clk: Fix potential NULL dereference in clk_fetch_parent_index()
[sfrench/cifs-2.6.git] / drivers / staging / wilc1000 / wilc_spi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
4  * All rights reserved.
5  */
6
7 #include <linux/spi/spi.h>
8
9 #include "wilc_wfi_netdevice.h"
10 #include "wilc_wfi_cfgoperations.h"
11
12 struct wilc_spi {
13         int crc_off;
14         int nint;
15         int has_thrpt_enh;
16 };
17
18 static const struct wilc_hif_func wilc_hif_spi;
19
20 /********************************************
21  *
22  *      Crc7
23  *
24  ********************************************/
25
26 static const u8 crc7_syndrome_table[256] = {
27         0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f,
28         0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
29         0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26,
30         0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
31         0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d,
32         0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
33         0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14,
34         0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
35         0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b,
36         0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
37         0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42,
38         0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
39         0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69,
40         0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
41         0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70,
42         0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
43         0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e,
44         0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
45         0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
46         0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
47         0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
48         0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
49         0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55,
50         0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
51         0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a,
52         0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
53         0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03,
54         0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
55         0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28,
56         0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
57         0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31,
58         0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
59 };
60
61 static u8 crc7_byte(u8 crc, u8 data)
62 {
63         return crc7_syndrome_table[(crc << 1) ^ data];
64 }
65
66 static u8 crc7(u8 crc, const u8 *buffer, u32 len)
67 {
68         while (len--)
69                 crc = crc7_byte(crc, *buffer++);
70         return crc;
71 }
72
73 /********************************************
74  *
75  *      Spi protocol Function
76  *
77  ********************************************/
78
79 #define CMD_DMA_WRITE                           0xc1
80 #define CMD_DMA_READ                            0xc2
81 #define CMD_INTERNAL_WRITE                      0xc3
82 #define CMD_INTERNAL_READ                       0xc4
83 #define CMD_TERMINATE                           0xc5
84 #define CMD_REPEAT                              0xc6
85 #define CMD_DMA_EXT_WRITE                       0xc7
86 #define CMD_DMA_EXT_READ                        0xc8
87 #define CMD_SINGLE_WRITE                        0xc9
88 #define CMD_SINGLE_READ                         0xca
89 #define CMD_RESET                               0xcf
90
91 #define N_OK                                    1
92 #define N_FAIL                                  0
93 #define N_RESET                                 -1
94 #define N_RETRY                                 -2
95
96 #define DATA_PKT_SZ_256                         256
97 #define DATA_PKT_SZ_512                         512
98 #define DATA_PKT_SZ_1K                          1024
99 #define DATA_PKT_SZ_4K                          (4 * 1024)
100 #define DATA_PKT_SZ_8K                          (8 * 1024)
101 #define DATA_PKT_SZ                             DATA_PKT_SZ_8K
102
103 #define USE_SPI_DMA                             0
104
105 static int wilc_bus_probe(struct spi_device *spi)
106 {
107         int ret;
108         struct wilc *wilc;
109         struct gpio_desc *gpio;
110         struct wilc_spi *spi_priv;
111
112         spi_priv = kzalloc(sizeof(*spi_priv), GFP_KERNEL);
113         if (!spi_priv)
114                 return -ENOMEM;
115
116         gpio = gpiod_get(&spi->dev, "irq", GPIOD_IN);
117         if (IS_ERR(gpio)) {
118                 /* get the GPIO descriptor from hardcode GPIO number */
119                 gpio = gpio_to_desc(GPIO_NUM);
120                 if (!gpio)
121                         dev_err(&spi->dev, "failed to get the irq gpio\n");
122         }
123
