Merge tag 'xfs-5.1-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[sfrench/cifs-2.6.git] / drivers / spi / spi-rspi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SH RSPI driver
4  *
5  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
6  * Copyright (C) 2014 Glider bvba
7  *
8  * Based on spi-sh.c:
9  * Copyright (C) 2011 Renesas Solutions Corp.
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27
28 #define RSPI_SPCR               0x00    /* Control Register */
29 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
30 #define RSPI_SPPCR              0x02    /* Pin Control Register */
31 #define RSPI_SPSR               0x03    /* Status Register */
32 #define RSPI_SPDR               0x04    /* Data Register */
33 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
34 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
35 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
36 #define RSPI_SPDCR              0x0b    /* Data Control Register */
37 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
38 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
39 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
40 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
41 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
42 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
43 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
44 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
45 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
46 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
47 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
48 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
49 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
50 #define RSPI_NUM_SPCMD          8
51 #define RSPI_RZ_NUM_SPCMD       4
52 #define QSPI_NUM_SPCMD          4
53
54 /* RSPI on RZ only */
55 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
56 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
57
58 /* QSPI only */
59 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
60 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
61 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
62 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
63 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
64 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
65 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
66
67 /* SPCR - Control Register */
68 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
69 #define SPCR_SPE                0x40    /* Function Enable */
70 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
71 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
72 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
73 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
74 /* RSPI on SH only */
75 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
76 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
77 /* QSPI on R-Car Gen2 only */
78 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
79 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
80
81 /* SSLP - Slave Select Polarity Register */
82 #define SSLP_SSL1P              0x02    /* SSL1 Signal Polarity Setting */
83 #define SSLP_SSL0P              0x01    /* SSL0 Signal Polarity Setting */
84
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM              0x04
89 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
91
92 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95 /* SPSR - Status Register */
96 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
97 #define SPSR_TEND               0x40    /* Transmit End */
98 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF               0x08    /* Parity Error Flag */
100 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
101 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
102 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
103
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
106
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
109 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
110
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD           SPDCR_SPLW1
117 #define SPDCR_SPLBYTE           SPDCR_SPLW0
118 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1            0x08
121 #define SPDCR_SLSEL0            0x04
122 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1             0x02
124 #define SPDCR_SPFC0             0x01
125 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
126
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
129
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
132
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
135
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
138 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
139 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE              0x01    /* Parity Enable */
141
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
146 #define SPCMD_LSBF              0x1000  /* LSB First */
147 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
150 #define SPCMD_SPB_16BIT         0x0100
151 #define SPCMD_SPB_20BIT         0x0000
152 #define SPCMD_SPB_24BIT         0x0100
153 #define SPCMD_SPB_32BIT         0x0200
154 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1           0x0040
157 #define SPCMD_SPIMOD0           0x0020
158 #define SPCMD_SPIMOD_SINGLE     0
159 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
161 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA_MASK         0x0030  /* SSL Assert Signal Setting (RSPI) */
163 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
164 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
165 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
166
167 /* SPBFCR - Buffer Control Register */
168 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
169 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
170 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
171 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
172 /* QSPI on R-Car Gen2 */
173 #define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
174 #define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
175 #define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
176 #define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
177
178 #define QSPI_BUFFER_SIZE        32u
179
180 struct rspi_data {
181         void __iomem *addr;
182         u32 max_speed_hz;
183         struct spi_controller *ctlr;
