Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32
33 #define CQSPI_NAME                      "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT            16
35
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
41
42 /* Capabilities */
43 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
44
45 struct cqspi_st;
46
47 struct cqspi_flash_pdata {
48         struct cqspi_st *cqspi;
49         u32             clk_rate;
50         u32             read_delay;
51         u32             tshsl_ns;
52         u32             tsd2d_ns;
53         u32             tchsh_ns;
54         u32             tslch_ns;
55         u8              inst_width;
56         u8              addr_width;
57         u8              data_width;
58         bool            dtr;
59         u8              cs;
60 };
61
62 struct cqspi_st {
63         struct platform_device  *pdev;
64
65         struct clk              *clk;
66         unsigned int            sclk;
67
68         void __iomem            *iobase;
69         void __iomem            *ahb_base;
70         resource_size_t         ahb_size;
71         struct completion       transfer_complete;
72
73         struct dma_chan         *rx_chan;
74         struct completion       rx_dma_complete;
75         dma_addr_t              mmap_phys_base;
76
77         int                     current_cs;
78         unsigned long           master_ref_clk_hz;
79         bool                    is_decoded_cs;
80         u32                     fifo_depth;
81         u32                     fifo_width;
82         u32                     num_chipselect;
83         bool                    rclk_en;
84         u32                     trigger_address;
85         u32                     wr_delay;
86         bool                    use_direct_mode;
87         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
88         bool                    use_dma_read;
89         u32                     pd_dev_id;
90         bool                    wr_completion;
91 };
92
93 struct cqspi_driver_platdata {
94         u32 hwcaps_mask;
95         u8 quirks;
96         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
97                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
98         u32 (*get_dma_status)(struct cqspi_st *cqspi);
99 };
100
101 /* Operation timeout value */
102 #define CQSPI_TIMEOUT_MS                        500
103 #define CQSPI_READ_TIMEOUT_MS                   10
104
105 /* Instruction type */
106 #define CQSPI_INST_TYPE_SINGLE                  0
107 #define CQSPI_INST_TYPE_DUAL                    1
108 #define CQSPI_INST_TYPE_QUAD                    2
109 #define CQSPI_INST_TYPE_OCTAL                   3
110
111 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
112 #define CQSPI_DUMMY_BYTES_MAX                   4
113 #define CQSPI_DUMMY_CLKS_MAX                    31
114
115 #define CQSPI_STIG_DATA_LEN_MAX                 8
116
117 /* Register map */
118 #define CQSPI_REG_CONFIG                        0x00
119 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
120 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
121 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
122 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
123 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
124 #define CQSPI_REG_CONFIG_BAUD_LSB               19
125 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
126 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
127 #define CQSPI_REG_CONFIG_IDLE_LSB               31
128 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
129 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
130
131 #define CQSPI_REG_RD_INSTR                      0x04
132 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
136 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
137 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
138 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
139 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
140 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
141 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
142
143 #define CQSPI_REG_WR_INSTR                      0x08
144 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
145 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
146 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
147
148 #define CQSPI_REG_DELAY                         0x0C
149 #define CQSPI_REG_DELAY_TSLCH_LSB               0
150 #define CQSPI_REG_DELAY_TCHSH_LSB               8
151 #define CQSPI_REG_DELAY_TSD2D_LSB               16
152 #define CQSPI_REG_DELAY_TSHSL_LSB               24
153 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
154 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
155 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
156 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
157
158 #define CQSPI_REG_READCAPTURE                   0x10
159 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
160 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
161 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
162
163 #define CQSPI_REG_SIZE                          0x14
164 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
165 #define CQSPI_REG_SIZE_PAGE_LSB                 4
166 #define CQSPI_REG_SIZE_BLOCK_LSB                16
167 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
168 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
169 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
170
171 #define CQSPI_REG_SRAMPARTITION                 0x18
172 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
173
174 #define CQSPI_REG_DMA                           0x20
175 #define CQSPI_REG_DMA_SINGLE_LSB                0
176 #define CQSPI_REG_DMA_BURST_LSB                 8
177 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
178 #define CQSPI_REG_DMA_BURST_MASK                0xFF
179
180 #define CQSPI_REG_REMAP                         0x24
181 #define CQSPI_REG_MODE_BIT                      0x28
182
183 #define CQSPI_REG_SDRAMLEVEL                    0x2C
184 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
185 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
186 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
187 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
188
189 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
190 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
191
192 #define CQSPI_REG_IRQSTATUS                     0x40
193 #define CQSPI_REG_IRQMASK                       0x44
194
195 #define CQSPI_REG_INDIRECTRD                    0x60
196 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
197 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
198 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
199
200 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
201 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
202 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
203
204 #define CQSPI_REG_CMDCTRL                       0x90
205 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
206 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
207 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
208 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
209 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
210 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
211 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
212 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
213 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
214 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
215 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
216 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
217 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
218 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
219
220 #define CQSPI_REG_INDIRECTWR                    0x70
221 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
222 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
223 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
224
225 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
226 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
227 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
228
229 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
230
231 #define CQSPI_REG_CMDADDRESS                    0x94
232 #define CQSPI_REG_CMDREADDATALOWER              0xA0
233 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
234 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
235 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
236
237 #define CQSPI_REG_POLLING_STATUS                0xB0
238 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
239
240 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
241 #define CQSPI_REG_OP_EXT_READ_LSB               24
242 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
243 #define CQSPI_REG_OP_EXT_STIG_LSB               0
244
245 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
246
247 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
248 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
249
250 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
251
252 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
253 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
254 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
255 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
256
257 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
258
259 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
260 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
261
262 /* Interrupt status bits */
263 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
264 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
265 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
266 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
267 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
268 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
269 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
270 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
271
272 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
273                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
274                                          CQSPI_REG_IRQ_IND_COMP)
275
276 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
277                                          CQSPI_REG_IRQ_WATERMARK        | \
278                                          CQSPI_REG_IRQ_UNDERFLOW)
279
280 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
281 #define CQSPI_DMA_UNALIGN               0x3
282
283 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
284
285 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
286 {
287         u32 val;
288
289         return readl_relaxed_poll_timeout(reg, val,
290                                           (((clr ? ~val : val) & mask) == mask),
291                                           10, CQSPI_TIMEOUT_MS * 1000);
292 }
293
294 static bool cqspi_is_idle(struct cqspi_st *cqspi)
295 {
296         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
297
298         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
299 }
300
301 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
302 {
303         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
304
305         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
306         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
307 }
308
309 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
310 {
311         u32 dma_status;
312
313         dma_status = readl(cqspi->iobase +
314                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
315         writel(dma_status, cqspi->iobase +
316                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
317
318         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
319 }
320
321 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
322 {
323         struct cqspi_st *cqspi = dev;
324         unsigned int irq_status;
325         struct device *device = &cqspi->pdev->dev;
326         const struct cqspi_driver_platdata *ddata;
327
328         ddata = of_device_get_match_data(device);
329
330         /* Read interrupt status */
331         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
332
333         /* Clear interrupt */
334         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
335
336         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
337                 if (ddata->get_dma_status(cqspi)) {
338                         complete(&cqspi->transfer_complete);
339                         return IRQ_HANDLED;
340                 }
341         }
342
343         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
344
345         if (irq_status)
346                 complete(&cqspi->transfer_complete);
347
348         return IRQ_HANDLED;
349 }
350
351 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
352 {
353         u32 rdreg = 0;
354
355         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
356         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
357         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
358
359         return rdreg;
360 }
361
362 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
363 {
364         unsigned int dummy_clk;
365
366         if (!op->dummy.nbytes)
367                 return 0;
368
369         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
370         if (dtr)
371                 dummy_clk /= 2;
372
373         return dummy_clk;
374 }
375
376 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
377                               const struct spi_mem_op *op)
378 {
379         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
380         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
381         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
382
383         /*
384          * For an op to be DTR, cmd phase along with every other non-empty
385          * phase should have dtr field set to 1. If an op phase has zero
386          * nbytes, ignore its dtr field; otherwise, check its dtr field.