124         ret = wilc_cfg80211_init(&wilc, &spi->dev, WILC_HIF_SPI, &wilc_hif_spi);
125         if (ret) {
126                 kfree(spi_priv);
127                 return ret;
128         }
129
130         spi_set_drvdata(spi, wilc);
131         wilc->dev = &spi->dev;
132         wilc->bus_data = spi_priv;
133         wilc->gpio_irq = gpio;
134
135         return 0;
136 }
137
138 static int wilc_bus_remove(struct spi_device *spi)
139 {
140         struct wilc *wilc = spi_get_drvdata(spi);
141
142         /* free the GPIO in module remove */
143         if (wilc->gpio_irq)
144                 gpiod_put(wilc->gpio_irq);
145         wilc_netdev_cleanup(wilc);
146         return 0;
147 }
148
149 static const struct of_device_id wilc_of_match[] = {
150         { .compatible = "microchip,wilc1000-spi", },
151         { /* sentinel */ }
152 };
153 MODULE_DEVICE_TABLE(of, wilc_of_match);
154
155 static struct spi_driver wilc_spi_driver = {
156         .driver = {
157                 .name = MODALIAS,
158                 .of_match_table = wilc_of_match,
159         },
160         .probe =  wilc_bus_probe,
161         .remove = wilc_bus_remove,
162 };
163 module_spi_driver(wilc_spi_driver);
164 MODULE_LICENSE("GPL");
165
166 static int wilc_spi_tx(struct wilc *wilc, u8 *b, u32 len)
167 {
168         struct spi_device *spi = to_spi_device(wilc->dev);
169         int ret;
170         struct spi_message msg;
171
172         if (len > 0 && b) {
173                 struct spi_transfer tr = {
174                         .tx_buf = b,
175                         .len = len,
176                         .delay_usecs = 0,
177                 };
178                 char *r_buffer = kzalloc(len, GFP_KERNEL);
179
180                 if (!r_buffer)
181                         return -ENOMEM;
182
183                 tr.rx_buf = r_buffer;
184                 dev_dbg(&spi->dev, "Request writing %d bytes\n", len);
185
186                 memset(&msg, 0, sizeof(msg));
187                 spi_message_init(&msg);
188                 msg.spi = spi;
189                 msg.is_dma_mapped = USE_SPI_DMA;
190                 spi_message_add_tail(&tr, &msg);
191
192                 ret = spi_sync(spi, &msg);
193                 if (ret < 0)
194                         dev_err(&spi->dev, "SPI transaction failed\n");
195
196                 kfree(r_buffer);
197         } else {
198                 dev_err(&spi->dev,
199                         "can't write data with the following length: %d\n",
200                         len);
201                 ret = -EINVAL;
202         }
203
204         return ret;
205 }
206
207 static int wilc_spi_rx(struct wilc *wilc, u8 *rb, u32 rlen)
208 {
209         struct spi_device *spi = to_spi_device(wilc->dev);
210         int ret;
211
212         if (rlen > 0) {
213                 struct spi_message msg;
214                 struct spi_transfer tr = {
215                         .rx_buf = rb,
216                         .len = rlen,
217                         .delay_usecs = 0,
218
219                 };
220                 char *t_buffer = kzalloc(rlen, GFP_KERNEL);
221
222                 if (!t_buffer)
223                         return -ENOMEM;
224
225                 tr.tx_buf = t_buffer;
226
227                 memset(&msg, 0, sizeof(msg));
228                 spi_message_init(&msg);
229                 msg.spi = spi;
230                 msg.is_dma_mapped = USE_SPI_DMA;
231                 spi_message_add_tail(&tr, &msg);
232
233                 ret = spi_sync(spi, &msg);
234                 if (ret < 0)
235                         dev_err(&spi->dev, "SPI transaction failed\n");
236                 kfree(t_buffer);
237         } else {
238                 dev_err(&spi->dev,
239                         "can't read data with the following length: %u\n",
240                         rlen);
241                 ret = -EINVAL;
242         }
243
244         return ret;
245 }
246
247 static int wilc_spi_tx_rx(struct wilc *wilc, u8 *wb, u8 *rb, u32 rlen)
248 {
249         struct spi_device *spi = to_spi_device(wilc->dev);
250         int ret;
251
252         if (rlen > 0) {
253                 struct spi_message msg;
254                 struct spi_transfer tr = {
255                         .rx_buf = rb,
256                         .tx_buf = wb,
257                         .len = rlen,
258                         .bits_per_word = 8,
259                         .delay_usecs = 0,
260
261                 };
262
263                 memset(&msg, 0, sizeof(msg));
264                 spi_message_init(&msg);
265                 msg.spi = spi;
266                 msg.is_dma_mapped = USE_SPI_DMA;
267
268                 spi_message_add_tail(&tr, &msg);
269                 ret = spi_sync(spi, &msg);
270                 if (ret < 0)
271                         dev_err(&spi->dev, "SPI transaction failed\n");
272         } else {
273                 dev_err(&spi->dev,
274                         "can't read data with the following length: %u\n",
275                         rlen);
276                 ret = -EINVAL;
277         }
278
279         return ret;
280 }
281
