Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 #include <asm/unaligned.h>
29
30 #include "sas_internal.h"
31
32 #include <scsi/sas_ata.h>
33 #include <scsi/scsi_transport.h>
34 #include <scsi/scsi_transport_sas.h>
35 #include "../scsi_sas_internal.h"
36
37 static int sas_discover_expander(struct domain_device *dev);
38 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
39 static int sas_configure_phy(struct domain_device *dev, int phy_id,
40                              u8 *sas_addr, int include);
41 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
42
43 /* ---------- SMP task management ---------- */
44
45 static void smp_task_timedout(struct timer_list *t)
46 {
47         struct sas_task_slow *slow = from_timer(slow, t, timer);
48         struct sas_task *task = slow->task;
49         unsigned long flags;
50
51         spin_lock_irqsave(&task->task_state_lock, flags);
52         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
53                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
54                 complete(&task->slow_task->completion);
55         }
56         spin_unlock_irqrestore(&task->task_state_lock, flags);
57 }
58
59 static void smp_task_done(struct sas_task *task)
60 {
61         del_timer(&task->slow_task->timer);
62         complete(&task->slow_task->completion);
63 }
64
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67
68 static int smp_execute_task_sg(struct domain_device *dev,
69                 struct scatterlist *req, struct scatterlist *resp)
70 {
71         int res, retry;
72         struct sas_task *task = NULL;
73         struct sas_internal *i =
74                 to_sas_internal(dev->port->ha->core.shost->transportt);
75
76         mutex_lock(&dev->ex_dev.cmd_mutex);
77         for (retry = 0; retry < 3; retry++) {
78                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79                         res = -ECOMM;
80                         break;
81                 }
82
83                 task = sas_alloc_slow_task(GFP_KERNEL);
84                 if (!task) {
85                         res = -ENOMEM;
86                         break;
87                 }
88                 task->dev = dev;
89                 task->task_proto = dev->tproto;
90                 task->smp_task.smp_req = *req;
91                 task->smp_task.smp_resp = *resp;
92
93                 task->task_done = smp_task_done;
94
95                 task->slow_task->timer.function = smp_task_timedout;
96                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->slow_task->timer);
98
99                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->slow_task->timer);
103                         pr_notice("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->slow_task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         pr_notice("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 pr_notice("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
139                                   __func__,
140                                   SAS_ADDR(dev->sas_addr),
141                                   task->task_status.resp,
142                                   task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155                             void *resp, int resp_size)
156 {
157         struct scatterlist req_sg;
158         struct scatterlist resp_sg;
159
160         sg_init_one(&req_sg, req, req_size);
161         sg_init_one(&resp_sg, resp, resp_size);
162         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164
165 /* ---------- Allocations ---------- */
166
167 static inline void *alloc_smp_req(int size)
168 {
169         u8 *p = kzalloc(size, GFP_KERNEL);
170         if (p)
171                 p[0] = SMP_REQUEST;
172         return p;
173 }
174
175 static inline void *alloc_smp_resp(int size)
176 {
177         return kzalloc(size, GFP_KERNEL);
178 }
179
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182         switch (phy->routing_attr) {
183         case TABLE_ROUTING:
184                 if (dev->ex_dev.t2t_supp)
185                         return 'U';
186                 else
187                         return 'T';
188         case DIRECT_ROUTING:
189                 return 'D';
190         case SUBTRACTIVE_ROUTING:
191                 return 'S';
192         default:
193                 return '?';
194         }
195 }
196
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199         /* This is detecting a failure to transmit initial dev to host
200          * FIS as described in section J.5 of sas-2 r16
201          */
202         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204                 return SAS_SATA_PENDING;
205         else
206                 return dr->attached_dev_type;
207 }
208
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211         enum sas_device_type dev_type;
212         enum sas_linkrate linkrate;
213         u8 sas_addr[SAS_ADDR_SIZE];
214         struct smp_resp *resp = rsp;
215         struct discover_resp *dr = &resp->disc;
216         struct sas_ha_struct *ha = dev->port->ha;
217         struct expander_device *ex = &dev->ex_dev;
218         struct ex_phy *phy = &ex->ex_phy[phy_id];
219         struct sas_rphy *rphy = dev->rphy;
220         bool new_phy = !phy->phy;
221         char *type;
222
223         if (new_phy) {
224                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225                         return;
226                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227
228                 /* FIXME: error_handling */
229                 BUG_ON(!phy->phy);
230         }
231
232         switch (resp->result) {
233         case SMP_RESP_PHY_VACANT:
234                 phy->phy_state = PHY_VACANT;
235                 break;
236         default:
237                 phy->phy_state = PHY_NOT_PRESENT;
238                 break;
239         case SMP_RESP_FUNC_ACC:
240                 phy->phy_state = PHY_EMPTY; /* do not know yet */
241                 break;
242         }
243
244         /* check if anything important changed to squelch debug */
245         dev_type = phy->attached_dev_type;
246         linkrate  = phy->linkrate;
247         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248
249         /* Handle vacant phy - rest of dr data is not valid so skip it */
250         if (phy->phy_state == PHY_VACANT) {
251                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252                 phy->attached_dev_type = SAS_PHY_UNUSED;
253                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254                         phy->phy_id = phy_id;
255                         goto skip;
256                 } else
257                         goto out;
258         }
259
260         phy->attached_dev_type = to_dev_type(dr);
261         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262                 goto out;
263         phy->phy_id = phy_id;
264         phy->linkrate = dr->linkrate;
265         phy->attached_sata_host = dr->attached_sata_host;
266         phy->attached_sata_dev  = dr->attached_sata_dev;
267         phy->attached_sata_ps   = dr->attached_sata_ps;
268         phy->attached_iproto = dr->iproto << 1;
269         phy->attached_tproto = dr->tproto << 1;
270         /* help some expanders that fail to zero sas_address in the 'no
271          * device' case
272          */
273         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276         else
277                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278         phy->attached_phy_id = dr->attached_phy_id;
279         phy->phy_change_count = dr->change_count;
280         phy->routing_attr = dr->routing_attr;
281         phy->virtual = dr->virtual;
282         phy->last_da_index = -1;
283
284         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285         phy->phy->identify.device_type = dr->attached_dev_type;
286         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287         phy->phy->identify.target_port_protocols = phy->attached_tproto;
288         if (!phy->attached_tproto && dr->attached_sata_dev)
289                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290         phy->phy->identify.phy_identifier = phy_id;
291         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293         phy->phy->minimum_linkrate = dr->pmin_linkrate;
294         phy->phy->maximum_linkrate = dr->pmax_linkrate;
295         phy->phy->negotiated_linkrate = phy->linkrate;
296         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297
298  skip:
299         if (new_phy)
300                 if (sas_phy_add(phy->phy)) {
301                         sas_phy_free(phy->phy);
302                         return;
303                 }
304
305  out:
306         switch (phy->attached_dev_type) {
307         case SAS_SATA_PENDING:
308                 type = "stp pending";
309                 break;
310         case SAS_PHY_UNUSED:
311                 type = "no device";
312                 break;
313         case SAS_END_DEVICE:
314                 if (phy->attached_iproto) {
315                         if (phy->attached_tproto)
316                                 type = "host+target";
317                         else
318                                 type = "host";
319                 } else {
320                         if (dr->attached_sata_dev)
321                                 type = "stp";
322                         else
323                                 type = "ssp";
324                 }
325                 break;
326         case SAS_EDGE_EXPANDER_DEVICE:
327         case SAS_FANOUT_EXPANDER_DEVICE:
328                 type = "smp";
329                 break;
330         default:
331                 type = "unknown";
332         }
333