184         wait_queue_head_t wait;
185         struct clk *clk;
186         u16 spcmd;
187         u8 spsr;
188         u8 sppcr;
189         int rx_irq, tx_irq;
190         const struct spi_ops *ops;
191
192         unsigned dma_callbacked:1;
193         unsigned byte_access:1;
194 };
195
196 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
197 {
198         iowrite8(data, rspi->addr + offset);
199 }
200
201 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
202 {
203         iowrite16(data, rspi->addr + offset);
204 }
205
206 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
207 {
208         iowrite32(data, rspi->addr + offset);
209 }
210
211 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
212 {
213         return ioread8(rspi->addr + offset);
214 }
215
216 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
217 {
218         return ioread16(rspi->addr + offset);
219 }
220
221 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
222 {
223         if (rspi->byte_access)
224                 rspi_write8(rspi, data, RSPI_SPDR);
225         else /* 16 bit */
226                 rspi_write16(rspi, data, RSPI_SPDR);
227 }
228
229 static u16 rspi_read_data(const struct rspi_data *rspi)
230 {
231         if (rspi->byte_access)
232                 return rspi_read8(rspi, RSPI_SPDR);
233         else /* 16 bit */
234                 return rspi_read16(rspi, RSPI_SPDR);
235 }
236
237 /* optional functions */
238 struct spi_ops {
239         int (*set_config_register)(struct rspi_data *rspi, int access_size);
240         int (*transfer_one)(struct spi_controller *ctlr,
241                             struct spi_device *spi, struct spi_transfer *xfer);
242         u16 mode_bits;
243         u16 flags;
244         u16 fifo_size;
245 };
246
247 /*
248  * functions for RSPI on legacy SH
249  */
250 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
251 {
252         int spbr;
253
254         /* Sets output mode, MOSI signal, and (optionally) loopback */
255         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
256
257         /* Sets transfer bit rate */
258         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
259                             2 * rspi->max_speed_hz) - 1;
260         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
261
262         /* Disable dummy transmission, set 16-bit word access, 1 frame */
263         rspi_write8(rspi, 0, RSPI_SPDCR);
264         rspi->byte_access = 0;
265
266         /* Sets RSPCK, SSL, next-access delay value */
267         rspi_write8(rspi, 0x00, RSPI_SPCKD);
268         rspi_write8(rspi, 0x00, RSPI_SSLND);
269         rspi_write8(rspi, 0x00, RSPI_SPND);
270
271         /* Sets parity, interrupt mask */
272         rspi_write8(rspi, 0x00, RSPI_SPCR2);
273
274         /* Sets SPCMD */
275         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
276         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
277
278         /* Sets RSPI mode */
279         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
280
281         return 0;
282 }
283
284 /*
285  * functions for RSPI on RZ
286  */
287 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
288 {
289         int spbr;
290         int div = 0;
291         unsigned long clksrc;
292
293         /* Sets output mode, MOSI signal, and (optionally) loopback */
294         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
295
296         clksrc = clk_get_rate(rspi->clk);
297         while (div < 3) {
298                 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
299                         break;
300                 div++;
301                 clksrc /= 2;
302         }
303
304         /* Sets transfer bit rate */
305         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
306         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307         rspi->spcmd |= div << 2;
308
309         /* Disable dummy transmission, set byte access */
310         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
311         rspi->byte_access = 1;
312
313         /* Sets RSPCK, SSL, next-access delay value */
314         rspi_write8(rspi, 0x00, RSPI_SPCKD);
315         rspi_write8(rspi, 0x00, RSPI_SSLND);
316         rspi_write8(rspi, 0x00, RSPI_SPND);
317
318         /* Sets SPCMD */
319         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
320         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
321
322         /* Sets RSPI mode */
323         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
324
325         return 0;
326 }
327
328 /*
329  * functions for QSPI
330  */
331 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
332 {
333         int spbr;
334
335         /* Sets output mode, MOSI signal, and (optionally) loopback */
336         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
337
338         /* Sets transfer bit rate */
339         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
340         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
341
342         /* Disable dummy transmission, set byte access */
343         rspi_write8(rspi, 0, RSPI_SPDCR);
344         rspi->byte_access = 1;
345
346         /* Sets RSPCK, SSL, next-access delay value */
347         rspi_write8(rspi, 0x00, RSPI_SPCKD);
348         rspi_write8(rspi, 0x00, RSPI_SSLND);
349         rspi_write8(rspi, 0x00, RSPI_SPND);
350
351         /* Data Length Setting */
352         if (access_size == 8)
353                 rspi->spcmd |= SPCMD_SPB_8BIT;
354         else if (access_size == 16)
355                 rspi->spcmd |= SPCMD_SPB_16BIT;
356         else
357                 rspi->spcmd |= SPCMD_SPB_32BIT;
358
359         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
360
361         /* Resets transfer data length */
362         rspi_write32(rspi, 0, QSPI_SPBMUL0);
363
364         /* Resets transmit and receive buffer */
365         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
366         /* Sets buffer to allow normal operation */
367         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
368
369         /* Sets SPCMD */
370         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
371
372         /* Sets RSPI mode */
373         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
374
375         return 0;
376 }
377
378 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
379 {
380         u8 data;
381
382         data = rspi_read8(rspi, reg);
383         data &= ~mask;
