIZE_HS;
1317
1318         if (urb->transfer_buffer_length != 0 &&
1319             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1320                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1321                         len = len + sg->length;
1322                         if (i > trb_size - 2) {
1323                                 len = len - tail_sg->length;
1324                                 if (len < max_pkt) {
1325                                         ret = true;
1326                                         break;
1327                                 }
1328
1329                                 tail_sg = sg_next(tail_sg);
1330                         }
1331                 }
1332         }
1333         return ret;
1334 }
1335
1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338         unsigned int len;
1339         unsigned int buf_len;
1340         enum dma_data_direction dir;
1341
1342         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1343
1344         buf_len = urb->transfer_buffer_length;
1345
1346         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348                 dma_unmap_single(hcd->self.sysdev,
1349                                  urb->transfer_dma,
1350                                  urb->transfer_buffer_length,
1351                                  dir);
1352
1353         if (usb_urb_dir_in(urb))
1354                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1355                                            urb->transfer_buffer,
1356                                            buf_len,
1357                                            0);
1358
1359         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1360         kfree(urb->transfer_buffer);
1361         urb->transfer_buffer = NULL;
1362 }
1363
1364 /*
1365  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1366  * we'll copy the actual data into the TRB address register. This is limited to
1367  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1368  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1369  */
1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1371                                 gfp_t mem_flags)
1372 {
1373         struct xhci_hcd *xhci;
1374
1375         xhci = hcd_to_xhci(hcd);
1376
1377         if (xhci_urb_suitable_for_idt(urb))
1378                 return 0;
1379
1380         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1381                 if (xhci_urb_temp_buffer_required(hcd, urb))
1382                         return xhci_map_temp_buffer(hcd, urb);
1383         }
1384         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1385 }
1386
1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1388 {
1389         struct xhci_hcd *xhci;
1390         bool unmap_temp_buf = false;
1391
1392         xhci = hcd_to_xhci(hcd);
1393
1394         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1395                 unmap_temp_buf = true;
1396
1397         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1398                 xhci_unmap_temp_buf(hcd, urb);
1399         else
1400                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1401 }
1402
1403 /**
1404  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1405  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1406  * value to right shift 1 for the bitmask.
1407  *
1408  * Index  = (epnum * 2) + direction - 1,
1409  * where direction = 0 for OUT, 1 for IN.
1410  * For control endpoints, the IN index is used (OUT index is unused), so
1411  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1412  */
1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1414 {
1415         unsigned int index;
1416         if (usb_endpoint_xfer_control(desc))
1417                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1418         else
1419                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1420                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1421         return index;
1422 }
1423
1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1425  * address from the XHCI endpoint index.
1426  */
1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1428 {
1429         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1430         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1431         return direction | number;
1432 }
1433
1434 /* Find the flag for this endpoint (for use in the control context).  Use the
1435  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1436  * bit 1, etc.
1437  */
1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1439 {
1440         return 1 << (xhci_get_endpoint_index(desc) + 1);
1441 }
1442
1443 /* Find the flag for this endpoint (for use in the control context).  Use the
1444  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1445  * bit 1, etc.
1446  */
1447 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1448 {
1449         return 1 << (ep_index + 1);
1450 }
1451
1452 /* Compute the last valid endpoint context index.  Basically, this is the
1453  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1454  * we find the most significant bit set in the added contexts flags.
1455  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1456  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1457  */
1458 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1459 {
1460         return fls(added_ctxs) - 1;
1461 }
1462
1463 /* Returns 1 if the arguments are OK;
1464  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1465  */
1466 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1467                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1468                 const char *func) {
1469         struct xhci_hcd *xhci;
1470         struct xhci_virt_device *virt_dev;
1471
1472         if (!hcd || (check_ep && !ep) || !udev) {
1473                 pr_debug("xHCI %s called with invalid args\n", func);
1474                 return -EINVAL;
1475         }
1476         if (!udev->parent) {
1477                 pr_debug("xHCI %s called for root hub\n", func);
1478                 return 0;
1479         }
1480
1481         xhci = hcd_to_xhci(hcd);
1482         if (check_virt_dev) {
1483                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1484                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1485                                         func);
1486                         return -EINVAL;
1487                 }
1488
1489                 virt_dev = xhci->devs[udev->slot_id];
1490                 if (virt_dev->udev != udev) {
1491                         xhci_dbg(xhci, "xHCI %s called with udev and "
1492                                           "virt_dev does not match\n", func);
1493                         return -EINVAL;
1494                 }
1495         }
1496
1497         if (xhci->xhc_state & XHCI_STATE_HALTED)
1498                 return -ENODEV;
1499
1500         return 1;
1501 }
1502
1503 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1504                 struct usb_device *udev, struct xhci_command *command,
1505                 bool ctx_change, bool must_succeed);
1506
1507 /*
1508  * Full speed devices may have a max packet size greater than 8 bytes, but the
1509  * USB core doesn't know that until it reads the first 8 bytes of the
1510  * descriptor.  If the usb_device's max packet size changes after that point,
1511  * we need to issue an evaluate context command and wait on it.
1512  */
1513 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1514                 unsigned int ep_index, struct urb *urb)
1515 {
1516         struct xhci_container_ctx *out_ctx;
1517         struct xhci_input_control_ctx *ctrl_ctx;
1518         struct xhci_ep_ctx *ep_ctx;
1519         struct xhci_command *command;
1520         int max_packet_size;
1521         int hw_max_packet_size;
1522         int ret = 0;
1523
1524         out_ctx = xhci->devs[slot_id]->out_ctx;
1525         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1526         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1527         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1528         if (hw_max_packet_size != max_packet_size) {
1529                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1530                                 "Max Packet Size for ep 0 changed.");
1531                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1532                                 "Max packet size in usb_device = %d",
1533                                 max_packet_size);
1534                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1535                                 "Max packet size in xHCI HW = %d",
1536                                 hw_max_packet_size);
1537                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1538                                 "Issuing evaluate context command.");
1539
1540                 /* Set up the input context flags for the command */
1541                 /* FIXME: This won't work if a non-default control endpoint
1542                  * changes max packet sizes.
1543                  */
1544
1545                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1546                 if (!command)
1547                         return -ENOMEM;
1548
1549                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1550                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1551                 if (!ctrl_ctx) {
1552                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1553                                         __func__);
1554                         ret = -ENOMEM;
1555                         goto command_cleanup;
1556                 }
1557                 /* Set up the modified control endpoint 0 */
1558                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1559                                 xhci->devs[slot_id]->out_ctx, ep_index);
1560
1561                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1562                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1563                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1564                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1565
1566                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1567                 ctrl_ctx->drop_flags = 0;
1568
1569                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1570                                 true, false);
1571
1572                 /* Clean up the input context for later use by bandwidth
1573                  * functions.
1574                  */
1575                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1576 command_cleanup:
1577                 kfree(command->completion);
1578                 kfree(command);
1579         }
1580         return ret;
1581 }
1582
1583 /*
1584  * non-error returns are a promise to giveback() the urb later
1585  * we drop ownership so next owner (or urb unlink) can get it
1586  */
1587 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1588 {
1589         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1590         unsigned long flags;
1591         int ret = 0;
1592         unsigned int slot_id, ep_index;
1593         unsigned int *ep_state;
1594         struct urb_priv *urb_priv;
1595         int num_tds;
1596
1597         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1598                                         true, true, __func__) <= 0)
1599                 return -EINVAL;
1600
1601         slot_id = urb->dev->slot_id;
1602         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1603         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1604
1605         if (!HCD_HW_ACCESSIBLE(hcd))
1606                 return -ESHUTDOWN;
1607
1608         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1609                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1610                 return -ENODEV;
1611         }
1612
1613         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1614                 num_tds = urb->number_of_packets;
1615         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1616             urb->transfer_buffer_length > 0 &&
1617             urb->transfer_flags & URB_ZERO_PACKET &&
1618             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1619                 num_tds = 2;
1620         else
1621                 num_tds = 1;
1622
1623         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1624         if (!urb_priv)
1625                 return -ENOMEM;
1626
1627         urb_priv->num_tds = num_tds;
1628         urb_priv->num_tds_done = 0;
1629         urb->hcpriv = urb_priv;
1630
1631         trace_xhci_urb_enqueue(urb);
1632
1633         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1634                 /* Check to see if the max packet size for the default control
1635                  * endpoint changed during FS device enumeration
1636                  */
1637                 if (urb->dev->speed == USB_SPEED_FULL) {
1638                         ret = xhci_check_maxpacket(xhci, slot_id,
1639                                         ep_index, urb);
1640                         if (ret < 0) {
1641                                 xhci_urb_free_priv(urb_priv);
1642                                 urb->hcpriv = NULL;
1643                                 return ret;
1644                         }
1645                 }
1646         }
1647
1648         spin_lock_irqsave(&xhci->lock, flags);
1649
1650         if (xhci->xhc_state & XHCI_STATE_DYING) {
1651                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1652                          urb->ep->desc.bEndpointAddress, urb);
1653                 ret = -ESHUTDOWN;
1654                 goto free_priv;
1655         }
1656         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1657                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1658                           *ep_state);
1659                 ret = -EINVAL;
1660                 goto free_priv;
1661         }
1662         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1663                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1664                 ret = -EINVAL;
1665                 goto free_priv;
1666         }
1667
1668         switch (usb_endpoint_type(&urb->ep->desc)) {
1669
1670         case USB_ENDPOINT_XFER_CONTROL:
1671                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1672                                          slot_id, ep_index);
1673                 break;
1674         case USB_ENDPOINT_XFER_BULK:
1675                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1676                                          slot_id, ep_index);
1677                 break;
1678         case USB_ENDPOINT_XFER_INT:
1679                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1680                                 slot_id, ep_index);
1681                 break;
1682         case USB_ENDPOINT_XFER_ISOC:
1683                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1684                                 slot_id, ep_index);
1685         }
1686
1687         if (ret) {
1688 free_priv:
1689                 xhci_urb_free_priv(urb_priv);
1690                 urb->hcpriv = NULL;
1691         }
1692         spin_unlock_irqrestore(&xhci->lock, flags);
1693         return ret;
1694 }
1695
1696 /*
1697  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1698  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1699  * should pick up where it left off in the TD, unless a Set Transfer Ring
1700  * Dequeue Pointer is issued.
1701  *
1702  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1703  * the ring.  Since the ring is a contiguous structure, they can't be physically
1704  * removed.  Instead, there are two options:
1705  *
1706  *  1) If the HC is in the middle of processing the URB to be canceled, we
1707  *     simply move the ring's dequeue pointer past those TRBs using the Set
1708  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1709  *     when drivers timeout on the last submitted URB and attempt to cancel.
1710  *
1711  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1712  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1713  *     HC will need to invalidate the any TRBs it has cached after the stop
1714  *     endpoint command, as noted in the xHCI 0.95 errata.
1715  *
1716  *  3) The TD may have completed by the time the Stop Endpoint Command
1717  *     completes, so software needs to handle that case too.
1718  *
1719  * This function should protect against the TD enqueueing code ringing the
1720  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1721  * It also needs to account for multiple cancellations on happening at the same
1722  * time for the same endpoint.
1723  *
1724  * Note that this function can be called in any context, or so says
1725  * usb_hcd_unlink_urb()
1726  */
1727 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1728 {
1729         unsigned long flags;
1730         int ret, i;
1731         u32 temp;
1732         struct xhci_hcd *xhci;
1733         struct urb_priv *urb_priv;
1734         struct xhci_td *td;
1735         unsigned int ep_index;
1736         struct xhci_ring *ep_ring;
1737         struct xhci_virt_ep *ep;
1738         struct xhci_command *command;
1739         struct xhci_virt_device *vdev;
1740
1741         xhci = hcd_to_xhci(hcd);
1742         spin_lock_irqsave(&xhci->lock, flags);
1743
1744         trace_xhci_urb_dequeue(urb);
1745
1746         /* Make sure the URB hasn't completed or been unlinked already */
1747         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1748         if (ret)
1749                 goto done;
1750
1751         /* give back URB now if we can't queue it for cancel */
1752         vdev = xhci->devs[urb->dev->slot_id];
1753         urb_priv = urb->hcpriv;
1754         if (!vdev || !urb_priv)
1755                 goto err_giveback;
1756
1757         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1758         ep = &vdev->eps[ep_index];
1759         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1760         if (!ep || !ep_ring)
1761                 goto err_giveback;
1762
1763         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1764         temp = readl(&xhci->op_regs->status);
1765         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1766                 xhci_hc_died(xhci);
1767                 goto done;
1768         }
1769
1770         /*
1771          * check ring is not re-allocated since URB was enqueued. If it is, then
1772          * make sure none of the ring related pointers in this URB private data
1773          * are touched, such as td_list, otherwise we overwrite freed data
1774          */
1775         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1776                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1777                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1778                         td = &urb_priv->td[i];
1779                         if (!list_empty(&td->cancelled_td_list))
1780                                 list_del_init(&td->cancelled_td_list);
1781                 }
1782                 goto err_giveback;
1783         }
1784
1785         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1786                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1787                                 "HC halted, freeing TD manually.");
1788                 for (i = urb_priv->num_tds_done;
1789                      i < urb_priv->num_tds;
1790                      i++) {
1791                         td = &urb_priv->td[i];
1792                         if (!list_empty(&td->td_list))
1793                                 list_del_init(&td->td_list);
1794                         if (!list_empty(&td->cancelled_td_list))
1795                                 list_del_init(&td->cancelled_td_list);
1796                 }
1797                 goto err_giveback;
1798         }
1799
1800         i = urb_priv->num_tds_done;
1801         if (i < urb_priv->num_tds)
1802                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1803                                 "Cancel URB %p, dev %s, ep 0x%x, "
1804                                 "starting at offset 0x%llx",
1805                                 urb, urb->dev->devpath,
1806                                 urb->ep->desc.bEndpointAddress,
1807                                 (unsigned long long) xhci_trb_virt_to_dma(
1808                                         urb_priv->td[i].start_seg,
1809                                         urb_priv->td[i].first_trb));
1810
1811         for (; i < urb_priv->num_tds; i++) {
1812                 td = &urb_priv->td[i];
1813                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1814         }
1815
1816         /* Queue a stop endpoint command, but only if this is
1817          * the first cancellation to be handled.
1818          */
1819         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1820                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1821                 if (!command) {
1822                         ret = -ENOMEM;
1823                         goto done;
1824                 }
1825                 ep->ep_state |= EP_STOP_CMD_PENDING;
1826                 ep->stop_cmd_timer.expires = jiffies +
1827                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1828                 add_timer(&ep->stop_cmd_timer);
1829                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1830                                          ep_index, 0);
1831                 xhci_ring_cmd_db(xhci);
1832         }
1833 done:
1834         spin_unlock_irqrestore(&xhci->lock, flags);
1835         return ret;
1836
1837 err_giveback:
1838         if (urb_priv)
1839                 xhci_urb_free_priv(urb_priv);
1840         usb_hcd_unlink_urb_from_ep(hcd, urb);
1841         spin_unlock_irqrestore(&xhci->lock, flags);
1842         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1843         return ret;
1844 }
1845
1846 /* Drop an endpoint from a new bandwidth configuration for this device.
1847  * Only one call to this function is allowed per endpoint before
1848  * check_bandwidth() or reset_bandwidth() must be called.
1849  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1850  * add the endpoint to the schedule with possibly new parameters denoted by a
1851  * different endpoint descriptor in usb_host_endpoint.
1852  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1853  * not allowed.
1854  *
1855  * The USB core will not allow URBs to be queued to an endpoint that is being
1856  * disabled, so there's no need for mutual exclusion to protect
1857  * the xhci->devs[slot_id] structure.
