Merge branch 'etnaviv/next' of https://git.pengutronix.de/git/lst/linux into drm...
[sfrench/cifs-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.18-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x3241103C, "Smart Array P212", &SA5_access},
162         {0x3243103C, "Smart Array P410", &SA5_access},
163         {0x3245103C, "Smart Array P410i", &SA5_access},
164         {0x3247103C, "Smart Array P411", &SA5_access},
165         {0x3249103C, "Smart Array P812", &SA5_access},
166         {0x324A103C, "Smart Array P712m", &SA5_access},
167         {0x324B103C, "Smart Array P711m", &SA5_access},
168         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169         {0x3350103C, "Smart Array P222", &SA5_access},
170         {0x3351103C, "Smart Array P420", &SA5_access},
171         {0x3352103C, "Smart Array P421", &SA5_access},
172         {0x3353103C, "Smart Array P822", &SA5_access},
173         {0x3354103C, "Smart Array P420i", &SA5_access},
174         {0x3355103C, "Smart Array P220i", &SA5_access},
175         {0x3356103C, "Smart Array P721m", &SA5_access},
176         {0x1920103C, "Smart Array P430i", &SA5_access},
177         {0x1921103C, "Smart Array P830i", &SA5_access},
178         {0x1922103C, "Smart Array P430", &SA5_access},
179         {0x1923103C, "Smart Array P431", &SA5_access},
180         {0x1924103C, "Smart Array P830", &SA5_access},
181         {0x1925103C, "Smart Array P831", &SA5_access},
182         {0x1926103C, "Smart Array P731m", &SA5_access},
183         {0x1928103C, "Smart Array P230i", &SA5_access},
184         {0x1929103C, "Smart Array P530", &SA5_access},
185         {0x21BD103C, "Smart Array P244br", &SA5_access},
186         {0x21BE103C, "Smart Array P741m", &SA5_access},
187         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
188         {0x21C0103C, "Smart Array P440ar", &SA5_access},
189         {0x21C1103C, "Smart Array P840ar", &SA5_access},
190         {0x21C2103C, "Smart Array P440", &SA5_access},
191         {0x21C3103C, "Smart Array P441", &SA5_access},
192         {0x21C4103C, "Smart Array", &SA5_access},
193         {0x21C5103C, "Smart Array P841", &SA5_access},
194         {0x21C6103C, "Smart HBA H244br", &SA5_access},
195         {0x21C7103C, "Smart HBA H240", &SA5_access},
196         {0x21C8103C, "Smart HBA H241", &SA5_access},
197         {0x21C9103C, "Smart Array", &SA5_access},
198         {0x21CA103C, "Smart Array P246br", &SA5_access},
199         {0x21CB103C, "Smart Array P840", &SA5_access},
200         {0x21CC103C, "Smart Array", &SA5_access},
201         {0x21CD103C, "Smart Array", &SA5_access},
202         {0x21CE103C, "Smart HBA", &SA5_access},
203         {0x05809005, "SmartHBA-SA", &SA5_access},
204         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
205         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
207         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
208         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221                         struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225                 struct sas_rphy *rphy);
226
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239         void __user *arg);
240 #endif
241
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246                                             struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249         int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257         unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
262 static int hpsa_slave_alloc(struct scsi_device *sdev);
263 static int hpsa_slave_configure(struct scsi_device *sdev);
264 static void hpsa_slave_destroy(struct scsi_device *sdev);
265
266 static void hpsa_update_scsi_devices(struct ctlr_info *h);
267 static int check_for_unit_attention(struct ctlr_info *h,
268         struct CommandList *c);
269 static void check_ioctl_unit_attention(struct ctlr_info *h,
270         struct CommandList *c);
271 /* performant mode helper functions */
272 static void calc_bucket_map(int *bucket, int num_buckets,
273         int nsgs, int min_blocks, u32 *bucket_map);
274 static void hpsa_free_performant_mode(struct ctlr_info *h);
275 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
276 static inline u32 next_command(struct ctlr_info *h, u8 q);
277 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279                                u64 *cfg_offset);
280 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281                                     unsigned long *memory_bar);
282 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
284                                            unsigned char lunaddr[],
285                                            int reply_queue);
286 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287                                      int wait_for_ready);
288 static inline void finish_cmd(struct CommandList *c);
289 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
290 #define BOARD_NOT_READY 0
291 #define BOARD_READY 1
292 static void hpsa_drain_accel_commands(struct ctlr_info *h);
293 static void hpsa_flush_cache(struct ctlr_info *h);
294 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
296         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
297 static void hpsa_command_resubmit_worker(struct work_struct *work);
298 static u32 lockup_detected(struct ctlr_info *h);
299 static int detect_controller_lockup(struct ctlr_info *h);
300 static void hpsa_disable_rld_caching(struct ctlr_info *h);
301 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302         struct ReportExtendedLUNdata *buf, int bufsize);
303 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304         unsigned char scsi3addr[], u8 page);
305 static int hpsa_luns_changed(struct ctlr_info *h);
306 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307                                struct hpsa_scsi_dev_t *dev,
308                                unsigned char *scsi3addr);
309
310 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311 {
312         unsigned long *priv = shost_priv(sdev->host);
313         return (struct ctlr_info *) *priv;
314 }
315
316 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317 {
318         unsigned long *priv = shost_priv(sh);
319         return (struct ctlr_info *) *priv;
320 }
321
322 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323 {
324         return c->scsi_cmd == SCSI_CMD_IDLE;
325 }
326
327 static inline bool hpsa_is_pending_event(struct CommandList *c)
328 {
329         return c->abort_pending || c->reset_pending;
330 }
331
332 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
333 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334                         u8 *sense_key, u8 *asc, u8 *ascq)
335 {
336         struct scsi_sense_hdr sshdr;
337         bool rc;
338
339         *sense_key = -1;
340         *asc = -1;
341         *ascq = -1;
342
343         if (sense_data_len < 1)
344                 return;
345
346         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347         if (rc) {
348                 *sense_key = sshdr.sense_key;
349                 *asc = sshdr.asc;
350                 *ascq = sshdr.ascq;
351         }
352 }
353
354 static int check_for_unit_attention(struct ctlr_info *h,
355         struct CommandList *c)
356 {
357         u8 sense_key, asc, ascq;
358         int sense_len;
359
360         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361                 sense_len = sizeof(c->err_info->SenseInfo);
362         else
363                 sense_len = c->err_info->SenseLen;
364
365         decode_sense_data(c->err_info->SenseInfo, sense_len,
366                                 &sense_key, &asc, &ascq);
367         if (sense_key != UNIT_ATTENTION || asc == 0xff)
368                 return 0;
369
370         switch (asc) {
371         case STATE_CHANGED:
372                 dev_warn(&h->pdev->dev,
373                         "%s: a state change detected, command retried\n",
374                         h->devname);
375                 break;
376         case LUN_FAILED:
377                 dev_warn(&h->pdev->dev,
378                         "%s: LUN failure detected\n", h->devname);
379                 break;
380         case REPORT_LUNS_CHANGED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: report LUN data changed\n", h->devname);
383         /*
384          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385          * target (array) devices.
386          */
387                 break;
388         case POWER_OR_RESET:
389                 dev_warn(&h->pdev->dev,
390                         "%s: a power on or device reset detected\n",
391                         h->devname);
392                 break;
393         case UNIT_ATTENTION_CLEARED:
394                 dev_warn(&h->pdev->dev,
395                         "%s: unit attention cleared by another initiator\n",
396                         h->devname);
397                 break;
398         default:
399                 dev_warn(&h->pdev->dev,
400                         "%s: unknown unit attention detected\n",
401                         h->devname);
402                 break;
403         }
404         return 1;
405 }
406
407 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408 {
409         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412                 return 0;
413         dev_warn(&h->pdev->dev, HPSA "device busy");
414         return 1;
415 }
416
417 static u32 lockup_detected(struct ctlr_info *h);
418 static ssize_t host_show_lockup_detected(struct device *dev,
419                 struct device_attribute *attr, char *buf)
420 {
421         int ld;
422         struct ctlr_info *h;
423         struct Scsi_Host *shost = class_to_shost(dev);
424
425         h = shost_to_hba(shost);
426         ld = lockup_detected(h);
427
428         return sprintf(buf, "ld=%d\n", ld);
429 }
430
431 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432                                          struct device_attribute *attr,
433                                          const char *buf, size_t count)
434 {
435         int status, len;
436         struct ctlr_info *h;
437         struct Scsi_Host *shost = class_to_shost(dev);
438         char tmpbuf[10];
439
440         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441                 return -EACCES;
442         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443         strncpy(tmpbuf, buf, len);
444         tmpbuf[len] = '\0';
445         if (sscanf(tmpbuf, "%d", &status) != 1)
446                 return -EINVAL;
447         h = shost_to_hba(shost);
448         h->acciopath_status = !!status;
449         dev_warn(&h->pdev->dev,
450                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
451                 h->acciopath_status ? "enabled" : "disabled");
452         return count;
453 }
454
455 static ssize_t host_store_raid_offload_debug(struct device *dev,
456                                          struct device_attribute *attr,
457                                          const char *buf, size_t count)
458 {
459         int debug_level, len;
460         struct ctlr_info *h;
461         struct Scsi_Host *shost = class_to_shost(dev);
462         char tmpbuf[10];
463
464         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465                 return -EACCES;
466         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467         strncpy(tmpbuf, buf, len);
468         tmpbuf[len] = '\0';
469         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470                 return -EINVAL;
471         if (debug_level < 0)
472                 debug_level = 0;
473         h = shost_to_hba(shost);
474         h->raid_offload_debug = debug_level;
475         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476                 h->raid_offload_debug);
477         return count;
478 }
479
480 static ssize_t host_store_rescan(struct device *dev,
481                                  struct device_attribute *attr,
482                                  const char *buf, size_t count)
483 {
484         struct ctlr_info *h;
485         struct Scsi_Host *shost = class_to_shost(dev);
486         h = shost_to_hba(shost);
487         hpsa_scan_start(h->scsi_host);
488         return count;
489 }
490
491 static ssize_t host_show_firmware_revision(struct device *dev,
492              struct device_attribute *attr, char *buf)
493 {
494         struct ctlr_info *h;
495         struct Scsi_Host *shost = class_to_shost(dev);
496         unsigned char *fwrev;
497
498         h = shost_to_hba(shost);
499         if (!h->hba_inquiry_data)
500                 return 0;
501         fwrev = &h->hba_inquiry_data[32];
502         return snprintf(buf, 20, "%c%c%c%c\n",
503                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504 }
505
506 static ssize_t host_show_commands_outstanding(struct device *dev,
507              struct device_attribute *attr, char *buf)
508 {
509         struct Scsi_Host *shost = class_to_shost(dev);
510         struct ctlr_info *h = shost_to_hba(shost);
511
512         return snprintf(buf, 20, "%d\n",
513                         atomic_read(&h->commands_outstanding));
514 }
515
516 static ssize_t host_show_transport_mode(struct device *dev,
517         struct device_attribute *attr, char *buf)
518 {
519         struct ctlr_info *h;
520         struct Scsi_Host *shost = class_to_shost(dev);
521
522         h = shost_to_hba(shost);
523         return snprintf(buf, 20, "%s\n",
524                 h->transMethod & CFGTBL_Trans_Performant ?
525                         "performant" : "simple");
526 }
527
528 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529         struct device_attribute *attr, char *buf)
530 {
531         struct ctlr_info *h;
532         struct Scsi_Host *shost = class_to_shost(dev);
533
534         h = shost_to_hba(shost);
535         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
537 }
538
539 /* List of controllers which cannot be hard reset on kexec with reset_devices */
540 static u32 unresettable_controller[] = {
541         0x324a103C, /* Smart Array P712m */
542         0x324b103C, /* Smart Array P711m */
543         0x3223103C, /* Smart Array P800 */
544         0x3234103C, /* Smart Array P400 */
545         0x3235103C, /* Smart Array P400i */
546         0x3211103C, /* Smart Array E200i */
547         0x3212103C, /* Smart Array E200 */
548         0x3213103C, /* Smart Array E200i */
549         0x3214103C, /* Smart Array E200i */
550         0x3215103C, /* Smart Array E200i */
551         0x3237103C, /* Smart Array E500 */
552         0x323D103C, /* Smart Array P700m */
553         0x40800E11, /* Smart Array 5i */
554         0x409C0E11, /* Smart Array 6400 */
555         0x409D0E11, /* Smart Array 6400 EM */
556         0x40700E11, /* Smart Array 5300 */
557         0x40820E11, /* Smart Array 532 */
558         0x40830E11, /* Smart Array 5312 */
559         0x409A0E11, /* Smart Array 641 */
560         0x409B0E11, /* Smart Array 642 */
561         0x40910E11, /* Smart Array 6i */
562 };
563
564 /* List of controllers which cannot even be soft reset */
565 static u32 soft_unresettable_controller[] = {
566         0x40800E11, /* Smart Array 5i */
567         0x40700E11, /* Smart Array 5300 */
568         0x40820E11, /* Smart Array 532 */
569         0x40830E11, /* Smart Array 5312 */
570         0x409A0E11, /* Smart Array 641 */
571         0x409B0E11, /* Smart Array 642 */
572         0x40910E11, /* Smart Array 6i */
573         /* Exclude 640x boards.  These are two pci devices in one slot
574          * which share a battery backed cache module.  One controls the
575          * cache, the other accesses the cache through the one that controls
576          * it.  If we reset the one controlling the cache, the other will
577          * likely not be happy.  Just forbid resetting this conjoined mess.
578          * The 640x isn't really supported by hpsa anyway.