334         /* this routine is polled by libata error recovery so filter
335          * unimportant messages
336          */
337         if (new_phy || phy->attached_dev_type != dev_type ||
338             phy->linkrate != linkrate ||
339             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340                 /* pass */;
341         else
342                 return;
343
344         /* if the attached device type changed and ata_eh is active,
345          * make sure we run revalidation when eh completes (see:
346          * sas_enable_revalidation)
347          */
348         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350
351         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353                  SAS_ADDR(dev->sas_addr), phy->phy_id,
354                  sas_route_char(dev, phy), phy->linkrate,
355                  SAS_ADDR(phy->attached_sas_addr), type);
356 }
357
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 {
361         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362         struct domain_device *dev;
363         struct sas_rphy *rphy;
364
365         if (!ex_phy->port)
366                 return NULL;
367
368         rphy = ex_phy->port->rphy;
369         if (!rphy)
370                 return NULL;
371
372         dev = sas_find_dev_by_rphy(rphy);
373
374         if (dev && dev_is_sata(dev))
375                 return dev;
376
377         return NULL;
378 }
379
380 #define DISCOVER_REQ_SIZE  16
381 #define DISCOVER_RESP_SIZE 56
382
383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384                                       u8 *disc_resp, int single)
385 {
386         struct discover_resp *dr;
387         int res;
388
389         disc_req[9] = single;
390
391         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392                                disc_resp, DISCOVER_RESP_SIZE);
393         if (res)
394                 return res;
395         dr = &((struct smp_resp *)disc_resp)->disc;
396         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397                 pr_notice("Found loopback topology, just ignore it!\n");
398                 return 0;
399         }
400         sas_set_ex_phy(dev, single, disc_resp);
401         return 0;
402 }
403
404 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 {
406         struct expander_device *ex = &dev->ex_dev;
407         int  res = 0;
408         u8   *disc_req;
409         u8   *disc_resp;
410
411         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412         if (!disc_req)
413                 return -ENOMEM;
414
415         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416         if (!disc_resp) {
417                 kfree(disc_req);
418                 return -ENOMEM;
419         }
420
421         disc_req[1] = SMP_DISCOVER;
422
423         if (0 <= single && single < ex->num_phys) {
424                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425         } else {
426                 int i;
427
428                 for (i = 0; i < ex->num_phys; i++) {
429                         res = sas_ex_phy_discover_helper(dev, disc_req,
430                                                          disc_resp, i);
431                         if (res)
432                                 goto out_err;
433                 }
434         }
435 out_err:
436         kfree(disc_resp);
437         kfree(disc_req);
438         return res;
439 }
440
441 static int sas_expander_discover(struct domain_device *dev)
442 {
443         struct expander_device *ex = &dev->ex_dev;
444         int res = -ENOMEM;
445
446         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
447         if (!ex->ex_phy)
448                 return -ENOMEM;
449
450         res = sas_ex_phy_discover(dev, -1);
451         if (res)
452                 goto out_err;
453
454         return 0;
455  out_err:
456         kfree(ex->ex_phy);
457         ex->ex_phy = NULL;
458         return res;
459 }
460
461 #define MAX_EXPANDER_PHYS 128
462
463 static void ex_assign_report_general(struct domain_device *dev,
464                                             struct smp_resp *resp)
465 {
466         struct report_general_resp *rg = &resp->rg;
467
468         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471         dev->ex_dev.t2t_supp = rg->t2t_supp;
472         dev->ex_dev.conf_route_table = rg->conf_route_table;
473         dev->ex_dev.configuring = rg->configuring;
474         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475 }
476
477 #define RG_REQ_SIZE   8
478 #define RG_RESP_SIZE 32
479
480 static int sas_ex_general(struct domain_device *dev)
481 {
482         u8 *rg_req;
483         struct smp_resp *rg_resp;
484         int res;
485         int i;
486
487         rg_req = alloc_smp_req(RG_REQ_SIZE);
488         if (!rg_req)
489                 return -ENOMEM;
490
491         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492         if (!rg_resp) {
493                 kfree(rg_req);
494                 return -ENOMEM;
495         }
496
497         rg_req[1] = SMP_REPORT_GENERAL;
498
499         for (i = 0; i < 5; i++) {
500                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501                                        RG_RESP_SIZE);
502
503                 if (res) {
504                         pr_notice("RG to ex %016llx failed:0x%x\n",
505                                   SAS_ADDR(dev->sas_addr), res);
506                         goto out;
507                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
509                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
510                         res = rg_resp->result;
511                         goto out;
512                 }
513
514                 ex_assign_report_general(dev, rg_resp);
515
516                 if (dev->ex_dev.configuring) {
517                         pr_debug("RG: ex %llx self-configuring...\n",
518                                  SAS_ADDR(dev->sas_addr));
519                         schedule_timeout_interruptible(5*HZ);
520                 } else
521                         break;
522         }
523 out:
524         kfree(rg_req);
525         kfree(rg_resp);
526         return res;
527 }
528
529 static void ex_assign_manuf_info(struct domain_device *dev, void
530                                         *_mi_resp)
531 {
532         u8 *mi_resp = _mi_resp;
533         struct sas_rphy *rphy = dev->rphy;
534         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535
536         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538         memcpy(edev->product_rev, mi_resp + 36,
539                SAS_EXPANDER_PRODUCT_REV_LEN);
540
541         if (mi_resp[8] & 1) {
542                 memcpy(edev->component_vendor_id, mi_resp + 40,
543                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545                 edev->component_revision_id = mi_resp[50];
546         }
547 }
548
549 #define MI_REQ_SIZE   8
550 #define MI_RESP_SIZE 64
551
552 static int sas_ex_manuf_info(struct domain_device *dev)
553 {
554         u8 *mi_req;
555         u8 *mi_resp;
556         int res;
557
558         mi_req = alloc_smp_req(MI_REQ_SIZE);
559         if (!mi_req)
560                 return -ENOMEM;
561
562         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563         if (!mi_resp) {
564                 kfree(mi_req);
565                 return -ENOMEM;
566         }
567
568         mi_req[1] = SMP_REPORT_MANUF_INFO;
569
570         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571         if (res) {
572                 pr_notice("MI: ex %016llx failed:0x%x\n",
573                           SAS_ADDR(dev->sas_addr), res);
574                 goto out;
575         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
577                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
578                 goto out;
579         }
580
581         ex_assign_manuf_info(dev, mi_resp);
582 out:
583         kfree(mi_req);
584         kfree(mi_resp);
585         return res;
586 }
587
588 #define PC_REQ_SIZE  44
589 #define PC_RESP_SIZE 8
590
591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592                         enum phy_func phy_func,
593                         struct sas_phy_linkrates *rates)
594 {
595         u8 *pc_req;
596         u8 *pc_resp;
597         int res;
598
599         pc_req = alloc_smp_req(PC_REQ_SIZE);
600         if (!pc_req)
601                 return -ENOMEM;
602
603         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604         if (!pc_resp) {
605                 kfree(pc_req);
606                 return -ENOMEM;
607         }
608
609         pc_req[1] = SMP_PHY_CONTROL;
610         pc_req[9] = phy_id;
611         pc_req[10]= phy_func;
612         if (rates) {
613                 pc_req[32] = rates->minimum_linkrate << 4;
614                 pc_req[33] = rates->maximum_linkrate << 4;
615         }
616
617         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618         if (res) {
619                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
620                        SAS_ADDR(dev->sas_addr), phy_id, res);
621         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
622                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
623                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
624                 res = pc_resp[2];
625         }
626         kfree(pc_resp);
627         kfree(pc_req);
628         return res;
629 }
630
631 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
632 {
633         struct expander_device *ex = &dev->ex_dev;
634         struct ex_phy *phy = &ex->ex_phy[phy_id];
635
636         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
637         phy->linkrate = SAS_PHY_DISABLED;