1858  */
1859 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1860                 struct usb_host_endpoint *ep)
1861 {
1862         struct xhci_hcd *xhci;
1863         struct xhci_container_ctx *in_ctx, *out_ctx;
1864         struct xhci_input_control_ctx *ctrl_ctx;
1865         unsigned int ep_index;
1866         struct xhci_ep_ctx *ep_ctx;
1867         u32 drop_flag;
1868         u32 new_add_flags, new_drop_flags;
1869         int ret;
1870
1871         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1872         if (ret <= 0)
1873                 return ret;
1874         xhci = hcd_to_xhci(hcd);
1875         if (xhci->xhc_state & XHCI_STATE_DYING)
1876                 return -ENODEV;
1877
1878         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1879         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1880         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1881                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1882                                 __func__, drop_flag);
1883                 return 0;
1884         }
1885
1886         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1887         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1888         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1889         if (!ctrl_ctx) {
1890                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1891                                 __func__);
1892                 return 0;
1893         }
1894
1895         ep_index = xhci_get_endpoint_index(&ep->desc);
1896         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1897         /* If the HC already knows the endpoint is disabled,
1898          * or the HCD has noted it is disabled, ignore this request
1899          */
1900         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1901             le32_to_cpu(ctrl_ctx->drop_flags) &
1902             xhci_get_endpoint_flag(&ep->desc)) {
1903                 /* Do not warn when called after a usb_device_reset */
1904                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1905                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1906                                   __func__, ep);
1907                 return 0;
1908         }
1909
1910         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1911         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1912
1913         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1914         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1915
1916         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1917
1918         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1919
1920         if (xhci->quirks & XHCI_MTK_HOST)
1921                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1922
1923         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1924                         (unsigned int) ep->desc.bEndpointAddress,
1925                         udev->slot_id,
1926                         (unsigned int) new_drop_flags,
1927                         (unsigned int) new_add_flags);
1928         return 0;
1929 }
1930
1931 /* Add an endpoint to a new possible bandwidth configuration for this device.
1932  * Only one call to this function is allowed per endpoint before
1933  * check_bandwidth() or reset_bandwidth() must be called.
1934  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1935  * add the endpoint to the schedule with possibly new parameters denoted by a
1936  * different endpoint descriptor in usb_host_endpoint.
1937  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1938  * not allowed.
1939  *
1940  * The USB core will not allow URBs to be queued to an endpoint until the
1941  * configuration or alt setting is installed in the device, so there's no need
1942  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1943  */
1944 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1945                 struct usb_host_endpoint *ep)
1946 {
1947         struct xhci_hcd *xhci;
1948         struct xhci_container_ctx *in_ctx;
1949         unsigned int ep_index;
1950         struct xhci_input_control_ctx *ctrl_ctx;
1951         struct xhci_ep_ctx *ep_ctx;
1952         u32 added_ctxs;
1953         u32 new_add_flags, new_drop_flags;
1954         struct xhci_virt_device *virt_dev;
1955         int ret = 0;
1956
1957         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1958         if (ret <= 0) {
1959                 /* So we won't queue a reset ep command for a root hub */
1960                 ep->hcpriv = NULL;
1961                 return ret;
1962         }
1963         xhci = hcd_to_xhci(hcd);
1964         if (xhci->xhc_state & XHCI_STATE_DYING)
1965                 return -ENODEV;
1966
1967         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1968         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1969                 /* FIXME when we have to issue an evaluate endpoint command to
1970                  * deal with ep0 max packet size changing once we get the
1971                  * descriptors
1972                  */
1973                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1974                                 __func__, added_ctxs);
1975                 return 0;
1976         }
1977
1978         virt_dev = xhci->devs[udev->slot_id];
1979         in_ctx = virt_dev->in_ctx;
1980         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1981         if (!ctrl_ctx) {
1982                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1983                                 __func__);
1984                 return 0;
1985         }
1986
1987         ep_index = xhci_get_endpoint_index(&ep->desc);
1988         /* If this endpoint is already in use, and the upper layers are trying
1989          * to add it again without dropping it, reject the addition.
1990          */
1991         if (virt_dev->eps[ep_index].ring &&
1992                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1993                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1994                                 "without dropping it.\n",
1995                                 (unsigned int) ep->desc.bEndpointAddress);
1996                 return -EINVAL;
1997         }
1998
1999         /* If the HCD has already noted the endpoint is enabled,
2000          * ignore this request.
2001          */
2002         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2003                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2004                                 __func__, ep);
2005                 return 0;
2006         }
2007
2008         /*
2009          * Configuration and alternate setting changes must be done in
2010          * process context, not interrupt context (or so documenation
2011          * for usb_set_interface() and usb_set_configuration() claim).
2012          */
2013         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2014                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2015                                 __func__, ep->desc.bEndpointAddress);
2016                 return -ENOMEM;
2017         }
2018
2019         if (xhci->quirks & XHCI_MTK_HOST) {
2020                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2021                 if (ret < 0) {
2022                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2023                         virt_dev->eps[ep_index].new_ring = NULL;
2024                         return ret;
2025                 }
2026         }
2027
2028         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2029         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2030
2031         /* If xhci_endpoint_disable() was called for this endpoint, but the
2032          * xHC hasn't been notified yet through the check_bandwidth() call,
2033          * this re-adds a new state for the endpoint from the new endpoint
2034          * descriptors.  We must drop and re-add this endpoint, so we leave the
2035          * drop flags alone.
2036          */
2037         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2038
2039         /* Store the usb_device pointer for later use */
2040         ep->hcpriv = udev;
2041
2042         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2043         trace_xhci_add_endpoint(ep_ctx);
2044
2045         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2046                         (unsigned int) ep->desc.bEndpointAddress,
2047                         udev->slot_id,
2048                         (unsigned int) new_drop_flags,
2049                         (unsigned int) new_add_flags);
2050         return 0;
2051 }
2052
2053 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2054 {
2055         struct xhci_input_control_ctx *ctrl_ctx;
2056         struct xhci_ep_ctx *ep_ctx;
2057         struct xhci_slot_ctx *slot_ctx;
2058         int i;
2059
2060         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2061         if (!ctrl_ctx) {
2062                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2063                                 __func__);
2064                 return;
2065         }
2066
2067         /* When a device's add flag and drop flag are zero, any subsequent
2068          * configure endpoint command will leave that endpoint's state
2069          * untouched.  Make sure we don't leave any old state in the input
2070          * endpoint contexts.
2071          */
2072         ctrl_ctx->drop_flags = 0;
2073         ctrl_ctx->add_flags = 0;
2074         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2075         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2076         /* Endpoint 0 is always valid */
2077         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2078         for (i = 1; i < 31; i++) {
2079                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2080                 ep_ctx->ep_info = 0;
2081                 ep_ctx->ep_info2 = 0;
2082                 ep_ctx->deq = 0;
2083                 ep_ctx->tx_info = 0;
2084         }
2085 }
2086
2087 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2088                 struct usb_device *udev, u32 *cmd_status)
2089 {
2090         int ret;
2091
2092         switch (*cmd_status) {
2093         case COMP_COMMAND_ABORTED:
2094         case COMP_COMMAND_RING_STOPPED:
2095                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2096                 ret = -ETIME;
2097                 break;
2098         case COMP_RESOURCE_ERROR:
2099                 dev_warn(&udev->dev,
2100                          "Not enough host controller resources for new device state.\n");
2101                 ret = -ENOMEM;
2102                 /* FIXME: can we allocate more resources for the HC? */
2103                 break;
2104         case COMP_BANDWIDTH_ERROR:
2105         case COMP_SECONDARY_BANDWIDTH_ERROR:
2106                 dev_warn(&udev->dev,
2107                          "Not enough bandwidth for new device state.\n");
2108                 ret = -ENOSPC;
2109                 /* FIXME: can we go back to the old state? */
2110                 break;
2111         case COMP_TRB_ERROR:
2112                 /* the HCD set up something wrong */
2113                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2114                                 "add flag = 1, "
2115                                 "and endpoint is not disabled.\n");
2116                 ret = -EINVAL;
2117                 break;
2118         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2119                 dev_warn(&udev->dev,
2120                          "ERROR: Incompatible device for endpoint configure command.\n");
2121                 ret = -ENODEV;
2122                 break;
2123         case COMP_SUCCESS:
2124                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2125                                 "Successful Endpoint Configure command");
2126                 ret = 0;
2127                 break;
2128         default:
2129                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2130                                 *cmd_status);
2131                 ret = -EINVAL;
2132                 break;
2133         }
2134         return ret;
2135 }
2136
2137 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2138                 struct usb_device *udev, u32 *cmd_status)
2139 {
2140         int ret;
2141
2142         switch (*cmd_status) {
2143         case COMP_COMMAND_ABORTED:
2144         case COMP_COMMAND_RING_STOPPED:
2145                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2146                 ret = -ETIME;
2147                 break;
2148         case COMP_PARAMETER_ERROR:
2149                 dev_warn(&udev->dev,
2150                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2151                 ret = -EINVAL;
2152                 break;
2153         case COMP_SLOT_NOT_ENABLED_ERROR:
2154                 dev_warn(&udev->dev,
2155                         "WARN: slot not enabled for evaluate context command.\n");
2156                 ret = -EINVAL;
2157                 break;
2158         case COMP_CONTEXT_STATE_ERROR:
2159                 dev_warn(&udev->dev,
2160                         "WARN: invalid context state for evaluate context command.\n");
2161                 ret = -EINVAL;
2162                 break;
2163         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2164                 dev_warn(&udev->dev,
2165                         "ERROR: Incompatible device for evaluate context command.\n");
2166                 ret = -ENODEV;
2167                 break;
2168         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2169                 /* Max Exit Latency too large error */
2170                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2171                 ret = -EINVAL;
2172                 break;
2173         case COMP_SUCCESS:
2174                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2175                                 "Successful evaluate context command");
2176                 ret = 0;
2177                 break;
2178         default:
2179                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2180                         *cmd_status);
2181                 ret = -EINVAL;
2182                 break;
2183         }
2184         return ret;
2185 }
2186
2187 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2188                 struct xhci_input_control_ctx *ctrl_ctx)
2189 {
2190         u32 valid_add_flags;
2191         u32 valid_drop_flags;
2192
2193         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2194          * (bit 1).  The default control endpoint is added during the Address
2195          * Device command and is never removed until the slot is disabled.
2196          */
2197         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2198         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2199
2200         /* Use hweight32 to count the number of ones in the add flags, or
2201          * number of endpoints added.  Don't count endpoints that are changed
2202          * (both added and dropped).
2203          */
2204         return hweight32(valid_add_flags) -
2205                 hweight32(valid_add_flags & valid_drop_flags);
2206 }
2207
2208 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2209                 struct xhci_input_control_ctx *ctrl_ctx)
2210 {
2211         u32 valid_add_flags;
2212         u32 valid_drop_flags;
2213
2214         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2215         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2216
2217         return hweight32(valid_drop_flags) -
2218                 hweight32(valid_add_flags & valid_drop_flags);
2219 }
2220
2221 /*
2222  * We need to reserve the new number of endpoints before the configure endpoint
2223  * command completes.  We can't subtract the dropped endpoints from the number
2224  * of active endpoints until the command completes because we can oversubscribe
2225  * the host in this case:
2226  *
2227  *  - the first configure endpoint command drops more endpoints than it adds
2228  *  - a second configure endpoint command that adds more endpoints is queued
2229  *  - the first configure endpoint command fails, so the config is unchanged
2230  *  - the second command may succeed, even though there isn't enough resources
2231  *
2232  * Must be called with xhci->lock held.
2233  */
2234 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2235                 struct xhci_input_control_ctx *ctrl_ctx)
2236 {
2237         u32 added_eps;
2238
2239         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2240         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2241                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2242                                 "Not enough ep ctxs: "
2243                                 "%u active, need to add %u, limit is %u.",
2244                                 xhci->num_active_eps, added_eps,
2245                                 xhci->limit_active_eps);
2246                 return -ENOMEM;
2247         }
2248         xhci->num_active_eps += added_eps;
2249         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2250                         "Adding %u ep ctxs, %u now active.", added_eps,
2251                         xhci->num_active_eps);
2252         return 0;
2253 }
2254
2255 /*
2256  * The configure endpoint was failed by the xHC for some other reason, so we
2257  * need to revert the resources that failed configuration would have used.
2258  *
2259  * Must be called with xhci->lock held.
2260  */
2261 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2262                 struct xhci_input_control_ctx *ctrl_ctx)
2263 {
2264         u32 num_failed_eps;
2265
2266         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2267         xhci->num_active_eps -= num_failed_eps;
2268         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269                         "Removing %u failed ep ctxs, %u now active.",
2270                         num_failed_eps,
2271                         xhci->num_active_eps);
2272 }
2273
2274 /*
2275  * Now that the command has completed, clean up the active endpoint count by
2276  * subtracting out the endpoints that were dropped (but not changed).
2277  *
2278  * Must be called with xhci->lock held.
2279  */
2280 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2281                 struct xhci_input_control_ctx *ctrl_ctx)
2282 {
2283         u32 num_dropped_eps;
2284
2285         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2286         xhci->num_active_eps -= num_dropped_eps;
2287         if (num_dropped_eps)
2288                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2289                                 "Removing %u dropped ep ctxs, %u now active.",
2290                                 num_dropped_eps,
2291                                 xhci->num_active_eps);
2292 }
2293
2294 static unsigned int xhci_get_block_size(struct usb_device *udev)
2295 {
2296         switch (udev->speed) {
2297         case USB_SPEED_LOW:
2298         case USB_SPEED_FULL:
2299                 return FS_BLOCK;
2300         case USB_SPEED_HIGH:
2301                 return HS_BLOCK;
2302         case USB_SPEED_SUPER:
2303         case USB_SPEED_SUPER_PLUS:
2304                 return SS_BLOCK;
2305         case USB_SPEED_UNKNOWN:
2306         case USB_SPEED_WIRELESS:
2307         default:
2308                 /* Should never happen */
2309                 return 1;
2310         }
2311 }
2312
2313 static unsigned int
2314 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2315 {
2316         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2317                 return LS_OVERHEAD;
2318         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2319                 return FS_OVERHEAD;
2320         return HS_OVERHEAD;
2321 }
2322
2323 /* If we are changing a LS/FS device under a HS hub,
2324  * make sure (if we are activating a new TT) that the HS bus has enough
2325  * bandwidth for this new TT.
2326  */
2327 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2328                 struct xhci_virt_device *virt_dev,
2329                 int old_active_eps)
2330 {
2331         struct xhci_interval_bw_table *bw_table;
2332         struct xhci_tt_bw_info *tt_info;
2333
2334         /* Find the bandwidth table for the root port this TT is attached to. */
2335         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2336         tt_info = virt_dev->tt_info;
2337         /* If this TT already had active endpoints, the bandwidth for this TT
2338          * has already been added.  Removing all periodic endpoints (and thus
2339          * making the TT enactive) will only decrease the bandwidth used.
2340          */
2341         if (old_active_eps)
2342                 return 0;
2343         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2344                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2345                         return -ENOMEM;
2346                 return 0;
2347         }
2348         /* Not sure why we would have no new active endpoints...
2349          *
2350          * Maybe because of an Evaluate Context change for a hub update or a
2351          * control endpoint 0 max packet size change?
2352          * FIXME: skip the bandwidth calculation in that case.
2353          */
2354         return 0;
2355 }
2356
2357 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2358                 struct xhci_virt_device *virt_dev)
2359 {
2360         unsigned int bw_reserved;
2361
2362         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2363         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2364                 return -ENOMEM;
2365
2366         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2367         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2368                 return -ENOMEM;
2369
2370         return 0;
2371 }
2372
2373 /*
2374  * This algorithm is a very conservative estimate of the worst-case scheduling
2375  * scenario for any one interval.  The hardware dynamically schedules the
2376  * packets, so we can't tell which microframe could be the limiting factor in
2377  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2378  *
2379  * Obviously, we can't solve an NP complete problem to find the minimum worst
2380  * case scenario.  Instead, we come up with an estimate that is no less than
2381  * the worst case bandwidth used for any one microframe, but may be an
2382  * over-estimate.
2383  *
2384  * We walk the requirements for each endpoint by interval, starting with the
2385  * smallest interval, and place packets in the schedule where there is only one
2386  * possible way to schedule packets for that interval.  In order to simplify
2387  * this algorithm, we record the largest max packet size for each interval, and
2388  * assume all packets will be that size.
2389  *
2390  * For interval 0, we obviously must schedule all packets for each interval.
2391  * The bandwidth for interval 0 is just the amount of data to be transmitted
2392  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2393  * the number of packets).
2394  *
2395  * For interval 1, we have two possible microframes to schedule those packets
2396  * in.  For this algorithm, if we can schedule the same number of packets for
2397  * each possible scheduling opportunity (each microframe), we will do so.  The
2398  * remaining number of packets will be saved to be transmitted in the gaps in
2399  * the next interval's scheduling sequence.