282 static int spi_cmd_complete(struct wilc *wilc, u8 cmd, u32 adr, u8 *b, u32 sz,
283                             u8 clockless)
284 {
285         struct spi_device *spi = to_spi_device(wilc->dev);
286         struct wilc_spi *spi_priv = wilc->bus_data;
287         u8 wb[32], rb[32];
288         u8 wix, rix;
289         u32 len2;
290         u8 rsp;
291         int len = 0;
292         int result = N_OK;
293         int retry;
294         u8 crc[2];
295
296         wb[0] = cmd;
297         switch (cmd) {
298         case CMD_SINGLE_READ: /* single word (4 bytes) read */
299                 wb[1] = (u8)(adr >> 16);
300                 wb[2] = (u8)(adr >> 8);
301                 wb[3] = (u8)adr;
302                 len = 5;
303                 break;
304
305         case CMD_INTERNAL_READ: /* internal register read */
306                 wb[1] = (u8)(adr >> 8);
307                 if (clockless == 1)
308                         wb[1] |= BIT(7);
309                 wb[2] = (u8)adr;
310                 wb[3] = 0x00;
311                 len = 5;
312                 break;
313
314         case CMD_TERMINATE:
315                 wb[1] = 0x00;
316                 wb[2] = 0x00;
317                 wb[3] = 0x00;
318                 len = 5;
319                 break;
320
321         case CMD_REPEAT:
322                 wb[1] = 0x00;
323                 wb[2] = 0x00;
324                 wb[3] = 0x00;
325                 len = 5;
326                 break;
327
328         case CMD_RESET:
329                 wb[1] = 0xff;
330                 wb[2] = 0xff;
331                 wb[3] = 0xff;
332                 len = 5;
333                 break;
334
335         case CMD_DMA_WRITE: /* dma write */
336         case CMD_DMA_READ:  /* dma read */
337                 wb[1] = (u8)(adr >> 16);
338                 wb[2] = (u8)(adr >> 8);
339                 wb[3] = (u8)adr;
340                 wb[4] = (u8)(sz >> 8);
341                 wb[5] = (u8)(sz);
342                 len = 7;
343                 break;
344
345         case CMD_DMA_EXT_WRITE: /* dma extended write */
346         case CMD_DMA_EXT_READ:  /* dma extended read */
347                 wb[1] = (u8)(adr >> 16);
348                 wb[2] = (u8)(adr >> 8);
349                 wb[3] = (u8)adr;
350                 wb[4] = (u8)(sz >> 16);
351                 wb[5] = (u8)(sz >> 8);
352                 wb[6] = (u8)(sz);
353                 len = 8;
354                 break;
355
356         case CMD_INTERNAL_WRITE: /* internal register write */
357                 wb[1] = (u8)(adr >> 8);
358                 if (clockless == 1)
359                         wb[1] |= BIT(7);
360                 wb[2] = (u8)(adr);
361                 wb[3] = b[3];
362                 wb[4] = b[2];
363                 wb[5] = b[1];
364                 wb[6] = b[0];
365                 len = 8;
366                 break;
367
368         case CMD_SINGLE_WRITE: /* single word write */
369                 wb[1] = (u8)(adr >> 16);
370                 wb[2] = (u8)(adr >> 8);
371                 wb[3] = (u8)(adr);
372                 wb[4] = b[3];
373                 wb[5] = b[2];
374                 wb[6] = b[1];
375                 wb[7] = b[0];
376                 len = 9;
377                 break;
378
379         default:
380                 result = N_FAIL;
381                 break;
382         }
383
384         if (result != N_OK)
385                 return result;
386
387         if (!spi_priv->crc_off)
388                 wb[len - 1] = (crc7(0x7f, (const u8 *)&wb[0], len - 1)) << 1;
389         else
390                 len -= 1;
391
392 #define NUM_SKIP_BYTES (1)
393 #define NUM_RSP_BYTES (2)
394 #define NUM_DATA_HDR_BYTES (1)
395 #define NUM_DATA_BYTES (4)
396 #define NUM_CRC_BYTES (2)
397 #define NUM_DUMMY_BYTES (3)
398         if (cmd == CMD_RESET ||
399             cmd == CMD_TERMINATE ||
400             cmd == CMD_REPEAT) {
401                 len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
402         } else if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
403                 int tmp = NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES
404                         + NUM_DUMMY_BYTES;
405                 if (!spi_priv->crc_off)
406                         len2 = len + tmp + NUM_CRC_BYTES;
407                 else
408                         len2 = len + tmp;
409         } else {
410                 len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
411         }
412 #undef NUM_DUMMY_BYTES
413
414         if (len2 > ARRAY_SIZE(wb)) {
415                 dev_err(&spi->dev, "spi buffer size too small (%d) (%zu)\n",
416                         len2, ARRAY_SIZE(wb));
417                 return N_FAIL;
418         }
419         /* zero spi write buffers. */
420         for (wix = len; wix < len2; wix++)
421                 wb[wix] = 0;
422         rix = len;
423
424         if (wilc_spi_tx_rx(wilc, wb, rb, len2)) {
425                 dev_err(&spi->dev, "Failed cmd write, bus error...\n");
426                 return N_FAIL;
427         }
428
429         /*
430          * Command/Control response
431          */
432         if (cmd == CMD_RESET || cmd == CMD_TERMINATE || cmd == CMD_REPEAT)