387          */
388         f_pdata->dtr = op->cmd.dtr &&
389                        (!op->addr.nbytes || op->addr.dtr) &&
390                        (!op->data.nbytes || op->data.dtr);
391
392         switch (op->data.buswidth) {
393         case 0:
394                 break;
395         case 1:
396                 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
397                 break;
398         case 2:
399                 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
400                 break;
401         case 4:
402                 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
403                 break;
404         case 8:
405                 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
406                 break;
407         default:
408                 return -EINVAL;
409         }
410
411         /* Right now we only support 8-8-8 DTR mode. */
412         if (f_pdata->dtr) {
413                 switch (op->cmd.buswidth) {
414                 case 0:
415                         break;
416                 case 8:
417                         f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
418                         break;
419                 default:
420                         return -EINVAL;
421                 }
422
423                 switch (op->addr.buswidth) {
424                 case 0:
425                         break;
426                 case 8:
427                         f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
428                         break;
429                 default:
430                         return -EINVAL;
431                 }
432
433                 switch (op->data.buswidth) {
434                 case 0:
435                         break;
436                 case 8:
437                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
438                         break;
439                 default:
440                         return -EINVAL;
441                 }
442         }
443
444         return 0;
445 }
446
447 static int cqspi_wait_idle(struct cqspi_st *cqspi)
448 {
449         const unsigned int poll_idle_retry = 3;
450         unsigned int count = 0;
451         unsigned long timeout;
452
453         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
454         while (1) {
455                 /*
456                  * Read few times in succession to ensure the controller
457                  * is indeed idle, that is, the bit does not transition
458                  * low again.
459                  */
460                 if (cqspi_is_idle(cqspi))
461                         count++;
462                 else
463                         count = 0;
464
465                 if (count >= poll_idle_retry)
466                         return 0;
467
468                 if (time_after(jiffies, timeout)) {
469                         /* Timeout, in busy mode. */
470                         dev_err(&cqspi->pdev->dev,
471                                 "QSPI is still busy after %dms timeout.\n",
472                                 CQSPI_TIMEOUT_MS);
473                         return -ETIMEDOUT;
474                 }
475
476                 cpu_relax();
477         }
478 }
479
480 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
481 {
482         void __iomem *reg_base = cqspi->iobase;
483         int ret;
484
485         /* Write the CMDCTRL without start execution. */
486         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
487         /* Start execute */
488         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
489         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
490
491         /* Polling for completion. */
492         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
493                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
494         if (ret) {
495                 dev_err(&cqspi->pdev->dev,
496                         "Flash command execution timed out.\n");
497                 return ret;
498         }
499
500         /* Polling QSPI idle status. */
501         return cqspi_wait_idle(cqspi);
502 }
503
504 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
505                                   const struct spi_mem_op *op,
506                                   unsigned int shift)
507 {
508         struct cqspi_st *cqspi = f_pdata->cqspi;
509         void __iomem *reg_base = cqspi->iobase;
510         unsigned int reg;
511         u8 ext;
512
513         if (op->cmd.nbytes != 2)
514                 return -EINVAL;
515
516         /* Opcode extension is the LSB. */
517         ext = op->cmd.opcode & 0xff;
518
519         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
520         reg &= ~(0xff << shift);
521         reg |= ext << shift;
522         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
523
524         return 0;
525 }
526
527 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
528                             const struct spi_mem_op *op, unsigned int shift,
529                             bool enable)
530 {
531         struct cqspi_st *cqspi = f_pdata->cqspi;
532         void __iomem *reg_base = cqspi->iobase;
533         unsigned int reg;
534         int ret;
535
536         reg = readl(reg_base + CQSPI_REG_CONFIG);
537
538         /*
539          * We enable dual byte opcode here. The callers have to set up the
540          * extension opcode based on which type of operation it is.