2400  *
2401  * As we move those remaining packets to be scheduled with interval 2 packets,
2402  * we have to double the number of remaining packets to transmit.  This is
2403  * because the intervals are actually powers of 2, and we would be transmitting
2404  * the previous interval's packets twice in this interval.  We also have to be
2405  * sure that when we look at the largest max packet size for this interval, we
2406  * also look at the largest max packet size for the remaining packets and take
2407  * the greater of the two.
2408  *
2409  * The algorithm continues to evenly distribute packets in each scheduling
2410  * opportunity, and push the remaining packets out, until we get to the last
2411  * interval.  Then those packets and their associated overhead are just added
2412  * to the bandwidth used.
2413  */
2414 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2415                 struct xhci_virt_device *virt_dev,
2416                 int old_active_eps)
2417 {
2418         unsigned int bw_reserved;
2419         unsigned int max_bandwidth;
2420         unsigned int bw_used;
2421         unsigned int block_size;
2422         struct xhci_interval_bw_table *bw_table;
2423         unsigned int packet_size = 0;
2424         unsigned int overhead = 0;
2425         unsigned int packets_transmitted = 0;
2426         unsigned int packets_remaining = 0;
2427         unsigned int i;
2428
2429         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2430                 return xhci_check_ss_bw(xhci, virt_dev);
2431
2432         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2433                 max_bandwidth = HS_BW_LIMIT;
2434                 /* Convert percent of bus BW reserved to blocks reserved */
2435                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2436         } else {
2437                 max_bandwidth = FS_BW_LIMIT;
2438                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2439         }
2440
2441         bw_table = virt_dev->bw_table;
2442         /* We need to translate the max packet size and max ESIT payloads into
2443          * the units the hardware uses.
2444          */
2445         block_size = xhci_get_block_size(virt_dev->udev);
2446
2447         /* If we are manipulating a LS/FS device under a HS hub, double check
2448          * that the HS bus has enough bandwidth if we are activing a new TT.
2449          */
2450         if (virt_dev->tt_info) {
2451                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2452                                 "Recalculating BW for rootport %u",
2453                                 virt_dev->real_port);
2454                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2455                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2456                                         "newly activated TT.\n");
2457                         return -ENOMEM;
2458                 }
2459                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2460                                 "Recalculating BW for TT slot %u port %u",
2461                                 virt_dev->tt_info->slot_id,
2462                                 virt_dev->tt_info->ttport);
2463         } else {
2464                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465                                 "Recalculating BW for rootport %u",
2466                                 virt_dev->real_port);
2467         }
2468
2469         /* Add in how much bandwidth will be used for interval zero, or the
2470          * rounded max ESIT payload + number of packets * largest overhead.
2471          */
2472         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2473                 bw_table->interval_bw[0].num_packets *
2474                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2475
2476         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2477                 unsigned int bw_added;
2478                 unsigned int largest_mps;
2479                 unsigned int interval_overhead;
2480
2481                 /*
2482                  * How many packets could we transmit in this interval?
2483                  * If packets didn't fit in the previous interval, we will need
2484                  * to transmit that many packets twice within this interval.
2485                  */
2486                 packets_remaining = 2 * packets_remaining +
2487                         bw_table->interval_bw[i].num_packets;
2488
2489                 /* Find the largest max packet size of this or the previous
2490                  * interval.
2491                  */
2492                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2493                         largest_mps = 0;
2494                 else {
2495                         struct xhci_virt_ep *virt_ep;
2496                         struct list_head *ep_entry;
2497
2498                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2499                         virt_ep = list_entry(ep_entry,
2500                                         struct xhci_virt_ep, bw_endpoint_list);
2501                         /* Convert to blocks, rounding up */
2502                         largest_mps = DIV_ROUND_UP(
2503                                         virt_ep->bw_info.max_packet_size,
2504                                         block_size);
2505                 }
2506                 if (largest_mps > packet_size)
2507                         packet_size = largest_mps;
2508
2509                 /* Use the larger overhead of this or the previous interval. */
2510                 interval_overhead = xhci_get_largest_overhead(
2511                                 &bw_table->interval_bw[i]);
2512                 if (interval_overhead > overhead)
2513                         overhead = interval_overhead;
2514
2515                 /* How many packets can we evenly distribute across
2516                  * (1 << (i + 1)) possible scheduling opportunities?
2517                  */
2518                 packets_transmitted = packets_remaining >> (i + 1);
2519
2520                 /* Add in the bandwidth used for those scheduled packets */
2521                 bw_added = packets_transmitted * (overhead + packet_size);
2522
2523                 /* How many packets do we have remaining to transmit? */
2524                 packets_remaining = packets_remaining % (1 << (i + 1));
2525
2526                 /* What largest max packet size should those packets have? */
2527                 /* If we've transmitted all packets, don't carry over the
2528                  * largest packet size.
2529                  */
2530                 if (packets_remaining == 0) {
2531                         packet_size = 0;
2532                         overhead = 0;
2533                 } else if (packets_transmitted > 0) {
2534                         /* Otherwise if we do have remaining packets, and we've
2535                          * scheduled some packets in this interval, take the
2536                          * largest max packet size from endpoints with this
2537                          * interval.
2538                          */
2539                         packet_size = largest_mps;
2540                         overhead = interval_overhead;
2541                 }
2542                 /* Otherwise carry over packet_size and overhead from the last
2543                  * time we had a remainder.
2544                  */
2545                 bw_used += bw_added;
2546                 if (bw_used > max_bandwidth) {
2547                         xhci_warn(xhci, "Not enough bandwidth. "
2548                                         "Proposed: %u, Max: %u\n",
2549                                 bw_used, max_bandwidth);
2550                         return -ENOMEM;
2551                 }
2552         }
2553         /*
2554          * Ok, we know we have some packets left over after even-handedly
2555          * scheduling interval 15.  We don't know which microframes they will
2556          * fit into, so we over-schedule and say they will be scheduled every
2557          * microframe.
2558          */
2559         if (packets_remaining > 0)
2560                 bw_used += overhead + packet_size;
2561
2562         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2563                 unsigned int port_index = virt_dev->real_port - 1;
2564
2565                 /* OK, we're manipulating a HS device attached to a
2566                  * root port bandwidth domain.  Include the number of active TTs
2567                  * in the bandwidth used.
2568                  */
2569                 bw_used += TT_HS_OVERHEAD *
2570                         xhci->rh_bw[port_index].num_active_tts;
2571         }
2572
2573         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2574                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2575                 "Available: %u " "percent",
2576                 bw_used, max_bandwidth, bw_reserved,
2577                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2578                 max_bandwidth);
2579
2580         bw_used += bw_reserved;
2581         if (bw_used > max_bandwidth) {
2582                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2583                                 bw_used, max_bandwidth);
2584                 return -ENOMEM;
2585         }
2586
2587         bw_table->bw_used = bw_used;
2588         return 0;
2589 }
2590
2591 static bool xhci_is_async_ep(unsigned int ep_type)
2592 {
2593         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2594                                         ep_type != ISOC_IN_EP &&
2595                                         ep_type != INT_IN_EP);
2596 }
2597
2598 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2599 {
2600         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2601 }
2602
2603 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2604 {
2605         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2606
2607         if (ep_bw->ep_interval == 0)
2608                 return SS_OVERHEAD_BURST +
2609                         (ep_bw->mult * ep_bw->num_packets *
2610                                         (SS_OVERHEAD + mps));
2611         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2612                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2613                                 1 << ep_bw->ep_interval);
2614
2615 }
2616
2617 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2618                 struct xhci_bw_info *ep_bw,
2619                 struct xhci_interval_bw_table *bw_table,
2620                 struct usb_device *udev,
2621                 struct xhci_virt_ep *virt_ep,
2622                 struct xhci_tt_bw_info *tt_info)
2623 {
2624         struct xhci_interval_bw *interval_bw;
2625         int normalized_interval;
2626
2627         if (xhci_is_async_ep(ep_bw->type))
2628                 return;
2629
2630         if (udev->speed >= USB_SPEED_SUPER) {
2631                 if (xhci_is_sync_in_ep(ep_bw->type))
2632                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2633                                 xhci_get_ss_bw_consumed(ep_bw);
2634                 else
2635                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2636                                 xhci_get_ss_bw_consumed(ep_bw);
2637                 return;
2638         }
2639
2640         /* SuperSpeed endpoints never get added to intervals in the table, so
2641          * this check is only valid for HS/FS/LS devices.
2642          */
2643         if (list_empty(&virt_ep->bw_endpoint_list))
2644                 return;
2645         /* For LS/FS devices, we need to translate the interval expressed in
2646          * microframes to frames.
2647          */
2648         if (udev->speed == USB_SPEED_HIGH)
2649                 normalized_interval = ep_bw->ep_interval;
2650         else
2651                 normalized_interval = ep_bw->ep_interval - 3;
2652
2653         if (normalized_interval == 0)
2654                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2655         interval_bw = &bw_table->interval_bw[normalized_interval];
2656         interval_bw->num_packets -= ep_bw->num_packets;
2657         switch (udev->speed) {
2658         case USB_SPEED_LOW:
2659                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2660                 break;
2661         case USB_SPEED_FULL:
2662                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2663                 break;
2664         case USB_SPEED_HIGH:
2665                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2666                 break;
2667         case USB_SPEED_SUPER:
2668         case USB_SPEED_SUPER_PLUS:
2669         case USB_SPEED_UNKNOWN:
2670         case USB_SPEED_WIRELESS:
2671                 /* Should never happen because only LS/FS/HS endpoints will get
2672                  * added to the endpoint list.
2673                  */
2674                 return;
2675         }
2676         if (tt_info)
2677                 tt_info->active_eps -= 1;
2678         list_del_init(&virt_ep->bw_endpoint_list);
2679 }
2680
2681 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2682                 struct xhci_bw_info *ep_bw,
2683                 struct xhci_interval_bw_table *bw_table,
2684                 struct usb_device *udev,
2685                 struct xhci_virt_ep *virt_ep,
2686                 struct xhci_tt_bw_info *tt_info)
2687 {
2688         struct xhci_interval_bw *interval_bw;
2689         struct xhci_virt_ep *smaller_ep;
2690         int normalized_interval;
2691
2692         if (xhci_is_async_ep(ep_bw->type))
2693                 return;
2694
2695         if (udev->speed == USB_SPEED_SUPER) {
2696                 if (xhci_is_sync_in_ep(ep_bw->type))
2697                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2698                                 xhci_get_ss_bw_consumed(ep_bw);
2699                 else
2700                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2701                                 xhci_get_ss_bw_consumed(ep_bw);
2702                 return;
2703         }
2704
2705         /* For LS/FS devices, we need to translate the interval expressed in
2706          * microframes to frames.
2707          */
2708         if (udev->speed == USB_SPEED_HIGH)
2709                 normalized_interval = ep_bw->ep_interval;
2710         else
2711                 normalized_interval = ep_bw->ep_interval - 3;
2712
2713         if (normalized_interval == 0)
2714                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2715         interval_bw = &bw_table->interval_bw[normalized_interval];
2716         interval_bw->num_packets += ep_bw->num_packets;
2717         switch (udev->speed) {
2718         case USB_SPEED_LOW:
2719                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2720                 break;
2721         case USB_SPEED_FULL:
2722                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2723                 break;
2724         case USB_SPEED_HIGH:
2725                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2726                 break;
2727         case USB_SPEED_SUPER:
2728         case USB_SPEED_SUPER_PLUS:
2729         case USB_SPEED_UNKNOWN:
2730         case USB_SPEED_WIRELESS:
2731                 /* Should never happen because only LS/FS/HS endpoints will get
2732                  * added to the endpoint list.
2733                  */
2734                 return;
2735         }
2736
2737         if (tt_info)
2738                 tt_info->active_eps += 1;
2739         /* Insert the endpoint into the list, largest max packet size first. */
2740         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2741                         bw_endpoint_list) {
2742                 if (ep_bw->max_packet_size >=
2743                                 smaller_ep->bw_info.max_packet_size) {
2744                         /* Add the new ep before the smaller endpoint */
2745                         list_add_tail(&virt_ep->bw_endpoint_list,
2746                                         &smaller_ep->bw_endpoint_list);
2747                         return;
2748                 }
2749         }
2750         /* Add the new endpoint at the end of the list. */
2751         list_add_tail(&virt_ep->bw_endpoint_list,
2752                         &interval_bw->endpoints);
2753 }
2754
2755 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2756                 struct xhci_virt_device *virt_dev,
2757                 int old_active_eps)
2758 {
2759         struct xhci_root_port_bw_info *rh_bw_info;
2760         if (!virt_dev->tt_info)
2761                 return;
2762
2763         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2764         if (old_active_eps == 0 &&
2765                                 virt_dev->tt_info->active_eps != 0) {
2766                 rh_bw_info->num_active_tts += 1;
2767                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2768         } else if (old_active_eps != 0 &&
2769                                 virt_dev->tt_info->active_eps == 0) {
2770                 rh_bw_info->num_active_tts -= 1;
2771                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2772         }
2773 }
2774
2775 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2776                 struct xhci_virt_device *virt_dev,
2777                 struct xhci_container_ctx *in_ctx)
2778 {
2779         struct xhci_bw_info ep_bw_info[31];
2780         int i;
2781         struct xhci_input_control_ctx *ctrl_ctx;
2782         int old_active_eps = 0;
2783
2784         if (virt_dev->tt_info)
2785                 old_active_eps = virt_dev->tt_info->active_eps;
2786
2787         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2788         if (!ctrl_ctx) {
2789                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2790                                 __func__);
2791                 return -ENOMEM;
2792         }
2793
2794         for (i = 0; i < 31; i++) {
2795                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2796                         continue;
2797
2798                 /* Make a copy of the BW info in case we need to revert this */
2799                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2800                                 sizeof(ep_bw_info[i]));
2801                 /* Drop the endpoint from the interval table if the endpoint is
2802                  * being dropped or changed.
2803                  */
2804                 if (EP_IS_DROPPED(ctrl_ctx, i))
2805                         xhci_drop_ep_from_interval_table(xhci,
2806                                         &virt_dev->eps[i].bw_info,
2807                                         virt_dev->bw_table,
2808                                         virt_dev->udev,
2809                                         &virt_dev->eps[i],
2810                                         virt_dev->tt_info);
2811         }
2812         /* Overwrite the information stored in the endpoints' bw_info */
2813         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2814         for (i = 0; i < 31; i++) {
2815                 /* Add any changed or added endpoints to the interval table */
2816                 if (EP_IS_ADDED(ctrl_ctx, i))
2817                         xhci_add_ep_to_interval_table(xhci,
2818                                         &virt_dev->eps[i].bw_info,
2819                                         virt_dev->bw_table,
2820                                         virt_dev->udev,
2821                                         &virt_dev->eps[i],
2822                                         virt_dev->tt_info);
2823         }
2824
2825         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2826                 /* Ok, this fits in the bandwidth we have.
2827                  * Update the number of active TTs.
2828                  */
2829                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2830                 return 0;
2831         }
2832
2833         /* We don't have enough bandwidth for this, revert the stored info. */
2834         for (i = 0; i < 31; i++) {
2835                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2836                         continue;
2837
2838                 /* Drop the new copies of any added or changed endpoints from
2839                  * the interval table.
2840                  */
2841                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2842                         xhci_drop_ep_from_interval_table(xhci,
2843                                         &virt_dev->eps[i].bw_info,
2844                                         virt_dev->bw_table,
2845                                         virt_dev->udev,
2846                                         &virt_dev->eps[i],
2847                                         virt_dev->tt_info);
2848                 }
2849                 /* Revert the endpoint back to its old information */
2850                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2851                                 sizeof(ep_bw_info[i]));
2852                 /* Add any changed or dropped endpoints back into the table */
2853                 if (EP_IS_DROPPED(ctrl_ctx, i))
2854                         xhci_add_ep_to_interval_table(xhci,
2855                                         &virt_dev->eps[i].bw_info,
2856                                         virt_dev->bw_table,
2857                                         virt_dev->udev,
2858                                         &virt_dev->eps[i],
2859                                         virt_dev->tt_info);
2860         }
2861         return -ENOMEM;
2862 }
2863
2864
2865 /* Issue a configure endpoint command or evaluate context command
2866  * and wait for it to finish.