638 }
639
640 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
641 {
642         struct expander_device *ex = &dev->ex_dev;
643         int i;
644
645         for (i = 0; i < ex->num_phys; i++) {
646                 struct ex_phy *phy = &ex->ex_phy[i];
647
648                 if (phy->phy_state == PHY_VACANT ||
649                     phy->phy_state == PHY_NOT_PRESENT)
650                         continue;
651
652                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
653                         sas_ex_disable_phy(dev, i);
654         }
655 }
656
657 static int sas_dev_present_in_domain(struct asd_sas_port *port,
658                                             u8 *sas_addr)
659 {
660         struct domain_device *dev;
661
662         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
663                 return 1;
664         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
665                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
666                         return 1;
667         }
668         return 0;
669 }
670
671 #define RPEL_REQ_SIZE   16
672 #define RPEL_RESP_SIZE  32
673 int sas_smp_get_phy_events(struct sas_phy *phy)
674 {
675         int res;
676         u8 *req;
677         u8 *resp;
678         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
679         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
680
681         req = alloc_smp_req(RPEL_REQ_SIZE);
682         if (!req)
683                 return -ENOMEM;
684
685         resp = alloc_smp_resp(RPEL_RESP_SIZE);
686         if (!resp) {
687                 kfree(req);
688                 return -ENOMEM;
689         }
690
691         req[1] = SMP_REPORT_PHY_ERR_LOG;
692         req[9] = phy->number;
693
694         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
695                                     resp, RPEL_RESP_SIZE);
696
697         if (res)
698                 goto out;
699
700         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
701         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
702         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
703         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
704
705  out:
706         kfree(req);
707         kfree(resp);
708         return res;
709
710 }
711
712 #ifdef CONFIG_SCSI_SAS_ATA
713
714 #define RPS_REQ_SIZE  16
715 #define RPS_RESP_SIZE 60
716
717 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
718                             struct smp_resp *rps_resp)
719 {
720         int res;
721         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
722         u8 *resp = (u8 *)rps_resp;
723
724         if (!rps_req)
725                 return -ENOMEM;
726
727         rps_req[1] = SMP_REPORT_PHY_SATA;
728         rps_req[9] = phy_id;
729
730         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
731                                     rps_resp, RPS_RESP_SIZE);
732
733         /* 0x34 is the FIS type for the D2H fis.  There's a potential
734          * standards cockup here.  sas-2 explicitly specifies the FIS
735          * should be encoded so that FIS type is in resp[24].
736          * However, some expanders endian reverse this.  Undo the
737          * reversal here */
738         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
739                 int i;
740
741                 for (i = 0; i < 5; i++) {
742                         int j = 24 + (i*4);
743                         u8 a, b;
744                         a = resp[j + 0];
745                         b = resp[j + 1];
746                         resp[j + 0] = resp[j + 3];
747                         resp[j + 1] = resp[j + 2];
748                         resp[j + 2] = b;
749                         resp[j + 3] = a;
750                 }
751         }
752
753         kfree(rps_req);
754         return res;
755 }
756 #endif
757
758 static void sas_ex_get_linkrate(struct domain_device *parent,
759                                        struct domain_device *child,
760                                        struct ex_phy *parent_phy)
761 {
762         struct expander_device *parent_ex = &parent->ex_dev;
763         struct sas_port *port;
764         int i;
765
766         child->pathways = 0;
767
768         port = parent_phy->port;
769
770         for (i = 0; i < parent_ex->num_phys; i++) {
771                 struct ex_phy *phy = &parent_ex->ex_phy[i];
772
773                 if (phy->phy_state == PHY_VACANT ||
774                     phy->phy_state == PHY_NOT_PRESENT)
775                         continue;
776
777                 if (SAS_ADDR(phy->attached_sas_addr) ==
778                     SAS_ADDR(child->sas_addr)) {
779
780                         child->min_linkrate = min(parent->min_linkrate,
781                                                   phy->linkrate);
782                         child->max_linkrate = max(parent->max_linkrate,
783                                                   phy->linkrate);
784                         child->pathways++;
785                         sas_port_add_phy(port, phy->phy);
786                 }
787         }
788         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
789         child->pathways = min(child->pathways, parent->pathways);
790 }
791
792 static struct domain_device *sas_ex_discover_end_dev(
793         struct domain_device *parent, int phy_id)
794 {
795         struct expander_device *parent_ex = &parent->ex_dev;
796         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
797         struct domain_device *child = NULL;
798         struct sas_rphy *rphy;
799         int res;
800
801         if (phy->attached_sata_host || phy->attached_sata_ps)
802                 return NULL;
803
804         child = sas_alloc_device();
805         if (!child)
806                 return NULL;
807
808         kref_get(&parent->kref);
809         child->parent = parent;
810         child->port   = parent->port;
811         child->iproto = phy->attached_iproto;
812         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
813         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
814         if (!phy->port) {
815                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
816                 if (unlikely(!phy->port))
817                         goto out_err;
818                 if (unlikely(sas_port_add(phy->port) != 0)) {
819                         sas_port_free(phy->port);
820                         goto out_err;
821                 }
822         }
823         sas_ex_get_linkrate(parent, child, phy);
824         sas_device_set_phy(child, phy->port);
825
826 #ifdef CONFIG_SCSI_SAS_ATA
827         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
828                 if (child->linkrate > parent->min_linkrate) {
829                         struct sas_phy_linkrates rates = {
830                                 .maximum_linkrate = parent->min_linkrate,
831                                 .minimum_linkrate = parent->min_linkrate,
832                         };
833                         int ret;
834
835                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
836                                    SAS_ADDR(child->sas_addr), phy_id);
837                         ret = sas_smp_phy_control(parent, phy_id,
838                                                   PHY_FUNC_LINK_RESET, &rates);
839                         if (ret) {
840                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
841                                        SAS_ADDR(child->sas_addr), phy_id, ret);
842                                 goto out_free;
843                         }
844                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
845                                   SAS_ADDR(child->sas_addr), phy_id);
846                         child->linkrate = child->min_linkrate;
847                 }
848                 res = sas_get_ata_info(child, phy);
849                 if (res)
850                         goto out_free;
851
852                 sas_init_dev(child);
853                 res = sas_ata_init(child);
854                 if (res)
855                         goto out_free;
856                 rphy = sas_end_device_alloc(phy->port);
857                 if (!rphy)
858                         goto out_free;
859                 rphy->identify.phy_identifier = phy_id;
860
861                 child->rphy = rphy;
862                 get_device(&rphy->dev);
863
864                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
865
866                 res = sas_discover_sata(child);
867                 if (res) {
868                         pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n",
869                                   SAS_ADDR(child->sas_addr),
870                                   SAS_ADDR(parent->sas_addr), phy_id, res);
871                         goto out_list_del;
872                 }
873         } else
874 #endif
875           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876                 child->dev_type = SAS_END_DEVICE;
877                 rphy = sas_end_device_alloc(phy->port);
878                 /* FIXME: error handling */
879                 if (unlikely(!rphy))
880                         goto out_free;
881                 child->tproto = phy->attached_tproto;
882                 sas_init_dev(child);
883
884                 child->rphy = rphy;
885                 get_device(&rphy->dev);
886                 rphy->identify.phy_identifier = phy_id;
887                 sas_fill_in_rphy(child, rphy);
888
889                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
890
891                 res = sas_discover_end_dev(child);
892                 if (res) {
893                         pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n",