541          */
542         if (enable) {
543                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
544                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
545
546                 /* Set up command opcode extension. */
547                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
548                 if (ret)
549                         return ret;
550         } else {
551                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
552                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
553         }
554
555         writel(reg, reg_base + CQSPI_REG_CONFIG);
556
557         return cqspi_wait_idle(cqspi);
558 }
559
560 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
561                               const struct spi_mem_op *op)
562 {
563         struct cqspi_st *cqspi = f_pdata->cqspi;
564         void __iomem *reg_base = cqspi->iobase;
565         u8 *rxbuf = op->data.buf.in;
566         u8 opcode;
567         size_t n_rx = op->data.nbytes;
568         unsigned int rdreg;
569         unsigned int reg;
570         unsigned int dummy_clk;
571         size_t read_len;
572         int status;
573
574         status = cqspi_set_protocol(f_pdata, op);
575         if (status)
576                 return status;
577
578         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
579                                   f_pdata->dtr);
580         if (status)
581                 return status;
582
583         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
584                 dev_err(&cqspi->pdev->dev,
585                         "Invalid input argument, len %zu rxbuf 0x%p\n",
586                         n_rx, rxbuf);
587                 return -EINVAL;
588         }
589
590         if (f_pdata->dtr)
591                 opcode = op->cmd.opcode >> 8;
592         else
593                 opcode = op->cmd.opcode;
594
595         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
596
597         rdreg = cqspi_calc_rdreg(f_pdata);
598         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
599
600         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
601         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
602                 return -EOPNOTSUPP;
603
604         if (dummy_clk)
605                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
606                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
607
608         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
609
610         /* 0 means 1 byte. */
611         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
612                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
613         status = cqspi_exec_flash_cmd(cqspi, reg);
614         if (status)
615                 return status;
616
617         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
618
619         /* Put the read value into rx_buf */
620         read_len = (n_rx > 4) ? 4 : n_rx;
621         memcpy(rxbuf, &reg, read_len);
622         rxbuf += read_len;
623
624         if (n_rx > 4) {
625                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
626
627                 read_len = n_rx - read_len;
628                 memcpy(rxbuf, &reg, read_len);
629         }
630
631         return 0;
632 }
633
634 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
635                                const struct spi_mem_op *op)
636 {
637         struct cqspi_st *cqspi = f_pdata->cqspi;
638         void __iomem *reg_base = cqspi->iobase;
639         u8 opcode;
640         const u8 *txbuf = op->data.buf.out;
641         size_t n_tx = op->data.nbytes;
642         unsigned int reg;
643         unsigned int data;
644         size_t write_len;
645         int ret;
646
647         ret = cqspi_set_protocol(f_pdata, op);
648         if (ret)
649                 return ret;
650
651         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
652                                f_pdata->dtr);
653         if (ret)
654                 return ret;
655
656         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
657                 dev_err(&cqspi->pdev->dev,
658                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
659                         n_tx, txbuf);
660                 return -EINVAL;
661         }
662
663         reg = cqspi_calc_rdreg(f_pdata);
664         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
665
666         if (f_pdata->dtr)
667                 opcode = op->cmd.opcode >> 8;
668         else
669                 opcode = op->cmd.opcode;
670
671         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
672
673         if (op->addr.nbytes) {
674                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
675                 reg |= ((op->addr.nbytes - 1) &
676                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
677                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
678
679                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
680         }
681
682         if (n_tx) {
683                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
684                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
685                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
686                 data = 0;
687                 write_len = (n_tx > 4) ? 4 : n_tx;
688                 memcpy(&data, txbuf, write_len);
689                 txbuf += write_len;
690                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
691
692                 if (n_tx > 4) {
693                         data = 0;
694                         write_len = n_tx - 4;
695                         memcpy(&data, txbuf, write_len);
696                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
697                 }
698         }
699
700         return cqspi_exec_flash_cmd(cqspi, reg);
701 }
702
703 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
704                             const struct spi_mem_op *op)
705 {
706         struct cqspi_st *cqspi = f_pdata->cqspi;
707         void __iomem *reg_base = cqspi->iobase;
708         unsigned int dummy_clk = 0;
709         unsigned int reg;
710         int ret;
711         u8 opcode;
712
713         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
714                                f_pdata->dtr);
715         if (ret)
716                 return ret;
717
718         if (f_pdata->dtr)
719                 opcode = op->cmd.opcode >> 8;
720         else
721                 opcode = op->cmd.opcode;
722
723         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
724         reg |= cqspi_calc_rdreg(f_pdata);
725
726         /* Setup dummy clock cycles */
727         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
728
729         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
730                 return -EOPNOTSUPP;
731
732         if (dummy_clk)
733                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
734                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
735
736         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
737
738         /* Set address width */
739         reg = readl(reg_base + CQSPI_REG_SIZE);
740         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
741         reg |= (op->addr.nbytes - 1);
742         writel(reg, reg_base + CQSPI_REG_SIZE);
743         return 0;
744 }
745
746 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
747                                        u8 *rxbuf, loff_t from_addr,
748                                        const size_t n_rx)
749 {
750         struct cqspi_st *cqspi = f_pdata->cqspi;
751         struct device *dev = &cqspi->pdev->dev;
752         void __iomem *reg_base = cqspi->iobase;
753         void __iomem *ahb_base = cqspi->ahb_base;
754         unsigned int remaining = n_rx;
755         unsigned int mod_bytes = n_rx % 4;
756         unsigned int bytes_to_read = 0;
757         u8 *rxbuf_end = rxbuf + n_rx;
758         int ret = 0;
759
760         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
761         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
762
763         /* Clear all interrupts. */
764         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
765
766         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
767
768         reinit_completion(&cqspi->transfer_complete);
769         writel(CQSPI_REG_INDIRECTRD_START_MASK,
770                reg_base + CQSPI_REG_INDIRECTRD);
771
772         while (remaining > 0) {
773                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
774                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
775                         ret = -ETIMEDOUT;
776
777                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
778
779                 if (ret && bytes_to_read == 0) {
780                         dev_err(dev, "Indirect read timeout, no bytes\n");
781                         goto failrd;
782                 }
783
784                 while (bytes_to_read != 0) {
785                         unsigned int word_remain = round_down(remaining, 4);
786
787                         bytes_to_read *= cqspi->fifo_width;
788                         bytes_to_read = bytes_to_read > remaining ?