579          */
580         0x409C0E11, /* Smart Array 6400 */
581         0x409D0E11, /* Smart Array 6400 EM */
582 };
583
584 static u32 needs_abort_tags_swizzled[] = {
585         0x323D103C, /* Smart Array P700m */
586         0x324a103C, /* Smart Array P712m */
587         0x324b103C, /* SmartArray P711m */
588 };
589
590 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
591 {
592         int i;
593
594         for (i = 0; i < nelems; i++)
595                 if (a[i] == board_id)
596                         return 1;
597         return 0;
598 }
599
600 static int ctlr_is_hard_resettable(u32 board_id)
601 {
602         return !board_id_in_array(unresettable_controller,
603                         ARRAY_SIZE(unresettable_controller), board_id);
604 }
605
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608         return !board_id_in_array(soft_unresettable_controller,
609                         ARRAY_SIZE(soft_unresettable_controller), board_id);
610 }
611
612 static int ctlr_is_resettable(u32 board_id)
613 {
614         return ctlr_is_hard_resettable(board_id) ||
615                 ctlr_is_soft_resettable(board_id);
616 }
617
618 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619 {
620         return board_id_in_array(needs_abort_tags_swizzled,
621                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622 }
623
624 static ssize_t host_show_resettable(struct device *dev,
625         struct device_attribute *attr, char *buf)
626 {
627         struct ctlr_info *h;
628         struct Scsi_Host *shost = class_to_shost(dev);
629
630         h = shost_to_hba(shost);
631         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633
634 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635 {
636         return (scsi3addr[3] & 0xC0) == 0x40;
637 }
638
639 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
640         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
641 };
642 #define HPSA_RAID_0     0
643 #define HPSA_RAID_4     1
644 #define HPSA_RAID_1     2       /* also used for RAID 10 */
645 #define HPSA_RAID_5     3       /* also used for RAID 50 */
646 #define HPSA_RAID_51    4
647 #define HPSA_RAID_6     5       /* also used for RAID 60 */
648 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
649 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
651
652 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653 {
654         return !device->physical_device;
655 }
656
657 static ssize_t raid_level_show(struct device *dev,
658              struct device_attribute *attr, char *buf)
659 {
660         ssize_t l = 0;
661         unsigned char rlevel;
662         struct ctlr_info *h;
663         struct scsi_device *sdev;
664         struct hpsa_scsi_dev_t *hdev;
665         unsigned long flags;
666
667         sdev = to_scsi_device(dev);
668         h = sdev_to_hba(sdev);
669         spin_lock_irqsave(&h->lock, flags);
670         hdev = sdev->hostdata;
671         if (!hdev) {
672                 spin_unlock_irqrestore(&h->lock, flags);
673                 return -ENODEV;
674         }
675
676         /* Is this even a logical drive? */
677         if (!is_logical_device(hdev)) {
678                 spin_unlock_irqrestore(&h->lock, flags);
679                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
680                 return l;
681         }
682
683         rlevel = hdev->raid_level;
684         spin_unlock_irqrestore(&h->lock, flags);
685         if (rlevel > RAID_UNKNOWN)
686                 rlevel = RAID_UNKNOWN;
687         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688         return l;
689 }
690
691 static ssize_t lunid_show(struct device *dev,
692              struct device_attribute *attr, char *buf)
693 {
694         struct ctlr_info *h;
695         struct scsi_device *sdev;
696         struct hpsa_scsi_dev_t *hdev;
697         unsigned long flags;
698         unsigned char lunid[8];
699
700         sdev = to_scsi_device(dev);
701         h = sdev_to_hba(sdev);
702         spin_lock_irqsave(&h->lock, flags);
703         hdev = sdev->hostdata;
704         if (!hdev) {
705                 spin_unlock_irqrestore(&h->lock, flags);
706                 return -ENODEV;
707         }
708         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709         spin_unlock_irqrestore(&h->lock, flags);
710         return snprintf(buf, 20, "0x%8phN\n", lunid);
711 }
712
713 static ssize_t unique_id_show(struct device *dev,
714              struct device_attribute *attr, char *buf)
715 {
716         struct ctlr_info *h;
717         struct scsi_device *sdev;
718         struct hpsa_scsi_dev_t *hdev;
719         unsigned long flags;
720         unsigned char sn[16];
721
722         sdev = to_scsi_device(dev);
723         h = sdev_to_hba(sdev);
724         spin_lock_irqsave(&h->lock, flags);
725         hdev = sdev->hostdata;
726         if (!hdev) {
727                 spin_unlock_irqrestore(&h->lock, flags);
728                 return -ENODEV;
729         }
730         memcpy(sn, hdev->device_id, sizeof(sn));
731         spin_unlock_irqrestore(&h->lock, flags);
732         return snprintf(buf, 16 * 2 + 2,
733                         "%02X%02X%02X%02X%02X%02X%02X%02X"
734                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
735                         sn[0], sn[1], sn[2], sn[3],
736                         sn[4], sn[5], sn[6], sn[7],
737                         sn[8], sn[9], sn[10], sn[11],
738                         sn[12], sn[13], sn[14], sn[15]);
739 }
740
741 static ssize_t sas_address_show(struct device *dev,
742               struct device_attribute *attr, char *buf)
743 {
744         struct ctlr_info *h;
745         struct scsi_device *sdev;
746         struct hpsa_scsi_dev_t *hdev;
747         unsigned long flags;
748         u64 sas_address;
749
750         sdev = to_scsi_device(dev);
751         h = sdev_to_hba(sdev);
752         spin_lock_irqsave(&h->lock, flags);
753         hdev = sdev->hostdata;
754         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755                 spin_unlock_irqrestore(&h->lock, flags);
756                 return -ENODEV;
757         }
758         sas_address = hdev->sas_address;
759         spin_unlock_irqrestore(&h->lock, flags);
760
761         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762 }
763
764 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765              struct device_attribute *attr, char *buf)
766 {
767         struct ctlr_info *h;
768         struct scsi_device *sdev;
769         struct hpsa_scsi_dev_t *hdev;
770         unsigned long flags;
771         int offload_enabled;
772
773         sdev = to_scsi_device(dev);
774         h = sdev_to_hba(sdev);
775         spin_lock_irqsave(&h->lock, flags);
776         hdev = sdev->hostdata;
777         if (!hdev) {
778                 spin_unlock_irqrestore(&h->lock, flags);
779                 return -ENODEV;
780         }
781         offload_enabled = hdev->offload_enabled;
782         spin_unlock_irqrestore(&h->lock, flags);
783         return snprintf(buf, 20, "%d\n", offload_enabled);
784 }
785
786 #define MAX_PATHS 8
787 static ssize_t path_info_show(struct device *dev,
788              struct device_attribute *attr, char *buf)
789 {
790         struct ctlr_info *h;
791         struct scsi_device *sdev;
792         struct hpsa_scsi_dev_t *hdev;
793         unsigned long flags;
794         int i;
795         int output_len = 0;
796         u8 box;
797         u8 bay;
798         u8 path_map_index = 0;
799         char *active;
800         unsigned char phys_connector[2];
801
802         sdev = to_scsi_device(dev);
803         h = sdev_to_hba(sdev);
804         spin_lock_irqsave(&h->devlock, flags);
805         hdev = sdev->hostdata;
806         if (!hdev) {
807                 spin_unlock_irqrestore(&h->devlock, flags);
808                 return -ENODEV;
809         }
810
811         bay = hdev->bay;
812         for (i = 0; i < MAX_PATHS; i++) {
813                 path_map_index = 1<<i;
814                 if (i == hdev->active_path_index)
815                         active = "Active";
816                 else if (hdev->path_map & path_map_index)
817                         active = "Inactive";
818                 else
819                         continue;
820
821                 output_len += scnprintf(buf + output_len,
822                                 PAGE_SIZE - output_len,
823                                 "[%d:%d:%d:%d] %20.20s ",
824                                 h->scsi_host->host_no,
825                                 hdev->bus, hdev->target, hdev->lun,
826                                 scsi_device_type(hdev->devtype));
827
828                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
829                         output_len += scnprintf(buf + output_len,
830                                                 PAGE_SIZE - output_len,
831                                                 "%s\n", active);
832                         continue;
833                 }
834
835                 box = hdev->box[i];
836                 memcpy(&phys_connector, &hdev->phys_connector[i],
837                         sizeof(phys_connector));
838                 if (phys_connector[0] < '0')
839                         phys_connector[0] = '0';
840                 if (phys_connector[1] < '0')
841                         phys_connector[1] = '0';
842                 output_len += scnprintf(buf + output_len,
843                                 PAGE_SIZE - output_len,
844                                 "PORT: %.2s ",
845                                 phys_connector);
846                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847                         hdev->expose_device) {
848                         if (box == 0 || box == 0xFF) {
849                                 output_len += scnprintf(buf + output_len,
850                                         PAGE_SIZE - output_len,
851                                         "BAY: %hhu %s\n",
852                                         bay, active);
853                         } else {
854                                 output_len += scnprintf(buf + output_len,
855                                         PAGE_SIZE - output_len,
856                                         "BOX: %hhu BAY: %hhu %s\n",
857                                         box, bay, active);
858                         }
859                 } else if (box != 0 && box != 0xFF) {
860                         output_len += scnprintf(buf + output_len,
861                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
862                                 box, active);
863                 } else
864                         output_len += scnprintf(buf + output_len,
865                                 PAGE_SIZE - output_len, "%s\n", active);
866         }
867
868         spin_unlock_irqrestore(&h->devlock, flags);
869         return output_len;
870 }
871
872 static ssize_t host_show_ctlr_num(struct device *dev,
873         struct device_attribute *attr, char *buf)
874 {
875         struct ctlr_info *h;
876         struct Scsi_Host *shost = class_to_shost(dev);
877
878         h = shost_to_hba(shost);
879         return snprintf(buf, 20, "%d\n", h->ctlr);
880 }
881
882 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
886 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
887 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888                         host_show_hp_ssd_smart_path_enabled, NULL);
889 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
890 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891                 host_show_hp_ssd_smart_path_status,
892                 host_store_hp_ssd_smart_path_status);
893 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894                         host_store_raid_offload_debug);
895 static DEVICE_ATTR(firmware_revision, S_IRUGO,
896         host_show_firmware_revision, NULL);
897 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898         host_show_commands_outstanding, NULL);
899 static DEVICE_ATTR(transport_mode, S_IRUGO,
900         host_show_transport_mode, NULL);
901 static DEVICE_ATTR(resettable, S_IRUGO,
902         host_show_resettable, NULL);
903 static DEVICE_ATTR(lockup_detected, S_IRUGO,
904         host_show_lockup_detected, NULL);
905 static DEVICE_ATTR(ctlr_num, S_IRUGO,
906         host_show_ctlr_num, NULL);
907
908 static struct device_attribute *hpsa_sdev_attrs[] = {
909         &dev_attr_raid_level,
910         &dev_attr_lunid,
911         &dev_attr_unique_id,
912         &dev_attr_hp_ssd_smart_path_enabled,
913         &dev_attr_path_info,
914         &dev_attr_sas_address,
915         NULL,
916 };
917
918 static struct device_attribute *hpsa_shost_attrs[] = {
919         &dev_attr_rescan,
920         &dev_attr_firmware_revision,
921         &dev_attr_commands_outstanding,
922         &dev_attr_transport_mode,
923         &dev_attr_resettable,
924         &dev_attr_hp_ssd_smart_path_status,
925         &dev_attr_raid_offload_debug,
926         &dev_attr_lockup_detected,
927         &dev_attr_ctlr_num,
928         NULL,
929 };
930
931 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
932                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933
934 static struct scsi_host_template hpsa_driver_template = {
935         .module                 = THIS_MODULE,
936         .name                   = HPSA,
937         .proc_name              = HPSA,
938         .queuecommand           = hpsa_scsi_queue_command,
939         .scan_start             = hpsa_scan_start,
940         .scan_finished          = hpsa_scan_finished,
941         .change_queue_depth     = hpsa_change_queue_depth,
942         .this_id                = -1,
943         .use_clustering         = ENABLE_CLUSTERING,
944         .eh_abort_handler       = hpsa_eh_abort_handler,
945         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
946         .ioctl                  = hpsa_ioctl,
947         .slave_alloc            = hpsa_slave_alloc,
948         .slave_configure        = hpsa_slave_configure,
949         .slave_destroy          = hpsa_slave_destroy,
950 #ifdef CONFIG_COMPAT
951         .compat_ioctl           = hpsa_compat_ioctl,
952 #endif
953         .sdev_attrs = hpsa_sdev_attrs,
954         .shost_attrs = hpsa_shost_attrs,
955         .max_sectors = 8192,
956         .no_write_same = 1,
957 };
958
959 static inline u32 next_command(struct ctlr_info *h, u8 q)
960 {
961         u32 a;
962         struct reply_queue_buffer *rq = &h->reply_queue[q];
963
964         if (h->transMethod & CFGTBL_Trans_io_accel1)
965                 return h->access.command_completed(h, q);
966
967         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
968                 return h->access.command_completed(h, q);
969
970         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971                 a = rq->head[rq->current_entry];
972                 rq->current_entry++;
973                 atomic_dec(&h->commands_outstanding);
974         } else {
975                 a = FIFO_EMPTY;
976         }
977         /* Check for wraparound */
978         if (rq->current_entry == h->max_commands) {
979                 rq->current_entry = 0;
980                 rq->wraparound ^= 1;
981         }
982         return a;
983 }
984
985 /*
986  * There are some special bits in the bus address of the
987  * command that we have to set for the controller to know
988  * how to process the command:
989  *
990  * Normal performant mode:
991  * bit 0: 1 means performant mode, 0 means simple mode.
992  * bits 1-3 = block fetch table entry
993  * bits 4-6 = command type (== 0)
994  *
995  * ioaccel1 mode:
996  * bit 0 = "performant mode" bit.