433                 rix++; /* skip 1 byte */
434
435         rsp = rb[rix++];
436
437         if (rsp != cmd) {
438                 dev_err(&spi->dev,
439                         "Failed cmd response, cmd (%02x), resp (%02x)\n",
440                         cmd, rsp);
441                 return N_FAIL;
442         }
443
444         /*
445          * State response
446          */
447         rsp = rb[rix++];
448         if (rsp != 0x00) {
449                 dev_err(&spi->dev, "Failed cmd state response state (%02x)\n",
450                         rsp);
451                 return N_FAIL;
452         }
453
454         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ ||
455             cmd == CMD_DMA_READ || cmd == CMD_DMA_EXT_READ) {
456                 /*
457                  * Data Respnose header
458                  */
459                 retry = 100;
460                 do {
461                         /*
462                          * ensure there is room in buffer later
463                          * to read data and crc
464                          */
465                         if (rix < len2) {
466                                 rsp = rb[rix++];
467                         } else {
468                                 retry = 0;
469                                 break;
470                         }
471                         if (((rsp >> 4) & 0xf) == 0xf)
472                                 break;
473                 } while (retry--);
474
475                 if (retry <= 0) {
476                         dev_err(&spi->dev,
477                                 "Error, data read response (%02x)\n", rsp);
478                         return N_RESET;
479                 }
480         }
481
482         if (cmd == CMD_INTERNAL_READ || cmd == CMD_SINGLE_READ) {
483                 /*
484                  * Read bytes
485                  */
486                 if ((rix + 3) < len2) {
487                         b[0] = rb[rix++];
488                         b[1] = rb[rix++];
489                         b[2] = rb[rix++];
490                         b[3] = rb[rix++];
491                 } else {
492                         dev_err(&spi->dev,
493                                 "buffer overrun when reading data.\n");
494                         return N_FAIL;
495                 }
496
497                 if (!spi_priv->crc_off) {
498                         /*
499                          * Read Crc
500                          */
501                         if ((rix + 1) < len2) {
502                                 crc[0] = rb[rix++];
503                                 crc[1] = rb[rix++];
504                         } else {
505                                 dev_err(&spi->dev,
506                                         "buffer overrun when reading crc.\n");
507                                 return N_FAIL;
508                         }
509                 }
510         } else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
511                 int ix;
512
513                 /* some data may be read in response to dummy bytes. */
514                 for (ix = 0; (rix < len2) && (ix < sz); )
515                         b[ix++] = rb[rix++];
516
517                 sz -= ix;
518
519                 if (sz > 0) {
520                         int nbytes;
521
522                         if (sz <= (DATA_PKT_SZ - ix))
523                                 nbytes = sz;
524                         else
525                                 nbytes = DATA_PKT_SZ - ix;
526
527                         /*
528                          * Read bytes
529                          */
530                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
531                                 dev_err(&spi->dev,
532                                         "Failed block read, bus err\n");
533                                 return N_FAIL;
534                         }
535
536                         /*
537                          * Read Crc
538                          */
539                         if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
540                                 dev_err(&spi->dev,
541                                         "Failed block crc read, bus err\n");
542                                 return N_FAIL;
543                         }
544
545                         ix += nbytes;
546                         sz -= nbytes;
547                 }
548
549                 /*
550                  * if any data in left unread,
551                  * then read the rest using normal DMA code.
552                  */
553                 while (sz > 0) {
554                         int nbytes;
555
556                         if (sz <= DATA_PKT_SZ)
557                                 nbytes = sz;
558                         else
559                                 nbytes = DATA_PKT_SZ;
560
561                         /*
562                          * read data response only on the next DMA cycles not
563                          * the first DMA since data response header is already
564                          * handled above for the first DMA.