384         data |= (val & mask);
385         rspi_write8(rspi, data, reg);
386 }
387
388 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
389                                           unsigned int len)
390 {
391         unsigned int n;
392
393         n = min(len, QSPI_BUFFER_SIZE);
394
395         if (len >= QSPI_BUFFER_SIZE) {
396                 /* sets triggering number to 32 bytes */
397                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
398                              SPBFCR_TXTRG_32B, QSPI_SPBFCR);
399         } else {
400                 /* sets triggering number to 1 byte */
401                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
402                              SPBFCR_TXTRG_1B, QSPI_SPBFCR);
403         }
404
405         return n;
406 }
407
408 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
409 {
410         unsigned int n;
411
412         n = min(len, QSPI_BUFFER_SIZE);
413
414         if (len >= QSPI_BUFFER_SIZE) {
415                 /* sets triggering number to 32 bytes */
416                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
417                              SPBFCR_RXTRG_32B, QSPI_SPBFCR);
418         } else {
419                 /* sets triggering number to 1 byte */
420                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
421                              SPBFCR_RXTRG_1B, QSPI_SPBFCR);
422         }
423         return n;
424 }
425
426 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
427
428 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
429 {
430         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
431 }
432
433 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
434 {
435         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
436 }
437
438 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
439                                    u8 enable_bit)
440 {
441         int ret;
442
443         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
444         if (rspi->spsr & wait_mask)
445                 return 0;
446
447         rspi_enable_irq(rspi, enable_bit);
448         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
449         if (ret == 0 && !(rspi->spsr & wait_mask))
450                 return -ETIMEDOUT;
451
452         return 0;
453 }
454
455 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
456 {
457         return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
458 }
459
460 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
461 {
462         return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
463 }
464
465 static int rspi_data_out(struct rspi_data *rspi, u8 data)
466 {
467         int error = rspi_wait_for_tx_empty(rspi);
468         if (error < 0) {
469                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
470                 return error;
471         }
472         rspi_write_data(rspi, data);
473         return 0;
474 }
475
476 static int rspi_data_in(struct rspi_data *rspi)
477 {
478         int error;
479         u8 data;
480
481         error = rspi_wait_for_rx_full(rspi);
482         if (error < 0) {
483                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
484                 return error;
485         }
486         data = rspi_read_data(rspi);
487         return data;
488 }
489
490 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
491                              unsigned int n)
492 {
493         while (n-- > 0) {
494                 if (tx) {
495                         int ret = rspi_data_out(rspi, *tx++);
496                         if (ret < 0)
497                                 return ret;
498                 }
499                 if (rx) {
500                         int ret = rspi_data_in(rspi);
501                         if (ret < 0)
502                                 return ret;
503                         *rx++ = ret;
504                 }
505         }
506
507         return 0;
508 }
509
510 static void rspi_dma_complete(void *arg)
511 {
512         struct rspi_data *rspi = arg;
513
514         rspi->dma_callbacked = 1;
515         wake_up_interruptible(&rspi->wait);
516 }
517
518 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
519                              struct sg_table *rx)
520 {
521         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
522         u8 irq_mask = 0;
523         unsigned int other_irq = 0;
524         dma_cookie_t cookie;
525         int ret;
526
527         /* First prepare and submit the DMA request(s), as this may fail */
528         if (rx) {
529                 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
530                                         rx->nents, DMA_DEV_TO_MEM,
531                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
532                 if (!desc_rx) {
533                         ret = -EAGAIN;
534                         goto no_dma_rx;
535                 }
536
537                 desc_rx->callback = rspi_dma_complete;
538                 desc_rx->callback_param = rspi;
539                 cookie = dmaengine_submit(desc_rx);
540                 if (dma_submit_error(cookie)) {
541                         ret = cookie;
542                         goto no_dma_rx;
543                 }
544
545                 irq_mask |= SPCR_SPRIE;
546         }
547
548         if (tx) {
549                 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
550                                         tx->nents, DMA_MEM_TO_DEV,
551                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552                 if (!desc_tx) {
553                         ret = -EAGAIN;
554                         goto no_dma_tx;
555                 }
556
557                 if (rx) {
558                         /* No callback */
559                         desc_tx->callback = NULL;
560                 } else {
561                         desc_tx->callback = rspi_dma_complete;
562                         desc_tx->callback_param = rspi;
563                 }
564                 cookie = dmaengine_submit(desc_tx);
565                 if (dma_submit_error(cookie)) {
566                         ret = cookie;
567                         goto no_dma_tx;
568                 }
569
570                 irq_mask |= SPCR_SPTIE;
571         }
572
573         /*
574          * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
575          * called. So, this driver disables the IRQ while DMA transfer.