2867  */
2868 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2869                 struct usb_device *udev,
2870                 struct xhci_command *command,
2871                 bool ctx_change, bool must_succeed)
2872 {
2873         int ret;
2874         unsigned long flags;
2875         struct xhci_input_control_ctx *ctrl_ctx;
2876         struct xhci_virt_device *virt_dev;
2877         struct xhci_slot_ctx *slot_ctx;
2878
2879         if (!command)
2880                 return -EINVAL;
2881
2882         spin_lock_irqsave(&xhci->lock, flags);
2883
2884         if (xhci->xhc_state & XHCI_STATE_DYING) {
2885                 spin_unlock_irqrestore(&xhci->lock, flags);
2886                 return -ESHUTDOWN;
2887         }
2888
2889         virt_dev = xhci->devs[udev->slot_id];
2890
2891         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892         if (!ctrl_ctx) {
2893                 spin_unlock_irqrestore(&xhci->lock, flags);
2894                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895                                 __func__);
2896                 return -ENOMEM;
2897         }
2898
2899         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2900                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2901                 spin_unlock_irqrestore(&xhci->lock, flags);
2902                 xhci_warn(xhci, "Not enough host resources, "
2903                                 "active endpoint contexts = %u\n",
2904                                 xhci->num_active_eps);
2905                 return -ENOMEM;
2906         }
2907         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2908             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2909                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2910                         xhci_free_host_resources(xhci, ctrl_ctx);
2911                 spin_unlock_irqrestore(&xhci->lock, flags);
2912                 xhci_warn(xhci, "Not enough bandwidth\n");
2913                 return -ENOMEM;
2914         }
2915
2916         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2917
2918         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2919         trace_xhci_configure_endpoint(slot_ctx);
2920
2921         if (!ctx_change)
2922                 ret = xhci_queue_configure_endpoint(xhci, command,
2923                                 command->in_ctx->dma,
2924                                 udev->slot_id, must_succeed);
2925         else
2926                 ret = xhci_queue_evaluate_context(xhci, command,
2927                                 command->in_ctx->dma,
2928                                 udev->slot_id, must_succeed);
2929         if (ret < 0) {
2930                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2931                         xhci_free_host_resources(xhci, ctrl_ctx);
2932                 spin_unlock_irqrestore(&xhci->lock, flags);
2933                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2934                                 "FIXME allocate a new ring segment");
2935                 return -ENOMEM;
2936         }
2937         xhci_ring_cmd_db(xhci);
2938         spin_unlock_irqrestore(&xhci->lock, flags);
2939
2940         /* Wait for the configure endpoint command to complete */
2941         wait_for_completion(command->completion);
2942
2943         if (!ctx_change)
2944                 ret = xhci_configure_endpoint_result(xhci, udev,
2945                                                      &command->status);
2946         else
2947                 ret = xhci_evaluate_context_result(xhci, udev,
2948                                                    &command->status);
2949
2950         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2951                 spin_lock_irqsave(&xhci->lock, flags);
2952                 /* If the command failed, remove the reserved resources.
2953                  * Otherwise, clean up the estimate to include dropped eps.
2954                  */
2955                 if (ret)
2956                         xhci_free_host_resources(xhci, ctrl_ctx);
2957                 else
2958                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2959                 spin_unlock_irqrestore(&xhci->lock, flags);
2960         }
2961         return ret;
2962 }
2963
2964 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2965         struct xhci_virt_device *vdev, int i)
2966 {
2967         struct xhci_virt_ep *ep = &vdev->eps[i];
2968
2969         if (ep->ep_state & EP_HAS_STREAMS) {
2970                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2971                                 xhci_get_endpoint_address(i));
2972                 xhci_free_stream_info(xhci, ep->stream_info);
2973                 ep->stream_info = NULL;
2974                 ep->ep_state &= ~EP_HAS_STREAMS;
2975         }
2976 }
2977
2978 /* Called after one or more calls to xhci_add_endpoint() or
2979  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2980  * to call xhci_reset_bandwidth().
2981  *
2982  * Since we are in the middle of changing either configuration or
2983  * installing a new alt setting, the USB core won't allow URBs to be
2984  * enqueued for any endpoint on the old config or interface.  Nothing
2985  * else should be touching the xhci->devs[slot_id] structure, so we
2986  * don't need to take the xhci->lock for manipulating that.
2987  */
2988 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2989 {
2990         int i;
2991         int ret = 0;
2992         struct xhci_hcd *xhci;
2993         struct xhci_virt_device *virt_dev;
2994         struct xhci_input_control_ctx *ctrl_ctx;
2995         struct xhci_slot_ctx *slot_ctx;
2996         struct xhci_command *command;
2997
2998         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2999         if (ret <= 0)
3000                 return ret;
3001         xhci = hcd_to_xhci(hcd);
3002         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3003                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3004                 return -ENODEV;
3005
3006         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3007         virt_dev = xhci->devs[udev->slot_id];
3008
3009         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3010         if (!command)
3011                 return -ENOMEM;
3012
3013         command->in_ctx = virt_dev->in_ctx;
3014
3015         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3016         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3017         if (!ctrl_ctx) {
3018                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3019                                 __func__);
3020                 ret = -ENOMEM;
3021                 goto command_cleanup;
3022         }
3023         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3024         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3025         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3026
3027         /* Don't issue the command if there's no endpoints to update. */
3028         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3029             ctrl_ctx->drop_flags == 0) {
3030                 ret = 0;
3031                 goto command_cleanup;
3032         }
3033         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3034         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3035         for (i = 31; i >= 1; i--) {
3036                 __le32 le32 = cpu_to_le32(BIT(i));
3037
3038                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3039                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3040                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3041                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3042                         break;
3043                 }
3044         }
3045
3046         ret = xhci_configure_endpoint(xhci, udev, command,
3047                         false, false);
3048         if (ret)
3049                 /* Callee should call reset_bandwidth() */
3050                 goto command_cleanup;
3051
3052         /* Free any rings that were dropped, but not changed. */
3053         for (i = 1; i < 31; i++) {
3054                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3055                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3056                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3057                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3058                 }
3059         }
3060         xhci_zero_in_ctx(xhci, virt_dev);
3061         /*
3062          * Install any rings for completely new endpoints or changed endpoints,
3063          * and free any old rings from changed endpoints.
3064          */
3065         for (i = 1; i < 31; i++) {
3066                 if (!virt_dev->eps[i].new_ring)
3067                         continue;
3068                 /* Only free the old ring if it exists.
3069                  * It may not if this is the first add of an endpoint.
3070                  */
3071                 if (virt_dev->eps[i].ring) {
3072                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3073                 }
3074                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3075                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3076                 virt_dev->eps[i].new_ring = NULL;
3077                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3078         }
3079 command_cleanup:
3080         kfree(command->completion);
3081         kfree(command);
3082
3083         return ret;
3084 }
3085
3086 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3087 {
3088         struct xhci_hcd *xhci;
3089         struct xhci_virt_device *virt_dev;
3090         int i, ret;
3091
3092         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3093         if (ret <= 0)
3094                 return;
3095         xhci = hcd_to_xhci(hcd);
3096
3097         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3098         virt_dev = xhci->devs[udev->slot_id];
3099         /* Free any rings allocated for added endpoints */
3100         for (i = 0; i < 31; i++) {
3101                 if (virt_dev->eps[i].new_ring) {
3102                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3103                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3104                         virt_dev->eps[i].new_ring = NULL;
3105                 }
3106         }
3107         xhci_zero_in_ctx(xhci, virt_dev);
3108 }
3109
3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3111                 struct xhci_container_ctx *in_ctx,
3112                 struct xhci_container_ctx *out_ctx,
3113                 struct xhci_input_control_ctx *ctrl_ctx,
3114                 u32 add_flags, u32 drop_flags)
3115 {
3116         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3117         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3118         xhci_slot_copy(xhci, in_ctx, out_ctx);
3119         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3120 }
3121
3122 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3123                 unsigned int slot_id, unsigned int ep_index,
3124                 struct xhci_dequeue_state *deq_state)
3125 {
3126         struct xhci_input_control_ctx *ctrl_ctx;
3127         struct xhci_container_ctx *in_ctx;
3128         struct xhci_ep_ctx *ep_ctx;
3129         u32 added_ctxs;
3130         dma_addr_t addr;
3131
3132         in_ctx = xhci->devs[slot_id]->in_ctx;
3133         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3134         if (!ctrl_ctx) {
3135                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3136                                 __func__);
3137                 return;
3138         }
3139
3140         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3141                         xhci->devs[slot_id]->out_ctx, ep_index);
3142         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3143         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3144                         deq_state->new_deq_ptr);
3145         if (addr == 0) {
3146                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3147                                 "reset ep command\n");
3148                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3149                                 deq_state->new_deq_seg,
3150                                 deq_state->new_deq_ptr);
3151                 return;
3152         }
3153         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3154
3155         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3156         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3157                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3158                         added_ctxs, added_ctxs);
3159 }
3160
3161 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3162                                unsigned int ep_index, unsigned int stream_id,
3163                                struct xhci_td *td)
3164 {
3165         struct xhci_dequeue_state deq_state;
3166
3167         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3168                         "Cleaning up stalled endpoint ring");
3169         /* We need to move the HW's dequeue pointer past this TD,
3170          * or it will attempt to resend it on the next doorbell ring.
3171          */
3172         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3173                                     &deq_state);
3174
3175         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3176                 return;
3177
3178         /* HW with the reset endpoint quirk will use the saved dequeue state to
3179          * issue a configure endpoint command later.
3180          */
3181         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3182                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3183                                 "Queueing new dequeue state");
3184                 xhci_queue_new_dequeue_state(xhci, slot_id,
3185                                 ep_index, &deq_state);
3186         } else {
3187                 /* Better hope no one uses the input context between now and the
3188                  * reset endpoint completion!
3189                  * XXX: No idea how this hardware will react when stream rings
3190                  * are enabled.
3191                  */
3192                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3193                                 "Setting up input context for "
3194                                 "configure endpoint command");
3195                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3196                                 ep_index, &deq_state);
3197         }
3198 }
3199
3200 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3201                                   struct usb_host_endpoint *host_ep)
3202 {
3203         struct xhci_hcd         *xhci;
3204         struct xhci_virt_device *vdev;
3205         struct xhci_virt_ep     *ep;
3206         struct usb_device       *udev;
3207         unsigned long           flags;
3208         unsigned int            ep_index;
3209
3210         xhci = hcd_to_xhci(hcd);
3211 rescan:
3212         spin_lock_irqsave(&xhci->lock, flags);
3213
3214         udev = (struct usb_device *)host_ep->hcpriv;
3215         if (!udev || !udev->slot_id)
3216                 goto done;
3217
3218         vdev = xhci->devs[udev->slot_id];
3219         if (!vdev)
3220                 goto done;
3221
3222         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3223         ep = &vdev->eps[ep_index];
3224         if (!ep)
3225                 goto done;
3226
3227         /* wait for hub_tt_work to finish clearing hub TT */
3228         if (ep->ep_state & EP_CLEARING_TT) {
3229                 spin_unlock_irqrestore(&xhci->lock, flags);
3230                 schedule_timeout_uninterruptible(1);
3231                 goto rescan;
3232         }
3233
3234         if (ep->ep_state)
3235                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3236                          ep->ep_state);
3237 done:
3238         host_ep->hcpriv = NULL;
3239         spin_unlock_irqrestore(&xhci->lock, flags);
3240 }
3241
3242 /*
3243  * Called after usb core issues a clear halt control message.
3244  * The host side of the halt should already be cleared by a reset endpoint
3245  * command issued when the STALL event was received.
3246  *
3247  * The reset endpoint command may only be issued to endpoints in the halted
3248  * state. For software that wishes to reset the data toggle or sequence number
3249  * of an endpoint that isn't in the halted state this function will issue a
3250  * configure endpoint command with the Drop and Add bits set for the target
3251  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3252  */
3253
3254 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3255                 struct usb_host_endpoint *host_ep)
3256 {
3257         struct xhci_hcd *xhci;
3258         struct usb_device *udev;
3259         struct xhci_virt_device *vdev;
3260         struct xhci_virt_ep *ep;
3261         struct xhci_input_control_ctx *ctrl_ctx;
3262         struct xhci_command *stop_cmd, *cfg_cmd;
3263         unsigned int ep_index;
3264         unsigned long flags;
3265         u32 ep_flag;
3266         int err;
3267
3268         xhci = hcd_to_xhci(hcd);
3269         if (!host_ep->hcpriv)
3270                 return;
3271         udev = (struct usb_device *) host_ep->hcpriv;
3272         vdev = xhci->devs[udev->slot_id];
3273
3274         /*
3275          * vdev may be lost due to xHC restore error and re-initialization
3276          * during S3/S4 resume. A new vdev will be allocated later by
3277          * xhci_discover_or_reset_device()
3278          */
3279         if (!udev->slot_id || !vdev)
3280                 return;
3281         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3282         ep = &vdev->eps[ep_index];
3283         if (!ep)
3284                 return;
3285
3286         /* Bail out if toggle is already being cleared by a endpoint reset */
3287         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3288                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3289                 return;
3290         }
3291         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3292         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3293             usb_endpoint_xfer_isoc(&host_ep->desc))
3294                 return;
3295
3296         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3297
3298         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3299                 return;
3300
3301         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3302         if (!stop_cmd)
3303                 return;
3304
3305         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3306         if (!cfg_cmd)
3307                 goto cleanup;
3308
3309         spin_lock_irqsave(&xhci->lock, flags);
3310
3311         /* block queuing new trbs and ringing ep doorbell */
3312         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3313
3314         /*
3315          * Make sure endpoint ring is empty before resetting the toggle/seq.
3316          * Driver is required to synchronously cancel all transfer request.
3317          * Stop the endpoint to force xHC to update the output context
3318          */
3319
3320         if (!list_empty(&ep->ring->td_list)) {
3321                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3322                 spin_unlock_irqrestore(&xhci->lock, flags);
3323                 xhci_free_command(xhci, cfg_cmd);
3324                 goto cleanup;
3325         }
3326
3327         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3328                                         ep_index, 0);
3329         if (err < 0) {
3330                 spin_unlock_irqrestore(&xhci->lock, flags);
3331                 xhci_free_command(xhci, cfg_cmd);
3332                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3333                                 __func__, err);
3334                 goto cleanup;
3335         }
3336
3337         xhci_ring_cmd_db(xhci);
3338         spin_unlock_irqrestore(&xhci->lock, flags);
3339
3340         wait_for_completion(stop_cmd->completion);
3341
3342         spin_lock_irqsave(&xhci->lock, flags);
3343
3344         /* config ep command clears toggle if add and drop ep flags are set */
3345         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3346         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3347                                            ctrl_ctx, ep_flag, ep_flag);
3348         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3349
3350         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3351                                       udev->slot_id, false);
3352         if (err < 0) {
3353                 spin_unlock_irqrestore(&xhci->lock, flags);
3354                 xhci_free_command(xhci, cfg_cmd);
3355                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3356                                 __func__, err);
3357                 goto cleanup;
3358         }
3359
3360         xhci_ring_cmd_db(xhci);
3361         spin_unlock_irqrestore(&xhci->lock, flags);
3362
3363         wait_for_completion(cfg_cmd->completion);
3364
3365         xhci_free_command(xhci, cfg_cmd);
3366 cleanup:
3367         xhci_free_command(xhci, stop_cmd);
3368         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3369                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3370 }
3371
3372 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3373                 struct usb_device *udev, struct usb_host_endpoint *ep,
3374                 unsigned int slot_id)
3375 {
3376         int ret;
3377         unsigned int ep_index;
3378         unsigned int ep_state;
3379
3380         if (!ep)
3381                 return -EINVAL;
3382         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3383         if (ret <= 0)
3384                 return -EINVAL;
3385         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3386                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3387                                 " descriptor for ep 0x%x does not support streams\n",
3388                                 ep->desc.bEndpointAddress);
3389                 return -EINVAL;
3390         }
3391
3392         ep_index = xhci_get_endpoint_index(&ep->desc);
3393         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3394         if (ep_state & EP_HAS_STREAMS ||
3395                         ep_state & EP_GETTING_STREAMS) {
3396                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3397                                 "already has streams set up.\n",
3398                                 ep->desc.bEndpointAddress);
3399                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3400                                 "dynamic stream context array reallocation.\n");
3401                 return -EINVAL;
3402         }
3403         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3404                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3405                                 "endpoint 0x%x; URBs are pending.\n",
3406                                 ep->desc.bEndpointAddress);
3407                 return -EINVAL;
3408         }
3409         return 0;
3410 }
3411
3412 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3413                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3414 {
3415         unsigned int max_streams;
3416
3417         /* The stream context array size must be a power of two */
3418         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3419         /*
3420          * Find out how many primary stream array entries the host controller
3421          * supports.  Later we may use secondary stream arrays (similar to 2nd
3422          * level page entries), but that's an optional feature for xHCI host
3423          * controllers. xHCs must support at least 4 stream IDs.