894                                   SAS_ADDR(child->sas_addr),
895                                   SAS_ADDR(parent->sas_addr), phy_id, res);
896                         goto out_list_del;
897                 }
898         } else {
899                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
900                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
901                           phy_id);
902                 goto out_free;
903         }
904
905         list_add_tail(&child->siblings, &parent_ex->children);
906         return child;
907
908  out_list_del:
909         sas_rphy_free(child->rphy);
910         list_del(&child->disco_list_node);
911         spin_lock_irq(&parent->port->dev_list_lock);
912         list_del(&child->dev_list_node);
913         spin_unlock_irq(&parent->port->dev_list_lock);
914  out_free:
915         sas_port_delete(phy->port);
916  out_err:
917         phy->port = NULL;
918         sas_put_device(child);
919         return NULL;
920 }
921
922 /* See if this phy is part of a wide port */
923 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
924 {
925         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
926         int i;
927
928         for (i = 0; i < parent->ex_dev.num_phys; i++) {
929                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
930
931                 if (ephy == phy)
932                         continue;
933
934                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
935                             SAS_ADDR_SIZE) && ephy->port) {
936                         sas_port_add_phy(ephy->port, phy->phy);
937                         phy->port = ephy->port;
938                         phy->phy_state = PHY_DEVICE_DISCOVERED;
939                         return true;
940                 }
941         }
942
943         return false;
944 }
945
946 static struct domain_device *sas_ex_discover_expander(
947         struct domain_device *parent, int phy_id)
948 {
949         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
950         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
951         struct domain_device *child = NULL;
952         struct sas_rphy *rphy;
953         struct sas_expander_device *edev;
954         struct asd_sas_port *port;
955         int res;
956
957         if (phy->routing_attr == DIRECT_ROUTING) {
958                 pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n",
959                         SAS_ADDR(parent->sas_addr), phy_id,
960                         SAS_ADDR(phy->attached_sas_addr),
961                         phy->attached_phy_id);
962                 return NULL;
963         }
964         child = sas_alloc_device();
965         if (!child)
966                 return NULL;
967
968         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
969         /* FIXME: better error handling */
970         BUG_ON(sas_port_add(phy->port) != 0);
971
972
973         switch (phy->attached_dev_type) {
974         case SAS_EDGE_EXPANDER_DEVICE:
975                 rphy = sas_expander_alloc(phy->port,
976                                           SAS_EDGE_EXPANDER_DEVICE);
977                 break;
978         case SAS_FANOUT_EXPANDER_DEVICE:
979                 rphy = sas_expander_alloc(phy->port,
980                                           SAS_FANOUT_EXPANDER_DEVICE);
981                 break;
982         default:
983                 rphy = NULL;    /* shut gcc up */
984                 BUG();
985         }
986         port = parent->port;
987         child->rphy = rphy;
988         get_device(&rphy->dev);
989         edev = rphy_to_expander_device(rphy);
990         child->dev_type = phy->attached_dev_type;
991         kref_get(&parent->kref);
992         child->parent = parent;
993         child->port = port;
994         child->iproto = phy->attached_iproto;
995         child->tproto = phy->attached_tproto;
996         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
997         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
998         sas_ex_get_linkrate(parent, child, phy);
999         edev->level = parent_ex->level + 1;
1000         parent->port->disc.max_level = max(parent->port->disc.max_level,
1001                                            edev->level);
1002         sas_init_dev(child);
1003         sas_fill_in_rphy(child, rphy);
1004         sas_rphy_add(rphy);
1005
1006         spin_lock_irq(&parent->port->dev_list_lock);
1007         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1008         spin_unlock_irq(&parent->port->dev_list_lock);
1009
1010         res = sas_discover_expander(child);
1011         if (res) {
1012                 sas_rphy_delete(rphy);
1013                 spin_lock_irq(&parent->port->dev_list_lock);
1014                 list_del(&child->dev_list_node);
1015                 spin_unlock_irq(&parent->port->dev_list_lock);
1016                 sas_put_device(child);
1017                 return NULL;
1018         }
1019         list_add_tail(&child->siblings, &parent->ex_dev.children);
1020         return child;
1021 }
1022
1023 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1024 {
1025         struct expander_device *ex = &dev->ex_dev;
1026         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1027         struct domain_device *child = NULL;
1028         int res = 0;
1029
1030         /* Phy state */
1031         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1032                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1033                         res = sas_ex_phy_discover(dev, phy_id);
1034                 if (res)
1035                         return res;
1036         }
1037
1038         /* Parent and domain coherency */
1039         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1040                              SAS_ADDR(dev->port->sas_addr))) {
1041                 sas_add_parent_port(dev, phy_id);
1042                 return 0;
1043         }
1044         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1045                             SAS_ADDR(dev->parent->sas_addr))) {
1046                 sas_add_parent_port(dev, phy_id);
1047                 if (ex_phy->routing_attr == TABLE_ROUTING)
1048                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1049                 return 0;
1050         }
1051
1052         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1053                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1054
1055         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1056                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1057                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1058                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1059                 }
1060                 return 0;
1061         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1062                 return 0;
1063
1064         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1065             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1066             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1067             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1068                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n",
1069                         ex_phy->attached_dev_type,
1070                         SAS_ADDR(dev->sas_addr),
1071                         phy_id);
1072                 return 0;
1073         }
1074
1075         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1076         if (res) {
1077                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1078                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1079                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1080                 return res;
1081         }
1082
1083         if (sas_ex_join_wide_port(dev, phy_id)) {
1084                 pr_debug("Attaching ex phy%d to wide port %016llx\n",
1085                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1086                 return res;
1087         }
1088
1089         switch (ex_phy->attached_dev_type) {
1090         case SAS_END_DEVICE:
1091         case SAS_SATA_PENDING:
1092                 child = sas_ex_discover_end_dev(dev, phy_id);
1093                 break;
1094         case SAS_FANOUT_EXPANDER_DEVICE:
1095                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1096                         pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n",
1097                                  SAS_ADDR(ex_phy->attached_sas_addr),
1098                                  ex_phy->attached_phy_id,
1099                                  SAS_ADDR(dev->sas_addr),
1100                                  phy_id);
1101                         sas_ex_disable_phy(dev, phy_id);
1102                         break;
1103                 } else
1104                         memcpy(dev->port->disc.fanout_sas_addr,
1105                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1106                 /* fallthrough */
1107         case SAS_EDGE_EXPANDER_DEVICE:
1108                 child = sas_ex_discover_expander(dev, phy_id);
1109                 break;
1110         default:
1111                 break;
1112         }
1113
1114         if (child) {
1115                 int i;
1116
1117                 for (i = 0; i < ex->num_phys; i++) {
1118                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1119                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1120                                 continue;
1121                         /*
1122                          * Due to races, the phy might not get added to the
1123                          * wide port, so we add the phy to the wide port here.