997  * bits 1-3 = block fetch table entry
998  * bits 4-6 = command type (== 110)
999  * (command type is needed because ioaccel1 mode
1000  * commands are submitted through the same register as normal
1001  * mode commands, so this is how the controller knows whether
1002  * the command is normal mode or ioaccel1 mode.)
1003  *
1004  * ioaccel2 mode:
1005  * bit 0 = "performant mode" bit.
1006  * bits 1-4 = block fetch table entry (note extra bit)
1007  * bits 4-6 = not needed, because ioaccel2 mode has
1008  * a separate special register for submitting commands.
1009  */
1010
1011 /*
1012  * set_performant_mode: Modify the tag for cciss performant
1013  * set bit 0 for pull model, bits 3-1 for block fetch
1014  * register number
1015  */
1016 #define DEFAULT_REPLY_QUEUE (-1)
1017 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018                                         int reply_queue)
1019 {
1020         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1021                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1022                 if (unlikely(!h->msix_vectors))
1023                         return;
1024                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025                         c->Header.ReplyQueue =
1026                                 raw_smp_processor_id() % h->nreply_queues;
1027                 else
1028                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1029         }
1030 }
1031
1032 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1033                                                 struct CommandList *c,
1034                                                 int reply_queue)
1035 {
1036         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037
1038         /*
1039          * Tell the controller to post the reply to the queue for this
1040          * processor.  This seems to give the best I/O throughput.
1041          */
1042         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044         else
1045                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1046         /*
1047          * Set the bits in the address sent down to include:
1048          *  - performant mode bit (bit 0)
1049          *  - pull count (bits 1-3)
1050          *  - command type (bits 4-6)
1051          */
1052         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053                                         IOACCEL1_BUSADDR_CMDTYPE;
1054 }
1055
1056 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057                                                 struct CommandList *c,
1058                                                 int reply_queue)
1059 {
1060         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061                 &h->ioaccel2_cmd_pool[c->cmdindex];
1062
1063         /* Tell the controller to post the reply to the queue for this
1064          * processor.  This seems to give the best I/O throughput.
1065          */
1066         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068         else
1069                 cp->reply_queue = reply_queue % h->nreply_queues;
1070         /* Set the bits in the address sent down to include:
1071          *  - performant mode bit not used in ioaccel mode 2
1072          *  - pull count (bits 0-3)
1073          *  - command type isn't needed for ioaccel2
1074          */
1075         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076 }
1077
1078 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1079                                                 struct CommandList *c,
1080                                                 int reply_queue)
1081 {
1082         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083
1084         /*
1085          * Tell the controller to post the reply to the queue for this
1086          * processor.  This seems to give the best I/O throughput.
1087          */
1088         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090         else
1091                 cp->reply_queue = reply_queue % h->nreply_queues;
1092         /*
1093          * Set the bits in the address sent down to include:
1094          *  - performant mode bit not used in ioaccel mode 2
1095          *  - pull count (bits 0-3)
1096          *  - command type isn't needed for ioaccel2
1097          */
1098         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099 }
1100
1101 static int is_firmware_flash_cmd(u8 *cdb)
1102 {
1103         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104 }
1105
1106 /*
1107  * During firmware flash, the heartbeat register may not update as frequently
1108  * as it should.  So we dial down lockup detection during firmware flash. and
1109  * dial it back up when firmware flash completes.
1110  */
1111 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1114                 struct CommandList *c)
1115 {
1116         if (!is_firmware_flash_cmd(c->Request.CDB))
1117                 return;
1118         atomic_inc(&h->firmware_flash_in_progress);
1119         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1120 }
1121
1122 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1123                 struct CommandList *c)
1124 {
1125         if (is_firmware_flash_cmd(c->Request.CDB) &&
1126                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1127                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1128 }
1129
1130 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1131         struct CommandList *c, int reply_queue)
1132 {
1133         dial_down_lockup_detection_during_fw_flash(h, c);
1134         atomic_inc(&h->commands_outstanding);
1135         switch (c->cmd_type) {
1136         case CMD_IOACCEL1:
1137                 set_ioaccel1_performant_mode(h, c, reply_queue);
1138                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1139                 break;
1140         case CMD_IOACCEL2:
1141                 set_ioaccel2_performant_mode(h, c, reply_queue);
1142                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143                 break;
1144         case IOACCEL2_TMF:
1145                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1146                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1147                 break;
1148         default:
1149                 set_performant_mode(h, c, reply_queue);
1150                 h->access.submit_command(h, c);
1151         }
1152 }
1153
1154 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1155 {
1156         if (unlikely(hpsa_is_pending_event(c)))
1157                 return finish_cmd(c);
1158
1159         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1160 }
1161
1162 static inline int is_hba_lunid(unsigned char scsi3addr[])
1163 {
1164         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1165 }
1166
1167 static inline int is_scsi_rev_5(struct ctlr_info *h)
1168 {
1169         if (!h->hba_inquiry_data)
1170                 return 0;
1171         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1172                 return 1;
1173         return 0;
1174 }
1175
1176 static int hpsa_find_target_lun(struct ctlr_info *h,
1177         unsigned char scsi3addr[], int bus, int *target, int *lun)
1178 {
1179         /* finds an unused bus, target, lun for a new physical device
1180          * assumes h->devlock is held
1181          */
1182         int i, found = 0;
1183         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1184
1185         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1186
1187         for (i = 0; i < h->ndevices; i++) {
1188                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1189                         __set_bit(h->dev[i]->target, lun_taken);
1190         }
1191
1192         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1193         if (i < HPSA_MAX_DEVICES) {
1194                 /* *bus = 1; */
1195                 *target = i;
1196                 *lun = 0;
1197                 found = 1;
1198         }
1199         return !found;
1200 }
1201
1202 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1203         struct hpsa_scsi_dev_t *dev, char *description)
1204 {
1205 #define LABEL_SIZE 25
1206         char label[LABEL_SIZE];
1207
1208         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1209                 return;
1210
1211         switch (dev->devtype) {
1212         case TYPE_RAID:
1213                 snprintf(label, LABEL_SIZE, "controller");
1214                 break;
1215         case TYPE_ENCLOSURE:
1216                 snprintf(label, LABEL_SIZE, "enclosure");
1217                 break;
1218         case TYPE_DISK:
1219         case TYPE_ZBC:
1220                 if (dev->external)
1221                         snprintf(label, LABEL_SIZE, "external");
1222                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1223                         snprintf(label, LABEL_SIZE, "%s",
1224                                 raid_label[PHYSICAL_DRIVE]);
1225                 else
1226                         snprintf(label, LABEL_SIZE, "RAID-%s",
1227                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1228                                 raid_label[dev->raid_level]);
1229                 break;
1230         case TYPE_ROM:
1231                 snprintf(label, LABEL_SIZE, "rom");
1232                 break;
1233         case TYPE_TAPE:
1234                 snprintf(label, LABEL_SIZE, "tape");
1235                 break;
1236         case TYPE_MEDIUM_CHANGER:
1237                 snprintf(label, LABEL_SIZE, "changer");
1238                 break;
1239         default:
1240                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1241                 break;
1242         }
1243
1244         dev_printk(level, &h->pdev->dev,
1245                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1246                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1247                         description,
1248                         scsi_device_type(dev->devtype),
1249                         dev->vendor,
1250                         dev->model,
1251                         label,
1252                         dev->offload_config ? '+' : '-',
1253                         dev->offload_enabled ? '+' : '-',
1254                         dev->expose_device);
1255 }
1256
1257 /* Add an entry into h->dev[] array. */
1258 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1259                 struct hpsa_scsi_dev_t *device,
1260                 struct hpsa_scsi_dev_t *added[], int *nadded)
1261 {
1262         /* assumes h->devlock is held */
1263         int n = h->ndevices;
1264         int i;
1265         unsigned char addr1[8], addr2[8];
1266         struct hpsa_scsi_dev_t *sd;
1267
1268         if (n >= HPSA_MAX_DEVICES) {
1269                 dev_err(&h->pdev->dev, "too many devices, some will be "
1270                         "inaccessible.\n");
1271                 return -1;
1272         }
1273
1274         /* physical devices do not have lun or target assigned until now. */
1275         if (device->lun != -1)
1276                 /* Logical device, lun is already assigned. */
1277                 goto lun_assigned;
1278
1279         /* If this device a non-zero lun of a multi-lun device
1280          * byte 4 of the 8-byte LUN addr will contain the logical
1281          * unit no, zero otherwise.
1282          */
1283         if (device->scsi3addr[4] == 0) {
1284                 /* This is not a non-zero lun of a multi-lun device */
1285                 if (hpsa_find_target_lun(h, device->scsi3addr,
1286                         device->bus, &device->target, &device->lun) != 0)
1287                         return -1;
1288                 goto lun_assigned;
1289         }
1290
1291         /* This is a non-zero lun of a multi-lun device.
1292          * Search through our list and find the device which
1293          * has the same 8 byte LUN address, excepting byte 4 and 5.
1294          * Assign the same bus and target for this new LUN.
1295          * Use the logical unit number from the firmware.
1296          */
1297         memcpy(addr1, device->scsi3addr, 8);
1298         addr1[4] = 0;
1299         addr1[5] = 0;
1300         for (i = 0; i < n; i++) {
1301                 sd = h->dev[i];
1302                 memcpy(addr2, sd->scsi3addr, 8);
1303                 addr2[4] = 0;
1304                 addr2[5] = 0;
1305                 /* differ only in byte 4 and 5? */
1306                 if (memcmp(addr1, addr2, 8) == 0) {
1307                         device->bus = sd->bus;
1308                         device->target = sd->target;
1309                         device->lun = device->scsi3addr[4];
1310                         break;
1311                 }
1312         }
1313         if (device->lun == -1) {
1314                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1315                         " suspect firmware bug or unsupported hardware "
1316                         "configuration.\n");
1317                         return -1;
1318         }
1319
1320 lun_assigned:
1321
1322         h->dev[n] = device;
1323         h->ndevices++;
1324         added[*nadded] = device;
1325         (*nadded)++;
1326         hpsa_show_dev_msg(KERN_INFO, h, device,
1327                 device->expose_device ? "added" : "masked");
1328         device->offload_to_be_enabled = device->offload_enabled;
1329         device->offload_enabled = 0;
1330         return 0;
1331 }
1332
1333 /* Update an entry in h->dev[] array. */
1334 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1335         int entry, struct hpsa_scsi_dev_t *new_entry)
1336 {
1337         int offload_enabled;
1338         /* assumes h->devlock is held */
1339         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1340
1341         /* Raid level changed. */
1342         h->dev[entry]->raid_level = new_entry->raid_level;
1343
1344         /* Raid offload parameters changed.  Careful about the ordering. */
1345         if (new_entry->offload_config && new_entry->offload_enabled) {
1346                 /*
1347                  * if drive is newly offload_enabled, we want to copy the
1348                  * raid map data first.  If previously offload_enabled and
1349                  * offload_config were set, raid map data had better be
1350                  * the same as it was before.  if raid map data is changed
1351                  * then it had better be the case that
1352                  * h->dev[entry]->offload_enabled is currently 0.
1353                  */
1354                 h->dev[entry]->raid_map = new_entry->raid_map;
1355                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1356         }
1357         if (new_entry->hba_ioaccel_enabled) {
1358                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1360         }
1361         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1362         h->dev[entry]->offload_config = new_entry->offload_config;
1363         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1364         h->dev[entry]->queue_depth = new_entry->queue_depth;
1365
1366         /*
1367          * We can turn off ioaccel offload now, but need to delay turning
1368          * it on until we can update h->dev[entry]->phys_disk[], but we
1369          * can't do that until all the devices are updated.
1370          */
1371         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1372         if (!new_entry->offload_enabled)
1373                 h->dev[entry]->offload_enabled = 0;
1374
1375         offload_enabled = h->dev[entry]->offload_enabled;
1376         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1377         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1378         h->dev[entry]->offload_enabled = offload_enabled;
1379 }
1380
1381 /* Replace an entry from h->dev[] array. */
1382 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1383         int entry, struct hpsa_scsi_dev_t *new_entry,
1384         struct hpsa_scsi_dev_t *added[], int *nadded,
1385         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1386 {
1387         /* assumes h->devlock is held */
1388         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1389         removed[*nremoved] = h->dev[entry];
1390         (*nremoved)++;
1391
1392         /*
1393          * New physical devices won't have target/lun assigned yet
1394          * so we need to preserve the values in the slot we are replacing.
1395          */
1396         if (new_entry->target == -1) {
1397                 new_entry->target = h->dev[entry]->target;
1398                 new_entry->lun = h->dev[entry]->lun;
1399         }
1400
1401         h->dev[entry] = new_entry;
1402         added[*nadded] = new_entry;
1403         (*nadded)++;
1404         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1405         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1406         new_entry->offload_enabled = 0;
1407 }
1408
1409 /* Remove an entry from h->dev[] array. */
1410 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1411         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413         /* assumes h->devlock is held */
1414         int i;
1415         struct hpsa_scsi_dev_t *sd;
1416
1417         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418
1419         sd = h->dev[entry];
1420         removed[*nremoved] = h->dev[entry];
1421         (*nremoved)++;
1422
1423         for (i = entry; i < h->ndevices-1; i++)
1424                 h->dev[i] = h->dev[i+1];
1425         h->ndevices--;
1426         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1427 }
1428
1429 #define SCSI3ADDR_EQ(a, b) ( \
1430         (a)[7] == (b)[7] && \
1431         (a)[6] == (b)[6] && \
1432         (a)[5] == (b)[5] && \
1433         (a)[4] == (b)[4] && \
1434         (a)[3] == (b)[3] && \
1435         (a)[2] == (b)[2] && \
1436         (a)[1] == (b)[1] && \
1437         (a)[0] == (b)[0])
1438
1439 static void fixup_botched_add(struct ctlr_info *h,
1440         struct hpsa_scsi_dev_t *added)
1441 {
1442         /* called when scsi_add_device fails in order to re-adjust
1443          * h->dev[] to match the mid layer's view.