789                                         remaining : bytes_to_read;
790                         bytes_to_read = round_down(bytes_to_read, 4);
791                         /* Read 4 byte word chunks then single bytes */
792                         if (bytes_to_read) {
793                                 ioread32_rep(ahb_base, rxbuf,
794                                              (bytes_to_read / 4));
795                         } else if (!word_remain && mod_bytes) {
796                                 unsigned int temp = ioread32(ahb_base);
797
798                                 bytes_to_read = mod_bytes;
799                                 memcpy(rxbuf, &temp, min((unsigned int)
800                                                          (rxbuf_end - rxbuf),
801                                                          bytes_to_read));
802                         }
803                         rxbuf += bytes_to_read;
804                         remaining -= bytes_to_read;
805                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
806                 }
807
808                 if (remaining > 0)
809                         reinit_completion(&cqspi->transfer_complete);
810         }
811
812         /* Check indirect done status */
813         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
814                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
815         if (ret) {
816                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
817                 goto failrd;
818         }
819
820         /* Disable interrupt */
821         writel(0, reg_base + CQSPI_REG_IRQMASK);
822
823         /* Clear indirect completion status */
824         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
825
826         return 0;
827
828 failrd:
829         /* Disable interrupt */
830         writel(0, reg_base + CQSPI_REG_IRQMASK);
831
832         /* Cancel the indirect read */
833         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
834                reg_base + CQSPI_REG_INDIRECTRD);
835         return ret;
836 }
837
838 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
839                                           u_char *rxbuf, loff_t from_addr,
840                                           size_t n_rx)
841 {
842         struct cqspi_st *cqspi = f_pdata->cqspi;
843         struct device *dev = &cqspi->pdev->dev;
844         void __iomem *reg_base = cqspi->iobase;
845         u32 reg, bytes_to_dma;
846         loff_t addr = from_addr;
847         void *buf = rxbuf;
848         dma_addr_t dma_addr;
849         u8 bytes_rem;
850         int ret = 0;
851
852         bytes_rem = n_rx % 4;
853         bytes_to_dma = (n_rx - bytes_rem);
854
855         if (!bytes_to_dma)
856                 goto nondmard;
857
858         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
859         if (ret)
860                 return ret;
861
862         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
863         reg |= CQSPI_REG_CONFIG_DMA_MASK;
864         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
865
866         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
867         if (dma_mapping_error(dev, dma_addr)) {
868                 dev_err(dev, "dma mapping failed\n");
869                 return -ENOMEM;
870         }
871
872         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
873         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
874         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
875                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
876
877         /* Clear all interrupts. */
878         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
879
880         /* Enable DMA done interrupt */
881         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
882                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
883
884         /* Default DMA periph configuration */
885         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
886
887         /* Configure DMA Dst address */
888         writel(lower_32_bits(dma_addr),
889                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
890         writel(upper_32_bits(dma_addr),
891                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
892
893         /* Configure DMA Src address */
894         writel(cqspi->trigger_address, reg_base +
895                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
896
897         /* Set DMA destination size */
898         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
899
900         /* Set DMA destination control */
901         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
902                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
903
904         writel(CQSPI_REG_INDIRECTRD_START_MASK,
905                reg_base + CQSPI_REG_INDIRECTRD);
906
907         reinit_completion(&cqspi->transfer_complete);
908
909         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
910                                          msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
911                 ret = -ETIMEDOUT;
912                 goto failrd;
913         }
914
915         /* Disable DMA interrupt */
916         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
917
918         /* Clear indirect completion status */
919         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
920                cqspi->iobase + CQSPI_REG_INDIRECTRD);
921         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
922
923         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
924         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
925         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
926
927         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
928                                         PM_OSPI_MUX_SEL_LINEAR);
929         if (ret)
930                 return ret;
931
932 nondmard:
933         if (bytes_rem) {
934                 addr += bytes_to_dma;
935                 buf += bytes_to_dma;
936                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
937                                                   bytes_rem);
938                 if (ret)
939                         return ret;
940         }
941
942         return 0;
943
944 failrd:
945         /* Disable DMA interrupt */
946         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
947
948         /* Cancel the indirect read */
949         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
950                reg_base + CQSPI_REG_INDIRECTRD);
951
952         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
953
954         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
955         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
956         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
957
958         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
959
960         return ret;
961 }
962
963 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
964                              const struct spi_mem_op *op)
965 {
966         unsigned int reg;
967         int ret;
968         struct cqspi_st *cqspi = f_pdata->cqspi;
969         void __iomem *reg_base = cqspi->iobase;
970         u8 opcode;
971
972         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
973                                f_pdata->dtr);
974         if (ret)
975                 return ret;
976
977         if (f_pdata->dtr)
978                 opcode = op->cmd.opcode >> 8;
979         else
980                 opcode = op->cmd.opcode;
981
982         /* Set opcode. */
983         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
984         reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
985         reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
986         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
987         reg = cqspi_calc_rdreg(f_pdata);
988         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
989
990         /*
991          * SPI NAND flashes require the address of the status register to be
992          * passed in the Read SR command. Also, some SPI NOR flashes like the
993          * cypress Semper flash expect a 4-byte dummy address in the Read SR
994          * command in DTR mode.
995          *
996          * But this controller does not support address phase in the Read SR
997          * command when doing auto-HW polling. So, disable write completion
998          * polling on the controller's side. spinand and spi-nor will take
999          * care of polling the status register.
1000          */
1001         if (cqspi->wr_completion) {
1002                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1003                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1004                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1005         }
1006
1007         reg = readl(reg_base + CQSPI_REG_SIZE);
1008         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1009         reg |= (op->addr.nbytes - 1);
1010         writel(reg, reg_base + CQSPI_REG_SIZE);
1011         return 0;
1012 }
1013
1014 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1015                                         loff_t to_addr, const u8 *txbuf,
1016                                         const size_t n_tx)
1017 {
1018         struct cqspi_st *cqspi = f_pdata->cqspi;
1019         struct device *dev = &cqspi->pdev->dev;
1020         void __iomem *reg_base = cqspi->iobase;
1021         unsigned int remaining = n_tx;
1022         unsigned int write_bytes;
1023         int ret;
1024
1025         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1026         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1027
1028         /* Clear all interrupts. */
1029         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1030
1031         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1032
1033         reinit_completion(&cqspi->transfer_complete);
1034         writel(CQSPI_REG_INDIRECTWR_START_MASK,
1035                reg_base + CQSPI_REG_INDIRECTWR);
1036         /*
1037          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1038          * Controller programming sequence, couple of cycles of
1039          * QSPI_REF_CLK delay is required for the above bit to
1040          * be internally synchronized by the QSPI module. Provide 5
1041          * cycles of delay.