3424          */
3425         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3426         if (*num_stream_ctxs > max_streams) {
3427                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3428                                 max_streams);
3429                 *num_stream_ctxs = max_streams;
3430                 *num_streams = max_streams;
3431         }
3432 }
3433
3434 /* Returns an error code if one of the endpoint already has streams.
3435  * This does not change any data structures, it only checks and gathers
3436  * information.
3437  */
3438 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3439                 struct usb_device *udev,
3440                 struct usb_host_endpoint **eps, unsigned int num_eps,
3441                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3442 {
3443         unsigned int max_streams;
3444         unsigned int endpoint_flag;
3445         int i;
3446         int ret;
3447
3448         for (i = 0; i < num_eps; i++) {
3449                 ret = xhci_check_streams_endpoint(xhci, udev,
3450                                 eps[i], udev->slot_id);
3451                 if (ret < 0)
3452                         return ret;
3453
3454                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3455                 if (max_streams < (*num_streams - 1)) {
3456                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3457                                         eps[i]->desc.bEndpointAddress,
3458                                         max_streams);
3459                         *num_streams = max_streams+1;
3460                 }
3461
3462                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3463                 if (*changed_ep_bitmask & endpoint_flag)
3464                         return -EINVAL;
3465                 *changed_ep_bitmask |= endpoint_flag;
3466         }
3467         return 0;
3468 }
3469
3470 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3471                 struct usb_device *udev,
3472                 struct usb_host_endpoint **eps, unsigned int num_eps)
3473 {
3474         u32 changed_ep_bitmask = 0;
3475         unsigned int slot_id;
3476         unsigned int ep_index;
3477         unsigned int ep_state;
3478         int i;
3479
3480         slot_id = udev->slot_id;
3481         if (!xhci->devs[slot_id])
3482                 return 0;
3483
3484         for (i = 0; i < num_eps; i++) {
3485                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3487                 /* Are streams already being freed for the endpoint? */
3488                 if (ep_state & EP_GETTING_NO_STREAMS) {
3489                         xhci_warn(xhci, "WARN Can't disable streams for "
3490                                         "endpoint 0x%x, "
3491                                         "streams are being disabled already\n",
3492                                         eps[i]->desc.bEndpointAddress);
3493                         return 0;
3494                 }
3495                 /* Are there actually any streams to free? */
3496                 if (!(ep_state & EP_HAS_STREAMS) &&
3497                                 !(ep_state & EP_GETTING_STREAMS)) {
3498                         xhci_warn(xhci, "WARN Can't disable streams for "
3499                                         "endpoint 0x%x, "
3500                                         "streams are already disabled!\n",
3501                                         eps[i]->desc.bEndpointAddress);
3502                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3503                                         "with non-streams endpoint\n");
3504                         return 0;
3505                 }
3506                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3507         }
3508         return changed_ep_bitmask;
3509 }
3510
3511 /*
3512  * The USB device drivers use this function (through the HCD interface in USB
3513  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3514  * coordinate mass storage command queueing across multiple endpoints (basically
3515  * a stream ID == a task ID).
3516  *
3517  * Setting up streams involves allocating the same size stream context array
3518  * for each endpoint and issuing a configure endpoint command for all endpoints.
3519  *
3520  * Don't allow the call to succeed if one endpoint only supports one stream
3521  * (which means it doesn't support streams at all).
3522  *
3523  * Drivers may get less stream IDs than they asked for, if the host controller
3524  * hardware or endpoints claim they can't support the number of requested
3525  * stream IDs.
3526  */
3527 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3528                 struct usb_host_endpoint **eps, unsigned int num_eps,
3529                 unsigned int num_streams, gfp_t mem_flags)
3530 {
3531         int i, ret;
3532         struct xhci_hcd *xhci;
3533         struct xhci_virt_device *vdev;
3534         struct xhci_command *config_cmd;
3535         struct xhci_input_control_ctx *ctrl_ctx;
3536         unsigned int ep_index;
3537         unsigned int num_stream_ctxs;
3538         unsigned int max_packet;
3539         unsigned long flags;
3540         u32 changed_ep_bitmask = 0;
3541
3542         if (!eps)
3543                 return -EINVAL;
3544
3545         /* Add one to the number of streams requested to account for
3546          * stream 0 that is reserved for xHCI usage.
3547          */
3548         num_streams += 1;
3549         xhci = hcd_to_xhci(hcd);
3550         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3551                         num_streams);
3552
3553         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3554         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3555                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3556                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3557                 return -ENOSYS;
3558         }
3559
3560         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3561         if (!config_cmd)
3562                 return -ENOMEM;
3563
3564         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3565         if (!ctrl_ctx) {
3566                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3567                                 __func__);
3568                 xhci_free_command(xhci, config_cmd);
3569                 return -ENOMEM;
3570         }
3571
3572         /* Check to make sure all endpoints are not already configured for
3573          * streams.  While we're at it, find the maximum number of streams that
3574          * all the endpoints will support and check for duplicate endpoints.
3575          */
3576         spin_lock_irqsave(&xhci->lock, flags);
3577         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3578                         num_eps, &num_streams, &changed_ep_bitmask);
3579         if (ret < 0) {
3580                 xhci_free_command(xhci, config_cmd);
3581                 spin_unlock_irqrestore(&xhci->lock, flags);
3582                 return ret;
3583         }
3584         if (num_streams <= 1) {
3585                 xhci_warn(xhci, "WARN: endpoints can't handle "
3586                                 "more than one stream.\n");
3587                 xhci_free_command(xhci, config_cmd);
3588                 spin_unlock_irqrestore(&xhci->lock, flags);
3589                 return -EINVAL;
3590         }
3591         vdev = xhci->devs[udev->slot_id];
3592         /* Mark each endpoint as being in transition, so
3593          * xhci_urb_enqueue() will reject all URBs.
3594          */
3595         for (i = 0; i < num_eps; i++) {
3596                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3598         }
3599         spin_unlock_irqrestore(&xhci->lock, flags);
3600
3601         /* Setup internal data structures and allocate HW data structures for
3602          * streams (but don't install the HW structures in the input context
3603          * until we're sure all memory allocation succeeded).
3604          */
3605         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3606         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3607                         num_stream_ctxs, num_streams);
3608
3609         for (i = 0; i < num_eps; i++) {
3610                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3611                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3612                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3613                                 num_stream_ctxs,
3614                                 num_streams,
3615                                 max_packet, mem_flags);
3616                 if (!vdev->eps[ep_index].stream_info)
3617                         goto cleanup;
3618                 /* Set maxPstreams in endpoint context and update deq ptr to
3619                  * point to stream context array. FIXME
3620                  */
3621         }
3622
3623         /* Set up the input context for a configure endpoint command. */
3624         for (i = 0; i < num_eps; i++) {
3625                 struct xhci_ep_ctx *ep_ctx;
3626
3627                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3628                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3629
3630                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3631                                 vdev->out_ctx, ep_index);
3632                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3633                                 vdev->eps[ep_index].stream_info);
3634         }
3635         /* Tell the HW to drop its old copy of the endpoint context info
3636          * and add the updated copy from the input context.
3637          */
3638         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3639                         vdev->out_ctx, ctrl_ctx,
3640                         changed_ep_bitmask, changed_ep_bitmask);
3641
3642         /* Issue and wait for the configure endpoint command */
3643         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3644                         false, false);
3645
3646         /* xHC rejected the configure endpoint command for some reason, so we
3647          * leave the old ring intact and free our internal streams data
3648          * structure.
3649          */
3650         if (ret < 0)
3651                 goto cleanup;
3652
3653         spin_lock_irqsave(&xhci->lock, flags);
3654         for (i = 0; i < num_eps; i++) {
3655                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3656                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3657                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3658                          udev->slot_id, ep_index);
3659                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3660         }
3661         xhci_free_command(xhci, config_cmd);
3662         spin_unlock_irqrestore(&xhci->lock, flags);
3663
3664         for (i = 0; i < num_eps; i++) {
3665                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3667         }
3668         /* Subtract 1 for stream 0, which drivers can't use */
3669         return num_streams - 1;
3670
3671 cleanup:
3672         /* If it didn't work, free the streams! */
3673         for (i = 0; i < num_eps; i++) {
3674                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3675                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3676                 vdev->eps[ep_index].stream_info = NULL;
3677                 /* FIXME Unset maxPstreams in endpoint context and
3678                  * update deq ptr to point to normal string ring.
3679                  */
3680                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3681                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3682                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3683         }
3684         xhci_free_command(xhci, config_cmd);
3685         return -ENOMEM;
3686 }
3687
3688 /* Transition the endpoint from using streams to being a "normal" endpoint
3689  * without streams.
3690  *
3691  * Modify the endpoint context state, submit a configure endpoint command,
3692  * and free all endpoint rings for streams if that completes successfully.
3693  */
3694 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3695                 struct usb_host_endpoint **eps, unsigned int num_eps,
3696                 gfp_t mem_flags)
3697 {
3698         int i, ret;
3699         struct xhci_hcd *xhci;
3700         struct xhci_virt_device *vdev;
3701         struct xhci_command *command;
3702         struct xhci_input_control_ctx *ctrl_ctx;
3703         unsigned int ep_index;
3704         unsigned long flags;
3705         u32 changed_ep_bitmask;
3706
3707         xhci = hcd_to_xhci(hcd);
3708         vdev = xhci->devs[udev->slot_id];
3709
3710         /* Set up a configure endpoint command to remove the streams rings */
3711         spin_lock_irqsave(&xhci->lock, flags);
3712         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3713                         udev, eps, num_eps);
3714         if (changed_ep_bitmask == 0) {
3715                 spin_unlock_irqrestore(&xhci->lock, flags);
3716                 return -EINVAL;
3717         }
3718
3719         /* Use the xhci_command structure from the first endpoint.  We may have
3720          * allocated too many, but the driver may call xhci_free_streams() for
3721          * each endpoint it grouped into one call to xhci_alloc_streams().
3722          */
3723         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3724         command = vdev->eps[ep_index].stream_info->free_streams_command;
3725         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3726         if (!ctrl_ctx) {
3727                 spin_unlock_irqrestore(&xhci->lock, flags);
3728                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3729                                 __func__);
3730                 return -EINVAL;
3731         }
3732
3733         for (i = 0; i < num_eps; i++) {
3734                 struct xhci_ep_ctx *ep_ctx;
3735
3736                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3737                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3738                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3739                         EP_GETTING_NO_STREAMS;
3740
3741                 xhci_endpoint_copy(xhci, command->in_ctx,
3742                                 vdev->out_ctx, ep_index);
3743                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3744                                 &vdev->eps[ep_index]);
3745         }
3746         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3747                         vdev->out_ctx, ctrl_ctx,
3748                         changed_ep_bitmask, changed_ep_bitmask);
3749         spin_unlock_irqrestore(&xhci->lock, flags);
3750
3751         /* Issue and wait for the configure endpoint command,
3752          * which must succeed.
3753          */
3754         ret = xhci_configure_endpoint(xhci, udev, command,
3755                         false, true);
3756
3757         /* xHC rejected the configure endpoint command for some reason, so we
3758          * leave the streams rings intact.
3759          */
3760         if (ret < 0)
3761                 return ret;
3762
3763         spin_lock_irqsave(&xhci->lock, flags);
3764         for (i = 0; i < num_eps; i++) {
3765                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3766                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3767                 vdev->eps[ep_index].stream_info = NULL;
3768                 /* FIXME Unset maxPstreams in endpoint context and
3769                  * update deq ptr to point to normal string ring.
3770                  */
3771                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3772                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3773         }
3774         spin_unlock_irqrestore(&xhci->lock, flags);
3775
3776         return 0;
3777 }
3778
3779 /*
3780  * Deletes endpoint resources for endpoints that were active before a Reset
3781  * Device command, or a Disable Slot command.  The Reset Device command leaves
3782  * the control endpoint intact, whereas the Disable Slot command deletes it.
3783  *
3784  * Must be called with xhci->lock held.
3785  */
3786 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3787         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3788 {
3789         int i;
3790         unsigned int num_dropped_eps = 0;
3791         unsigned int drop_flags = 0;
3792
3793         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3794                 if (virt_dev->eps[i].ring) {
3795                         drop_flags |= 1 << i;
3796                         num_dropped_eps++;
3797                 }
3798         }
3799         xhci->num_active_eps -= num_dropped_eps;
3800         if (num_dropped_eps)
3801                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3802                                 "Dropped %u ep ctxs, flags = 0x%x, "
3803                                 "%u now active.",
3804                                 num_dropped_eps, drop_flags,
3805                                 xhci->num_active_eps);
3806 }
3807
3808 /*
3809  * This submits a Reset Device Command, which will set the device state to 0,
3810  * set the device address to 0, and disable all the endpoints except the default
3811  * control endpoint.  The USB core should come back and call
3812  * xhci_address_device(), and then re-set up the configuration.  If this is
3813  * called because of a usb_reset_and_verify_device(), then the old alternate
3814  * settings will be re-installed through the normal bandwidth allocation
3815  * functions.
3816  *
3817  * Wait for the Reset Device command to finish.  Remove all structures
3818  * associated with the endpoints that were disabled.  Clear the input device
3819  * structure? Reset the control endpoint 0 max packet size?
3820  *
3821  * If the virt_dev to be reset does not exist or does not match the udev,
3822  * it means the device is lost, possibly due to the xHC restore error and
3823  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3824  * re-allocate the device.
3825  */
3826 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3827                 struct usb_device *udev)
3828 {
3829         int ret, i;
3830         unsigned long flags;
3831         struct xhci_hcd *xhci;
3832         unsigned int slot_id;
3833         struct xhci_virt_device *virt_dev;
3834         struct xhci_command *reset_device_cmd;
3835         struct xhci_slot_ctx *slot_ctx;
3836         int old_active_eps = 0;
3837
3838         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3839         if (ret <= 0)
3840                 return ret;
3841         xhci = hcd_to_xhci(hcd);
3842         slot_id = udev->slot_id;
3843         virt_dev = xhci->devs[slot_id];
3844         if (!virt_dev) {
3845                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3846                                 "not exist. Re-allocate the device\n", slot_id);
3847                 ret = xhci_alloc_dev(hcd, udev);
3848                 if (ret == 1)
3849                         return 0;
3850                 else
3851                         return -EINVAL;
3852         }
3853
3854         if (virt_dev->tt_info)
3855                 old_active_eps = virt_dev->tt_info->active_eps;
3856
3857         if (virt_dev->udev != udev) {
3858                 /* If the virt_dev and the udev does not match, this virt_dev
3859                  * may belong to another udev.
3860                  * Re-allocate the device.
3861                  */
3862                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3863                                 "not match the udev. Re-allocate the device\n",
3864                                 slot_id);
3865                 ret = xhci_alloc_dev(hcd, udev);
3866                 if (ret == 1)
3867                         return 0;
3868                 else
3869                         return -EINVAL;
3870         }
3871
3872         /* If device is not setup, there is no point in resetting it */
3873         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3874         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3875                                                 SLOT_STATE_DISABLED)
3876                 return 0;
3877
3878         trace_xhci_discover_or_reset_device(slot_ctx);
3879
3880         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3881         /* Allocate the command structure that holds the struct completion.
3882          * Assume we're in process context, since the normal device reset
3883          * process has to wait for the device anyway.  Storage devices are
3884          * reset as part of error handling, so use GFP_NOIO instead of
3885          * GFP_KERNEL.
3886          */
3887         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3888         if (!reset_device_cmd) {
3889                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3890                 return -ENOMEM;
3891         }
3892
3893         /* Attempt to submit the Reset Device command to the command ring */
3894         spin_lock_irqsave(&xhci->lock, flags);
3895
3896         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3897         if (ret) {
3898                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3899                 spin_unlock_irqrestore(&xhci->lock, flags);
3900                 goto command_cleanup;
3901         }
3902         xhci_ring_cmd_db(xhci);
3903         spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905         /* Wait for the Reset Device command to finish */
3906         wait_for_completion(reset_device_cmd->completion);
3907
3908         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3909          * unless we tried to reset a slot ID that wasn't enabled,
3910          * or the device wasn't in the addressed or configured state.