1124                          */
1125                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1126                             SAS_ADDR(child->sas_addr)) {
1127                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1128                                 if (sas_ex_join_wide_port(dev, i))
1129                                         pr_debug("Attaching ex phy%d to wide port %016llx\n",
1130                                                  i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1131                         }
1132                 }
1133         }
1134
1135         return res;
1136 }
1137
1138 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1139 {
1140         struct expander_device *ex = &dev->ex_dev;
1141         int i;
1142
1143         for (i = 0; i < ex->num_phys; i++) {
1144                 struct ex_phy *phy = &ex->ex_phy[i];
1145
1146                 if (phy->phy_state == PHY_VACANT ||
1147                     phy->phy_state == PHY_NOT_PRESENT)
1148                         continue;
1149
1150                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1151                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1152                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1153
1154                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1155
1156                         return 1;
1157                 }
1158         }
1159         return 0;
1160 }
1161
1162 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1163 {
1164         struct expander_device *ex = &dev->ex_dev;
1165         struct domain_device *child;
1166         u8 sub_addr[8] = {0, };
1167
1168         list_for_each_entry(child, &ex->children, siblings) {
1169                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1170                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1171                         continue;
1172                 if (sub_addr[0] == 0) {
1173                         sas_find_sub_addr(child, sub_addr);
1174                         continue;
1175                 } else {
1176                         u8 s2[8];
1177
1178                         if (sas_find_sub_addr(child, s2) &&
1179                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1180
1181                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1182                                           SAS_ADDR(dev->sas_addr),
1183                                           SAS_ADDR(child->sas_addr),
1184                                           SAS_ADDR(s2),
1185                                           SAS_ADDR(sub_addr));
1186
1187                                 sas_ex_disable_port(child, s2);
1188                         }
1189                 }
1190         }
1191         return 0;
1192 }
1193 /**
1194  * sas_ex_discover_devices - discover devices attached to this expander
1195  * @dev: pointer to the expander domain device
1196  * @single: if you want to do a single phy, else set to -1;
1197  *
1198  * Configure this expander for use with its devices and register the
1199  * devices of this expander.
1200  */
1201 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1202 {
1203         struct expander_device *ex = &dev->ex_dev;
1204         int i = 0, end = ex->num_phys;
1205         int res = 0;
1206
1207         if (0 <= single && single < end) {
1208                 i = single;
1209                 end = i+1;
1210         }
1211
1212         for ( ; i < end; i++) {
1213                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1214
1215                 if (ex_phy->phy_state == PHY_VACANT ||
1216                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1217                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1218                         continue;
1219
1220                 switch (ex_phy->linkrate) {
1221                 case SAS_PHY_DISABLED:
1222                 case SAS_PHY_RESET_PROBLEM:
1223                 case SAS_SATA_PORT_SELECTOR:
1224                         continue;
1225                 default:
1226                         res = sas_ex_discover_dev(dev, i);
1227                         if (res)
1228                                 break;
1229                         continue;
1230                 }
1231         }
1232
1233         if (!res)
1234                 sas_check_level_subtractive_boundary(dev);
1235
1236         return res;
1237 }
1238
1239 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1240 {
1241         struct expander_device *ex = &dev->ex_dev;
1242         int i;
1243         u8  *sub_sas_addr = NULL;
1244
1245         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1246                 return 0;
1247
1248         for (i = 0; i < ex->num_phys; i++) {
1249                 struct ex_phy *phy = &ex->ex_phy[i];
1250
1251                 if (phy->phy_state == PHY_VACANT ||
1252                     phy->phy_state == PHY_NOT_PRESENT)
1253                         continue;
1254
1255                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1256                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1257                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1258
1259                         if (!sub_sas_addr)
1260                                 sub_sas_addr = &phy->attached_sas_addr[0];
1261                         else if (SAS_ADDR(sub_sas_addr) !=
1262                                  SAS_ADDR(phy->attached_sas_addr)) {
1263
1264                                 pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1265                                           SAS_ADDR(dev->sas_addr), i,
1266                                           SAS_ADDR(phy->attached_sas_addr),
1267                                           SAS_ADDR(sub_sas_addr));
1268                                 sas_ex_disable_phy(dev, i);
1269                         }
1270                 }
1271         }
1272         return 0;
1273 }
1274
1275 static void sas_print_parent_topology_bug(struct domain_device *child,
1276                                                  struct ex_phy *parent_phy,
1277                                                  struct ex_phy *child_phy)
1278 {
1279         static const char *ex_type[] = {
1280                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1281                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1282         };
1283         struct domain_device *parent = child->parent;
1284
1285         pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n",
1286                   ex_type[parent->dev_type],
1287                   SAS_ADDR(parent->sas_addr),
1288                   parent_phy->phy_id,
1289
1290                   ex_type[child->dev_type],
1291                   SAS_ADDR(child->sas_addr),
1292                   child_phy->phy_id,
1293
1294                   sas_route_char(parent, parent_phy),
1295                   sas_route_char(child, child_phy));
1296 }
1297
1298 static int sas_check_eeds(struct domain_device *child,
1299                                  struct ex_phy *parent_phy,
1300                                  struct ex_phy *child_phy)
1301 {
1302         int res = 0;
1303         struct domain_device *parent = child->parent;
1304
1305         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1306                 res = -ENODEV;
1307                 pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n",
1308                         SAS_ADDR(parent->sas_addr),
1309                         parent_phy->phy_id,
1310                         SAS_ADDR(child->sas_addr),
1311                         child_phy->phy_id,
1312                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1313         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1314                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1315                        SAS_ADDR_SIZE);
1316                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1317                        SAS_ADDR_SIZE);
1318         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1319                     SAS_ADDR(parent->sas_addr)) ||
1320                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1321                     SAS_ADDR(child->sas_addr)))
1322                    &&
1323                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1324                      SAS_ADDR(parent->sas_addr)) ||
1325                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1326                      SAS_ADDR(child->sas_addr))))
1327                 ;
1328         else {
1329                 res = -ENODEV;
1330                 pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n",
1331                         SAS_ADDR(parent->sas_addr),
1332                         parent_phy->phy_id,
1333                         SAS_ADDR(child->sas_addr),
1334                         child_phy->phy_id);
1335         }
1336
1337         return res;
1338 }
1339
1340 /* Here we spill over 80 columns.  It is intentional.