565                          */
566                         /*
567                          * Data Respnose header
568                          */
569                         retry = 10;
570                         do {
571                                 if (wilc_spi_rx(wilc, &rsp, 1)) {
572                                         dev_err(&spi->dev,
573                                                 "Failed resp read, bus err\n");
574                                         result = N_FAIL;
575                                         break;
576                                 }
577                                 if (((rsp >> 4) & 0xf) == 0xf)
578                                         break;
579                         } while (retry--);
580
581                         if (result == N_FAIL)
582                                 break;
583
584                         /*
585                          * Read bytes
586                          */
587                         if (wilc_spi_rx(wilc, &b[ix], nbytes)) {
588                                 dev_err(&spi->dev,
589                                         "Failed block read, bus err\n");
590                                 result = N_FAIL;
591                                 break;
592                         }
593
594                         /*
595                          * Read Crc
596                          */
597                         if (!spi_priv->crc_off && wilc_spi_rx(wilc, crc, 2)) {
598                                 dev_err(&spi->dev,
599                                         "Failed block crc read, bus err\n");
600                                 result = N_FAIL;
601                                 break;
602                         }
603
604                         ix += nbytes;
605                         sz -= nbytes;
606                 }
607         }
608         return result;
609 }
610
611 static int spi_data_write(struct wilc *wilc, u8 *b, u32 sz)
612 {
613         struct spi_device *spi = to_spi_device(wilc->dev);
614         struct wilc_spi *spi_priv = wilc->bus_data;
615         int ix, nbytes;
616         int result = 1;
617         u8 cmd, order, crc[2] = {0};
618
619         /*
620          * Data
621          */
622         ix = 0;
623         do {
624                 if (sz <= DATA_PKT_SZ) {
625                         nbytes = sz;
626                         order = 0x3;
627                 } else {
628                         nbytes = DATA_PKT_SZ;
629                         if (ix == 0)
630                                 order = 0x1;
631                         else
632                                 order = 0x02;
633                 }
634
635                 /*
636                  * Write command
637                  */
638                 cmd = 0xf0;
639                 cmd |= order;
640
641                 if (wilc_spi_tx(wilc, &cmd, 1)) {
642                         dev_err(&spi->dev,
643                                 "Failed data block cmd write, bus error...\n");
644                         result = N_FAIL;
645                         break;
646                 }
647
648                 /*
649                  * Write data
650                  */
651                 if (wilc_spi_tx(wilc, &b[ix], nbytes)) {
652                         dev_err(&spi->dev,
653                                 "Failed data block write, bus error...\n");
654                         result = N_FAIL;
655                         break;
656                 }
657
658                 /*
659                  * Write Crc
660                  */
661                 if (!spi_priv->crc_off) {
662                         if (wilc_spi_tx(wilc, crc, 2)) {
663                                 dev_err(&spi->dev, "Failed data block crc write, bus error...\n");
664                                 result = N_FAIL;
665                                 break;
666                         }
667                 }
668
669                 /*
670                  * No need to wait for response
671                  */
672                 ix += nbytes;
673                 sz -= nbytes;
674         } while (sz);
675
676         return result;
677 }
678
679 /********************************************
680  *
681  *      Spi Internal Read/Write Function
682  *
683  ********************************************/
684
685 static int spi_internal_write(struct wilc *wilc, u32 adr, u32 dat)
686 {
687         struct spi_device *spi = to_spi_device(wilc->dev);
688         int result;
689
690         cpu_to_le32s(&dat);
691         result = spi_cmd_complete(wilc, CMD_INTERNAL_WRITE, adr, (u8 *)&dat, 4,
692                                   0);
693         if (result != N_OK)
694                 dev_err(&spi->dev, "Failed internal write cmd...\n");
695
696         return result;
697 }
698
699 static int spi_internal_read(struct wilc *wilc, u32 adr, u32 *data)
700 {
701         struct spi_device *spi = to_spi_device(wilc->dev);