3911          */
3912         ret = reset_device_cmd->status;
3913         switch (ret) {
3914         case COMP_COMMAND_ABORTED:
3915         case COMP_COMMAND_RING_STOPPED:
3916                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3917                 ret = -ETIME;
3918                 goto command_cleanup;
3919         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3920         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3921                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3922                                 slot_id,
3923                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3924                 xhci_dbg(xhci, "Not freeing device rings.\n");
3925                 /* Don't treat this as an error.  May change my mind later. */
3926                 ret = 0;
3927                 goto command_cleanup;
3928         case COMP_SUCCESS:
3929                 xhci_dbg(xhci, "Successful reset device command.\n");
3930                 break;
3931         default:
3932                 if (xhci_is_vendor_info_code(xhci, ret))
3933                         break;
3934                 xhci_warn(xhci, "Unknown completion code %u for "
3935                                 "reset device command.\n", ret);
3936                 ret = -EINVAL;
3937                 goto command_cleanup;
3938         }
3939
3940         /* Free up host controller endpoint resources */
3941         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3942                 spin_lock_irqsave(&xhci->lock, flags);
3943                 /* Don't delete the default control endpoint resources */
3944                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3945                 spin_unlock_irqrestore(&xhci->lock, flags);
3946         }
3947
3948         /* Everything but endpoint 0 is disabled, so free the rings. */
3949         for (i = 1; i < 31; i++) {
3950                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3951
3952                 if (ep->ep_state & EP_HAS_STREAMS) {
3953                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3954                                         xhci_get_endpoint_address(i));
3955                         xhci_free_stream_info(xhci, ep->stream_info);
3956                         ep->stream_info = NULL;
3957                         ep->ep_state &= ~EP_HAS_STREAMS;
3958                 }
3959
3960                 if (ep->ring) {
3961                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3962                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3963                 }
3964                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3965                         xhci_drop_ep_from_interval_table(xhci,
3966                                         &virt_dev->eps[i].bw_info,
3967                                         virt_dev->bw_table,
3968                                         udev,
3969                                         &virt_dev->eps[i],
3970                                         virt_dev->tt_info);
3971                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3972         }
3973         /* If necessary, update the number of active TTs on this root port */
3974         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3975         virt_dev->flags = 0;
3976         ret = 0;
3977
3978 command_cleanup:
3979         xhci_free_command(xhci, reset_device_cmd);
3980         return ret;
3981 }
3982
3983 /*
3984  * At this point, the struct usb_device is about to go away, the device has
3985  * disconnected, and all traffic has been stopped and the endpoints have been
3986  * disabled.  Free any HC data structures associated with that device.
3987  */
3988 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3989 {
3990         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3991         struct xhci_virt_device *virt_dev;
3992         struct xhci_slot_ctx *slot_ctx;
3993         int i, ret;
3994
3995 #ifndef CONFIG_USB_DEFAULT_PERSIST
3996         /*
3997          * We called pm_runtime_get_noresume when the device was attached.
3998          * Decrement the counter here to allow controller to runtime suspend
3999          * if no devices remain.
4000          */
4001         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4002                 pm_runtime_put_noidle(hcd->self.controller);
4003 #endif
4004
4005         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4006         /* If the host is halted due to driver unload, we still need to free the
4007          * device.
4008          */
4009         if (ret <= 0 && ret != -ENODEV)
4010                 return;
4011
4012         virt_dev = xhci->devs[udev->slot_id];
4013         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4014         trace_xhci_free_dev(slot_ctx);
4015
4016         /* Stop any wayward timer functions (which may grab the lock) */
4017         for (i = 0; i < 31; i++) {
4018                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4019                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
4020         }
4021         virt_dev->udev = NULL;
4022         ret = xhci_disable_slot(xhci, udev->slot_id);
4023         if (ret)
4024                 xhci_free_virt_device(xhci, udev->slot_id);
4025 }
4026
4027 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4028 {
4029         struct xhci_command *command;
4030         unsigned long flags;
4031         u32 state;
4032         int ret = 0;
4033
4034         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
4035         if (!command)
4036                 return -ENOMEM;
4037
4038         xhci_debugfs_remove_slot(xhci, slot_id);
4039
4040         spin_lock_irqsave(&xhci->lock, flags);
4041         /* Don't disable the slot if the host controller is dead. */
4042         state = readl(&xhci->op_regs->status);
4043         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4044                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4045                 spin_unlock_irqrestore(&xhci->lock, flags);
4046                 kfree(command);
4047                 return -ENODEV;
4048         }
4049
4050         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4051                                 slot_id);
4052         if (ret) {
4053                 spin_unlock_irqrestore(&xhci->lock, flags);
4054                 kfree(command);
4055                 return ret;
4056         }
4057         xhci_ring_cmd_db(xhci);
4058         spin_unlock_irqrestore(&xhci->lock, flags);
4059         return ret;
4060 }
4061
4062 /*
4063  * Checks if we have enough host controller resources for the default control
4064  * endpoint.
4065  *
4066  * Must be called with xhci->lock held.
4067  */
4068 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4069 {
4070         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4071                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072                                 "Not enough ep ctxs: "
4073                                 "%u active, need to add 1, limit is %u.",
4074                                 xhci->num_active_eps, xhci->limit_active_eps);
4075                 return -ENOMEM;
4076         }
4077         xhci->num_active_eps += 1;
4078         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4079                         "Adding 1 ep ctx, %u now active.",
4080                         xhci->num_active_eps);
4081         return 0;
4082 }
4083
4084
4085 /*
4086  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4087  * timed out, or allocating memory failed.  Returns 1 on success.
4088  */
4089 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4090 {
4091         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4092         struct xhci_virt_device *vdev;
4093         struct xhci_slot_ctx *slot_ctx;
4094         unsigned long flags;
4095         int ret, slot_id;
4096         struct xhci_command *command;
4097
4098         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4099         if (!command)
4100                 return 0;
4101
4102         spin_lock_irqsave(&xhci->lock, flags);
4103         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4104         if (ret) {
4105                 spin_unlock_irqrestore(&xhci->lock, flags);
4106                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4107                 xhci_free_command(xhci, command);
4108                 return 0;
4109         }
4110         xhci_ring_cmd_db(xhci);
4111         spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113         wait_for_completion(command->completion);
4114         slot_id = command->slot_id;
4115
4116         if (!slot_id || command->status != COMP_SUCCESS) {
4117                 xhci_err(xhci, "Error while assigning device slot ID\n");
4118                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4119                                 HCS_MAX_SLOTS(
4120                                         readl(&xhci->cap_regs->hcs_params1)));
4121                 xhci_free_command(xhci, command);
4122                 return 0;
4123         }
4124
4125         xhci_free_command(xhci, command);
4126
4127         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4128                 spin_lock_irqsave(&xhci->lock, flags);
4129                 ret = xhci_reserve_host_control_ep_resources(xhci);
4130                 if (ret) {
4131                         spin_unlock_irqrestore(&xhci->lock, flags);
4132                         xhci_warn(xhci, "Not enough host resources, "
4133                                         "active endpoint contexts = %u\n",
4134                                         xhci->num_active_eps);
4135                         goto disable_slot;
4136                 }
4137                 spin_unlock_irqrestore(&xhci->lock, flags);
4138         }
4139         /* Use GFP_NOIO, since this function can be called from
4140          * xhci_discover_or_reset_device(), which may be called as part of
4141          * mass storage driver error handling.
4142          */
4143         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4144                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4145                 goto disable_slot;
4146         }
4147         vdev = xhci->devs[slot_id];
4148         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4149         trace_xhci_alloc_dev(slot_ctx);
4150
4151         udev->slot_id = slot_id;
4152
4153         xhci_debugfs_create_slot(xhci, slot_id);
4154
4155 #ifndef CONFIG_USB_DEFAULT_PERSIST
4156         /*
4157          * If resetting upon resume, we can't put the controller into runtime
4158          * suspend if there is a device attached.
4159          */
4160         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4161                 pm_runtime_get_noresume(hcd->self.controller);
4162 #endif
4163
4164         /* Is this a LS or FS device under a HS hub? */
4165         /* Hub or peripherial? */
4166         return 1;
4167
4168 disable_slot:
4169         ret = xhci_disable_slot(xhci, udev->slot_id);
4170         if (ret)
4171                 xhci_free_virt_device(xhci, udev->slot_id);
4172
4173         return 0;
4174 }
4175
4176 /*
4177  * Issue an Address Device command and optionally send a corresponding
4178  * SetAddress request to the device.
4179  */
4180 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4181                              enum xhci_setup_dev setup)
4182 {
4183         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4184         unsigned long flags;
4185         struct xhci_virt_device *virt_dev;
4186         int ret = 0;
4187         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4188         struct xhci_slot_ctx *slot_ctx;
4189         struct xhci_input_control_ctx *ctrl_ctx;
4190         u64 temp_64;
4191         struct xhci_command *command = NULL;
4192
4193         mutex_lock(&xhci->mutex);
4194
4195         if (xhci->xhc_state) {  /* dying, removing or halted */
4196                 ret = -ESHUTDOWN;
4197                 goto out;
4198         }
4199
4200         if (!udev->slot_id) {
4201                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4202                                 "Bad Slot ID %d", udev->slot_id);
4203                 ret = -EINVAL;
4204                 goto out;
4205         }
4206
4207         virt_dev = xhci->devs[udev->slot_id];
4208
4209         if (WARN_ON(!virt_dev)) {
4210                 /*
4211                  * In plug/unplug torture test with an NEC controller,
4212                  * a zero-dereference was observed once due to virt_dev = 0.
4213                  * Print useful debug rather than crash if it is observed again!
4214                  */
4215                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4216                         udev->slot_id);
4217                 ret = -EINVAL;
4218                 goto out;
4219         }
4220         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4221         trace_xhci_setup_device_slot(slot_ctx);
4222
4223         if (setup == SETUP_CONTEXT_ONLY) {
4224                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4225                     SLOT_STATE_DEFAULT) {
4226                         xhci_dbg(xhci, "Slot already in default state\n");
4227                         goto out;
4228                 }
4229         }
4230
4231         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4232         if (!command) {
4233                 ret = -ENOMEM;
4234                 goto out;
4235         }
4236
4237         command->in_ctx = virt_dev->in_ctx;
4238
4239         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4240         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4241         if (!ctrl_ctx) {
4242                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4243                                 __func__);
4244                 ret = -EINVAL;
4245                 goto out;
4246         }
4247         /*
4248          * If this is the first Set Address since device plug-in or
4249          * virt_device realloaction after a resume with an xHCI power loss,
4250          * then set up the slot context.
4251          */
4252         if (!slot_ctx->dev_info)
4253                 xhci_setup_addressable_virt_dev(xhci, udev);
4254         /* Otherwise, update the control endpoint ring enqueue pointer. */
4255         else
4256                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4257         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4258         ctrl_ctx->drop_flags = 0;
4259
4260         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4261                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4262
4263         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4264         spin_lock_irqsave(&xhci->lock, flags);
4265         trace_xhci_setup_device(virt_dev);
4266         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4267                                         udev->slot_id, setup);
4268         if (ret) {
4269                 spin_unlock_irqrestore(&xhci->lock, flags);
4270                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4271                                 "FIXME: allocate a command ring segment");
4272                 goto out;
4273         }
4274         xhci_ring_cmd_db(xhci);
4275         spin_unlock_irqrestore(&xhci->lock, flags);
4276
4277         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4278         wait_for_completion(command->completion);
4279
4280         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4281          * the SetAddress() "recovery interval" required by USB and aborting the
4282          * command on a timeout.
4283          */
4284         switch (command->status) {
4285         case COMP_COMMAND_ABORTED:
4286         case COMP_COMMAND_RING_STOPPED:
4287                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4288                 ret = -ETIME;
4289                 break;
4290         case COMP_CONTEXT_STATE_ERROR:
4291         case COMP_SLOT_NOT_ENABLED_ERROR:
4292                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4293                          act, udev->slot_id);
4294                 ret = -EINVAL;
4295                 break;
4296         case COMP_USB_TRANSACTION_ERROR:
4297                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4298
4299                 mutex_unlock(&xhci->mutex);
4300                 ret = xhci_disable_slot(xhci, udev->slot_id);
4301                 if (!ret)
4302                         xhci_alloc_dev(hcd, udev);
4303                 kfree(command->completion);
4304                 kfree(command);
4305                 return -EPROTO;
4306         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4307                 dev_warn(&udev->dev,
4308                          "ERROR: Incompatible device for setup %s command\n", act);
4309                 ret = -ENODEV;
4310                 break;
4311         case COMP_SUCCESS:
4312                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4313                                "Successful setup %s command", act);
4314                 break;
4315         default:
4316                 xhci_err(xhci,
4317                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4318                          act, command->status);
4319                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4320                 ret = -EINVAL;
4321                 break;
4322         }
4323         if (ret)
4324                 goto out;
4325         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4326         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327                         "Op regs DCBAA ptr = %#016llx", temp_64);
4328         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4329                 "Slot ID %d dcbaa entry @%p = %#016llx",
4330                 udev->slot_id,
4331                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4332                 (unsigned long long)
4333                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4334         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4335                         "Output Context DMA address = %#08llx",
4336                         (unsigned long long)virt_dev->out_ctx->dma);
4337         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4338                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4339         /*
4340          * USB core uses address 1 for the roothubs, so we add one to the
4341          * address given back to us by the HC.
4342          */
4343         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4344                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4345         /* Zero the input context control for later use */
4346         ctrl_ctx->add_flags = 0;
4347         ctrl_ctx->drop_flags = 0;
4348         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4349         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4350
4351         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4352                        "Internal device address = %d",
4353                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4354 out:
4355         mutex_unlock(&xhci->mutex);
4356         if (command) {
4357                 kfree(command->completion);
4358                 kfree(command);
4359         }
4360         return ret;
4361 }
4362
4363 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4364 {
4365         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4366 }
4367
4368 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4369 {
4370         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4371 }
4372
4373 /*
4374  * Transfer the port index into real index in the HW port status
4375  * registers. Caculate offset between the port's PORTSC register
4376  * and port status base. Divide the number of per port register
4377  * to get the real index. The raw port number bases 1.