1042          */
1043         if (cqspi->wr_delay)
1044                 ndelay(cqspi->wr_delay);
1045
1046         while (remaining > 0) {
1047                 size_t write_words, mod_bytes;
1048
1049                 write_bytes = remaining;
1050                 write_words = write_bytes / 4;
1051                 mod_bytes = write_bytes % 4;
1052                 /* Write 4 bytes at a time then single bytes. */
1053                 if (write_words) {
1054                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1055                         txbuf += (write_words * 4);
1056                 }
1057                 if (mod_bytes) {
1058                         unsigned int temp = 0xFFFFFFFF;
1059
1060                         memcpy(&temp, txbuf, mod_bytes);
1061                         iowrite32(temp, cqspi->ahb_base);
1062                         txbuf += mod_bytes;
1063                 }
1064
1065                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1066                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1067                         dev_err(dev, "Indirect write timeout\n");
1068                         ret = -ETIMEDOUT;
1069                         goto failwr;
1070                 }
1071
1072                 remaining -= write_bytes;
1073
1074                 if (remaining > 0)
1075                         reinit_completion(&cqspi->transfer_complete);
1076         }
1077
1078         /* Check indirect done status */
1079         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1080                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1081         if (ret) {
1082                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1083                 goto failwr;
1084         }
1085
1086         /* Disable interrupt. */
1087         writel(0, reg_base + CQSPI_REG_IRQMASK);
1088
1089         /* Clear indirect completion status */
1090         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1091
1092         cqspi_wait_idle(cqspi);
1093
1094         return 0;
1095
1096 failwr:
1097         /* Disable interrupt. */
1098         writel(0, reg_base + CQSPI_REG_IRQMASK);
1099
1100         /* Cancel the indirect write */
1101         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1102                reg_base + CQSPI_REG_INDIRECTWR);
1103         return ret;
1104 }
1105
1106 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1107 {
1108         struct cqspi_st *cqspi = f_pdata->cqspi;
1109         void __iomem *reg_base = cqspi->iobase;
1110         unsigned int chip_select = f_pdata->cs;
1111         unsigned int reg;
1112
1113         reg = readl(reg_base + CQSPI_REG_CONFIG);
1114         if (cqspi->is_decoded_cs) {
1115                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1116         } else {
1117                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1118
1119                 /* Convert CS if without decoder.
1120                  * CS0 to 4b'1110
1121                  * CS1 to 4b'1101
1122                  * CS2 to 4b'1011
1123                  * CS3 to 4b'0111
1124                  */
1125                 chip_select = 0xF & ~(1 << chip_select);
1126         }
1127
1128         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1129                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1130         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1131             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1132         writel(reg, reg_base + CQSPI_REG_CONFIG);
1133 }
1134
1135 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1136                                            const unsigned int ns_val)
1137 {
1138         unsigned int ticks;
1139
1140         ticks = ref_clk_hz / 1000;      /* kHz */
1141         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1142
1143         return ticks;
1144 }
1145
1146 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1147 {
1148         struct cqspi_st *cqspi = f_pdata->cqspi;
1149         void __iomem *iobase = cqspi->iobase;
1150         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1151         unsigned int tshsl, tchsh, tslch, tsd2d;
1152         unsigned int reg;
1153         unsigned int tsclk;
1154
1155         /* calculate the number of ref ticks for one sclk tick */
1156         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1157
1158         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1159         /* this particular value must be at least one sclk */
1160         if (tshsl < tsclk)
1161                 tshsl = tsclk;
1162
1163         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1164         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1165         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1166
1167         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1168                << CQSPI_REG_DELAY_TSHSL_LSB;
1169         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1170                 << CQSPI_REG_DELAY_TCHSH_LSB;
1171         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1172                 << CQSPI_REG_DELAY_TSLCH_LSB;
1173         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1174                 << CQSPI_REG_DELAY_TSD2D_LSB;
1175         writel(reg, iobase + CQSPI_REG_DELAY);
1176 }
1177
1178 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1179 {
1180         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1181         void __iomem *reg_base = cqspi->iobase;
1182         u32 reg, div;
1183
1184         /* Recalculate the baudrate divisor based on QSPI specification. */
1185         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1186
1187         reg = readl(reg_base + CQSPI_REG_CONFIG);
1188         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1189         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1190         writel(reg, reg_base + CQSPI_REG_CONFIG);
1191 }
1192
1193 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1194                                    const bool bypass,
1195                                    const unsigned int delay)
1196 {
1197         void __iomem *reg_base = cqspi->iobase;
1198         unsigned int reg;
1199
1200         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1201
1202         if (bypass)
1203                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1204         else
1205                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1206
1207         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1208                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1209
1210         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1211                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1212
1213         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1214 }
1215
1216 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1217 {
1218         void __iomem *reg_base = cqspi->iobase;
1219         unsigned int reg;
1220
1221         reg = readl(reg_base + CQSPI_REG_CONFIG);
1222
1223         if (enable)
1224                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1225         else
1226                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1227
1228         writel(reg, reg_base + CQSPI_REG_CONFIG);
1229 }
1230
1231 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1232                             unsigned long sclk)
1233 {
1234         struct cqspi_st *cqspi = f_pdata->cqspi;
1235         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1236         int switch_ck = (cqspi->sclk != sclk);
1237
1238         if (switch_cs || switch_ck)
1239                 cqspi_controller_enable(cqspi, 0);
1240
1241         /* Switch chip select. */
1242         if (switch_cs) {
1243                 cqspi->current_cs = f_pdata->cs;
1244                 cqspi_chipselect(f_pdata);
1245         }
1246
1247         /* Setup baudrate divisor and delays */
1248         if (switch_ck) {
1249                 cqspi->sclk = sclk;
1250                 cqspi_config_baudrate_div(cqspi);
1251                 cqspi_delay(f_pdata);
1252                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1253                                        f_pdata->read_delay);
1254         }
1255
1256         if (switch_cs || switch_ck)
1257                 cqspi_controller_enable(cqspi, 1);
1258 }
1259
1260 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1261                            const struct spi_mem_op *op)
1262 {
1263         struct cqspi_st *cqspi = f_pdata->cqspi;
1264         loff_t to = op->addr.val;
1265         size_t len = op->data.nbytes;
1266         const u_char *buf = op->data.buf.out;
1267         int ret;
1268
1269         ret = cqspi_set_protocol(f_pdata, op);
1270         if (ret)
1271                 return ret;
1272
1273         ret = cqspi_write_setup(f_pdata, op);
1274         if (ret)
1275                 return ret;
1276
1277         /*
1278          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1279          * address (all 0s) with the read status register command in DTR mode.