1341  */
1342 static int sas_check_parent_topology(struct domain_device *child)
1343 {
1344         struct expander_device *child_ex = &child->ex_dev;
1345         struct expander_device *parent_ex;
1346         int i;
1347         int res = 0;
1348
1349         if (!child->parent)
1350                 return 0;
1351
1352         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1353             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1354                 return 0;
1355
1356         parent_ex = &child->parent->ex_dev;
1357
1358         for (i = 0; i < parent_ex->num_phys; i++) {
1359                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1360                 struct ex_phy *child_phy;
1361
1362                 if (parent_phy->phy_state == PHY_VACANT ||
1363                     parent_phy->phy_state == PHY_NOT_PRESENT)
1364                         continue;
1365
1366                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1367                         continue;
1368
1369                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1370
1371                 switch (child->parent->dev_type) {
1372                 case SAS_EDGE_EXPANDER_DEVICE:
1373                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1374                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1375                                     child_phy->routing_attr != TABLE_ROUTING) {
1376                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1377                                         res = -ENODEV;
1378                                 }
1379                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1380                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1381                                         res = sas_check_eeds(child, parent_phy, child_phy);
1382                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1383                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1384                                         res = -ENODEV;
1385                                 }
1386                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1387                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1388                                     (child_phy->routing_attr == TABLE_ROUTING &&
1389                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1390                                         /* All good */;
1391                                 } else {
1392                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1393                                         res = -ENODEV;
1394                                 }
1395                         }
1396                         break;
1397                 case SAS_FANOUT_EXPANDER_DEVICE:
1398                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1399                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1400                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1401                                 res = -ENODEV;
1402                         }
1403                         break;
1404                 default:
1405                         break;
1406                 }
1407         }
1408
1409         return res;
1410 }
1411
1412 #define RRI_REQ_SIZE  16
1413 #define RRI_RESP_SIZE 44
1414
1415 static int sas_configure_present(struct domain_device *dev, int phy_id,
1416                                  u8 *sas_addr, int *index, int *present)
1417 {
1418         int i, res = 0;
1419         struct expander_device *ex = &dev->ex_dev;
1420         struct ex_phy *phy = &ex->ex_phy[phy_id];
1421         u8 *rri_req;
1422         u8 *rri_resp;
1423
1424         *present = 0;
1425         *index = 0;
1426
1427         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1428         if (!rri_req)
1429                 return -ENOMEM;
1430
1431         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1432         if (!rri_resp) {
1433                 kfree(rri_req);
1434                 return -ENOMEM;
1435         }
1436
1437         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1438         rri_req[9] = phy_id;
1439
1440         for (i = 0; i < ex->max_route_indexes ; i++) {
1441                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1442                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1443                                        RRI_RESP_SIZE);
1444                 if (res)
1445                         goto out;
1446                 res = rri_resp[2];
1447                 if (res == SMP_RESP_NO_INDEX) {
1448                         pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1449                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1450                         goto out;
1451                 } else if (res != SMP_RESP_FUNC_ACC) {
1452                         pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n",
1453                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1454                                   i, res);
1455                         goto out;
1456                 }
1457                 if (SAS_ADDR(sas_addr) != 0) {
1458                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1459                                 *index = i;
1460                                 if ((rri_resp[12] & 0x80) == 0x80)
1461                                         *present = 0;
1462                                 else
1463                                         *present = 1;
1464                                 goto out;
1465                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1466                                 *index = i;
1467                                 *present = 0;
1468                                 goto out;
1469                         }
1470                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1471                            phy->last_da_index < i) {
1472                         phy->last_da_index = i;
1473                         *index = i;
1474                         *present = 0;
1475                         goto out;
1476                 }
1477         }
1478         res = -1;
1479 out:
1480         kfree(rri_req);
1481         kfree(rri_resp);
1482         return res;
1483 }
1484
1485 #define CRI_REQ_SIZE  44
1486 #define CRI_RESP_SIZE  8
1487
1488 static int sas_configure_set(struct domain_device *dev, int phy_id,
1489                              u8 *sas_addr, int index, int include)
1490 {
1491         int res;
1492         u8 *cri_req;
1493         u8 *cri_resp;
1494
1495         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1496         if (!cri_req)
1497                 return -ENOMEM;
1498
1499         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1500         if (!cri_resp) {
1501                 kfree(cri_req);
1502                 return -ENOMEM;
1503         }
1504
1505         cri_req[1] = SMP_CONF_ROUTE_INFO;
1506         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1507         cri_req[9] = phy_id;
1508         if (SAS_ADDR(sas_addr) == 0 || !include)
1509                 cri_req[12] |= 0x80;
1510         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1511
1512         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1513                                CRI_RESP_SIZE);
1514         if (res)
1515                 goto out;
1516         res = cri_resp[2];
1517         if (res == SMP_RESP_NO_INDEX) {
1518                 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1519                         SAS_ADDR(dev->sas_addr), phy_id, index);
1520         }
1521 out:
1522         kfree(cri_req);
1523         kfree(cri_resp);
1524         return res;
1525 }
1526
1527 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1528                                     u8 *sas_addr, int include)
1529 {
1530         int index;
1531         int present;
1532         int res;
1533
1534         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1535         if (res)
1536                 return res;
1537         if (include ^ present)
1538                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1539
1540         return res;
1541 }
1542
1543 /**
1544  * sas_configure_parent - configure routing table of parent
1545  * @parent: parent expander
1546  * @child: child expander
1547  * @sas_addr: SAS port identifier of device directly attached to child
1548  * @include: whether or not to include @child in the expander routing table
1549  */
1550 static int sas_configure_parent(struct domain_device *parent,
1551                                 struct domain_device *child,
1552                                 u8 *sas_addr, int include)
1553 {
1554         struct expander_device *ex_parent = &parent->ex_dev;
1555         int res = 0;
1556         int i;
1557
1558         if (parent->parent) {
1559                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1560                                            include);
1561                 if (res)
1562                         return res;
1563         }
1564
1565         if (ex_parent->conf_route_table == 0) {
1566                 pr_debug("ex %016llx has self-configuring routing table\n",
1567                          SAS_ADDR(parent->sas_addr));
1568                 return 0;
1569         }
1570
1571         for (i = 0; i < ex_parent->num_phys; i++) {
1572                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1573
1574                 if ((phy->routing_attr == TABLE_ROUTING) &&
1575                     (SAS_ADDR(phy->attached_sas_addr) ==
1576                      SAS_ADDR(child->sas_addr))) {
1577                         res = sas_configure_phy(parent, i, sas_addr, include);
1578                         if (res)
1579                                 return res;
1580                 }
1581         }
1582
1583         return res;
1584 }
1585
1586 /**
1587  * sas_configure_routing - configure routing
1588  * @dev: expander device
1589  * @sas_addr: port identifier of device directly attached to the expander device
1590  */
1591 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1592 {
1593         if (dev->parent)
1594                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1595         return 0;
1596 }
1597
1598 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1599 {
1600         if (dev->parent)
1601                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1602         return 0;
1603 }
1604
1605 /**
1606  * sas_discover_expander - expander discovery
1607  * @dev: pointer to expander domain device
1608  *
1609  * See comment in sas_discover_sata().