576          */
577         if (tx)
578                 disable_irq(other_irq = rspi->tx_irq);
579         if (rx && rspi->rx_irq != other_irq)
580                 disable_irq(rspi->rx_irq);
581
582         rspi_enable_irq(rspi, irq_mask);
583         rspi->dma_callbacked = 0;
584
585         /* Now start DMA */
586         if (rx)
587                 dma_async_issue_pending(rspi->ctlr->dma_rx);
588         if (tx)
589                 dma_async_issue_pending(rspi->ctlr->dma_tx);
590
591         ret = wait_event_interruptible_timeout(rspi->wait,
592                                                rspi->dma_callbacked, HZ);
593         if (ret > 0 && rspi->dma_callbacked) {
594                 ret = 0;
595         } else {
596                 if (!ret) {
597                         dev_err(&rspi->ctlr->dev, "DMA timeout\n");
598                         ret = -ETIMEDOUT;
599                 }
600                 if (tx)
601                         dmaengine_terminate_all(rspi->ctlr->dma_tx);
602                 if (rx)
603                         dmaengine_terminate_all(rspi->ctlr->dma_rx);
604         }
605
606         rspi_disable_irq(rspi, irq_mask);
607
608         if (tx)
609                 enable_irq(rspi->tx_irq);
610         if (rx && rspi->rx_irq != other_irq)
611                 enable_irq(rspi->rx_irq);
612
613         return ret;
614
615 no_dma_tx:
616         if (rx)
617                 dmaengine_terminate_all(rspi->ctlr->dma_rx);
618 no_dma_rx:
619         if (ret == -EAGAIN) {
620                 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
621                              dev_driver_string(&rspi->ctlr->dev),
622                              dev_name(&rspi->ctlr->dev));
623         }
624         return ret;
625 }
626
627 static void rspi_receive_init(const struct rspi_data *rspi)
628 {
629         u8 spsr;
630
631         spsr = rspi_read8(rspi, RSPI_SPSR);
632         if (spsr & SPSR_SPRF)
633                 rspi_read_data(rspi);   /* dummy read */
634         if (spsr & SPSR_OVRF)
635                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
636                             RSPI_SPSR);
637 }
638
639 static void rspi_rz_receive_init(const struct rspi_data *rspi)
640 {
641         rspi_receive_init(rspi);
642         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
643         rspi_write8(rspi, 0, RSPI_SPBFCR);
644 }
645
646 static void qspi_receive_init(const struct rspi_data *rspi)
647 {
648         u8 spsr;
649
650         spsr = rspi_read8(rspi, RSPI_SPSR);
651         if (spsr & SPSR_SPRF)
652                 rspi_read_data(rspi);   /* dummy read */
653         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
654         rspi_write8(rspi, 0, QSPI_SPBFCR);
655 }
656
657 static bool __rspi_can_dma(const struct rspi_data *rspi,
658                            const struct spi_transfer *xfer)
659 {
660         return xfer->len > rspi->ops->fifo_size;
661 }
662
663 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
664                          struct spi_transfer *xfer)
665 {
666         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
667
668         return __rspi_can_dma(rspi, xfer);
669 }
670
671 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
672                                          struct spi_transfer *xfer)
673 {
674         if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
675                 return -EAGAIN;
676
677         /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
678         return rspi_dma_transfer(rspi, &xfer->tx_sg,
679                                 xfer->rx_buf ? &xfer->rx_sg : NULL);
680 }
681
682 static int rspi_common_transfer(struct rspi_data *rspi,
683                                 struct spi_transfer *xfer)
684 {
685         int ret;
686
687         ret = rspi_dma_check_then_transfer(rspi, xfer);
688         if (ret != -EAGAIN)
689                 return ret;
690
691         ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
692         if (ret < 0)
693                 return ret;
694
695         /* Wait for the last transmission */
696         rspi_wait_for_tx_empty(rspi);
697
698         return 0;
699 }
700
701 static int rspi_transfer_one(struct spi_controller *ctlr,
702                              struct spi_device *spi, struct spi_transfer *xfer)
703 {
704         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
705         u8 spcr;
706
707         spcr = rspi_read8(rspi, RSPI_SPCR);
708         if (xfer->rx_buf) {
709                 rspi_receive_init(rspi);
710                 spcr &= ~SPCR_TXMD;
711         } else {
712                 spcr |= SPCR_TXMD;
713         }
714         rspi_write8(rspi, spcr, RSPI_SPCR);
715
716         return rspi_common_transfer(rspi, xfer);
717 }
718
719 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
720                                 struct spi_device *spi,
721                                 struct spi_transfer *xfer)
722 {
723         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
724
725         rspi_rz_receive_init(rspi);
726
727         return rspi_common_transfer(rspi, xfer);
728 }
729
730 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
731                                         u8 *rx, unsigned int len)
732 {
733         unsigned int i, n;
734         int ret;
735
736         while (len > 0) {
737                 n = qspi_set_send_trigger(rspi, len);
738                 qspi_set_receive_trigger(rspi, len);
739                 if (n == QSPI_BUFFER_SIZE) {
740                         ret = rspi_wait_for_tx_empty(rspi);
741                         if (ret < 0) {
742                                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
743                                 return ret;