1280          * But this controller does not support sending dummy address bytes to
1281          * the flash when it is polling the write completion register in DTR
1282          * mode. So, we can not use direct mode when in DTR mode for writing
1283          * data.
1284          */
1285         if (!f_pdata->dtr && cqspi->use_direct_mode &&
1286             ((to + len) <= cqspi->ahb_size)) {
1287                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1288                 return cqspi_wait_idle(cqspi);
1289         }
1290
1291         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1292 }
1293
1294 static void cqspi_rx_dma_callback(void *param)
1295 {
1296         struct cqspi_st *cqspi = param;
1297
1298         complete(&cqspi->rx_dma_complete);
1299 }
1300
1301 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1302                                      u_char *buf, loff_t from, size_t len)
1303 {
1304         struct cqspi_st *cqspi = f_pdata->cqspi;
1305         struct device *dev = &cqspi->pdev->dev;
1306         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1307         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1308         int ret = 0;
1309         struct dma_async_tx_descriptor *tx;
1310         dma_cookie_t cookie;
1311         dma_addr_t dma_dst;
1312         struct device *ddev;
1313
1314         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1315                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1316                 return 0;
1317         }
1318
1319         ddev = cqspi->rx_chan->device->dev;
1320         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1321         if (dma_mapping_error(ddev, dma_dst)) {
1322                 dev_err(dev, "dma mapping failed\n");
1323                 return -ENOMEM;
1324         }
1325         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1326                                        len, flags);
1327         if (!tx) {
1328                 dev_err(dev, "device_prep_dma_memcpy error\n");
1329                 ret = -EIO;
1330                 goto err_unmap;
1331         }
1332
1333         tx->callback = cqspi_rx_dma_callback;
1334         tx->callback_param = cqspi;
1335         cookie = tx->tx_submit(tx);
1336         reinit_completion(&cqspi->rx_dma_complete);
1337
1338         ret = dma_submit_error(cookie);
1339         if (ret) {
1340                 dev_err(dev, "dma_submit_error %d\n", cookie);
1341                 ret = -EIO;
1342                 goto err_unmap;
1343         }
1344
1345         dma_async_issue_pending(cqspi->rx_chan);
1346         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1347                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1348                 dmaengine_terminate_sync(cqspi->rx_chan);
1349                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1350                 ret = -ETIMEDOUT;
1351                 goto err_unmap;
1352         }
1353
1354 err_unmap:
1355         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1356
1357         return ret;
1358 }
1359
1360 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1361                           const struct spi_mem_op *op)
1362 {
1363         struct cqspi_st *cqspi = f_pdata->cqspi;
1364         struct device *dev = &cqspi->pdev->dev;
1365         const struct cqspi_driver_platdata *ddata;
1366         loff_t from = op->addr.val;
1367         size_t len = op->data.nbytes;
1368         u_char *buf = op->data.buf.in;
1369         u64 dma_align = (u64)(uintptr_t)buf;
1370         int ret;
1371
1372         ddata = of_device_get_match_data(dev);
1373         ret = cqspi_set_protocol(f_pdata, op);
1374         if (ret)
1375                 return ret;
1376
1377         ret = cqspi_read_setup(f_pdata, op);
1378         if (ret)
1379                 return ret;
1380
1381         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1382                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1383
1384         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1385             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1386                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1387
1388         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1389 }
1390
1391 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1392 {
1393         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1394         struct cqspi_flash_pdata *f_pdata;
1395
1396         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1397         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1398
1399         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1400                 if (!op->addr.nbytes)
1401                         return cqspi_command_read(f_pdata, op);
1402
1403                 return cqspi_read(f_pdata, op);
1404         }
1405
1406         if (!op->addr.nbytes || !op->data.buf.out)
1407                 return cqspi_command_write(f_pdata, op);
1408
1409         return cqspi_write(f_pdata, op);
1410 }
1411
1412 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413 {
1414         int ret;
1415
1416         ret = cqspi_mem_process(mem, op);
1417         if (ret)
1418                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1419
1420         return ret;
1421 }
1422
1423 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1424                                   const struct spi_mem_op *op)
1425 {
1426         bool all_true, all_false;
1427
1428         /*
1429          * op->dummy.dtr is required for converting nbytes into ncycles.
1430          * Also, don't check the dtr field of the op phase having zero nbytes.
1431          */
1432         all_true = op->cmd.dtr &&
1433                    (!op->addr.nbytes || op->addr.dtr) &&
1434                    (!op->dummy.nbytes || op->dummy.dtr) &&
1435                    (!op->data.nbytes || op->data.dtr);
1436
1437         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1438                     !op->data.dtr;
1439
1440         /* Mixed DTR modes not supported. */
1441         if (!(all_true || all_false))
1442                 return false;
1443
1444         if (all_true)
1445                 return spi_mem_dtr_supports_op(mem, op);
1446         else
1447                 return spi_mem_default_supports_op(mem, op);
1448 }
1449
1450 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1451                                     struct cqspi_flash_pdata *f_pdata,
1452                                     struct device_node *np)
1453 {
1454         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1455                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1456                 return -ENXIO;
1457         }
1458
1459         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1460                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1461                 return -ENXIO;
1462         }
1463
1464         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1465                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1466                 return -ENXIO;
1467         }
1468
1469         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1470                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1471                 return -ENXIO;
1472         }
1473
1474         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1475                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1476                 return -ENXIO;
1477         }
1478
1479         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1480                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1481                 return -ENXIO;
1482         }
1483
1484         return 0;
1485 }
1486
1487 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1488 {
1489         struct device *dev = &cqspi->pdev->dev;
1490         struct device_node *np = dev->of_node;
1491         u32 id[2];
1492
1493         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1494