4378  */
4379 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4380 {
4381         struct xhci_hub *rhub;
4382
4383         rhub = xhci_get_rhub(hcd);
4384         return rhub->ports[port1 - 1]->hw_portnum + 1;
4385 }
4386
4387 /*
4388  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4389  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4390  */
4391 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4392                         struct usb_device *udev, u16 max_exit_latency)
4393 {
4394         struct xhci_virt_device *virt_dev;
4395         struct xhci_command *command;
4396         struct xhci_input_control_ctx *ctrl_ctx;
4397         struct xhci_slot_ctx *slot_ctx;
4398         unsigned long flags;
4399         int ret;
4400
4401         spin_lock_irqsave(&xhci->lock, flags);
4402
4403         virt_dev = xhci->devs[udev->slot_id];
4404
4405         /*
4406          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4407          * xHC was re-initialized. Exit latency will be set later after
4408          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4409          */
4410
4411         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4412                 spin_unlock_irqrestore(&xhci->lock, flags);
4413                 return 0;
4414         }
4415
4416         /* Attempt to issue an Evaluate Context command to change the MEL. */
4417         command = xhci->lpm_command;
4418         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4419         if (!ctrl_ctx) {
4420                 spin_unlock_irqrestore(&xhci->lock, flags);
4421                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4422                                 __func__);
4423                 return -ENOMEM;
4424         }
4425
4426         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4427         spin_unlock_irqrestore(&xhci->lock, flags);
4428
4429         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4430         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4431         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4432         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4433         slot_ctx->dev_state = 0;
4434
4435         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4436                         "Set up evaluate context for LPM MEL change.");
4437
4438         /* Issue and wait for the evaluate context command. */
4439         ret = xhci_configure_endpoint(xhci, udev, command,
4440                         true, true);
4441
4442         if (!ret) {
4443                 spin_lock_irqsave(&xhci->lock, flags);
4444                 virt_dev->current_mel = max_exit_latency;
4445                 spin_unlock_irqrestore(&xhci->lock, flags);
4446         }
4447         return ret;
4448 }
4449
4450 #ifdef CONFIG_PM
4451
4452 /* BESL to HIRD Encoding array for USB2 LPM */
4453 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4454         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4455
4456 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4457 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4458                                         struct usb_device *udev)
4459 {
4460         int u2del, besl, besl_host;
4461         int besl_device = 0;
4462         u32 field;
4463
4464         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4465         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4466
4467         if (field & USB_BESL_SUPPORT) {
4468                 for (besl_host = 0; besl_host < 16; besl_host++) {
4469                         if (xhci_besl_encoding[besl_host] >= u2del)
4470                                 break;
4471                 }
4472                 /* Use baseline BESL value as default */
4473                 if (field & USB_BESL_BASELINE_VALID)
4474                         besl_device = USB_GET_BESL_BASELINE(field);
4475                 else if (field & USB_BESL_DEEP_VALID)
4476                         besl_device = USB_GET_BESL_DEEP(field);
4477         } else {
4478                 if (u2del <= 50)
4479                         besl_host = 0;
4480                 else
4481                         besl_host = (u2del - 51) / 75 + 1;
4482         }
4483
4484         besl = besl_host + besl_device;
4485         if (besl > 15)
4486                 besl = 15;
4487
4488         return besl;
4489 }
4490
4491 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4492 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4493 {
4494         u32 field;
4495         int l1;
4496         int besld = 0;
4497         int hirdm = 0;
4498
4499         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4500
4501         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4502         l1 = udev->l1_params.timeout / 256;
4503
4504         /* device has preferred BESLD */
4505         if (field & USB_BESL_DEEP_VALID) {
4506                 besld = USB_GET_BESL_DEEP(field);
4507                 hirdm = 1;
4508         }
4509
4510         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4511 }
4512
4513 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4514                         struct usb_device *udev, int enable)
4515 {
4516         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4517         struct xhci_port **ports;
4518         __le32 __iomem  *pm_addr, *hlpm_addr;
4519         u32             pm_val, hlpm_val, field;
4520         unsigned int    port_num;
4521         unsigned long   flags;
4522         int             hird, exit_latency;
4523         int             ret;
4524
4525         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4526                 return -EPERM;
4527
4528         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4529                         !udev->lpm_capable)
4530                 return -EPERM;
4531
4532         if (!udev->parent || udev->parent->parent ||
4533                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4534                 return -EPERM;
4535
4536         if (udev->usb2_hw_lpm_capable != 1)
4537                 return -EPERM;
4538
4539         spin_lock_irqsave(&xhci->lock, flags);
4540
4541         ports = xhci->usb2_rhub.ports;
4542         port_num = udev->portnum - 1;
4543         pm_addr = ports[port_num]->addr + PORTPMSC;
4544         pm_val = readl(pm_addr);
4545         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4546
4547         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4548                         enable ? "enable" : "disable", port_num + 1);
4549
4550         if (enable) {
4551                 /* Host supports BESL timeout instead of HIRD */
4552                 if (udev->usb2_hw_lpm_besl_capable) {
4553                         /* if device doesn't have a preferred BESL value use a
4554                          * default one which works with mixed HIRD and BESL
4555                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4556                          */
4557                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4558                         if ((field & USB_BESL_SUPPORT) &&
4559                             (field & USB_BESL_BASELINE_VALID))
4560                                 hird = USB_GET_BESL_BASELINE(field);
4561                         else
4562                                 hird = udev->l1_params.besl;
4563
4564                         exit_latency = xhci_besl_encoding[hird];
4565                         spin_unlock_irqrestore(&xhci->lock, flags);
4566
4567                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4568                          * input context for link powermanagement evaluate
4569                          * context commands. It is protected by hcd->bandwidth
4570                          * mutex and is shared by all devices. We need to set
4571                          * the max ext latency in USB 2 BESL LPM as well, so
4572                          * use the same mutex and xhci_change_max_exit_latency()
4573                          */
4574                         mutex_lock(hcd->bandwidth_mutex);
4575                         ret = xhci_change_max_exit_latency(xhci, udev,
4576                                                            exit_latency);
4577                         mutex_unlock(hcd->bandwidth_mutex);
4578
4579                         if (ret < 0)
4580                                 return ret;
4581                         spin_lock_irqsave(&xhci->lock, flags);
4582
4583                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4584                         writel(hlpm_val, hlpm_addr);
4585                         /* flush write */
4586                         readl(hlpm_addr);
4587                 } else {
4588                         hird = xhci_calculate_hird_besl(xhci, udev);
4589                 }
4590
4591                 pm_val &= ~PORT_HIRD_MASK;
4592                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4593                 writel(pm_val, pm_addr);
4594                 pm_val = readl(pm_addr);
4595                 pm_val |= PORT_HLE;
4596                 writel(pm_val, pm_addr);
4597                 /* flush write */
4598                 readl(pm_addr);
4599         } else {
4600                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4601                 writel(pm_val, pm_addr);
4602                 /* flush write */
4603                 readl(pm_addr);
4604                 if (udev->usb2_hw_lpm_besl_capable) {
4605                         spin_unlock_irqrestore(&xhci->lock, flags);
4606                         mutex_lock(hcd->bandwidth_mutex);
4607                         xhci_change_max_exit_latency(xhci, udev, 0);
4608                         mutex_unlock(hcd->bandwidth_mutex);
4609                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4610                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4611                                            100, 10000);
4612                         return 0;
4613                 }
4614         }
4615
4616         spin_unlock_irqrestore(&xhci->lock, flags);
4617         return 0;
4618 }
4619
4620 /* check if a usb2 port supports a given extened capability protocol
4621  * only USB2 ports extended protocol capability values are cached.
4622  * Return 1 if capability is supported
4623  */
4624 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4625                                            unsigned capability)
4626 {
4627         u32 port_offset, port_count;
4628         int i;
4629
4630         for (i = 0; i < xhci->num_ext_caps; i++) {
4631                 if (xhci->ext_caps[i] & capability) {
4632                         /* port offsets starts at 1 */
4633                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4634                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4635                         if (port >= port_offset &&
4636                             port < port_offset + port_count)
4637                                 return 1;
4638                 }
4639         }
4640         return 0;
4641 }
4642
4643 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4644 {
4645         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4646         int             portnum = udev->portnum - 1;
4647
4648         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4649                 return 0;
4650
4651         /* we only support lpm for non-hub device connected to root hub yet */
4652         if (!udev->parent || udev->parent->parent ||
4653                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4654                 return 0;
4655
4656         if (xhci->hw_lpm_support == 1 &&
4657                         xhci_check_usb2_port_capability(
4658                                 xhci, portnum, XHCI_HLC)) {
4659                 udev->usb2_hw_lpm_capable = 1;
4660                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4661                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4662                 if (xhci_check_usb2_port_capability(xhci, portnum,
4663                                         XHCI_BLC))
4664                         udev->usb2_hw_lpm_besl_capable = 1;
4665         }
4666
4667         return 0;
4668 }
4669
4670 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4671
4672 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4673 static unsigned long long xhci_service_interval_to_ns(
4674                 struct usb_endpoint_descriptor *desc)
4675 {
4676         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4677 }
4678
4679 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4680                 enum usb3_link_state state)
4681 {
4682         unsigned long long sel;
4683         unsigned long long pel;
4684         unsigned int max_sel_pel;
4685         char *state_name;
4686
4687         switch (state) {
4688         case USB3_LPM_U1:
4689                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4690                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4691                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4692                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4693                 state_name = "U1";
4694                 break;
4695         case USB3_LPM_U2:
4696                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4697                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4698                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4699                 state_name = "U2";
4700                 break;
4701         default:
4702                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4703                                 __func__);
4704                 return USB3_LPM_DISABLED;
4705         }
4706
4707         if (sel <= max_sel_pel && pel <= max_sel_pel)
4708                 return USB3_LPM_DEVICE_INITIATED;
4709
4710         if (sel > max_sel_pel)
4711                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4712                                 "due to long SEL %llu ms\n",
4713                                 state_name, sel);
4714         else
4715                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4716                                 "due to long PEL %llu ms\n",
4717                                 state_name, pel);
4718         return USB3_LPM_DISABLED;
4719 }
4720
4721 /* The U1 timeout should be the maximum of the following values:
4722  *  - For control endpoints, U1 system exit latency (SEL) * 3
4723  *  - For bulk endpoints, U1 SEL * 5
4724  *  - For interrupt endpoints:
4725  *    - Notification EPs, U1 SEL * 3
4726  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4727  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4728  */
4729 static unsigned long long xhci_calculate_intel_u1_timeout(
4730                 struct usb_device *udev,
4731                 struct usb_endpoint_descriptor *desc)
4732 {
4733         unsigned long long timeout_ns;
4734         int ep_type;
4735         int intr_type;
4736
4737         ep_type = usb_endpoint_type(desc);
4738         switch (ep_type) {
4739         case USB_ENDPOINT_XFER_CONTROL:
4740                 timeout_ns = udev->u1_params.sel * 3;
4741                 break;
4742         case USB_ENDPOINT_XFER_BULK:
4743                 timeout_ns = udev->u1_params.sel * 5;
4744                 break;
4745         case USB_ENDPOINT_XFER_INT:
4746                 intr_type = usb_endpoint_interrupt_type(desc);
4747                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4748                         timeout_ns = udev->u1_params.sel * 3;
4749                         break;
4750                 }
4751                 /* Otherwise the calculation is the same as isoc eps */
4752                 fallthrough;
4753         case USB_ENDPOINT_XFER_ISOC:
4754                 timeout_ns = xhci_service_interval_to_ns(desc);
4755                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4756                 if (timeout_ns < udev->u1_params.sel * 2)
4757                         timeout_ns = udev->u1_params.sel * 2;
4758                 break;
4759         default:
4760                 return 0;
4761         }
4762
4763         return timeout_ns;
4764 }
4765
4766 /* Returns the hub-encoded U1 timeout value. */
4767 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4768                 struct usb_device *udev,
4769                 struct usb_endpoint_descriptor *desc)
4770 {
4771         unsigned long long timeout_ns;
4772
4773         if (xhci->quirks & XHCI_INTEL_HOST)
4774                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4775         else
4776                 timeout_ns = udev->u1_params.sel;
4777
4778         /* Prevent U1 if service interval is shorter than U1 exit latency */
4779         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4780                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4781                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4782                         return USB3_LPM_DISABLED;
4783                 }
4784         }
4785
4786         /* The U1 timeout is encoded in 1us intervals.
4787          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4788          */
4789         if (timeout_ns == USB3_LPM_DISABLED)
4790                 timeout_ns = 1;
4791         else
4792                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4793
4794         /* If the necessary timeout value is bigger than what we can set in the
4795          * USB 3.0 hub, we have to disable hub-initiated U1.
4796          */
4797         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4798                 return timeout_ns;
4799         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4800                         "due to long timeout %llu ms\n", timeout_ns);
4801         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4802 }
4803
4804 /* The U2 timeout should be the maximum of:
4805  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4806  *  - largest bInterval of any active periodic endpoint (to avoid going
4807  *    into lower power link states between intervals).
4808  *  - the U2 Exit Latency of the device
4809  */
4810 static unsigned long long xhci_calculate_intel_u2_timeout(
4811                 struct usb_device *udev,
4812                 struct usb_endpoint_descriptor *desc)
4813 {
4814         unsigned long long timeout_ns;
4815         unsigned long long u2_del_ns;
4816
4817         timeout_ns = 10 * 1000 * 1000;
4818
4819         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4820                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4821                 timeout_ns = xhci_service_interval_to_ns(desc);
4822
4823         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4824         if (u2_del_ns > timeout_ns)
4825                 timeout_ns = u2_del_ns;
4826
4827         return timeout_ns;
4828 }
4829
4830 /* Returns the hub-encoded U2 timeout value. */
4831 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4832                 struct usb_device *udev,
4833                 struct usb_endpoint_descriptor *desc)
4834 {
4835         unsigned long long timeout_ns;
4836
4837         if (xhci->quirks & XHCI_INTEL_HOST)
4838                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4839         else
4840                 timeout_ns = udev->u2_params.sel;
4841
4842         /* Prevent U2 if service interval is shorter than U2 exit latency */
4843         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4844                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4845                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4846                         return USB3_LPM_DISABLED;
4847                 }
4848         }
4849
4850         /* The U2 timeout is encoded in 256us intervals */
4851         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4852         /* If the necessary timeout value is bigger than what we can set in the
4853          * USB 3.0 hub, we have to disable hub-initiated U2.
4854          */
4855         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4856                 return timeout_ns;
4857         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4858                         "due to long timeout %llu ms\n", timeout_ns);
4859         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4860 }
4861
4862 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4863                 struct usb_device *udev,
4864                 struct usb_endpoint_descriptor *desc,
4865                 enum usb3_link_state state,
4866                 u16 *timeout)
4867 {
4868         if (state == USB3_LPM_U1)
4869                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4870         else if (state == USB3_LPM_U2)
4871                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4872
4873         return USB3_LPM_DISABLED;
4874 }
4875
4876 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4877                 struct usb_device *udev,
4878                 struct usb_endpoint_descriptor *desc,
4879                 enum usb3_link_state state,
4880                 u16 *timeout)
4881 {
4882         u16 alt_timeout;
4883
4884         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4885                 desc, state, timeout);
4886
4887         /* If we found we can't enable hub-initiated LPM, and
4888          * the U1 or U2 exit latency was too high to allow
4889          * device-initiated LPM as well, then we will disable LPM
4890          * for this device, so stop searching any further.
4891          */
4892         if (alt_timeout == USB3_LPM_DISABLED) {
4893                 *timeout = alt_timeout;
4894                 return -E2BIG;
4895         }
4896         if (alt_timeout > *timeout)
4897                 *timeout = alt_timeout;
4898         return 0;
4899 }
4900
4901 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4902                 struct usb_device *udev,
4903                 struct usb_host_interface *alt,
4904                 enum usb3_link_state state,
4905                 u16 *timeout)
4906 {
4907         int j;
4908
4909         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4910                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4911                                         &alt->endpoint[j].desc, state, timeout))
4912                         return -E2BIG;
4913                 continue;
4914         }
4915         return 0;
4916 }
4917
4918 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4919                 enum usb3_link_state state)
4920 {
4921         struct usb_device *parent;
4922         unsigned int num_hubs;
4923
4924         if (state == USB3_LPM_U2)
4925                 return 0;
4926
4927         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4928         for (parent = udev->parent, num_hubs = 0; parent->parent;
4929                         parent = parent->parent)
4930                 num_hubs++;
4931
4932         if (num_hubs < 2)
4933                 return 0;
4934
4935         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4936                         " below second-tier hub.\n");
4937         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4938                         "to decrease power consumption.\n");
4939         return -E2BIG;
4940 }
4941
4942 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4943                 struct usb_device *udev,
4944                 enum usb3_link_state state)
4945 {
4946         if (xhci->quirks & XHCI_INTEL_HOST)
4947                 return xhci_check_intel_tier_policy(udev, state);
4948         else
4949                 return 0;
4950 }
4951
4952 /* Returns the U1 or U2 timeout that should be enabled.
4953  * If the tier check or timeout setting functions return with a non-zero exit
4954  * code, that means the timeout value has been finalized and we shouldn't look
4955  * at any more endpoints.
4956  */
4957 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4958                         struct usb_device *udev, enum usb3_link_state state)
4959 {
4960         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4961         struct usb_host_config *config;
4962         char *state_name;
4963         int i;
4964         u16 timeout = USB3_LPM_DISABLED;
4965
4966         if (state == USB3_LPM_U1)
4967                 state_name = "U1";
4968         else if (state == USB3_LPM_U2)
4969                 state_name = "U2";
4970         else {
4971                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4972                                 state);
4973                 return timeout;
4974         }
4975
4976         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4977                 return timeout;
4978
4979         /* Gather some information about the currently installed configuration
4980          * and alternate interface settings.
4981          */
4982         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4983                         state, &timeout))
4984                 return timeout;
4985
4986         config = udev->actconfig;
4987         if (!config)
4988                 return timeout;
4989
4990         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4991                 struct usb_driver *driver;
4992                 struct usb_interface *intf = config->interface[i];
4993
4994                 if (!intf)
4995                         continue;
4996
4997                 /* Check if any currently bound drivers want hub-initiated LPM
4998                  * disabled.