1444          */
1445         unsigned long flags;
1446         int i, j;
1447
1448         spin_lock_irqsave(&h->lock, flags);
1449         for (i = 0; i < h->ndevices; i++) {
1450                 if (h->dev[i] == added) {
1451                         for (j = i; j < h->ndevices-1; j++)
1452                                 h->dev[j] = h->dev[j+1];
1453                         h->ndevices--;
1454                         break;
1455                 }
1456         }
1457         spin_unlock_irqrestore(&h->lock, flags);
1458         kfree(added);
1459 }
1460
1461 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1462         struct hpsa_scsi_dev_t *dev2)
1463 {
1464         /* we compare everything except lun and target as these
1465          * are not yet assigned.  Compare parts likely
1466          * to differ first
1467          */
1468         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1469                 sizeof(dev1->scsi3addr)) != 0)
1470                 return 0;
1471         if (memcmp(dev1->device_id, dev2->device_id,
1472                 sizeof(dev1->device_id)) != 0)
1473                 return 0;
1474         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1475                 return 0;
1476         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1477                 return 0;
1478         if (dev1->devtype != dev2->devtype)
1479                 return 0;
1480         if (dev1->bus != dev2->bus)
1481                 return 0;
1482         return 1;
1483 }
1484
1485 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1486         struct hpsa_scsi_dev_t *dev2)
1487 {
1488         /* Device attributes that can change, but don't mean
1489          * that the device is a different device, nor that the OS
1490          * needs to be told anything about the change.
1491          */
1492         if (dev1->raid_level != dev2->raid_level)
1493                 return 1;
1494         if (dev1->offload_config != dev2->offload_config)
1495                 return 1;
1496         if (dev1->offload_enabled != dev2->offload_enabled)
1497                 return 1;
1498         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1499                 if (dev1->queue_depth != dev2->queue_depth)
1500                         return 1;
1501         return 0;
1502 }
1503
1504 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1505  * and return needle location in *index.  If scsi3addr matches, but not
1506  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1507  * location in *index.
1508  * In the case of a minor device attribute change, such as RAID level, just
1509  * return DEVICE_UPDATED, along with the updated device's location in index.
1510  * If needle not found, return DEVICE_NOT_FOUND.
1511  */
1512 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1513         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1514         int *index)
1515 {
1516         int i;
1517 #define DEVICE_NOT_FOUND 0
1518 #define DEVICE_CHANGED 1
1519 #define DEVICE_SAME 2
1520 #define DEVICE_UPDATED 3
1521         if (needle == NULL)
1522                 return DEVICE_NOT_FOUND;
1523
1524         for (i = 0; i < haystack_size; i++) {
1525                 if (haystack[i] == NULL) /* previously removed. */
1526                         continue;
1527                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1528                         *index = i;
1529                         if (device_is_the_same(needle, haystack[i])) {
1530                                 if (device_updated(needle, haystack[i]))
1531                                         return DEVICE_UPDATED;
1532                                 return DEVICE_SAME;
1533                         } else {
1534                                 /* Keep offline devices offline */
1535                                 if (needle->volume_offline)
1536                                         return DEVICE_NOT_FOUND;
1537                                 return DEVICE_CHANGED;
1538                         }
1539                 }
1540         }
1541         *index = -1;
1542         return DEVICE_NOT_FOUND;
1543 }
1544
1545 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1546                                         unsigned char scsi3addr[])
1547 {
1548         struct offline_device_entry *device;
1549         unsigned long flags;
1550
1551         /* Check to see if device is already on the list */
1552         spin_lock_irqsave(&h->offline_device_lock, flags);
1553         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1554                 if (memcmp(device->scsi3addr, scsi3addr,
1555                         sizeof(device->scsi3addr)) == 0) {
1556                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557                         return;
1558                 }
1559         }
1560         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1561
1562         /* Device is not on the list, add it. */
1563         device = kmalloc(sizeof(*device), GFP_KERNEL);
1564         if (!device)
1565                 return;
1566
1567         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1568         spin_lock_irqsave(&h->offline_device_lock, flags);
1569         list_add_tail(&device->offline_list, &h->offline_device_list);
1570         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1571 }
1572
1573 /* Print a message explaining various offline volume states */
1574 static void hpsa_show_volume_status(struct ctlr_info *h,
1575         struct hpsa_scsi_dev_t *sd)
1576 {
1577         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1578                 dev_info(&h->pdev->dev,
1579                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1580                         h->scsi_host->host_no,
1581                         sd->bus, sd->target, sd->lun);
1582         switch (sd->volume_offline) {
1583         case HPSA_LV_OK:
1584                 break;
1585         case HPSA_LV_UNDERGOING_ERASE:
1586                 dev_info(&h->pdev->dev,
1587                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1588                         h->scsi_host->host_no,
1589                         sd->bus, sd->target, sd->lun);
1590                 break;
1591         case HPSA_LV_NOT_AVAILABLE:
1592                 dev_info(&h->pdev->dev,
1593                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1594                         h->scsi_host->host_no,
1595                         sd->bus, sd->target, sd->lun);
1596                 break;
1597         case HPSA_LV_UNDERGOING_RPI:
1598                 dev_info(&h->pdev->dev,
1599                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1600                         h->scsi_host->host_no,
1601                         sd->bus, sd->target, sd->lun);
1602                 break;
1603         case HPSA_LV_PENDING_RPI:
1604                 dev_info(&h->pdev->dev,
1605                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1606                         h->scsi_host->host_no,
1607                         sd->bus, sd->target, sd->lun);
1608                 break;
1609         case HPSA_LV_ENCRYPTED_NO_KEY:
1610                 dev_info(&h->pdev->dev,
1611                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1612                         h->scsi_host->host_no,
1613                         sd->bus, sd->target, sd->lun);
1614                 break;
1615         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1616                 dev_info(&h->pdev->dev,
1617                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1618                         h->scsi_host->host_no,
1619                         sd->bus, sd->target, sd->lun);
1620                 break;
1621         case HPSA_LV_UNDERGOING_ENCRYPTION:
1622                 dev_info(&h->pdev->dev,
1623                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1624                         h->scsi_host->host_no,
1625                         sd->bus, sd->target, sd->lun);
1626                 break;
1627         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_PENDING_ENCRYPTION:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         }
1652 }
1653
1654 /*
1655  * Figure the list of physical drive pointers for a logical drive with
1656  * raid offload configured.
1657  */
1658 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1659                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1660                                 struct hpsa_scsi_dev_t *logical_drive)
1661 {
1662         struct raid_map_data *map = &logical_drive->raid_map;
1663         struct raid_map_disk_data *dd = &map->data[0];
1664         int i, j;
1665         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1666                                 le16_to_cpu(map->metadata_disks_per_row);
1667         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1668                                 le16_to_cpu(map->layout_map_count) *
1669                                 total_disks_per_row;
1670         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1671                                 total_disks_per_row;
1672         int qdepth;
1673
1674         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1675                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1676
1677         logical_drive->nphysical_disks = nraid_map_entries;
1678
1679         qdepth = 0;
1680         for (i = 0; i < nraid_map_entries; i++) {
1681                 logical_drive->phys_disk[i] = NULL;
1682                 if (!logical_drive->offload_config)
1683                         continue;
1684                 for (j = 0; j < ndevices; j++) {
1685                         if (dev[j] == NULL)
1686                                 continue;
1687                         if (dev[j]->devtype != TYPE_DISK &&
1688                             dev[j]->devtype != TYPE_ZBC)
1689                                 continue;
1690                         if (is_logical_device(dev[j]))
1691                                 continue;
1692                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1693                                 continue;
1694
1695                         logical_drive->phys_disk[i] = dev[j];
1696                         if (i < nphys_disk)
1697                                 qdepth = min(h->nr_cmds, qdepth +
1698                                     logical_drive->phys_disk[i]->queue_depth);
1699                         break;
1700                 }
1701
1702                 /*
1703                  * This can happen if a physical drive is removed and
1704                  * the logical drive is degraded.  In that case, the RAID
1705                  * map data will refer to a physical disk which isn't actually
1706                  * present.  And in that case offload_enabled should already
1707                  * be 0, but we'll turn it off here just in case
1708                  */
1709                 if (!logical_drive->phys_disk[i]) {
1710                         logical_drive->offload_enabled = 0;
1711                         logical_drive->offload_to_be_enabled = 0;
1712                         logical_drive->queue_depth = 8;
1713                 }
1714         }
1715         if (nraid_map_entries)
1716                 /*
1717                  * This is correct for reads, too high for full stripe writes,
1718                  * way too high for partial stripe writes
1719                  */
1720                 logical_drive->queue_depth = qdepth;
1721         else
1722                 logical_drive->queue_depth = h->nr_cmds;
1723 }
1724
1725 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1726                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1727 {
1728         int i;
1729
1730         for (i = 0; i < ndevices; i++) {
1731                 if (dev[i] == NULL)
1732                         continue;
1733                 if (dev[i]->devtype != TYPE_DISK &&
1734                     dev[i]->devtype != TYPE_ZBC)
1735                         continue;
1736                 if (!is_logical_device(dev[i]))
1737                         continue;
1738
1739                 /*
1740                  * If offload is currently enabled, the RAID map and
1741                  * phys_disk[] assignment *better* not be changing
1742                  * and since it isn't changing, we do not need to
1743                  * update it.
1744                  */
1745                 if (dev[i]->offload_enabled)
1746                         continue;
1747
1748                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1749         }
1750 }
1751
1752 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1753 {
1754         int rc = 0;
1755
1756         if (!h->scsi_host)
1757                 return 1;
1758
1759         if (is_logical_device(device)) /* RAID */
1760                 rc = scsi_add_device(h->scsi_host, device->bus,
1761                                         device->target, device->lun);
1762         else /* HBA */
1763                 rc = hpsa_add_sas_device(h->sas_host, device);
1764
1765         return rc;
1766 }
1767
1768 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1769                                                 struct hpsa_scsi_dev_t *dev)
1770 {
1771         int i;
1772         int count = 0;
1773
1774         for (i = 0; i < h->nr_cmds; i++) {
1775                 struct CommandList *c = h->cmd_pool + i;
1776                 int refcount = atomic_inc_return(&c->refcount);
1777
1778                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1779                                 dev->scsi3addr)) {
1780                         unsigned long flags;
1781
1782                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1783                         if (!hpsa_is_cmd_idle(c))
1784                                 ++count;
1785                         spin_unlock_irqrestore(&h->lock, flags);
1786                 }
1787
1788                 cmd_free(h, c);
1789         }
1790
1791         return count;
1792 }
1793
1794 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1795                                                 struct hpsa_scsi_dev_t *device)
1796 {
1797         int cmds = 0;
1798         int waits = 0;
1799
1800         while (1) {
1801                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1802                 if (cmds == 0)
1803                         break;
1804                 if (++waits > 20)
1805                         break;
1806                 dev_warn(&h->pdev->dev,
1807                         "%s: removing device with %d outstanding commands!\n",
1808                         __func__, cmds);
1809                 msleep(1000);
1810         }
1811 }
1812
1813 static void hpsa_remove_device(struct ctlr_info *h,
1814                         struct hpsa_scsi_dev_t *device)
1815 {
1816         struct scsi_device *sdev = NULL;
1817
1818         if (!h->scsi_host)
1819                 return;
1820
1821         if (is_logical_device(device)) { /* RAID */
1822                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1823                                                 device->target, device->lun);
1824                 if (sdev) {
1825                         scsi_remove_device(sdev);
1826                         scsi_device_put(sdev);
1827                 } else {
1828                         /*
1829                          * We don't expect to get here.  Future commands
1830                          * to this device will get a selection timeout as
1831                          * if the device were gone.
1832                          */
1833                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1834                                         "didn't find device for removal.");
1835                 }
1836         } else { /* HBA */
1837
1838                 device->removed = 1;
1839                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1840
1841                 hpsa_remove_sas_device(device);
1842         }
1843 }
1844
1845 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1846         struct hpsa_scsi_dev_t *sd[], int nsds)
1847 {
1848         /* sd contains scsi3 addresses and devtypes, and inquiry
1849          * data.  This function takes what's in sd to be the current
1850          * reality and updates h->dev[] to reflect that reality.
1851          */
1852         int i, entry, device_change, changes = 0;
1853         struct hpsa_scsi_dev_t *csd;
1854         unsigned long flags;
1855         struct hpsa_scsi_dev_t **added, **removed;
1856         int nadded, nremoved;
1857
1858         /*
1859          * A reset can cause a device status to change
1860          * re-schedule the scan to see what happened.
1861          */
1862         if (h->reset_in_progress) {
1863                 h->drv_req_rescan = 1;
1864                 return;
1865         }
1866
1867         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1868         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869
1870         if (!added || !removed) {
1871                 dev_warn(&h->pdev->dev, "out of memory in "
1872                         "adjust_hpsa_scsi_table\n");
1873                 goto free_and_out;
1874         }
1875
1876         spin_lock_irqsave(&h->devlock, flags);
1877
1878         /* find any devices in h->dev[] that are not in
1879          * sd[] and remove them from h->dev[], and for any
1880          * devices which have changed, remove the old device
1881          * info and add the new device info.
1882          * If minor device attributes change, just update
1883          * the existing device structure.