1495         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1496                 dev_err(dev, "couldn't determine fifo-depth\n");
1497                 return -ENXIO;
1498         }
1499
1500         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1501                 dev_err(dev, "couldn't determine fifo-width\n");
1502                 return -ENXIO;
1503         }
1504
1505         if (of_property_read_u32(np, "cdns,trigger-address",
1506                                  &cqspi->trigger_address)) {
1507                 dev_err(dev, "couldn't determine trigger-address\n");
1508                 return -ENXIO;
1509         }
1510
1511         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1512                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1513
1514         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1515
1516         if (!of_property_read_u32_array(np, "power-domains", id,
1517                                         ARRAY_SIZE(id)))
1518                 cqspi->pd_dev_id = id[1];
1519
1520         return 0;
1521 }
1522
1523 static void cqspi_controller_init(struct cqspi_st *cqspi)
1524 {
1525         u32 reg;
1526
1527         cqspi_controller_enable(cqspi, 0);
1528
1529         /* Configure the remap address register, no remap */
1530         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1531
1532         /* Disable all interrupts. */
1533         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1534
1535         /* Configure the SRAM split to 1:1 . */
1536         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1537
1538         /* Load indirect trigger address. */
1539         writel(cqspi->trigger_address,
1540                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1541
1542         /* Program read watermark -- 1/2 of the FIFO. */
1543         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1544                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1545         /* Program write watermark -- 1/8 of the FIFO. */
1546         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1547                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1548
1549         /* Disable direct access controller */
1550         if (!cqspi->use_direct_mode) {
1551                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1552                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1553                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1554         }
1555
1556         /* Enable DMA interface */
1557         if (cqspi->use_dma_read) {
1558                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1559                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1560                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1561         }
1562
1563         cqspi_controller_enable(cqspi, 1);
1564 }
1565
1566 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1567 {
1568         dma_cap_mask_t mask;
1569
1570         dma_cap_zero(mask);
1571         dma_cap_set(DMA_MEMCPY, mask);
1572
1573         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1574         if (IS_ERR(cqspi->rx_chan)) {
1575                 int ret = PTR_ERR(cqspi->rx_chan);
1576                 cqspi->rx_chan = NULL;
1577                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1578         }
1579         init_completion(&cqspi->rx_dma_complete);
1580
1581         return 0;
1582 }
1583
1584 static const char *cqspi_get_name(struct spi_mem *mem)
1585 {
1586         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1587         struct device *dev = &cqspi->pdev->dev;
1588
1589         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1590 }
1591
1592 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1593         .exec_op = cqspi_exec_mem_op,
1594         .get_name = cqspi_get_name,
1595         .supports_op = cqspi_supports_mem_op,
1596 };
1597
1598 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1599 {
1600         struct platform_device *pdev = cqspi->pdev;
1601         struct device *dev = &pdev->dev;
1602         struct device_node *np = dev->of_node;
1603         struct cqspi_flash_pdata *f_pdata;
1604         unsigned int cs;
1605         int ret;
1606
1607         /* Get flash device data */
1608         for_each_available_child_of_node(dev->of_node, np) {
1609                 ret = of_property_read_u32(np, "reg", &cs);
1610                 if (ret) {
1611                         dev_err(dev, "Couldn't determine chip select.\n");
1612                         of_node_put(np);
1613                         return ret;
1614                 }
1615
1616                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1617                         dev_err(dev, "Chip select %d out of range.\n", cs);
1618                         of_node_put(np);
1619                         return -EINVAL;
1620                 }
1621
1622                 f_pdata = &cqspi->f_pdata[cs];
1623                 f_pdata->cqspi = cqspi;
1624                 f_pdata->cs = cs;
1625
1626                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1627                 if (ret) {
1628                         of_node_put(np);
1629                         return ret;
1630                 }
1631         }
1632
1633         return 0;
1634 }
1635
1636 static int cqspi_probe(struct platform_device *pdev)
1637 {
1638         const struct cqspi_driver_platdata *ddata;
1639         struct reset_control *rstc, *rstc_ocp;
1640         struct device *dev = &pdev->dev;
1641         struct spi_master *master;
1642         struct resource *res_ahb;
1643         struct cqspi_st *cqspi;
1644         struct resource *res;
1645         int ret;
1646         int irq;
1647
1648         master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1649         if (!master) {
1650                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1651                 return -ENOMEM;
1652         }
1653         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1654         master->mem_ops = &cqspi_mem_ops;
1655         master->dev.of_node = pdev->dev.of_node;
1656
1657         cqspi = spi_master_get_devdata(master);
1658
1659         cqspi->pdev = pdev;
1660         platform_set_drvdata(pdev, cqspi);
1661
1662         /* Obtain configuration from OF. */
1663         ret = cqspi_of_get_pdata(cqspi);
1664         if (ret) {
1665                 dev_err(dev, "Cannot get mandatory OF data.\n");
1666                 ret = -ENODEV;
1667                 goto probe_master_put;
1668         }
1669
1670         /* Obtain QSPI clock. */
1671         cqspi->clk = devm_clk_get(dev, NULL);
1672         if (IS_ERR(cqspi->clk)) {
1673                 dev_err(dev, "Cannot claim QSPI clock.\n");
1674                 ret = PTR_ERR(cqspi->clk);
1675                 goto probe_master_put;
1676         }
1677
1678         /* Obtain and remap controller address. */
1679         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1680         cqspi->iobase = devm_ioremap_resource(dev, res);
1681         if (IS_ERR(cqspi->iobase)) {
1682                 dev_err(dev, "Cannot remap controller address.\n");
1683                 ret = PTR_ERR(cqspi->iobase);
1684                 goto probe_master_put;
1685         }
1686
1687         /* Obtain and remap AHB address. */
1688         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1689         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1690         if (IS_ERR(cqspi->ahb_base)) {
1691                 dev_err(dev, "Cannot remap AHB address.\n");
1692                 ret = PTR_ERR(cqspi->ahb_base);
1693                 goto probe_master_put;
1694         }
1695         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1696         cqspi->ahb_size = resource_size(res_ahb);
1697
1698         init_completion(&cqspi->transfer_complete);
1699
1700         /* Obtain IRQ line. */
1701         irq = platform_get_irq(pdev, 0);
1702         if (irq < 0) {
1703                 ret = -ENXIO;