744                         }
745                         for (i = 0; i < n; i++)
746                                 rspi_write_data(rspi, *tx++);
747
748                         ret = rspi_wait_for_rx_full(rspi);
749                         if (ret < 0) {
750                                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
751                                 return ret;
752                         }
753                         for (i = 0; i < n; i++)
754                                 *rx++ = rspi_read_data(rspi);
755                 } else {
756                         ret = rspi_pio_transfer(rspi, tx, rx, n);
757                         if (ret < 0)
758                                 return ret;
759                 }
760                 len -= n;
761         }
762
763         return 0;
764 }
765
766 static int qspi_transfer_out_in(struct rspi_data *rspi,
767                                 struct spi_transfer *xfer)
768 {
769         int ret;
770
771         qspi_receive_init(rspi);
772
773         ret = rspi_dma_check_then_transfer(rspi, xfer);
774         if (ret != -EAGAIN)
775                 return ret;
776
777         return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
778                                             xfer->rx_buf, xfer->len);
779 }
780
781 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
782 {
783         const u8 *tx = xfer->tx_buf;
784         unsigned int n = xfer->len;
785         unsigned int i, len;
786         int ret;
787
788         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
789                 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
790                 if (ret != -EAGAIN)
791                         return ret;
792         }
793
794         while (n > 0) {
795                 len = qspi_set_send_trigger(rspi, n);
796                 if (len == QSPI_BUFFER_SIZE) {
797                         ret = rspi_wait_for_tx_empty(rspi);
798                         if (ret < 0) {
799                                 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
800                                 return ret;
801                         }
802                         for (i = 0; i < len; i++)
803                                 rspi_write_data(rspi, *tx++);
804                 } else {
805                         ret = rspi_pio_transfer(rspi, tx, NULL, len);
806                         if (ret < 0)
807                                 return ret;
808                 }
809                 n -= len;
810         }
811
812         /* Wait for the last transmission */
813         rspi_wait_for_tx_empty(rspi);
814
815         return 0;
816 }
817
818 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
819 {
820         u8 *rx = xfer->rx_buf;
821         unsigned int n = xfer->len;
822         unsigned int i, len;
823         int ret;
824
825         if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
826                 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
827                 if (ret != -EAGAIN)
828                         return ret;
829         }
830
831         while (n > 0) {
832                 len = qspi_set_receive_trigger(rspi, n);
833                 if (len == QSPI_BUFFER_SIZE) {
834                         ret = rspi_wait_for_rx_full(rspi);
835                         if (ret < 0) {
836                                 dev_err(&rspi->ctlr->dev, "receive timeout\n");
837                                 return ret;
838                         }
839                         for (i = 0; i < len; i++)
840                                 *rx++ = rspi_read_data(rspi);
841                 } else {
842                         ret = rspi_pio_transfer(rspi, NULL, rx, len);
843                         if (ret < 0)
844                                 return ret;
845                 }
846                 n -= len;
847         }
848
849         return 0;
850 }
851
852 static int qspi_transfer_one(struct spi_controller *ctlr,
853                              struct spi_device *spi, struct spi_transfer *xfer)
854 {
855         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
856
857         if (spi->mode & SPI_LOOP) {
858                 return qspi_transfer_out_in(rspi, xfer);
859         } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
860                 /* Quad or Dual SPI Write */
861                 return qspi_transfer_out(rspi, xfer);
862         } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
863                 /* Quad or Dual SPI Read */
864                 return qspi_transfer_in(rspi, xfer);
865         } else {
866                 /* Single SPI Transfer */
867                 return qspi_transfer_out_in(rspi, xfer);
868         }
869 }
870
871 static int rspi_setup(struct spi_device *spi)
872 {
873         struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
874
875         rspi->max_speed_hz = spi->max_speed_hz;
876
877         rspi->spcmd = SPCMD_SSLKP;
878         if (spi->mode & SPI_CPOL)
879                 rspi->spcmd |= SPCMD_CPOL;
880         if (spi->mode & SPI_CPHA)
881                 rspi->spcmd |= SPCMD_CPHA;
882
883         /* CMOS output mode and MOSI signal from previous transfer */
884         rspi->sppcr = 0;
885         if (spi->mode & SPI_LOOP)
886                 rspi->sppcr |= SPPCR_SPLP;
887
888         set_config_register(rspi, 8);
889
890         return 0;
891 }
892
893 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
894 {
895         if (xfer->tx_buf)
896                 switch (xfer->tx_nbits) {
897                 case SPI_NBITS_QUAD:
898                         return SPCMD_SPIMOD_QUAD;
899                 case SPI_NBITS_DUAL:
900                         return SPCMD_SPIMOD_DUAL;
901                 default:
902                         return 0;
903                 }
904         if (xfer->rx_buf)
905                 switch (xfer->rx_nbits) {
906                 case SPI_NBITS_QUAD:
907                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
908                 case SPI_NBITS_DUAL:
909                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
910                 default:
911                         return 0;
912                 }
913
914         return 0;
915 }
916
917 static int qspi_setup_sequencer(struct rspi_data *rspi,
918                                 const struct spi_message *msg)
919 {
920         const struct spi_transfer *xfer;
921         unsigned int i = 0, len = 0;
922         u16 current_mode = 0xffff, mode;
923
924         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
925                 mode = qspi_transfer_mode(xfer);
926                 if (mode == current_mode) {
927                         len += xfer->len;
928                         continue;
929                 }
930
931                 /* Transfer mode change */
932                 if (i) {
933                         /* Set transfer data length of previous transfer */
934                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
935                 }
936
937                 if (i >= QSPI_NUM_SPCMD) {
938                         dev_err(&msg->spi->dev,
939                                 "Too many different transfer modes");
940                         return -EINVAL;
941                 }
942
943                 /* Program transfer mode for this transfer */
944                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
945                 current_mode = mode;
946                 len = xfer->len;
947                 i++;
948         }
949         if (i) {
950                 /* Set final transfer data length and sequence length */
951                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
952                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
953         }
954
955         return 0;
956 }
957
958 static int rspi_prepare_message(struct spi_controller *ctlr,
959                                 struct spi_message *msg)
960 {
961         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
962         int ret;
963
964         if (msg->spi->mode &
965             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
966                 /* Setup sequencer for messages with multiple transfer modes */
967                 ret = qspi_setup_sequencer(rspi, msg);
968                 if (ret < 0)
969                         return ret;
970         }
971
972         /* Enable SPI function in master mode */
973         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
974         return 0;
975 }
976
977 static int rspi_unprepare_message(struct spi_controller *ctlr,
978                                   struct spi_message *msg)
979 {
980         struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
981
982         /* Disable SPI function */
983         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
984
985         /* Reset sequencer for Single SPI Transfers */
986         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
987         rspi_write8(rspi, 0, RSPI_SPSCR);
988         return 0;
989 }
990
991 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
992 {
993         struct rspi_data *rspi = _sr;
994         u8 spsr;
995         irqreturn_t ret = IRQ_NONE;
996         u8 disable_irq = 0;
997
998         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
999         if (spsr & SPSR_SPRF)
1000                 disable_irq |= SPCR_SPRIE;
1001         if (spsr & SPSR_SPTEF)
1002                 disable_irq |= SPCR_SPTIE;
1003
1004         if (disable_irq) {
1005                 ret = IRQ_HANDLED;
1006                 rspi_disable_irq(rspi, disable_irq);
1007                 wake_up(&rspi->wait);
1008         }
1009
1010         return ret;
1011 }
1012
1013 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1014 {
1015         struct rspi_data *rspi = _sr;
1016         u8 spsr;
1017
1018         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1019         if (spsr & SPSR_SPRF) {
1020                 rspi_disable_irq(rspi, SPCR_SPRIE);
1021                 wake_up(&rspi->wait);
1022                 return IRQ_HANDLED;
1023         }
1024
1025         return 0;
1026 }
1027
1028 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1029 {
1030         struct rspi_data *rspi = _sr;
1031         u8 spsr;
1032
1033         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1034         if (spsr & SPSR_SPTEF) {
1035                 rspi_disable_irq(rspi, SPCR_SPTIE);
1036                 wake_up(&rspi->wait);
1037                 return IRQ_HANDLED;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1044                                               enum dma_transfer_direction dir,
1045                                               unsigned int id,
1046                                               dma_addr_t port_addr)
1047 {
1048         dma_cap_mask_t mask;
1049         struct dma_chan *chan;
1050         struct dma_slave_config cfg;
1051         int ret;
1052
1053         dma_cap_zero(mask);
1054         dma_cap_set(DMA_SLAVE, mask);
1055
1056         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1057                                 (void *)(unsigned long)id, dev,
1058                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1059         if (!chan) {
1060                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1061                 return NULL;
1062         }
1063
1064         memset(&cfg, 0, sizeof(cfg));
1065         cfg.direction = dir;
1066         if (dir == DMA_MEM_TO_DEV) {