1884          */
1885         i = 0;
1886         nremoved = 0;
1887         nadded = 0;
1888         while (i < h->ndevices) {
1889                 csd = h->dev[i];
1890                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1891                 if (device_change == DEVICE_NOT_FOUND) {
1892                         changes++;
1893                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1894                         continue; /* remove ^^^, hence i not incremented */
1895                 } else if (device_change == DEVICE_CHANGED) {
1896                         changes++;
1897                         hpsa_scsi_replace_entry(h, i, sd[entry],
1898                                 added, &nadded, removed, &nremoved);
1899                         /* Set it to NULL to prevent it from being freed
1900                          * at the bottom of hpsa_update_scsi_devices()
1901                          */
1902                         sd[entry] = NULL;
1903                 } else if (device_change == DEVICE_UPDATED) {
1904                         hpsa_scsi_update_entry(h, i, sd[entry]);
1905                 }
1906                 i++;
1907         }
1908
1909         /* Now, make sure every device listed in sd[] is also
1910          * listed in h->dev[], adding them if they aren't found
1911          */
1912
1913         for (i = 0; i < nsds; i++) {
1914                 if (!sd[i]) /* if already added above. */
1915                         continue;
1916
1917                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1918                  * as the SCSI mid-layer does not handle such devices well.
1919                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1920                  * at 160Hz, and prevents the system from coming up.
1921                  */
1922                 if (sd[i]->volume_offline) {
1923                         hpsa_show_volume_status(h, sd[i]);
1924                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1925                         continue;
1926                 }
1927
1928                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1929                                         h->ndevices, &entry);
1930                 if (device_change == DEVICE_NOT_FOUND) {
1931                         changes++;
1932                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1933                                 break;
1934                         sd[i] = NULL; /* prevent from being freed later. */
1935                 } else if (device_change == DEVICE_CHANGED) {
1936                         /* should never happen... */
1937                         changes++;
1938                         dev_warn(&h->pdev->dev,
1939                                 "device unexpectedly changed.\n");
1940                         /* but if it does happen, we just ignore that device */
1941                 }
1942         }
1943         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1944
1945         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1946          * any logical drives that need it enabled.
1947          */
1948         for (i = 0; i < h->ndevices; i++) {
1949                 if (h->dev[i] == NULL)
1950                         continue;
1951                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1952         }
1953
1954         spin_unlock_irqrestore(&h->devlock, flags);
1955
1956         /* Monitor devices which are in one of several NOT READY states to be
1957          * brought online later. This must be done without holding h->devlock,
1958          * so don't touch h->dev[]
1959          */
1960         for (i = 0; i < nsds; i++) {
1961                 if (!sd[i]) /* if already added above. */
1962                         continue;
1963                 if (sd[i]->volume_offline)
1964                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1965         }
1966
1967         /* Don't notify scsi mid layer of any changes the first time through
1968          * (or if there are no changes) scsi_scan_host will do it later the
1969          * first time through.
1970          */
1971         if (!changes)
1972                 goto free_and_out;
1973
1974         /* Notify scsi mid layer of any removed devices */
1975         for (i = 0; i < nremoved; i++) {
1976                 if (removed[i] == NULL)
1977                         continue;
1978                 if (removed[i]->expose_device)
1979                         hpsa_remove_device(h, removed[i]);
1980                 kfree(removed[i]);
1981                 removed[i] = NULL;
1982         }
1983
1984         /* Notify scsi mid layer of any added devices */
1985         for (i = 0; i < nadded; i++) {
1986                 int rc = 0;
1987
1988                 if (added[i] == NULL)
1989                         continue;
1990                 if (!(added[i]->expose_device))
1991                         continue;
1992                 rc = hpsa_add_device(h, added[i]);
1993                 if (!rc)
1994                         continue;
1995                 dev_warn(&h->pdev->dev,
1996                         "addition failed %d, device not added.", rc);
1997                 /* now we have to remove it from h->dev,
1998                  * since it didn't get added to scsi mid layer
1999                  */
2000                 fixup_botched_add(h, added[i]);
2001                 h->drv_req_rescan = 1;
2002         }
2003
2004 free_and_out:
2005         kfree(added);
2006         kfree(removed);
2007 }
2008
2009 /*
2010  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2011  * Assume's h->devlock is held.
2012  */
2013 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2014         int bus, int target, int lun)
2015 {
2016         int i;
2017         struct hpsa_scsi_dev_t *sd;
2018
2019         for (i = 0; i < h->ndevices; i++) {
2020                 sd = h->dev[i];
2021                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2022                         return sd;
2023         }
2024         return NULL;
2025 }
2026
2027 static int hpsa_slave_alloc(struct scsi_device *sdev)
2028 {
2029         struct hpsa_scsi_dev_t *sd = NULL;
2030         unsigned long flags;
2031         struct ctlr_info *h;
2032
2033         h = sdev_to_hba(sdev);
2034         spin_lock_irqsave(&h->devlock, flags);
2035         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2036                 struct scsi_target *starget;
2037                 struct sas_rphy *rphy;
2038
2039                 starget = scsi_target(sdev);
2040                 rphy = target_to_rphy(starget);
2041                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2042                 if (sd) {
2043                         sd->target = sdev_id(sdev);
2044                         sd->lun = sdev->lun;
2045                 }
2046         }
2047         if (!sd)
2048                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2049                                         sdev_id(sdev), sdev->lun);
2050
2051         if (sd && sd->expose_device) {
2052                 atomic_set(&sd->ioaccel_cmds_out, 0);
2053                 sdev->hostdata = sd;
2054         } else
2055                 sdev->hostdata = NULL;
2056         spin_unlock_irqrestore(&h->devlock, flags);
2057         return 0;
2058 }
2059
2060 /* configure scsi device based on internal per-device structure */
2061 static int hpsa_slave_configure(struct scsi_device *sdev)
2062 {
2063         struct hpsa_scsi_dev_t *sd;
2064         int queue_depth;
2065
2066         sd = sdev->hostdata;
2067         sdev->no_uld_attach = !sd || !sd->expose_device;
2068
2069         if (sd)
2070                 queue_depth = sd->queue_depth != 0 ?
2071                         sd->queue_depth : sdev->host->can_queue;
2072         else
2073                 queue_depth = sdev->host->can_queue;
2074
2075         scsi_change_queue_depth(sdev, queue_depth);
2076
2077         return 0;
2078 }
2079
2080 static void hpsa_slave_destroy(struct scsi_device *sdev)
2081 {
2082         /* nothing to do. */
2083 }
2084
2085 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2086 {
2087         int i;
2088
2089         if (!h->ioaccel2_cmd_sg_list)
2090                 return;
2091         for (i = 0; i < h->nr_cmds; i++) {
2092                 kfree(h->ioaccel2_cmd_sg_list[i]);
2093                 h->ioaccel2_cmd_sg_list[i] = NULL;
2094         }
2095         kfree(h->ioaccel2_cmd_sg_list);
2096         h->ioaccel2_cmd_sg_list = NULL;
2097 }
2098
2099 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2100 {
2101         int i;
2102
2103         if (h->chainsize <= 0)
2104                 return 0;
2105
2106         h->ioaccel2_cmd_sg_list =
2107                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2108                                         GFP_KERNEL);
2109         if (!h->ioaccel2_cmd_sg_list)
2110                 return -ENOMEM;
2111         for (i = 0; i < h->nr_cmds; i++) {
2112                 h->ioaccel2_cmd_sg_list[i] =
2113                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2114                                         h->maxsgentries, GFP_KERNEL);
2115                 if (!h->ioaccel2_cmd_sg_list[i])
2116                         goto clean;
2117         }
2118         return 0;
2119
2120 clean:
2121         hpsa_free_ioaccel2_sg_chain_blocks(h);
2122         return -ENOMEM;
2123 }
2124
2125 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127         int i;
2128
2129         if (!h->cmd_sg_list)
2130                 return;
2131         for (i = 0; i < h->nr_cmds; i++) {
2132                 kfree(h->cmd_sg_list[i]);
2133                 h->cmd_sg_list[i] = NULL;
2134         }
2135         kfree(h->cmd_sg_list);
2136         h->cmd_sg_list = NULL;
2137 }
2138
2139 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2140 {
2141         int i;
2142
2143         if (h->chainsize <= 0)
2144                 return 0;
2145
2146         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2147                                 GFP_KERNEL);
2148         if (!h->cmd_sg_list)
2149                 return -ENOMEM;
2150
2151         for (i = 0; i < h->nr_cmds; i++) {
2152                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2153                                                 h->chainsize, GFP_KERNEL);
2154                 if (!h->cmd_sg_list[i])
2155                         goto clean;
2156
2157         }
2158         return 0;
2159
2160 clean:
2161         hpsa_free_sg_chain_blocks(h);
2162         return -ENOMEM;
2163 }
2164
2165 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2166         struct io_accel2_cmd *cp, struct CommandList *c)
2167 {
2168         struct ioaccel2_sg_element *chain_block;
2169         u64 temp64;
2170         u32 chain_size;
2171
2172         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2173         chain_size = le32_to_cpu(cp->sg[0].length);
2174         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2175                                 PCI_DMA_TODEVICE);
2176         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2177                 /* prevent subsequent unmapping */
2178                 cp->sg->address = 0;
2179                 return -1;
2180         }
2181         cp->sg->address = cpu_to_le64(temp64);
2182         return 0;
2183 }
2184
2185 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2186         struct io_accel2_cmd *cp)
2187 {
2188         struct ioaccel2_sg_element *chain_sg;
2189         u64 temp64;
2190         u32 chain_size;
2191
2192         chain_sg = cp->sg;
2193         temp64 = le64_to_cpu(chain_sg->address);
2194         chain_size = le32_to_cpu(cp->sg[0].length);
2195         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2196 }
2197
2198 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2199         struct CommandList *c)
2200 {
2201         struct SGDescriptor *chain_sg, *chain_block;
2202         u64 temp64;
2203         u32 chain_len;
2204
2205         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2206         chain_block = h->cmd_sg_list[c->cmdindex];
2207         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2208         chain_len = sizeof(*chain_sg) *
2209                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2210         chain_sg->Len = cpu_to_le32(chain_len);
2211         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2212                                 PCI_DMA_TODEVICE);
2213         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2214                 /* prevent subsequent unmapping */
2215                 chain_sg->Addr = cpu_to_le64(0);
2216                 return -1;
2217         }
2218         chain_sg->Addr = cpu_to_le64(temp64);
2219         return 0;
2220 }
2221
2222 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2223         struct CommandList *c)
2224 {
2225         struct SGDescriptor *chain_sg;
2226
2227         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2228                 return;
2229
2230         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2231         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2232                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2233 }
2234
2235
2236 /* Decode the various types of errors on ioaccel2 path.
2237  * Return 1 for any error that should generate a RAID path retry.
2238  * Return 0 for errors that don't require a RAID path retry.
2239  */
2240 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2241                                         struct CommandList *c,
2242                                         struct scsi_cmnd *cmd,
2243                                         struct io_accel2_cmd *c2,
2244                                         struct hpsa_scsi_dev_t *dev)
2245 {
2246         int data_len;
2247         int retry = 0;
2248         u32 ioaccel2_resid = 0;
2249
2250         switch (c2->error_data.serv_response) {
2251         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2252                 switch (c2->error_data.status) {
2253                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2254                         break;
2255                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2256                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2257                         if (c2->error_data.data_present !=
2258                                         IOACCEL2_SENSE_DATA_PRESENT) {
2259                                 memset(cmd->sense_buffer, 0,
2260                                         SCSI_SENSE_BUFFERSIZE);
2261                                 break;
2262                         }
2263                         /* copy the sense data */
2264                         data_len = c2->error_data.sense_data_len;
2265                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2266                                 data_len = SCSI_SENSE_BUFFERSIZE;
2267                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2268                                 data_len =
2269                                         sizeof(c2->error_data.sense_data_buff);
2270                         memcpy(cmd->sense_buffer,
2271                                 c2->error_data.sense_data_buff, data_len);
2272                         retry = 1;
2273                         break;
2274                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2275                         retry = 1;
2276                         break;
2277                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2278                         retry = 1;
2279                         break;
2280                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2281                         retry = 1;
2282                         break;
2283                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2284                         retry = 1;
2285                         break;
2286                 default:
2287                         retry = 1;
2288                         break;
2289                 }
2290                 break;
2291         case IOACCEL2_SERV_RESPONSE_FAILURE:
2292                 switch (c2->error_data.status) {
2293                 case IOACCEL2_STATUS_SR_IO_ERROR:
2294                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2295                 case IOACCEL2_STATUS_SR_OVERRUN:
2296                         retry = 1;
2297                         break;
2298                 case IOACCEL2_STATUS_SR_UNDERRUN:
2299                         cmd->result = (DID_OK << 16);           /* host byte */
2300                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2301                         ioaccel2_resid = get_unaligned_le32(
2302                                                 &c2->error_data.resid_cnt[0]);
2303                         scsi_set_resid(cmd, ioaccel2_resid);
2304                         break;
2305                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2306                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2307                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2308                         /*
2309                          * Did an HBA disk disappear? We will eventually
2310                          * get a state change event from the controller but
2311                          * in the meantime, we need to tell the OS that the
2312                          * HBA disk is no longer there and stop I/O
2313                          * from going down. This allows the potential re-insert
2314                          * of the disk to get the same device node.
2315                          */
2316                         if (dev->physical_device && dev->expose_device) {
2317                                 cmd->result = DID_NO_CONNECT << 16;
2318                                 dev->removed = 1;
2319                                 h->drv_req_rescan = 1;
2320                                 dev_warn(&h->pdev->dev,
2321                                         "%s: device is gone!\n", __func__);
2322                         } else
2323                                 /*
2324                                  * Retry by sending down the RAID path.