702         int result;
703
704         result = spi_cmd_complete(wilc, CMD_INTERNAL_READ, adr, (u8 *)data, 4,
705                                   0);
706         if (result != N_OK) {
707                 dev_err(&spi->dev, "Failed internal read cmd...\n");
708                 return 0;
709         }
710
711         le32_to_cpus(data);
712
713         return 1;
714 }
715
716 /********************************************
717  *
718  *      Spi interfaces
719  *
720  ********************************************/
721
722 static int wilc_spi_write_reg(struct wilc *wilc, u32 addr, u32 data)
723 {
724         struct spi_device *spi = to_spi_device(wilc->dev);
725         int result = N_OK;
726         u8 cmd = CMD_SINGLE_WRITE;
727         u8 clockless = 0;
728
729         cpu_to_le32s(&data);
730         if (addr < 0x30) {
731                 /* Clockless register */
732                 cmd = CMD_INTERNAL_WRITE;
733                 clockless = 1;
734         }
735
736         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)&data, 4, clockless);
737         if (result != N_OK)
738                 dev_err(&spi->dev, "Failed cmd, write reg (%08x)...\n", addr);
739
740         return result;
741 }
742
743 static int wilc_spi_write(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
744 {
745         struct spi_device *spi = to_spi_device(wilc->dev);
746         int result;
747
748         /*
749          * has to be greated than 4
750          */
751         if (size <= 4)
752                 return 0;
753
754         result = spi_cmd_complete(wilc, CMD_DMA_EXT_WRITE, addr, NULL, size, 0);
755         if (result != N_OK) {
756                 dev_err(&spi->dev,
757                         "Failed cmd, write block (%08x)...\n", addr);
758                 return 0;
759         }
760
761         /*
762          * Data
763          */
764         result = spi_data_write(wilc, buf, size);
765         if (result != N_OK)
766                 dev_err(&spi->dev, "Failed block data write...\n");
767
768         return 1;
769 }
770
771 static int wilc_spi_read_reg(struct wilc *wilc, u32 addr, u32 *data)
772 {
773         struct spi_device *spi = to_spi_device(wilc->dev);
774         int result = N_OK;
775         u8 cmd = CMD_SINGLE_READ;
776         u8 clockless = 0;
777
778         if (addr < 0x30) {
779                 /* Clockless register */
780                 cmd = CMD_INTERNAL_READ;
781                 clockless = 1;
782         }
783
784         result = spi_cmd_complete(wilc, cmd, addr, (u8 *)data, 4, clockless);
785         if (result != N_OK) {
786                 dev_err(&spi->dev, "Failed cmd, read reg (%08x)...\n", addr);
787                 return 0;
788         }
789
790         le32_to_cpus(data);
791
792         return 1;
793 }
794
795 static int wilc_spi_read(struct wilc *wilc, u32 addr, u8 *buf, u32 size)
796 {
797         struct spi_device *spi = to_spi_device(wilc->dev);
798         int result;
799
800         if (size <= 4)
801                 return 0;
802
803         result = spi_cmd_complete(wilc, CMD_DMA_EXT_READ, addr, buf, size, 0);
804         if (result != N_OK) {
805                 dev_err(&spi->dev, "Failed cmd, read block (%08x)...\n", addr);
806                 return 0;
807         }
808
809         return 1;
810 }
811
812 /********************************************
813  *
814  *      Bus interfaces
815  *
816  ********************************************/
817
818 static int wilc_spi_deinit(struct wilc *wilc)
819 {
820         /*
821          * TODO:
822          */
823         return 1;
824 }
825
826 static int wilc_spi_init(struct wilc *wilc, bool resume)
827 {
828         struct spi_device *spi = to_spi_device(wilc->dev);
829         struct wilc_spi *spi_priv = wilc->bus_data;
830         u32 reg;
831         u32 chipid;
832         static int isinit;
833
834         if (isinit) {
835                 if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
836                         dev_err(&spi->dev, "Fail cmd read chip id...\n");
837                         return 0;
838                 }
839                 return 1;
840         }
841
842         /*
843          * configure protocol
844          */
845
846         /*
847          * TODO: We can remove the CRC trials if there is a definite
848          * way to reset
849          */
850         /* the SPI to it's initial value. */
851         if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
852                 /*
853                  * Read failed. Try with CRC off. This might happen when module
854                  * is removed but chip isn't reset
855                  */
856                 spi_priv->crc_off = 1;
857                 dev_err(&spi->dev,
858                         "Failed read with CRC on, retrying with CRC off\n");
859                 if (!spi_internal_read(wilc, WILC_SPI_PROTOCOL_OFFSET, &reg)) {
860                         /*