1610  */
1611 static int sas_discover_expander(struct domain_device *dev)
1612 {
1613         int res;
1614
1615         res = sas_notify_lldd_dev_found(dev);
1616         if (res)
1617                 return res;
1618
1619         res = sas_ex_general(dev);
1620         if (res)
1621                 goto out_err;
1622         res = sas_ex_manuf_info(dev);
1623         if (res)
1624                 goto out_err;
1625
1626         res = sas_expander_discover(dev);
1627         if (res) {
1628                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1629                         SAS_ADDR(dev->sas_addr), res);
1630                 goto out_err;
1631         }
1632
1633         sas_check_ex_subtractive_boundary(dev);
1634         res = sas_check_parent_topology(dev);
1635         if (res)
1636                 goto out_err;
1637         return 0;
1638 out_err:
1639         sas_notify_lldd_dev_gone(dev);
1640         return res;
1641 }
1642
1643 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1644 {
1645         int res = 0;
1646         struct domain_device *dev;
1647
1648         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1649                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1650                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1651                         struct sas_expander_device *ex =
1652                                 rphy_to_expander_device(dev->rphy);
1653
1654                         if (level == ex->level)
1655                                 res = sas_ex_discover_devices(dev, -1);
1656                         else if (level > 0)
1657                                 res = sas_ex_discover_devices(port->port_dev, -1);
1658
1659                 }
1660         }
1661
1662         return res;
1663 }
1664
1665 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1666 {
1667         int res;
1668         int level;
1669
1670         do {
1671                 level = port->disc.max_level;
1672                 res = sas_ex_level_discovery(port, level);
1673                 mb();
1674         } while (level < port->disc.max_level);
1675
1676         return res;
1677 }
1678
1679 int sas_discover_root_expander(struct domain_device *dev)
1680 {
1681         int res;
1682         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1683
1684         res = sas_rphy_add(dev->rphy);
1685         if (res)
1686                 goto out_err;
1687
1688         ex->level = dev->port->disc.max_level; /* 0 */
1689         res = sas_discover_expander(dev);
1690         if (res)
1691                 goto out_err2;
1692
1693         sas_ex_bfs_disc(dev->port);
1694
1695         return res;
1696
1697 out_err2:
1698         sas_rphy_remove(dev->rphy);
1699 out_err:
1700         return res;
1701 }
1702
1703 /* ---------- Domain revalidation ---------- */
1704
1705 static int sas_get_phy_discover(struct domain_device *dev,
1706                                 int phy_id, struct smp_resp *disc_resp)
1707 {
1708         int res;
1709         u8 *disc_req;
1710
1711         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1712         if (!disc_req)
1713                 return -ENOMEM;
1714
1715         disc_req[1] = SMP_DISCOVER;
1716         disc_req[9] = phy_id;
1717
1718         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1719                                disc_resp, DISCOVER_RESP_SIZE);
1720         if (res)
1721                 goto out;
1722         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1723                 res = disc_resp->result;
1724                 goto out;
1725         }
1726 out:
1727         kfree(disc_req);
1728         return res;
1729 }
1730
1731 static int sas_get_phy_change_count(struct domain_device *dev,
1732                                     int phy_id, int *pcc)
1733 {
1734         int res;
1735         struct smp_resp *disc_resp;
1736
1737         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1738         if (!disc_resp)
1739                 return -ENOMEM;
1740
1741         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1742         if (!res)
1743                 *pcc = disc_resp->disc.change_count;
1744
1745         kfree(disc_resp);
1746         return res;
1747 }
1748
1749 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1750                                     u8 *sas_addr, enum sas_device_type *type)
1751 {
1752         int res;
1753         struct smp_resp *disc_resp;
1754         struct discover_resp *dr;
1755
1756         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1757         if (!disc_resp)
1758                 return -ENOMEM;
1759         dr = &disc_resp->disc;
1760
1761         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1762         if (res == 0) {
1763                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1764                 *type = to_dev_type(dr);
1765                 if (*type == 0)
1766                         memset(sas_addr, 0, 8);
1767         }
1768         kfree(disc_resp);
1769         return res;
1770 }
1771
1772 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1773                               int from_phy, bool update)
1774 {
1775         struct expander_device *ex = &dev->ex_dev;
1776         int res = 0;
1777         int i;
1778
1779         for (i = from_phy; i < ex->num_phys; i++) {
1780                 int phy_change_count = 0;
1781
1782                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1783                 switch (res) {
1784                 case SMP_RESP_PHY_VACANT:
1785                 case SMP_RESP_NO_PHY:
1786                         continue;
1787                 case SMP_RESP_FUNC_ACC:
1788                         break;
1789                 default:
1790                         return res;
1791                 }
1792
1793                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1794                         if (update)
1795                                 ex->ex_phy[i].phy_change_count =
1796                                         phy_change_count;
1797                         *phy_id = i;
1798                         return 0;
1799                 }
1800         }
1801         return 0;
1802 }
1803
1804 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1805 {
1806         int res;
1807         u8  *rg_req;
1808         struct smp_resp  *rg_resp;
1809
1810         rg_req = alloc_smp_req(RG_REQ_SIZE);
1811         if (!rg_req)
1812                 return -ENOMEM;
1813
1814         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1815         if (!rg_resp) {
1816                 kfree(rg_req);
1817                 return -ENOMEM;
1818         }
1819
1820         rg_req[1] = SMP_REPORT_GENERAL;
1821
1822         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1823                                RG_RESP_SIZE);
1824         if (res)
1825                 goto out;
1826         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1827                 res = rg_resp->result;
1828                 goto out;
1829         }
1830
1831         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1832 out:
1833         kfree(rg_resp);
1834         kfree(rg_req);
1835         return res;
1836 }
1837 /**
1838  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1839  * @dev:domain device to be detect.
1840  * @src_dev: the device which originated BROADCAST(CHANGE).
1841  *
1842  * Add self-configuration expander support. Suppose two expander cascading,
1843  * when the first level expander is self-configuring, hotplug the disks in
1844  * second level expander, BROADCAST(CHANGE) will not only be originated
1845  * in the second level expander, but also be originated in the first level
1846  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1847  * expander changed count in two level expanders will all increment at least
1848  * once, but the phy which chang count has changed is the source device which
1849  * we concerned.
1850  */
1851
1852 static int sas_find_bcast_dev(struct domain_device *dev,
1853                               struct domain_device **src_dev)
1854 {
1855         struct expander_device *ex = &dev->ex_dev;
1856         int ex_change_count = -1;
1857         int phy_id = -1;
1858         int res;
1859         struct domain_device *ch;
1860
1861         res = sas_get_ex_change_count(dev, &ex_change_count);
1862         if (res)
1863                 goto out;
1864         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1865                 /* Just detect if this expander phys phy change count changed,
1866                 * in order to determine if this expander originate BROADCAST,
1867                 * and do not update phy change count field in our structure.
1868                 */
1869                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1870                 if (phy_id != -1) {
1871                         *src_dev = dev;
1872                         ex->ex_change_count = ex_change_count;
1873                         pr_info("Expander phy change count has changed\n");
1874                         return res;
1875                 } else
1876                         pr_info("Expander phys DID NOT change\n");
1877         }
1878         list_for_each_entry(ch, &ex->children, siblings) {
1879                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1880                         res = sas_find_bcast_dev(ch, src_dev);
1881                         if (*src_dev)
1882                                 return res;
1883                 }
1884         }
1885 out:
1886         return res;
1887 }
1888
1889 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1890 {
1891         struct expander_device *ex = &dev->ex_dev;
1892         struct domain_device *child, *n;
1893
1894         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1895                 set_bit(SAS_DEV_GONE, &child->state);
1896                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1897                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1898                         sas_unregister_ex_tree(port, child);
1899                 else
1900                         sas_unregister_dev(port, child);
1901         }
1902         sas_unregister_dev(port, dev);
1903 }
1904
1905 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1906                                          int phy_id, bool last)
1907 {
1908         struct expander_device *ex_dev = &parent->ex_dev;
1909         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1910         struct domain_device *child, *n, *found = NULL;
1911         if (last) {
1912                 list_for_each_entry_safe(child, n,
1913                         &ex_dev->children, siblings) {
1914                         if (SAS_ADDR(child->sas_addr) ==
1915                             SAS_ADDR(phy->attached_sas_addr)) {
1916                                 set_bit(SAS_DEV_GONE, &child->state);
1917                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1918                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1919                                         sas_unregister_ex_tree(parent->port, child);
1920                                 else