1067                 cfg.dst_addr = port_addr;
1068                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1069         } else {
1070                 cfg.src_addr = port_addr;
1071                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1072         }
1073
1074         ret = dmaengine_slave_config(chan, &cfg);
1075         if (ret) {
1076                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1077                 dma_release_channel(chan);
1078                 return NULL;
1079         }
1080
1081         return chan;
1082 }
1083
1084 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1085                             const struct resource *res)
1086 {
1087         const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1088         unsigned int dma_tx_id, dma_rx_id;
1089
1090         if (dev->of_node) {
1091                 /* In the OF case we will get the slave IDs from the DT */
1092                 dma_tx_id = 0;
1093                 dma_rx_id = 0;
1094         } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1095                 dma_tx_id = rspi_pd->dma_tx_id;
1096                 dma_rx_id = rspi_pd->dma_rx_id;
1097         } else {
1098                 /* The driver assumes no error. */
1099                 return 0;
1100         }
1101
1102         ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1103                                              res->start + RSPI_SPDR);
1104         if (!ctlr->dma_tx)
1105                 return -ENODEV;
1106
1107         ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1108                                              res->start + RSPI_SPDR);
1109         if (!ctlr->dma_rx) {
1110                 dma_release_channel(ctlr->dma_tx);
1111                 ctlr->dma_tx = NULL;
1112                 return -ENODEV;
1113         }
1114
1115         ctlr->can_dma = rspi_can_dma;
1116         dev_info(dev, "DMA available");
1117         return 0;
1118 }
1119
1120 static void rspi_release_dma(struct spi_controller *ctlr)
1121 {
1122         if (ctlr->dma_tx)
1123                 dma_release_channel(ctlr->dma_tx);
1124         if (ctlr->dma_rx)
1125                 dma_release_channel(ctlr->dma_rx);
1126 }
1127
1128 static int rspi_remove(struct platform_device *pdev)
1129 {
1130         struct rspi_data *rspi = platform_get_drvdata(pdev);
1131
1132         rspi_release_dma(rspi->ctlr);
1133         pm_runtime_disable(&pdev->dev);
1134
1135         return 0;
1136 }
1137
1138 static const struct spi_ops rspi_ops = {
1139         .set_config_register =  rspi_set_config_register,
1140         .transfer_one =         rspi_transfer_one,
1141         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1142         .flags =                SPI_CONTROLLER_MUST_TX,
1143         .fifo_size =            8,
1144 };
1145
1146 static const struct spi_ops rspi_rz_ops = {
1147         .set_config_register =  rspi_rz_set_config_register,
1148         .transfer_one =         rspi_rz_transfer_one,
1149         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1150         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1151         .fifo_size =            8,      /* 8 for TX, 32 for RX */
1152 };
1153
1154 static const struct spi_ops qspi_ops = {
1155         .set_config_register =  qspi_set_config_register,
1156         .transfer_one =         qspi_transfer_one,
1157         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP |
1158                                 SPI_TX_DUAL | SPI_TX_QUAD |
1159                                 SPI_RX_DUAL | SPI_RX_QUAD,
1160         .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1161         .fifo_size =            32,
1162 };
1163
1164 #ifdef CONFIG_OF
1165 static const struct of_device_id rspi_of_match[] = {
1166         /* RSPI on legacy SH */
1167         { .compatible = "renesas,rspi", .data = &rspi_ops },
1168         /* RSPI on RZ/A1H */
1169         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1170         /* QSPI on R-Car Gen2 */
1171         { .compatible = "renesas,qspi", .data = &qspi_ops },
1172         { /* sentinel */ }
1173 };
1174
1175 MODULE_DEVICE_TABLE(of, rspi_of_match);
1176
1177 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1178 {
1179         u32 num_cs;
1180         int error;
1181
1182         /* Parse DT properties */
1183         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1184         if (error) {
1185                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1186                 return error;
1187         }
1188
1189         ctlr->num_chipselect = num_cs;
1190         return 0;
1191 }
1192 #else
1193 #define rspi_of_match   NULL
1194 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1195 {
1196         return -EINVAL;
1197 }
1198 #endif /* CONFIG_OF */
1199
1200 static int rspi_request_irq(struct device *dev, unsigned int irq,
1201                             irq_handler_t handler, const char *suffix,
1202                             void *dev_id)
1203 {
1204         const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1205                                           dev_name(dev), suffix);
1206         if (!name)
1207                 return -ENOMEM;
1208
1209         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1210 }
1211
1212 static int rspi_probe(struct platform_device *pdev)
1213 {
1214         struct resource *res;
1215         struct spi_controller *ctlr;
1216         struct rspi_data *rspi;
1217         int ret;
1218         const struct rspi_plat_data *rspi_pd;
1219         const struct spi_ops *ops;
1220
1221         ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1222         if (ctlr == NULL)
1223                 return -ENOMEM;
1224
1225         ops = of_device_get_match_data(&pdev->dev);