861                          * Read failed with both CRC on and off,
862                          * something went bad
863                          */
864                         dev_err(&spi->dev, "Failed internal read protocol\n");
865                         return 0;
866                 }
867         }
868         if (spi_priv->crc_off == 0) {
869                 reg &= ~0xc; /* disable crc checking */
870                 reg &= ~0x70;
871                 reg |= (0x5 << 4);
872                 if (!spi_internal_write(wilc, WILC_SPI_PROTOCOL_OFFSET, reg)) {
873                         dev_err(&spi->dev,
874                                 "[wilc spi %d]: Failed internal write reg\n",
875                                 __LINE__);
876                         return 0;
877                 }
878                 spi_priv->crc_off = 1;
879         }
880
881         /*
882          * make sure can read back chip id correctly
883          */
884         if (!wilc_spi_read_reg(wilc, 0x1000, &chipid)) {
885                 dev_err(&spi->dev, "Fail cmd read chip id...\n");
886                 return 0;
887         }
888
889         spi_priv->has_thrpt_enh = 1;
890
891         isinit = 1;
892
893         return 1;
894 }
895
896 static int wilc_spi_read_size(struct wilc *wilc, u32 *size)
897 {
898         struct spi_device *spi = to_spi_device(wilc->dev);
899         struct wilc_spi *spi_priv = wilc->bus_data;
900         int ret;
901
902         if (spi_priv->has_thrpt_enh) {
903                 ret = spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
904                                         size);
905                 *size = *size  & IRQ_DMA_WD_CNT_MASK;
906         } else {
907                 u32 tmp;
908                 u32 byte_cnt;
909
910                 ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE,
911                                         &byte_cnt);
912                 if (!ret) {
913                         dev_err(&spi->dev,
914                                 "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
915                         return ret;
916                 }
917                 tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
918                 *size = tmp;
919         }
920
921         return ret;
922 }
923
924 static int wilc_spi_read_int(struct wilc *wilc, u32 *int_status)
925 {
926         struct spi_device *spi = to_spi_device(wilc->dev);
927         struct wilc_spi *spi_priv = wilc->bus_data;
928         int ret;
929         u32 tmp;
930         u32 byte_cnt;
931         bool unexpected_irq;
932         int j;
933         u32 unknown_mask;
934         u32 irq_flags;
935         int k = IRG_FLAGS_OFFSET + 5;
936
937         if (spi_priv->has_thrpt_enh)
938                 return spi_internal_read(wilc, 0xe840 - WILC_SPI_REG_BASE,
939                                          int_status);
940         ret = wilc_spi_read_reg(wilc, WILC_VMM_TO_HOST_SIZE, &byte_cnt);
941         if (!ret) {
942                 dev_err(&spi->dev,
943                         "Failed read WILC_VMM_TO_HOST_SIZE ...\n");
944                 return ret;
945         }
946         tmp = (byte_cnt >> 2) & IRQ_DMA_WD_CNT_MASK;
947
948         j = 0;
949         do {
950                 wilc_spi_read_reg(wilc, 0x1a90, &irq_flags);
951                 tmp |= ((irq_flags >> 27) << IRG_FLAGS_OFFSET);
952
953                 if (spi_priv->nint > 5) {
954                         wilc_spi_read_reg(wilc, 0x1a94, &irq_flags);
955                         tmp |= (((irq_flags >> 0) & 0x7) << k);
956                 }
957
958                 unknown_mask = ~((1ul << spi_priv->nint) - 1);
959
960                 unexpected_irq = (tmp >> IRG_FLAGS_OFFSET) & unknown_mask;
961                 if (unexpected_irq) {
962                         dev_err(&spi->dev,
963                                 "Unexpected interrupt(2):j=%d,tmp=%x,mask=%x\n",
964                                 j, tmp, unknown_mask);
965                 }
966
967                 j++;
968         } while (unexpected_irq);
969
970         *int_status = tmp;
971
972         return ret;
973 }
974
975 static int wilc_spi_clear_int_ext(struct wilc *wilc, u32 val)
976 {
977         struct spi_device *spi = to_spi_device(wilc->dev);
978         struct wilc_spi *spi_priv = wilc->bus_data;
979         int ret;
980         u32 flags;
981         u32 tbl_ctl;
982
983         if (spi_priv->has_thrpt_enh) {
984                 return spi_internal_write(wilc, 0xe844 - WILC_SPI_REG_BASE,
985                                           val);
986         }
987
988         flags = val & (BIT(MAX_NUM_INT) - 1);
989         if (flags) {
990                 int i;
991
992                 ret = 1;
993                 for (i = 0; i < spi_priv->nint; i++) {
994                         /*
995                          * No matter what you write 1 or 0,
996                          * it will clear interrupt.