2325                                  * We will get an event from ctlr to
2326                                  * trigger rescan regardless.
2327                                  */
2328                                 retry = 1;
2329                         break;
2330                 default:
2331                         retry = 1;
2332                 }
2333                 break;
2334         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2335                 break;
2336         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2337                 break;
2338         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2339                 retry = 1;
2340                 break;
2341         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2342                 break;
2343         default:
2344                 retry = 1;
2345                 break;
2346         }
2347
2348         return retry;   /* retry on raid path? */
2349 }
2350
2351 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2352                 struct CommandList *c)
2353 {
2354         bool do_wake = false;
2355
2356         /*
2357          * Prevent the following race in the abort handler:
2358          *
2359          * 1. LLD is requested to abort a SCSI command
2360          * 2. The SCSI command completes
2361          * 3. The struct CommandList associated with step 2 is made available
2362          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2363          * 5. Abort handler follows scsi_cmnd->host_scribble and
2364          *    finds struct CommandList and tries to aborts it
2365          * Now we have aborted the wrong command.
2366          *
2367          * Reset c->scsi_cmd here so that the abort or reset handler will know
2368          * this command has completed.  Then, check to see if the handler is
2369          * waiting for this command, and, if so, wake it.
2370          */
2371         c->scsi_cmd = SCSI_CMD_IDLE;
2372         mb();   /* Declare command idle before checking for pending events. */
2373         if (c->abort_pending) {
2374                 do_wake = true;
2375                 c->abort_pending = false;
2376         }
2377         if (c->reset_pending) {
2378                 unsigned long flags;
2379                 struct hpsa_scsi_dev_t *dev;
2380
2381                 /*
2382                  * There appears to be a reset pending; lock the lock and
2383                  * reconfirm.  If so, then decrement the count of outstanding
2384                  * commands and wake the reset command if this is the last one.
2385                  */
2386                 spin_lock_irqsave(&h->lock, flags);
2387                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2388                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2389                         do_wake = true;
2390                 c->reset_pending = NULL;
2391                 spin_unlock_irqrestore(&h->lock, flags);
2392         }
2393
2394         if (do_wake)
2395                 wake_up_all(&h->event_sync_wait_queue);
2396 }
2397
2398 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2399                                       struct CommandList *c)
2400 {
2401         hpsa_cmd_resolve_events(h, c);
2402         cmd_tagged_free(h, c);
2403 }
2404
2405 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2406                 struct CommandList *c, struct scsi_cmnd *cmd)
2407 {
2408         hpsa_cmd_resolve_and_free(h, c);
2409         if (cmd && cmd->scsi_done)
2410                 cmd->scsi_done(cmd);
2411 }
2412
2413 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2414 {
2415         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2416         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2417 }
2418
2419 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2420 {
2421         cmd->result = DID_ABORT << 16;
2422 }
2423
2424 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2425                                     struct scsi_cmnd *cmd)
2426 {
2427         hpsa_set_scsi_cmd_aborted(cmd);
2428         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2429                          c->Request.CDB, c->err_info->ScsiStatus);
2430         hpsa_cmd_resolve_and_free(h, c);
2431 }
2432
2433 static void process_ioaccel2_completion(struct ctlr_info *h,
2434                 struct CommandList *c, struct scsi_cmnd *cmd,
2435                 struct hpsa_scsi_dev_t *dev)
2436 {
2437         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2438
2439         /* check for good status */
2440         if (likely(c2->error_data.serv_response == 0 &&
2441                         c2->error_data.status == 0))
2442                 return hpsa_cmd_free_and_done(h, c, cmd);
2443
2444         /*
2445          * Any RAID offload error results in retry which will use
2446          * the normal I/O path so the controller can handle whatever's
2447          * wrong.
2448          */
2449         if (is_logical_device(dev) &&
2450                 c2->error_data.serv_response ==
2451                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2452                 if (c2->error_data.status ==
2453                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2454                         dev->offload_enabled = 0;
2455                         dev->offload_to_be_enabled = 0;
2456                 }
2457
2458                 return hpsa_retry_cmd(h, c);
2459         }
2460
2461         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2462                 return hpsa_retry_cmd(h, c);
2463
2464         return hpsa_cmd_free_and_done(h, c, cmd);
2465 }
2466
2467 /* Returns 0 on success, < 0 otherwise. */
2468 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2469                                         struct CommandList *cp)
2470 {
2471         u8 tmf_status = cp->err_info->ScsiStatus;
2472
2473         switch (tmf_status) {
2474         case CISS_TMF_COMPLETE:
2475                 /*
2476                  * CISS_TMF_COMPLETE never happens, instead,
2477                  * ei->CommandStatus == 0 for this case.
2478                  */
2479         case CISS_TMF_SUCCESS:
2480                 return 0;
2481         case CISS_TMF_INVALID_FRAME:
2482         case CISS_TMF_NOT_SUPPORTED:
2483         case CISS_TMF_FAILED:
2484         case CISS_TMF_WRONG_LUN:
2485         case CISS_TMF_OVERLAPPED_TAG:
2486                 break;
2487         default:
2488                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2489                                 tmf_status);
2490                 break;
2491         }
2492         return -tmf_status;
2493 }
2494
2495 static void complete_scsi_command(struct CommandList *cp)
2496 {
2497         struct scsi_cmnd *cmd;
2498         struct ctlr_info *h;
2499         struct ErrorInfo *ei;
2500         struct hpsa_scsi_dev_t *dev;
2501         struct io_accel2_cmd *c2;
2502
2503         u8 sense_key;
2504         u8 asc;      /* additional sense code */
2505         u8 ascq;     /* additional sense code qualifier */
2506         unsigned long sense_data_size;
2507
2508         ei = cp->err_info;
2509         cmd = cp->scsi_cmd;
2510         h = cp->h;
2511
2512         if (!cmd->device) {
2513                 cmd->result = DID_NO_CONNECT << 16;
2514                 return hpsa_cmd_free_and_done(h, cp, cmd);
2515         }
2516
2517         dev = cmd->device->hostdata;
2518         if (!dev) {
2519                 cmd->result = DID_NO_CONNECT << 16;
2520                 return hpsa_cmd_free_and_done(h, cp, cmd);
2521         }
2522         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2523
2524         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2525         if ((cp->cmd_type == CMD_SCSI) &&
2526                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2527                 hpsa_unmap_sg_chain_block(h, cp);
2528
2529         if ((cp->cmd_type == CMD_IOACCEL2) &&
2530                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2531                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2532
2533         cmd->result = (DID_OK << 16);           /* host byte */
2534         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2535
2536         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2537                 if (dev->physical_device && dev->expose_device &&
2538                         dev->removed) {
2539                         cmd->result = DID_NO_CONNECT << 16;
2540                         return hpsa_cmd_free_and_done(h, cp, cmd);
2541                 }
2542                 if (likely(cp->phys_disk != NULL))
2543                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2544         }
2545
2546         /*
2547          * We check for lockup status here as it may be set for
2548          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2549          * fail_all_oustanding_cmds()
2550          */
2551         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2552                 /* DID_NO_CONNECT will prevent a retry */
2553                 cmd->result = DID_NO_CONNECT << 16;
2554                 return hpsa_cmd_free_and_done(h, cp, cmd);
2555         }
2556
2557         if ((unlikely(hpsa_is_pending_event(cp)))) {
2558                 if (cp->reset_pending)
2559                         return hpsa_cmd_free_and_done(h, cp, cmd);
2560                 if (cp->abort_pending)
2561                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2562         }
2563
2564         if (cp->cmd_type == CMD_IOACCEL2)
2565                 return process_ioaccel2_completion(h, cp, cmd, dev);
2566
2567         scsi_set_resid(cmd, ei->ResidualCnt);
2568         if (ei->CommandStatus == 0)
2569                 return hpsa_cmd_free_and_done(h, cp, cmd);
2570
2571         /* For I/O accelerator commands, copy over some fields to the normal
2572          * CISS header used below for error handling.
2573          */
2574         if (cp->cmd_type == CMD_IOACCEL1) {
2575                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2576                 cp->Header.SGList = scsi_sg_count(cmd);
2577                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2578                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2579                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2580                 cp->Header.tag = c->tag;
2581                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2582                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2583
2584                 /* Any RAID offload error results in retry which will use
2585                  * the normal I/O path so the controller can handle whatever's
2586                  * wrong.
2587                  */
2588                 if (is_logical_device(dev)) {
2589                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2590                                 dev->offload_enabled = 0;
2591                         return hpsa_retry_cmd(h, cp);
2592                 }
2593         }
2594
2595         /* an error has occurred */
2596         switch (ei->CommandStatus) {
2597
2598         case CMD_TARGET_STATUS:
2599                 cmd->result |= ei->ScsiStatus;
2600                 /* copy the sense data */
2601                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2602                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2603                 else
2604                         sense_data_size = sizeof(ei->SenseInfo);
2605                 if (ei->SenseLen < sense_data_size)
2606                         sense_data_size = ei->SenseLen;
2607                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2608                 if (ei->ScsiStatus)
2609                         decode_sense_data(ei->SenseInfo, sense_data_size,
2610                                 &sense_key, &asc, &ascq);
2611                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2612                         if (sense_key == ABORTED_COMMAND) {
2613                                 cmd->result |= DID_SOFT_ERROR << 16;
2614                                 break;
2615                         }
2616                         break;
2617                 }
2618                 /* Problem was not a check condition
2619                  * Pass it up to the upper layers...
2620                  */
2621                 if (ei->ScsiStatus) {
2622                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2623                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2624                                 "Returning result: 0x%x\n",
2625                                 cp, ei->ScsiStatus,
2626                                 sense_key, asc, ascq,
2627                                 cmd->result);
2628                 } else {  /* scsi status is zero??? How??? */
2629                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2630                                 "Returning no connection.\n", cp),
2631
2632                         /* Ordinarily, this case should never happen,
2633                          * but there is a bug in some released firmware
2634                          * revisions that allows it to happen if, for
2635                          * example, a 4100 backplane loses power and
2636                          * the tape drive is in it.  We assume that
2637                          * it's a fatal error of some kind because we
2638                          * can't show that it wasn't. We will make it
2639                          * look like selection timeout since that is
2640                          * the most common reason for this to occur,
2641                          * and it's severe enough.
2642                          */
2643
2644                         cmd->result = DID_NO_CONNECT << 16;
2645                 }
2646                 break;
2647
2648         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2649                 break;
2650         case CMD_DATA_OVERRUN:
2651                 dev_warn(&h->pdev->dev,
2652                         "CDB %16phN data overrun\n", cp->Request.CDB);
2653                 break;
2654         case CMD_INVALID: {
2655                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2656                 print_cmd(cp); */
2657                 /* We get CMD_INVALID if you address a non-existent device
2658                  * instead of a selection timeout (no response).  You will
2659                  * see this if you yank out a drive, then try to access it.
2660                  * This is kind of a shame because it means that any other
2661                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2662                  * missing target. */
2663                 cmd->result = DID_NO_CONNECT << 16;
2664         }
2665                 break;
2666         case CMD_PROTOCOL_ERR:
2667                 cmd->result = DID_ERROR << 16;
2668                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2669                                 cp->Request.CDB);
2670                 break;
2671         case CMD_HARDWARE_ERR:
2672                 cmd->result = DID_ERROR << 16;
2673                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2674                         cp->Request.CDB);
2675                 break;
2676         case CMD_CONNECTION_LOST:
2677                 cmd->result = DID_ERROR << 16;
2678                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2679                         cp->Request.CDB);
2680                 break;
2681         case CMD_ABORTED:
2682                 /* Return now to avoid calling scsi_done(). */
2683                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2684         case CMD_ABORT_FAILED:
2685                 cmd->result = DID_ERROR << 16;
2686                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2687                         cp->Request.CDB);
2688                 break;
2689         case CMD_UNSOLICITED_ABORT:
2690                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2691                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2692                         cp->Request.CDB);
2693                 break;
2694         case CMD_TIMEOUT:
2695                 cmd->result = DID_TIME_OUT << 16;
2696                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2697                         cp->Request.CDB);
2698                 break;
2699         case CMD_UNABORTABLE:
2700                 cmd->result = DID_ERROR << 16;
2701                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2702                 break;
2703         case CMD_TMF_STATUS:
2704                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2705                         cmd->result = DID_ERROR << 16;
2706                 break;
2707         case CMD_IOACCEL_DISABLED:
2708                 /* This only handles the direct pass-through case since RAID
2709                  * offload is handled above.  Just attempt a retry.