1704                 goto probe_master_put;
1705         }
1706
1707         pm_runtime_enable(dev);
1708         ret = pm_runtime_get_sync(dev);
1709         if (ret < 0) {
1710                 pm_runtime_put_noidle(dev);
1711                 goto probe_master_put;
1712         }
1713
1714         ret = clk_prepare_enable(cqspi->clk);
1715         if (ret) {
1716                 dev_err(dev, "Cannot enable QSPI clock.\n");
1717                 goto probe_clk_failed;
1718         }
1719
1720         /* Obtain QSPI reset control */
1721         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1722         if (IS_ERR(rstc)) {
1723                 ret = PTR_ERR(rstc);
1724                 dev_err(dev, "Cannot get QSPI reset.\n");
1725                 goto probe_reset_failed;
1726         }
1727
1728         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1729         if (IS_ERR(rstc_ocp)) {
1730                 ret = PTR_ERR(rstc_ocp);
1731                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1732                 goto probe_reset_failed;
1733         }
1734
1735         reset_control_assert(rstc);
1736         reset_control_deassert(rstc);
1737
1738         reset_control_assert(rstc_ocp);
1739         reset_control_deassert(rstc_ocp);
1740
1741         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1742         master->max_speed_hz = cqspi->master_ref_clk_hz;
1743
1744         /* write completion is supported by default */
1745         cqspi->wr_completion = true;
1746
1747         ddata  = of_device_get_match_data(dev);
1748         if (ddata) {
1749                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1750                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1751                                                 cqspi->master_ref_clk_hz);
1752                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1753                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1754                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1755                         cqspi->use_direct_mode = true;
1756                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1757                         cqspi->use_dma_read = true;
1758                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1759                         cqspi->wr_completion = false;
1760
1761                 if (of_device_is_compatible(pdev->dev.of_node,
1762                                             "xlnx,versal-ospi-1.0"))
1763                         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1764         }
1765
1766         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1767                                pdev->name, cqspi);
1768         if (ret) {
1769                 dev_err(dev, "Cannot request IRQ.\n");
1770                 goto probe_reset_failed;
1771         }
1772
1773         cqspi_wait_idle(cqspi);
1774         cqspi_controller_init(cqspi);
1775         cqspi->current_cs = -1;
1776         cqspi->sclk = 0;
1777
1778         master->num_chipselect = cqspi->num_chipselect;
1779
1780         ret = cqspi_setup_flash(cqspi);
1781         if (ret) {
1782                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1783                 goto probe_setup_failed;
1784         }
1785
1786         if (cqspi->use_direct_mode) {
1787                 ret = cqspi_request_mmap_dma(cqspi);
1788                 if (ret == -EPROBE_DEFER)
1789                         goto probe_setup_failed;
1790         }
1791
1792         ret = devm_spi_register_master(dev, master);
1793         if (ret) {
1794                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1795                 goto probe_setup_failed;
1796         }
1797
1798         return 0;
1799 probe_setup_failed:
1800         cqspi_controller_enable(cqspi, 0);
1801 probe_reset_failed:
1802         clk_disable_unprepare(cqspi->clk);
1803 probe_clk_failed:
1804         pm_runtime_put_sync(dev);
1805         pm_runtime_disable(dev);
1806 probe_master_put:
1807         spi_master_put(master);
1808         return ret;
1809 }
1810
1811 static int cqspi_remove(struct platform_device *pdev)
1812 {
1813         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1814
1815         cqspi_controller_enable(cqspi, 0);
1816
1817         if (cqspi->rx_chan)
1818                 dma_release_channel(cqspi->rx_chan);
1819
1820         clk_disable_unprepare(cqspi->clk);
1821
1822         pm_runtime_put_sync(&pdev->dev);
1823         pm_runtime_disable(&pdev->dev);
1824
1825         return 0;
1826 }
1827
1828 #ifdef CONFIG_PM_SLEEP
1829 static int cqspi_suspend(struct device *dev)
1830 {
1831         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1832
1833         cqspi_controller_enable(cqspi, 0);
1834         return 0;
1835 }
1836
1837 static int cqspi_resume(struct device *dev)
1838 {
1839         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1840
1841         cqspi_controller_enable(cqspi, 1);
1842         return 0;
1843 }
1844
1845 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1846         .suspend = cqspi_suspend,
1847         .resume = cqspi_resume,
1848 };
1849
1850 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1851 #else
1852 #define CQSPI_DEV_PM_OPS        NULL
1853 #endif
1854
1855 static const struct cqspi_driver_platdata cdns_qspi = {
1856         .quirks = CQSPI_DISABLE_DAC_MODE,
1857 };
1858
1859 static const struct cqspi_driver_platdata k2g_qspi = {
1860         .quirks = CQSPI_NEEDS_WR_DELAY,
1861 };
1862
1863 static const struct cqspi_driver_platdata am654_ospi = {
1864         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1865         .quirks = CQSPI_NEEDS_WR_DELAY,
1866 };
1867
1868 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1869         .quirks = CQSPI_DISABLE_DAC_MODE,
1870 };
1871
1872 static const struct cqspi_driver_platdata socfpga_qspi = {
1873         .quirks = CQSPI_NO_SUPPORT_WR_COMPLETION,
1874 };
1875
1876 static const struct cqspi_driver_platdata versal_ospi = {
1877         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1878         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1879         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1880         .get_dma_status = cqspi_get_versal_dma_status,
1881 };
1882
1883 static const struct of_device_id cqspi_dt_ids[] = {
1884         {
1885                 .compatible = "cdns,qspi-nor",
1886                 .data = &cdns_qspi,
1887         },
1888         {
1889                 .compatible = "ti,k2g-qspi",
1890                 .data = &k2g_qspi,
1891         },
1892         {
1893                 .compatible = "ti,am654-ospi",
1894                 .data = &am654_ospi,
1895         },
1896         {
1897                 .compatible = "intel,lgm-qspi",
1898                 .data = &intel_lgm_qspi,
1899         },
1900         {
1901                 .compatible = "xlnx,versal-ospi-1.0",
1902                 .data = (void *)&versal_ospi,
1903         },
1904         {
1905                 .compatible = "intel,socfpga-qspi",
1906                 .data = (void *)&socfpga_qspi,
1907         },
1908         { /* end of table */ }
1909 };
1910
1911 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1912
1913 static struct platform_driver cqspi_platform_driver = {
1914         .probe = cqspi_probe,
1915         .remove = cqspi_remove,
1916         .driver = {
1917                 .name = CQSPI_NAME,
1918                 .pm = CQSPI_DEV_PM_OPS,
1919                 .of_match_table = cqspi_dt_ids,
1920         },
1921 };
1922
1923 module_platform_driver(cqspi_platform_driver);
1924
1925 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1926 MODULE_LICENSE("GPL v2");
1927 MODULE_ALIAS("platform:" CQSPI_NAME);
1928 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1929 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1930 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1931 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1932 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");