997                          */
998                         if (flags & 1)
999                                 ret = wilc_spi_write_reg(wilc,
1000                                                          0x10c8 + i * 4, 1);
1001                         if (!ret)
1002                                 break;
1003                         flags >>= 1;
1004                 }
1005                 if (!ret) {
1006                         dev_err(&spi->dev,
1007                                 "Failed wilc_spi_write_reg, set reg %x ...\n",
1008                                 0x10c8 + i * 4);
1009                         return ret;
1010                 }
1011                 for (i = spi_priv->nint; i < MAX_NUM_INT; i++) {
1012                         if (flags & 1)
1013                                 dev_err(&spi->dev,
1014                                         "Unexpected interrupt cleared %d...\n",
1015                                         i);
1016                         flags >>= 1;
1017                 }
1018         }
1019
1020         tbl_ctl = 0;
1021         /* select VMM table 0 */
1022         if (val & SEL_VMM_TBL0)
1023                 tbl_ctl |= BIT(0);
1024         /* select VMM table 1 */
1025         if (val & SEL_VMM_TBL1)
1026                 tbl_ctl |= BIT(1);
1027
1028         ret = wilc_spi_write_reg(wilc, WILC_VMM_TBL_CTL, tbl_ctl);
1029         if (!ret) {
1030                 dev_err(&spi->dev, "fail write reg vmm_tbl_ctl...\n");
1031                 return ret;
1032         }
1033
1034         if (val & EN_VMM) {
1035                 /*
1036                  * enable vmm transfer.
1037                  */
1038                 ret = wilc_spi_write_reg(wilc, WILC_VMM_CORE_CTL, 1);
1039                 if (!ret) {
1040                         dev_err(&spi->dev, "fail write reg vmm_core_ctl...\n");
1041                         return ret;
1042                 }
1043         }
1044
1045         return ret;
1046 }
1047
1048 static int wilc_spi_sync_ext(struct wilc *wilc, int nint)
1049 {
1050         struct spi_device *spi = to_spi_device(wilc->dev);
1051         struct wilc_spi *spi_priv = wilc->bus_data;
1052         u32 reg;
1053         int ret, i;
1054
1055         if (nint > MAX_NUM_INT) {
1056                 dev_err(&spi->dev, "Too many interrupts (%d)...\n", nint);
1057                 return 0;
1058         }
1059
1060         spi_priv->nint = nint;
1061
1062         /*
1063          * interrupt pin mux select
1064          */
1065         ret = wilc_spi_read_reg(wilc, WILC_PIN_MUX_0, &reg);
1066         if (!ret) {
1067                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1068                         WILC_PIN_MUX_0);
1069                 return 0;
1070         }
1071         reg |= BIT(8);
1072         ret = wilc_spi_write_reg(wilc, WILC_PIN_MUX_0, reg);
1073         if (!ret) {
1074                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1075                         WILC_PIN_MUX_0);
1076                 return 0;
1077         }
1078
1079         /*
1080          * interrupt enable
1081          */
1082         ret = wilc_spi_read_reg(wilc, WILC_INTR_ENABLE, &reg);
1083         if (!ret) {
1084                 dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1085                         WILC_INTR_ENABLE);
1086                 return 0;
1087         }
1088
1089         for (i = 0; (i < 5) && (nint > 0); i++, nint--)
1090                 reg |= (BIT((27 + i)));
1091
1092         ret = wilc_spi_write_reg(wilc, WILC_INTR_ENABLE, reg);
1093         if (!ret) {
1094                 dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1095                         WILC_INTR_ENABLE);
1096                 return 0;
1097         }
1098         if (nint) {
1099                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1100                 if (!ret) {
1101                         dev_err(&spi->dev, "Failed read reg (%08x)...\n",
1102                                 WILC_INTR2_ENABLE);
1103                         return 0;
1104                 }
1105
1106                 for (i = 0; (i < 3) && (nint > 0); i++, nint--)
1107                         reg |= BIT(i);
1108
1109                 ret = wilc_spi_read_reg(wilc, WILC_INTR2_ENABLE, &reg);
1110                 if (!ret) {
1111                         dev_err(&spi->dev, "Failed write reg (%08x)...\n",
1112                                 WILC_INTR2_ENABLE);
1113                         return 0;
1114                 }
1115         }
1116
1117         return 1;
1118 }
1119
1120 /* Global spi HIF function table */
1121 static const struct wilc_hif_func wilc_hif_spi = {
1122         .hif_init = wilc_spi_init,
1123         .hif_deinit = wilc_spi_deinit,
1124         .hif_read_reg = wilc_spi_read_reg,
1125         .hif_write_reg = wilc_spi_write_reg,
1126         .hif_block_rx = wilc_spi_read,
1127         .hif_block_tx = wilc_spi_write,
1128         .hif_read_int = wilc_spi_read_int,
1129         .hif_clear_int_ext = wilc_spi_clear_int_ext,
1130         .hif_read_size = wilc_spi_read_size,
1131         .hif_block_tx_ext = wilc_spi_write,
1132         .hif_block_rx_ext = wilc_spi_read,
1133         .hif_sync_ext = wilc_spi_sync_ext,
1134 };