2710                  */
2711                 cmd->result = DID_SOFT_ERROR << 16;
2712                 dev_warn(&h->pdev->dev,
2713                                 "cp %p had HP SSD Smart Path error\n", cp);
2714                 break;
2715         default:
2716                 cmd->result = DID_ERROR << 16;
2717                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2718                                 cp, ei->CommandStatus);
2719         }
2720
2721         return hpsa_cmd_free_and_done(h, cp, cmd);
2722 }
2723
2724 static void hpsa_pci_unmap(struct pci_dev *pdev,
2725         struct CommandList *c, int sg_used, int data_direction)
2726 {
2727         int i;
2728
2729         for (i = 0; i < sg_used; i++)
2730                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2731                                 le32_to_cpu(c->SG[i].Len),
2732                                 data_direction);
2733 }
2734
2735 static int hpsa_map_one(struct pci_dev *pdev,
2736                 struct CommandList *cp,
2737                 unsigned char *buf,
2738                 size_t buflen,
2739                 int data_direction)
2740 {
2741         u64 addr64;
2742
2743         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2744                 cp->Header.SGList = 0;
2745                 cp->Header.SGTotal = cpu_to_le16(0);
2746                 return 0;
2747         }
2748
2749         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2750         if (dma_mapping_error(&pdev->dev, addr64)) {
2751                 /* Prevent subsequent unmap of something never mapped */
2752                 cp->Header.SGList = 0;
2753                 cp->Header.SGTotal = cpu_to_le16(0);
2754                 return -1;
2755         }
2756         cp->SG[0].Addr = cpu_to_le64(addr64);
2757         cp->SG[0].Len = cpu_to_le32(buflen);
2758         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2759         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2760         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2761         return 0;
2762 }
2763
2764 #define NO_TIMEOUT ((unsigned long) -1)
2765 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2766 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2767         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2768 {
2769         DECLARE_COMPLETION_ONSTACK(wait);
2770
2771         c->waiting = &wait;
2772         __enqueue_cmd_and_start_io(h, c, reply_queue);
2773         if (timeout_msecs == NO_TIMEOUT) {
2774                 /* TODO: get rid of this no-timeout thing */
2775                 wait_for_completion_io(&wait);
2776                 return IO_OK;
2777         }
2778         if (!wait_for_completion_io_timeout(&wait,
2779                                         msecs_to_jiffies(timeout_msecs))) {
2780                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2781                 return -ETIMEDOUT;
2782         }
2783         return IO_OK;
2784 }
2785
2786 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2787                                    int reply_queue, unsigned long timeout_msecs)
2788 {
2789         if (unlikely(lockup_detected(h))) {
2790                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2791                 return IO_OK;
2792         }
2793         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2794 }
2795
2796 static u32 lockup_detected(struct ctlr_info *h)
2797 {
2798         int cpu;
2799         u32 rc, *lockup_detected;
2800
2801         cpu = get_cpu();
2802         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2803         rc = *lockup_detected;
2804         put_cpu();
2805         return rc;
2806 }
2807
2808 #define MAX_DRIVER_CMD_RETRIES 25
2809 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2810         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2811 {
2812         int backoff_time = 10, retry_count = 0;
2813         int rc;
2814
2815         do {
2816                 memset(c->err_info, 0, sizeof(*c->err_info));
2817                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2818                                                   timeout_msecs);
2819                 if (rc)
2820                         break;
2821                 retry_count++;
2822                 if (retry_count > 3) {
2823                         msleep(backoff_time);
2824                         if (backoff_time < 1000)
2825                                 backoff_time *= 2;
2826                 }
2827         } while ((check_for_unit_attention(h, c) ||
2828                         check_for_busy(h, c)) &&
2829                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2830         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2831         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2832                 rc = -EIO;
2833         return rc;
2834 }
2835
2836 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2837                                 struct CommandList *c)
2838 {
2839         const u8 *cdb = c->Request.CDB;
2840         const u8 *lun = c->Header.LUN.LunAddrBytes;
2841
2842         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2843                  txt, lun, cdb);
2844 }
2845
2846 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2847                         struct CommandList *cp)
2848 {
2849         const struct ErrorInfo *ei = cp->err_info;
2850         struct device *d = &cp->h->pdev->dev;
2851         u8 sense_key, asc, ascq;
2852         int sense_len;
2853
2854         switch (ei->CommandStatus) {
2855         case CMD_TARGET_STATUS:
2856                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2857                         sense_len = sizeof(ei->SenseInfo);
2858                 else
2859                         sense_len = ei->SenseLen;
2860                 decode_sense_data(ei->SenseInfo, sense_len,
2861                                         &sense_key, &asc, &ascq);
2862                 hpsa_print_cmd(h, "SCSI status", cp);
2863                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2864                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2865                                 sense_key, asc, ascq);
2866                 else
2867                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2868                 if (ei->ScsiStatus == 0)
2869                         dev_warn(d, "SCSI status is abnormally zero.  "
2870                         "(probably indicates selection timeout "
2871                         "reported incorrectly due to a known "
2872                         "firmware bug, circa July, 2001.)\n");
2873                 break;
2874         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2875                 break;
2876         case CMD_DATA_OVERRUN:
2877                 hpsa_print_cmd(h, "overrun condition", cp);
2878                 break;
2879         case CMD_INVALID: {
2880                 /* controller unfortunately reports SCSI passthru's
2881                  * to non-existent targets as invalid commands.
2882                  */
2883                 hpsa_print_cmd(h, "invalid command", cp);
2884                 dev_warn(d, "probably means device no longer present\n");
2885                 }
2886                 break;
2887         case CMD_PROTOCOL_ERR:
2888                 hpsa_print_cmd(h, "protocol error", cp);
2889                 break;
2890         case CMD_HARDWARE_ERR:
2891                 hpsa_print_cmd(h, "hardware error", cp);
2892                 break;
2893         case CMD_CONNECTION_LOST:
2894                 hpsa_print_cmd(h, "connection lost", cp);
2895                 break;
2896         case CMD_ABORTED:
2897                 hpsa_print_cmd(h, "aborted", cp);
2898                 break;
2899         case CMD_ABORT_FAILED:
2900                 hpsa_print_cmd(h, "abort failed", cp);
2901                 break;
2902         case CMD_UNSOLICITED_ABORT:
2903                 hpsa_print_cmd(h, "unsolicited abort", cp);
2904                 break;
2905         case CMD_TIMEOUT:
2906                 hpsa_print_cmd(h, "timed out", cp);
2907                 break;
2908         case CMD_UNABORTABLE:
2909                 hpsa_print_cmd(h, "unabortable", cp);
2910                 break;
2911         case CMD_CTLR_LOCKUP:
2912                 hpsa_print_cmd(h, "controller lockup detected", cp);
2913                 break;
2914         default:
2915                 hpsa_print_cmd(h, "unknown status", cp);
2916                 dev_warn(d, "Unknown command status %x\n",
2917                                 ei->CommandStatus);
2918         }
2919 }
2920
2921 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2922                         u16 page, unsigned char *buf,
2923                         unsigned char bufsize)
2924 {
2925         int rc = IO_OK;
2926         struct CommandList *c;
2927         struct ErrorInfo *ei;
2928
2929         c = cmd_alloc(h);
2930
2931         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2932                         page, scsi3addr, TYPE_CMD)) {
2933                 rc = -1;
2934                 goto out;
2935         }
2936         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2937                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2938         if (rc)
2939                 goto out;
2940         ei = c->err_info;
2941         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2942                 hpsa_scsi_interpret_error(h, c);
2943                 rc = -1;
2944         }
2945 out:
2946         cmd_free(h, c);
2947         return rc;
2948 }
2949
2950 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2951         u8 reset_type, int reply_queue)
2952 {
2953         int rc = IO_OK;
2954         struct CommandList *c;
2955         struct ErrorInfo *ei;
2956
2957         c = cmd_alloc(h);
2958
2959
2960         /* fill_cmd can't fail here, no data buffer to map. */
2961         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2962                         scsi3addr, TYPE_MSG);
2963         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2964         if (rc) {
2965                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2966                 goto out;
2967         }
2968         /* no unmap needed here because no data xfer. */
2969
2970         ei = c->err_info;
2971         if (ei->CommandStatus != 0) {
2972                 hpsa_scsi_interpret_error(h, c);
2973                 rc = -1;
2974         }
2975 out:
2976         cmd_free(h, c);
2977         return rc;
2978 }
2979
2980 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2981                                struct hpsa_scsi_dev_t *dev,
2982                                unsigned char *scsi3addr)
2983 {
2984         int i;
2985         bool match = false;
2986         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2987         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2988
2989         if (hpsa_is_cmd_idle(c))
2990                 return false;
2991
2992         switch (c->cmd_type) {
2993         case CMD_SCSI:
2994         case CMD_IOCTL_PEND:
2995                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2996                                 sizeof(c->Header.LUN.LunAddrBytes));
2997                 break;
2998
2999         case CMD_IOACCEL1:
3000         case CMD_IOACCEL2:
3001                 if (c->phys_disk == dev) {
3002                         /* HBA mode match */
3003                         match = true;
3004                 } else {
3005                         /* Possible RAID mode -- check each phys dev. */
3006                         /* FIXME:  Do we need to take out a lock here?  If
3007                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3008                          * instead. */
3009                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3010                                 /* FIXME: an alternate test might be
3011                                  *
3012                                  * match = dev->phys_disk[i]->ioaccel_handle
3013                                  *              == c2->scsi_nexus;      */
3014                                 match = dev->phys_disk[i] == c->phys_disk;
3015                         }
3016                 }
3017                 break;
3018
3019         case IOACCEL2_TMF:
3020                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3021                         match = dev->phys_disk[i]->ioaccel_handle ==
3022                                         le32_to_cpu(ac->it_nexus);
3023                 }
3024                 break;
3025
3026         case 0:         /* The command is in the middle of being initialized. */
3027                 match = false;
3028                 break;
3029
3030         default:
3031                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3032                         c->cmd_type);
3033                 BUG();
3034         }
3035
3036         return match;
3037 }
3038
3039 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3040         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3041 {
3042         int i;
3043         int rc = 0;
3044
3045         /* We can really only handle one reset at a time */
3046         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3047                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3048                 return -EINTR;
3049         }
3050
3051         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3052
3053         for (i = 0; i < h->nr_cmds; i++) {
3054                 struct CommandList *c = h->cmd_pool + i;
3055                 int refcount = atomic_inc_return(&c->refcount);
3056
3057                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3058                         unsigned long flags;
3059
3060                         /*
3061                          * Mark the target command as having a reset pending,
3062                          * then lock a lock so that the command cannot complete
3063                          * while we're considering it.  If the command is not
3064                          * idle then count it; otherwise revoke the event.
3065                          */
3066                         c->reset_pending = dev;
3067                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3068                         if (!hpsa_is_cmd_idle(c))
3069                                 atomic_inc(&dev->reset_cmds_out);
3070                         else
3071                                 c->reset_pending = NULL;
3072                         spin_unlock_irqrestore(&h->lock, flags);
3073                 }
3074
3075                 cmd_free(h, c);
3076         }
3077
3078         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3079         if (!rc)
3080                 wait_event(h->event_sync_wait_queue,
3081                         atomic_read(&dev->reset_cmds_out) == 0 ||
3082                         lockup_detected(h));
3083
3084         if (unlikely(lockup_detected(h))) {
3085                 dev_warn(&h->pdev->dev,
3086                          "Controller lockup detected during reset wait\n");
3087                 rc = -ENODEV;
3088         }
3089
3090         if (unlikely(rc))
3091                 atomic_set(&dev->reset_cmds_out, 0);
3092         else
3093                 wait_for_device_to_become_ready(h, scsi3addr, 0);
3094
3095         mutex_unlock(&h->reset_mutex);
3096         return rc;
3097 }
3098
3099 static void hpsa_get_raid_level(struct ctlr_info *h,
3100         unsigned char *scsi3addr, unsigned char *raid_level)
3101 {
3102         int rc;
3103         unsigned char *buf;
3104
3105         *raid_level = RAID_UNKNOWN;
3106         buf = kzalloc(64, GFP_KERNEL);
3107         if (!buf)
3108                 return;
3109
3110         if (!hpsa_vpd_page_supported(h, scsi3addr,
3111                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3112                 goto exit;
3113
3114         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3115                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3116
3117         if (rc == 0)
3118                 *raid_level = buf[8];
3119         if (*raid_level > RAID_UNKNOWN)
3120                 *raid_level = RAID_UNKNOWN;
3121 exit:
3122         kfree(buf);
3123         return;
3124 }
3125
3126 #define HPSA_MAP_DEBUG
3127 #ifdef HPSA_MAP_DEBUG
3128 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3129                                 struct raid_map_data *map_buff)
3130 {
3131         struct raid_map_disk_data *dd = &map_buff->data[0];
3132         int map, row, col;
3133         u16 map_cnt, row_cnt, disks_per_row;
3134
3135         if (rc != 0)
3136                 return;
3137
3138         /* Show details only if debugging has been activated. */
3139         if (h->raid_offload_debug < 2)
3140                 return;
3141
3142         dev_info(&h->pdev->dev, "structure_size = %u\n",
3143                                 le32_to_cpu(map_buff->structure_size));
3144         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3145                         le32_to_cpu(map_buff->volume_blk_size));
3146         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3147                         le64_to_cpu(map_buff->volume_blk_cnt));
3148         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3149                         map_buff->phys_blk_shift);
3150         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3151                         map_buff->parity_rotation_shift);
3152         dev_info(&h->pdev->dev, "strip_size = %u\n",
3153                         le16_to_cpu(map_buff->strip_size));
3154         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3155                         le64_to_cpu(map_buff->disk_starting_blk));
3156         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3157                         le64_to_cpu(map_buff->disk_blk_cnt));
3158         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3159                         le16_to_cpu(map_buff->data_disks_per_row));
3160         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3161                         le16_to_cpu(map_buff->metadata_disks_per_row));
3162         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3163                         le16_to_cpu(map_buff->row_cnt));
3164         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3165                         le16_to_cpu(map_buff->layout_map_count));
3166         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3167                         le16_to_cpu(map_buff->flags));
3168         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3169                         le16_to_cpu(map_buff->flags) &
3170                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3171         dev_info(&h->pdev->dev, "dekindex = %u\n",
3172                         le16_to_cpu(map_buff->dekindex));
3173         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3174         for (map = 0; map < map_cnt; map++) {
3175                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3176                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3177                 for (row = 0; row < row_cnt; row++) {
3178                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3179                         disks_per_row =
3180                                 le16_to_cpu(map_buff->data_disks_per_row);
3181                         for (col = 0; col < disks_per_row; col++, dd++)
3182                                 dev_info(&h->pdev->dev,
3183                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3184                                         col, dd->ioaccel_handle,
3185                                         dd->xor_mult[0], dd->xor_mult[1]);
3186                         disks_per_row =
3187                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3188                         for (col = 0; col < disks_per_row; col++, dd++)
3189                                 dev_info(&h->pdev->dev,
3190                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3191                                         col, dd->ioaccel_handle,
3192                                         dd->xor_mult[0], dd->xor_mult[1]);
3193                 }
3194         }
3195 }
3196 #else
3197 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3198                         __attribute__((unused)) int rc,
3199                         __attribute__((unused)) struct raid_map_data *map_buff)
3200 {
3201 }
3202 #endif
3203
3204 static int hpsa_get_raid_map(struct ctlr_info *h,
3205         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3206 {
3207         int rc = 0;
3208         struct CommandList *c;
3209         struct ErrorInfo *ei;
3210
3211         c = cmd_alloc(h);
3212
3213         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3214                         sizeof(this_device->raid_map), 0,
3215                         scsi3addr, TYPE_CMD)) {
3216                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3217                 cmd_free(h, c);
3218                 return -1;
3219         }
3220         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3221                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3222         if (rc)
3223                 goto out;
3224         ei = c->err_info;
3225         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3226                 hpsa_scsi_interpret_error(h, c);
3227                 rc = -1;
3228                 goto out;
3229         }
3230         cmd_free(h, c);
3231
3232         /* @todo in the future, dynamically allocate RAID map memory */
3233         if (le32_to_cpu(this_device->raid_map.structure_size) >
3234                                 sizeof(this_device->raid_map)) {
3235                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3236                 rc = -1;
3237         }
3238         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3239         return rc;
3240 out:
3241         cmd_free(h, c);
3242         return rc;
3243 }
3244
3245 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3246                 unsigned char scsi3addr[], u16 bmic_device_index,
3247                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3248 {
3249         int rc = IO_OK;
3250         struct CommandList *c;
3251         struct ErrorInfo *ei;
3252
3253         c = cmd_alloc(h);
3254
3255         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3256                 0, RAID_CTLR_LUNID, TYPE_CMD);
3257         if (rc)
3258                 goto out;
3259
3260         c->Request.CDB[2] = bmic_device_index & 0xff;
3261         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3262
3263         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3264                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3265         if (rc)
3266                 goto out;
3267         ei = c->err_info;
3268         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3269                 hpsa_scsi_interpret_error(h, c);
3270                 rc = -1;
3271         }
3272 out:
3273         cmd_free(h, c);
3274         return rc;
3275 }
3276
3277 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3278         struct bmic_identify_controller *buf, size_t bufsize)
3279 {
3280         int rc = IO_OK;
3281         struct CommandList *c;
3282         struct ErrorInfo *ei;
3283
3284         c = cmd_alloc(h);
3285
3286         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3287                 0, RAID_CTLR_LUNID, TYPE_CMD);
3288         if (rc)
3289                 goto out;
3290
3291         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3292                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3293         if (rc)
3294                 goto out;
3295         ei = c->err_info;
3296         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3297                 hpsa_scsi_interpret_error(h, c);
3298                 rc = -1;
3299         }
3300 out:
3301         cmd_free(h, c);
3302         return rc;
3303 }
3304
3305 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3306                 unsigned char scsi3addr[], u16 bmic_device_index,
3307                 struct bmic_identify_physical_device *buf, size_t bufsize)
3308 {
3309         int rc = IO_OK;
3310         struct CommandList *c;
3311         struct ErrorInfo *ei;
3312
3313         c = cmd_alloc(h);
3314         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3315                 0, RAID_CTLR_LUNID, TYPE_CMD);
3316         if (rc)
3317                 goto out;
3318
3319         c->Request.CDB[2] = bmic_device_index & 0xff;
3320         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3321
3322         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3323                                                 DEFAULT_TIMEOUT);
3324         ei = c->err_info;
3325         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326                 hpsa_scsi_interpret_error(h, c);
3327                 rc = -1;
3328         }
3329 out:
3330         cmd_free(h, c);
3331
3332         return rc;
3333 }
3334
3335 /*
3336  * get enclosure information
3337  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3338  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3339  * Uses id_physical_device to determine the box_index.