1226         if (ops) {
1227                 ret = rspi_parse_dt(&pdev->dev, ctlr);
1228                 if (ret)
1229                         goto error1;
1230         } else {
1231                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1232                 rspi_pd = dev_get_platdata(&pdev->dev);
1233                 if (rspi_pd && rspi_pd->num_chipselect)
1234                         ctlr->num_chipselect = rspi_pd->num_chipselect;
1235                 else
1236                         ctlr->num_chipselect = 2; /* default */
1237         }
1238
1239         /* ops parameter check */
1240         if (!ops->set_config_register) {
1241                 dev_err(&pdev->dev, "there is no set_config_register\n");
1242                 ret = -ENODEV;
1243                 goto error1;
1244         }
1245
1246         rspi = spi_controller_get_devdata(ctlr);
1247         platform_set_drvdata(pdev, rspi);
1248         rspi->ops = ops;
1249         rspi->ctlr = ctlr;
1250
1251         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1252         rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1253         if (IS_ERR(rspi->addr)) {
1254                 ret = PTR_ERR(rspi->addr);
1255                 goto error1;
1256         }
1257
1258         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1259         if (IS_ERR(rspi->clk)) {
1260                 dev_err(&pdev->dev, "cannot get clock\n");
1261                 ret = PTR_ERR(rspi->clk);
1262                 goto error1;
1263         }
1264
1265         pm_runtime_enable(&pdev->dev);
1266
1267         init_waitqueue_head(&rspi->wait);
1268
1269         ctlr->bus_num = pdev->id;
1270         ctlr->setup = rspi_setup;
1271         ctlr->auto_runtime_pm = true;
1272         ctlr->transfer_one = ops->transfer_one;
1273         ctlr->prepare_message = rspi_prepare_message;
1274         ctlr->unprepare_message = rspi_unprepare_message;
1275         ctlr->mode_bits = ops->mode_bits;
1276         ctlr->flags = ops->flags;
1277         ctlr->dev.of_node = pdev->dev.of_node;
1278
1279         ret = platform_get_irq_byname(pdev, "rx");
1280         if (ret < 0) {
1281                 ret = platform_get_irq_byname(pdev, "mux");
1282                 if (ret < 0)
1283                         ret = platform_get_irq(pdev, 0);
1284                 if (ret >= 0)
1285                         rspi->rx_irq = rspi->tx_irq = ret;
1286         } else {
1287                 rspi->rx_irq = ret;
1288                 ret = platform_get_irq_byname(pdev, "tx");
1289                 if (ret >= 0)
1290                         rspi->tx_irq = ret;
1291         }
1292         if (ret < 0) {
1293                 dev_err(&pdev->dev, "platform_get_irq error\n");
1294                 goto error2;
1295         }
1296
1297         if (rspi->rx_irq == rspi->tx_irq) {
1298                 /* Single multiplexed interrupt */
1299                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1300                                        "mux", rspi);
1301         } else {
1302                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1303                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1304                                        "rx", rspi);
1305                 if (!ret)
1306                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1307                                                rspi_irq_tx, "tx", rspi);
1308         }
1309         if (ret < 0) {
1310                 dev_err(&pdev->dev, "request_irq error\n");
1311                 goto error2;
1312         }
1313
1314         ret = rspi_request_dma(&pdev->dev, ctlr, res);
1315         if (ret < 0)
1316                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1317
1318         ret = devm_spi_register_controller(&pdev->dev, ctlr);
1319         if (ret < 0) {
1320                 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1321                 goto error3;
1322         }
1323
1324         dev_info(&pdev->dev, "probed\n");
1325
1326         return 0;
1327
1328 error3:
1329         rspi_release_dma(ctlr);
1330 error2:
1331         pm_runtime_disable(&pdev->dev);
1332 error1:
1333         spi_controller_put(ctlr);
1334
1335         return ret;
1336 }
1337
1338 static const struct platform_device_id spi_driver_ids[] = {
1339         { "rspi",       (kernel_ulong_t)&rspi_ops },
1340         { "rspi-rz",    (kernel_ulong_t)&rspi_rz_ops },
1341         { "qspi",       (kernel_ulong_t)&qspi_ops },
1342         {},
1343 };
1344
1345 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1346
1347 #ifdef CONFIG_PM_SLEEP
1348 static int rspi_suspend(struct device *dev)
1349 {
1350         struct rspi_data *rspi = dev_get_drvdata(dev);
1351
1352         return spi_controller_suspend(rspi->ctlr);
1353 }
1354
1355 static int rspi_resume(struct device *dev)
1356 {
1357         struct rspi_data *rspi = dev_get_drvdata(dev);
1358
1359         return spi_controller_resume(rspi->ctlr);
1360 }
1361
1362 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1363 #define DEV_PM_OPS      &rspi_pm_ops
1364 #else
1365 #define DEV_PM_OPS      NULL
1366 #endif /* CONFIG_PM_SLEEP */
1367
1368 static struct platform_driver rspi_driver = {
1369         .probe =        rspi_probe,
1370         .remove =       rspi_remove,
1371         .id_table =     spi_driver_ids,
1372         .driver         = {
1373                 .name = "renesas_spi",
1374                 .pm = DEV_PM_OPS,
1375                 .of_match_table = of_match_ptr(rspi_of_match),
1376         },
1377 };
1378 module_platform_driver(rspi_driver);
1379
1380 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1381 MODULE_LICENSE("GPL v2");
1382 MODULE_AUTHOR("Yoshihiro Shimoda");
1383 MODULE_ALIAS("platform:rspi");