1921                                         sas_unregister_dev(parent->port, child);
1922                                 found = child;
1923                                 break;
1924                         }
1925                 }
1926                 sas_disable_routing(parent, phy->attached_sas_addr);
1927         }
1928         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1929         if (phy->port) {
1930                 sas_port_delete_phy(phy->port, phy->phy);
1931                 sas_device_set_phy(found, phy->port);
1932                 if (phy->port->num_phys == 0)
1933                         list_add_tail(&phy->port->del_list,
1934                                 &parent->port->sas_port_del_list);
1935                 phy->port = NULL;
1936         }
1937 }
1938
1939 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1940                                           const int level)
1941 {
1942         struct expander_device *ex_root = &root->ex_dev;
1943         struct domain_device *child;
1944         int res = 0;
1945
1946         list_for_each_entry(child, &ex_root->children, siblings) {
1947                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1948                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1949                         struct sas_expander_device *ex =
1950                                 rphy_to_expander_device(child->rphy);
1951
1952                         if (level > ex->level)
1953                                 res = sas_discover_bfs_by_root_level(child,
1954                                                                      level);
1955                         else if (level == ex->level)
1956                                 res = sas_ex_discover_devices(child, -1);
1957                 }
1958         }
1959         return res;
1960 }
1961
1962 static int sas_discover_bfs_by_root(struct domain_device *dev)
1963 {
1964         int res;
1965         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1966         int level = ex->level+1;
1967
1968         res = sas_ex_discover_devices(dev, -1);
1969         if (res)
1970                 goto out;
1971         do {
1972                 res = sas_discover_bfs_by_root_level(dev, level);
1973                 mb();
1974                 level += 1;
1975         } while (level <= dev->port->disc.max_level);
1976 out:
1977         return res;
1978 }
1979
1980 static int sas_discover_new(struct domain_device *dev, int phy_id)
1981 {
1982         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1983         struct domain_device *child;
1984         int res;
1985
1986         pr_debug("ex %016llx phy%d new device attached\n",
1987                  SAS_ADDR(dev->sas_addr), phy_id);
1988         res = sas_ex_phy_discover(dev, phy_id);
1989         if (res)
1990                 return res;
1991
1992         if (sas_ex_join_wide_port(dev, phy_id))
1993                 return 0;
1994
1995         res = sas_ex_discover_devices(dev, phy_id);
1996         if (res)
1997                 return res;
1998         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1999                 if (SAS_ADDR(child->sas_addr) ==
2000                     SAS_ADDR(ex_phy->attached_sas_addr)) {
2001                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2002                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2003                                 res = sas_discover_bfs_by_root(child);
2004                         break;
2005                 }
2006         }
2007         return res;
2008 }
2009
2010 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2011 {
2012         if (old == new)
2013                 return true;
2014
2015         /* treat device directed resets as flutter, if we went
2016          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2017          */
2018         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2019             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2020                 return true;
2021
2022         return false;
2023 }
2024
2025 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2026 {
2027         struct expander_device *ex = &dev->ex_dev;
2028         struct ex_phy *phy = &ex->ex_phy[phy_id];
2029         enum sas_device_type type = SAS_PHY_UNUSED;
2030         u8 sas_addr[8];
2031         int res;
2032
2033         memset(sas_addr, 0, 8);
2034         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2035         switch (res) {
2036         case SMP_RESP_NO_PHY:
2037                 phy->phy_state = PHY_NOT_PRESENT;
2038                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2039                 return res;
2040         case SMP_RESP_PHY_VACANT:
2041                 phy->phy_state = PHY_VACANT;
2042                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2043                 return res;
2044         case SMP_RESP_FUNC_ACC:
2045                 break;
2046         case -ECOMM:
2047                 break;
2048         default:
2049                 return res;
2050         }
2051
2052         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2053                 phy->phy_state = PHY_EMPTY;
2054                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2055                 return res;
2056         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2057                    dev_type_flutter(type, phy->attached_dev_type)) {
2058                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2059                 char *action = "";
2060
2061                 sas_ex_phy_discover(dev, phy_id);
2062
2063                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2064                         action = ", needs recovery";
2065                 pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n",
2066                          SAS_ADDR(dev->sas_addr), phy_id, action);
2067                 return res;
2068         }
2069
2070         /* we always have to delete the old device when we went here */
2071         pr_info("ex %016llx phy 0x%x replace %016llx\n",
2072                 SAS_ADDR(dev->sas_addr), phy_id,
2073                 SAS_ADDR(phy->attached_sas_addr));
2074         sas_unregister_devs_sas_addr(dev, phy_id, last);
2075
2076         return sas_discover_new(dev, phy_id);
2077 }
2078
2079 /**
2080  * sas_rediscover - revalidate the domain.
2081  * @dev:domain device to be detect.
2082  * @phy_id: the phy id will be detected.
2083  *
2084  * NOTE: this process _must_ quit (return) as soon as any connection
2085  * errors are encountered.  Connection recovery is done elsewhere.
2086  * Discover process only interrogates devices in order to discover the
2087  * domain.For plugging out, we un-register the device only when it is
2088  * the last phy in the port, for other phys in this port, we just delete it
2089  * from the port.For inserting, we do discovery when it is the
2090  * first phy,for other phys in this port, we add it to the port to
2091  * forming the wide-port.
2092  */
2093 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2094 {
2095         struct expander_device *ex = &dev->ex_dev;
2096         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2097         int res = 0;
2098         int i;
2099         bool last = true;       /* is this the last phy of the port */
2100
2101         pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2102                  SAS_ADDR(dev->sas_addr), phy_id);
2103
2104         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2105                 for (i = 0; i < ex->num_phys; i++) {
2106                         struct ex_phy *phy = &ex->ex_phy[i];
2107
2108                         if (i == phy_id)
2109                                 continue;
2110                         if (SAS_ADDR(phy->attached_sas_addr) ==
2111                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2112                                 pr_debug("phy%d part of wide port with phy%d\n",
2113                                          phy_id, i);
2114                                 last = false;
2115                                 break;
2116                         }
2117                 }
2118                 res = sas_rediscover_dev(dev, phy_id, last);
2119         } else
2120                 res = sas_discover_new(dev, phy_id);
2121         return res;
2122 }
2123
2124 /**
2125  * sas_ex_revalidate_domain - revalidate the domain
2126  * @port_dev: port domain device.
2127  *
2128  * NOTE: this process _must_ quit (return) as soon as any connection
2129  * errors are encountered.  Connection recovery is done elsewhere.
2130  * Discover process only interrogates devices in order to discover the
2131  * domain.
2132  */
2133 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2134 {
2135         int res;
2136         struct domain_device *dev = NULL;
2137
2138         res = sas_find_bcast_dev(port_dev, &dev);
2139         if (res == 0 && dev) {
2140                 struct expander_device *ex = &dev->ex_dev;
2141                 int i = 0, phy_id;
2142
2143                 do {
2144                         phy_id = -1;
2145                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2146                         if (phy_id == -1)
2147                                 break;
2148                         res = sas_rediscover(dev, phy_id);
2149                         i = phy_id + 1;
2150                 } while (i < ex->num_phys);
2151         }
2152         return res;
2153 }
2154
2155 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2156                 struct sas_rphy *rphy)
2157 {
2158         struct domain_device *dev;
2159         unsigned int rcvlen = 0;
2160         int ret = -EINVAL;
2161
2162         /* no rphy means no smp target support (ie aic94xx host) */
2163         if (!rphy)
2164                 return sas_smp_host_handler(job, shost);
2165
2166         switch (rphy->identify.device_type) {
2167         case SAS_EDGE_EXPANDER_DEVICE:
2168         case SAS_FANOUT_EXPANDER_DEVICE:
2169                 break;
2170         default:
2171                 pr_err("%s: can we send a smp request to a device?\n",
2172                        __func__);
2173                 goto out;
2174         }
2175
2176         dev = sas_find_dev_by_rphy(rphy);
2177         if (!dev) {
2178                 pr_err("%s: fail to find a domain_device?\n", __func__);
2179                 goto out;
2180         }
2181
2182         /* do we need to support multiple segments? */
2183         if (job->request_payload.sg_cnt > 1 ||
2184             job->reply_payload.sg_cnt > 1) {
2185                 pr_info("%s: multiple segments req %u, rsp %u\n",
2186                         __func__, job->request_payload.payload_len,
2187                         job->reply_payload.payload_len);
2188                 goto out;
2189         }
2190
2191         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2192                         job->reply_payload.sg_list);
2193         if (ret >= 0) {
2194                 /* bsg_job_done() requires the length received  */
2195                 rcvlen = job->reply_payload.payload_len - ret;
2196                 ret = 0;
2197         }
2198
2199 out:
2200         bsg_job_done(job, ret, rcvlen);
2201 }