4999                  */
5000                 if (intf->dev.driver) {
5001                         driver = to_usb_driver(intf->dev.driver);
5002                         if (driver && driver->disable_hub_initiated_lpm) {
5003                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5004                                         state_name, driver->name);
5005                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
5006                                                                       state);
5007                                 if (timeout == USB3_LPM_DISABLED)
5008                                         return timeout;
5009                         }
5010                 }
5011
5012                 /* Not sure how this could happen... */
5013                 if (!intf->cur_altsetting)
5014                         continue;
5015
5016                 if (xhci_update_timeout_for_interface(xhci, udev,
5017                                         intf->cur_altsetting,
5018                                         state, &timeout))
5019                         return timeout;
5020         }
5021         return timeout;
5022 }
5023
5024 static int calculate_max_exit_latency(struct usb_device *udev,
5025                 enum usb3_link_state state_changed,
5026                 u16 hub_encoded_timeout)
5027 {
5028         unsigned long long u1_mel_us = 0;
5029         unsigned long long u2_mel_us = 0;
5030         unsigned long long mel_us = 0;
5031         bool disabling_u1;
5032         bool disabling_u2;
5033         bool enabling_u1;
5034         bool enabling_u2;
5035
5036         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5037                         hub_encoded_timeout == USB3_LPM_DISABLED);
5038         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5039                         hub_encoded_timeout == USB3_LPM_DISABLED);
5040
5041         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5042                         hub_encoded_timeout != USB3_LPM_DISABLED);
5043         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5044                         hub_encoded_timeout != USB3_LPM_DISABLED);
5045
5046         /* If U1 was already enabled and we're not disabling it,
5047          * or we're going to enable U1, account for the U1 max exit latency.
5048          */
5049         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5050                         enabling_u1)
5051                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5052         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5053                         enabling_u2)
5054                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5055
5056         if (u1_mel_us > u2_mel_us)
5057                 mel_us = u1_mel_us;
5058         else
5059                 mel_us = u2_mel_us;
5060         /* xHCI host controller max exit latency field is only 16 bits wide. */
5061         if (mel_us > MAX_EXIT) {
5062                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5063                                 "is too big.\n", mel_us);
5064                 return -E2BIG;
5065         }
5066         return mel_us;
5067 }
5068
5069 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071                         struct usb_device *udev, enum usb3_link_state state)
5072 {
5073         struct xhci_hcd *xhci;
5074         u16 hub_encoded_timeout;
5075         int mel;
5076         int ret;
5077
5078         xhci = hcd_to_xhci(hcd);
5079         /* The LPM timeout values are pretty host-controller specific, so don't
5080          * enable hub-initiated timeouts unless the vendor has provided
5081          * information about their timeout algorithm.
5082          */
5083         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5084                         !xhci->devs[udev->slot_id])
5085                 return USB3_LPM_DISABLED;
5086
5087         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5088         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5089         if (mel < 0) {
5090                 /* Max Exit Latency is too big, disable LPM. */
5091                 hub_encoded_timeout = USB3_LPM_DISABLED;
5092                 mel = 0;
5093         }
5094
5095         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5096         if (ret)
5097                 return ret;
5098         return hub_encoded_timeout;
5099 }
5100
5101 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5102                         struct usb_device *udev, enum usb3_link_state state)
5103 {
5104         struct xhci_hcd *xhci;
5105         u16 mel;
5106
5107         xhci = hcd_to_xhci(hcd);
5108         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5109                         !xhci->devs[udev->slot_id])
5110                 return 0;
5111
5112         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5113         return xhci_change_max_exit_latency(xhci, udev, mel);
5114 }
5115 #else /* CONFIG_PM */
5116
5117 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5118                                 struct usb_device *udev, int enable)
5119 {
5120         return 0;
5121 }
5122
5123 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5124 {
5125         return 0;
5126 }
5127
5128 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5129                         struct usb_device *udev, enum usb3_link_state state)
5130 {
5131         return USB3_LPM_DISABLED;
5132 }
5133
5134 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5135                         struct usb_device *udev, enum usb3_link_state state)
5136 {
5137         return 0;
5138 }
5139 #endif  /* CONFIG_PM */
5140
5141 /*-------------------------------------------------------------------------*/
5142
5143 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5144  * internal data structures for the device.
5145  */
5146 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5147                         struct usb_tt *tt, gfp_t mem_flags)
5148 {
5149         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5150         struct xhci_virt_device *vdev;
5151         struct xhci_command *config_cmd;
5152         struct xhci_input_control_ctx *ctrl_ctx;
5153         struct xhci_slot_ctx *slot_ctx;
5154         unsigned long flags;
5155         unsigned think_time;
5156         int ret;
5157
5158         /* Ignore root hubs */
5159         if (!hdev->parent)
5160                 return 0;
5161
5162         vdev = xhci->devs[hdev->slot_id];
5163         if (!vdev) {
5164                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5165                 return -EINVAL;
5166         }
5167
5168         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5169         if (!config_cmd)
5170                 return -ENOMEM;
5171
5172         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5173         if (!ctrl_ctx) {
5174                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5175                                 __func__);
5176                 xhci_free_command(xhci, config_cmd);
5177                 return -ENOMEM;
5178         }
5179
5180         spin_lock_irqsave(&xhci->lock, flags);
5181         if (hdev->speed == USB_SPEED_HIGH &&
5182                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5183                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5184                 xhci_free_command(xhci, config_cmd);
5185                 spin_unlock_irqrestore(&xhci->lock, flags);
5186                 return -ENOMEM;
5187         }
5188
5189         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5190         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5191         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5192         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5193         /*
5194          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5195          * but it may be already set to 1 when setup an xHCI virtual
5196          * device, so clear it anyway.
5197          */
5198         if (tt->multi)
5199                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5200         else if (hdev->speed == USB_SPEED_FULL)
5201                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5202
5203         if (xhci->hci_version > 0x95) {
5204                 xhci_dbg(xhci, "xHCI version %x needs hub "
5205                                 "TT think time and number of ports\n",
5206                                 (unsigned int) xhci->hci_version);
5207                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5208                 /* Set TT think time - convert from ns to FS bit times.
5209                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5210                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5211                  *
5212                  * xHCI 1.0: this field shall be 0 if the device is not a
5213                  * High-spped hub.
5214                  */
5215                 think_time = tt->think_time;
5216                 if (think_time != 0)
5217                         think_time = (think_time / 666) - 1;
5218                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5219                         slot_ctx->tt_info |=
5220                                 cpu_to_le32(TT_THINK_TIME(think_time));
5221         } else {
5222                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5223                                 "TT think time or number of ports\n",
5224                                 (unsigned int) xhci->hci_version);
5225         }
5226         slot_ctx->dev_state = 0;
5227         spin_unlock_irqrestore(&xhci->lock, flags);
5228
5229         xhci_dbg(xhci, "Set up %s for hub device.\n",
5230                         (xhci->hci_version > 0x95) ?
5231                         "configure endpoint" : "evaluate context");
5232
5233         /* Issue and wait for the configure endpoint or
5234          * evaluate context command.
5235          */
5236         if (xhci->hci_version > 0x95)
5237                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5238                                 false, false);
5239         else
5240                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5241                                 true, false);
5242
5243         xhci_free_command(xhci, config_cmd);
5244         return ret;
5245 }
5246
5247 static int xhci_get_frame(struct usb_hcd *hcd)
5248 {
5249         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5250         /* EHCI mods by the periodic size.  Why? */
5251         return readl(&xhci->run_regs->microframe_index) >> 3;
5252 }
5253
5254 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5255 {
5256         struct xhci_hcd         *xhci;
5257         /*
5258          * TODO: Check with DWC3 clients for sysdev according to
5259          * quirks
5260          */
5261         struct device           *dev = hcd->self.sysdev;
5262         unsigned int            minor_rev;
5263         int                     retval;
5264
5265         /* Accept arbitrarily long scatter-gather lists */
5266         hcd->self.sg_tablesize = ~0;
5267
5268         /* support to build packet from discontinuous buffers */
5269         hcd->self.no_sg_constraint = 1;
5270
5271         /* XHCI controllers don't stop the ep queue on short packets :| */
5272         hcd->self.no_stop_on_short = 1;
5273
5274         xhci = hcd_to_xhci(hcd);
5275
5276         if (usb_hcd_is_primary_hcd(hcd)) {
5277                 xhci->main_hcd = hcd;
5278                 xhci->usb2_rhub.hcd = hcd;
5279                 /* Mark the first roothub as being USB 2.0.
5280                  * The xHCI driver will register the USB 3.0 roothub.
5281                  */
5282                 hcd->speed = HCD_USB2;
5283                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5284                 /*
5285                  * USB 2.0 roothub under xHCI has an integrated TT,
5286                  * (rate matching hub) as opposed to having an OHCI/UHCI
5287                  * companion controller.
5288                  */
5289                 hcd->has_tt = 1;
5290         } else {
5291                 /*
5292                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5293                  * should return 0x31 for sbrn, or that the minor revision
5294                  * is a two digit BCD containig minor and sub-minor numbers.
5295                  * This was later clarified in xHCI 1.2.
5296                  *
5297                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5298                  * minor revision set to 0x1 instead of 0x10.
5299                  */
5300                 if (xhci->usb3_rhub.min_rev == 0x1)
5301                         minor_rev = 1;
5302                 else
5303                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5304
5305                 switch (minor_rev) {
5306                 case 2:
5307                         hcd->speed = HCD_USB32;
5308                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5309                         hcd->self.root_hub->rx_lanes = 2;
5310                         hcd->self.root_hub->tx_lanes = 2;
5311                         break;
5312                 case 1:
5313                         hcd->speed = HCD_USB31;
5314                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5315                         break;
5316                 }
5317                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5318                           minor_rev,
5319                           minor_rev ? "Enhanced " : "");
5320
5321                 xhci->usb3_rhub.hcd = hcd;
5322                 /* xHCI private pointer was set in xhci_pci_probe for the second
5323                  * registered roothub.
5324                  */
5325                 return 0;
5326         }
5327
5328         mutex_init(&xhci->mutex);
5329         xhci->cap_regs = hcd->regs;
5330         xhci->op_regs = hcd->regs +
5331                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5332         xhci->run_regs = hcd->regs +
5333                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5334         /* Cache read-only capability registers */
5335         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5336         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5337         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5338         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5339         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5340         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5341         if (xhci->hci_version > 0x100)
5342                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5343
5344         xhci->quirks |= quirks;
5345
5346         get_quirks(dev, xhci);
5347
5348         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5349          * success event after a short transfer. This quirk will ignore such
5350          * spurious event.
5351          */
5352         if (xhci->hci_version > 0x96)
5353                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5354
5355         /* Make sure the HC is halted. */
5356         retval = xhci_halt(xhci);
5357         if (retval)
5358                 return retval;
5359
5360         xhci_zero_64b_regs(xhci);
5361
5362         xhci_dbg(xhci, "Resetting HCD\n");
5363         /* Reset the internal HC memory state and registers. */
5364         retval = xhci_reset(xhci);
5365         if (retval)
5366                 return retval;
5367         xhci_dbg(xhci, "Reset complete\n");
5368
5369         /*
5370          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5371          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5372          * address memory pointers actually. So, this driver clears the AC64
5373          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5374          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5375          */
5376         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5377                 xhci->hcc_params &= ~BIT(0);
5378
5379         /* Set dma_mask and coherent_dma_mask to 64-bits,
5380          * if xHC supports 64-bit addressing */
5381         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5382                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5383                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5384                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5385         } else {
5386                 /*
5387                  * This is to avoid error in cases where a 32-bit USB
5388                  * controller is used on a 64-bit capable system.
5389                  */
5390                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5391                 if (retval)
5392                         return retval;
5393                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5394                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5395         }
5396
5397         xhci_dbg(xhci, "Calling HCD init\n");
5398         /* Initialize HCD and host controller data structures. */
5399         retval = xhci_init(hcd);
5400         if (retval)
5401                 return retval;
5402         xhci_dbg(xhci, "Called HCD init\n");
5403
5404         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5405                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5406
5407         return 0;
5408 }
5409 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5410
5411 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5412                 struct usb_host_endpoint *ep)
5413 {
5414         struct xhci_hcd *xhci;
5415         struct usb_device *udev;
5416         unsigned int slot_id;
5417         unsigned int ep_index;
5418         unsigned long flags;
5419
5420         xhci = hcd_to_xhci(hcd);
5421
5422         spin_lock_irqsave(&xhci->lock, flags);
5423         udev = (struct usb_device *)ep->hcpriv;
5424         slot_id = udev->slot_id;
5425         ep_index = xhci_get_endpoint_index(&ep->desc);
5426
5427         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5428         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5429         spin_unlock_irqrestore(&xhci->lock, flags);
5430 }
5431
5432 static const struct hc_driver xhci_hc_driver = {
5433         .description =          "xhci-hcd",
5434         .product_desc =         "xHCI Host Controller",
5435         .hcd_priv_size =        sizeof(struct xhci_hcd),
5436
5437         /*
5438          * generic hardware linkage
5439          */
5440         .irq =                  xhci_irq,
5441         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5442                                 HCD_BH,
5443
5444         /*
5445          * basic lifecycle operations
5446          */
5447         .reset =                NULL, /* set in xhci_init_driver() */
5448         .start =                xhci_run,
5449         .stop =                 xhci_stop,
5450         .shutdown =             xhci_shutdown,
5451
5452         /*
5453          * managing i/o requests and associated device resources
5454          */
5455         .map_urb_for_dma =      xhci_map_urb_for_dma,
5456         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5457         .urb_enqueue =          xhci_urb_enqueue,
5458         .urb_dequeue =          xhci_urb_dequeue,
5459         .alloc_dev =            xhci_alloc_dev,
5460         .free_dev =             xhci_free_dev,
5461         .alloc_streams =        xhci_alloc_streams,
5462         .free_streams =         xhci_free_streams,
5463         .add_endpoint =         xhci_add_endpoint,
5464         .drop_endpoint =        xhci_drop_endpoint,
5465         .endpoint_disable =     xhci_endpoint_disable,
5466         .endpoint_reset =       xhci_endpoint_reset,
5467         .check_bandwidth =      xhci_check_bandwidth,
5468         .reset_bandwidth =      xhci_reset_bandwidth,
5469         .address_device =       xhci_address_device,
5470         .enable_device =        xhci_enable_device,
5471         .update_hub_device =    xhci_update_hub_device,
5472         .reset_device =         xhci_discover_or_reset_device,
5473
5474         /*
5475          * scheduling support
5476          */
5477         .get_frame_number =     xhci_get_frame,
5478
5479         /*
5480          * root hub support
5481          */
5482         .hub_control =          xhci_hub_control,
5483         .hub_status_data =      xhci_hub_status_data,
5484         .bus_suspend =          xhci_bus_suspend,
5485         .bus_resume =           xhci_bus_resume,
5486         .get_resuming_ports =   xhci_get_resuming_ports,
5487
5488         /*
5489          * call back when device connected and addressed
5490          */
5491         .update_device =        xhci_update_device,
5492         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5493         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5494         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5495         .find_raw_port_number = xhci_find_raw_port_number,
5496         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5497 };
5498
5499 void xhci_init_driver(struct hc_driver *drv,
5500                       const struct xhci_driver_overrides *over)
5501 {
5502         BUG_ON(!over);
5503
5504         /* Copy the generic table to drv then apply the overrides */
5505         *drv = xhci_hc_driver;
5506
5507         if (over) {
5508                 drv->hcd_priv_size += over->extra_priv_size;
5509                 if (over->reset)
5510                         drv->reset = over->reset;
5511                 if (over->start)
5512                         drv->start = over->start;
5513         }
5514 }
5515 EXPORT_SYMBOL_GPL(xhci_init_driver);
5516
5517 MODULE_DESCRIPTION(DRIVER_DESC);
5518 MODULE_AUTHOR(DRIVER_AUTHOR);
5519 MODULE_LICENSE("GPL");
5520
5521 static int __init xhci_hcd_init(void)
5522 {
5523         /*
5524          * Check the compiler generated sizes of structures that must be laid
5525          * out in specific ways for hardware access.
5526          */
5527         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5528         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5529         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5530         /* xhci_device_control has eight fields, and also
5531          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5532          */
5533         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5534         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5535         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5536         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5537         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5538         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5539         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5540
5541         if (usb_disabled())
5542                 return -ENODEV;
5543
5544         xhci_debugfs_create_root();
5545
5546         return 0;
5547 }
5548
5549 /*
5550  * If an init function is provided, an exit function must also be provided
5551  * to allow module unload.
5552  */
5553 static void __exit xhci_hcd_fini(void)
5554 {
5555         xhci_debugfs_remove_root();
5556 }
5557
5558 module_init(xhci_hcd_init);
5559 module_exit(xhci_hcd_fini);