3340  */
3341 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3342                         unsigned char *scsi3addr,
3343                         struct ReportExtendedLUNdata *rlep, int rle_index,
3344                         struct hpsa_scsi_dev_t *encl_dev)
3345 {
3346         int rc = -1;
3347         struct CommandList *c = NULL;
3348         struct ErrorInfo *ei = NULL;
3349         struct bmic_sense_storage_box_params *bssbp = NULL;
3350         struct bmic_identify_physical_device *id_phys = NULL;
3351         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3352         u16 bmic_device_index = 0;
3353
3354         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3355
3356         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357                 rc = IO_OK;
3358                 goto out;
3359         }
3360
3361         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362         if (!bssbp)
3363                 goto out;
3364
3365         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366         if (!id_phys)
3367                 goto out;
3368
3369         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370                                                 id_phys, sizeof(*id_phys));
3371         if (rc) {
3372                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373                         __func__, encl_dev->external, bmic_device_index);
3374                 goto out;
3375         }
3376
3377         c = cmd_alloc(h);
3378
3379         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381
3382         if (rc)
3383                 goto out;
3384
3385         if (id_phys->phys_connector[1] == 'E')
3386                 c->Request.CDB[5] = id_phys->box_index;
3387         else
3388                 c->Request.CDB[5] = 0;
3389
3390         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391                                                 DEFAULT_TIMEOUT);
3392         if (rc)
3393                 goto out;
3394
3395         ei = c->err_info;
3396         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397                 rc = -1;
3398                 goto out;
3399         }
3400
3401         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404
3405         rc = IO_OK;
3406 out:
3407         kfree(bssbp);
3408         kfree(id_phys);
3409
3410         if (c)
3411                 cmd_free(h, c);
3412
3413         if (rc != IO_OK)
3414                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415                         "Error, could not get enclosure information\n");
3416 }
3417
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419                                                 unsigned char *scsi3addr)
3420 {
3421         struct ReportExtendedLUNdata *physdev;
3422         u32 nphysicals;
3423         u64 sa = 0;
3424         int i;
3425
3426         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427         if (!physdev)
3428                 return 0;
3429
3430         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432                 kfree(physdev);
3433                 return 0;
3434         }
3435         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436
3437         for (i = 0; i < nphysicals; i++)
3438                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440                         break;
3441                 }
3442
3443         kfree(physdev);
3444
3445         return sa;
3446 }
3447
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449                                         struct hpsa_scsi_dev_t *dev)
3450 {
3451         int rc;
3452         u64 sa = 0;
3453
3454         if (is_hba_lunid(scsi3addr)) {
3455                 struct bmic_sense_subsystem_info *ssi;
3456
3457                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458                 if (!ssi)
3459                         return;
3460
3461                 rc = hpsa_bmic_sense_subsystem_information(h,
3462                                         scsi3addr, 0, ssi, sizeof(*ssi));
3463                 if (rc == 0) {
3464                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465                         h->sas_address = sa;
3466                 }
3467
3468                 kfree(ssi);
3469         } else
3470                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471
3472         dev->sas_address = sa;
3473 }
3474
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477         unsigned char scsi3addr[], u8 page)
3478 {
3479         int rc;
3480         int i;
3481         int pages;
3482         unsigned char *buf, bufsize;
3483
3484         buf = kzalloc(256, GFP_KERNEL);
3485         if (!buf)
3486                 return false;
3487
3488         /* Get the size of the page list first */
3489         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491                                 buf, HPSA_VPD_HEADER_SZ);
3492         if (rc != 0)
3493                 goto exit_unsupported;
3494         pages = buf[3];
3495         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3497         else
3498                 bufsize = 255;
3499
3500         /* Get the whole VPD page list */
3501         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503                                 buf, bufsize);
3504         if (rc != 0)
3505                 goto exit_unsupported;
3506
3507         pages = buf[3];
3508         for (i = 1; i <= pages; i++)
3509                 if (buf[3 + i] == page)
3510                         goto exit_supported;
3511 exit_unsupported:
3512         kfree(buf);
3513         return false;
3514 exit_supported:
3515         kfree(buf);
3516         return true;
3517 }
3518
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522         int rc;
3523         unsigned char *buf;
3524         u8 ioaccel_status;
3525
3526         this_device->offload_config = 0;
3527         this_device->offload_enabled = 0;
3528         this_device->offload_to_be_enabled = 0;
3529
3530         buf = kzalloc(64, GFP_KERNEL);
3531         if (!buf)
3532                 return;
3533         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534                 goto out;
3535         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537         if (rc != 0)
3538                 goto out;
3539
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544         this_device->offload_config =
3545                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546         if (this_device->offload_config) {
3547                 this_device->offload_enabled =
3548                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550                         this_device->offload_enabled = 0;
3551         }
3552         this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554         kfree(buf);
3555         return;
3556 }
3557
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560         unsigned char *device_id, int index, int buflen)
3561 {
3562         int rc;
3563         unsigned char *buf;
3564
3565         /* Does controller have VPD for device id? */
3566         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567                 return 1; /* not supported */
3568
3569         buf = kzalloc(64, GFP_KERNEL);
3570         if (!buf)
3571                 return -ENOMEM;
3572
3573         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575         if (rc == 0) {
3576                 if (buflen > 16)
3577                         buflen = 16;
3578                 memcpy(device_id, &buf[8], buflen);
3579         }
3580
3581         kfree(buf);
3582
3583         return rc; /*0 - got id,  otherwise, didn't */
3584 }
3585
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587                 void *buf, int bufsize,
3588                 int extended_response)
3589 {
3590         int rc = IO_OK;
3591         struct CommandList *c;
3592         unsigned char scsi3addr[8];
3593         struct ErrorInfo *ei;
3594
3595         c = cmd_alloc(h);
3596
3597         /* address the controller */
3598         memset(scsi3addr, 0, sizeof(scsi3addr));
3599         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601                 rc = -1;
3602                 goto out;
3603         }
3604         if (extended_response)
3605                 c->Request.CDB[1] = extended_response;
3606         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608         if (rc)
3609                 goto out;
3610         ei = c->err_info;
3611         if (ei->CommandStatus != 0 &&
3612             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613                 hpsa_scsi_interpret_error(h, c);
3614                 rc = -1;
3615         } else {
3616                 struct ReportLUNdata *rld = buf;
3617
3618                 if (rld->extended_response_flag != extended_response) {
3619                         dev_err(&h->pdev->dev,
3620                                 "report luns requested format %u, got %u\n",
3621                                 extended_response,
3622                                 rld->extended_response_flag);
3623                         rc = -1;
3624                 }
3625         }
3626 out:
3627         cmd_free(h, c);
3628         return rc;
3629 }
3630
3631 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3632                 struct ReportExtendedLUNdata *buf, int bufsize)
3633 {
3634         int rc;
3635         struct ReportLUNdata *lbuf;
3636
3637         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3638                                       HPSA_REPORT_PHYS_EXTENDED);
3639         if (!rc || !hpsa_allow_any)
3640                 return rc;
3641
3642         /* REPORT PHYS EXTENDED is not supported */
3643         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3644         if (!lbuf)
3645                 return -ENOMEM;
3646
3647         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3648         if (!rc) {
3649                 int i;
3650                 u32 nphys;
3651
3652                 /* Copy ReportLUNdata header */
3653                 memcpy(buf, lbuf, 8);
3654                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3655                 for (i = 0; i < nphys; i++)
3656                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3657         }
3658         kfree(lbuf);
3659         return rc;
3660 }
3661
3662 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3663                 struct ReportLUNdata *buf, int bufsize)
3664 {
3665         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3666 }
3667
3668 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3669         int bus, int target, int lun)
3670 {
3671         device->bus = bus;
3672         device->target = target;
3673         device->lun = lun;
3674 }
3675
3676 /* Use VPD inquiry to get details of volume status */
3677 static int hpsa_get_volume_status(struct ctlr_info *h,
3678                                         unsigned char scsi3addr[])
3679 {
3680         int rc;
3681         int status;
3682         int size;
3683         unsigned char *buf;
3684
3685         buf = kzalloc(64, GFP_KERNEL);
3686         if (!buf)
3687                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3688
3689         /* Does controller have VPD for logical volume status? */
3690         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3691                 goto exit_failed;
3692
3693         /* Get the size of the VPD return buffer */
3694         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3695                                         buf, HPSA_VPD_HEADER_SZ);
3696         if (rc != 0)
3697                 goto exit_failed;
3698         size = buf[3];
3699
3700         /* Now get the whole VPD buffer */
3701         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3702                                         buf, size + HPSA_VPD_HEADER_SZ);
3703         if (rc != 0)
3704                 goto exit_failed;
3705         status = buf[4]; /* status byte */
3706
3707         kfree(buf);
3708         return status;
3709 exit_failed:
3710         kfree(buf);
3711         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3712 }
3713
3714 /* Determine offline status of a volume.
3715  * Return either:
3716  *  0 (not offline)
3717  *  0xff (offline for unknown reasons)
3718  *  # (integer code indicating one of several NOT READY states
3719  *     describing why a volume is to be kept offline)
3720  */
3721 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3722                                         unsigned char scsi3addr[])
3723 {
3724         struct CommandList *c;
3725         unsigned char *sense;
3726         u8 sense_key, asc, ascq;
3727         int sense_len;
3728         int rc, ldstat = 0;
3729         u16 cmd_status;
3730         u8 scsi_status;
3731 #define ASC_LUN_NOT_READY 0x04
3732 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3733 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3734
3735         c = cmd_alloc(h);
3736
3737         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3738         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3739                                         DEFAULT_TIMEOUT);
3740         if (rc) {
3741                 cmd_free(h, c);
3742                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3743         }
3744         sense = c->err_info->SenseInfo;
3745         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3746                 sense_len = sizeof(c->err_info->SenseInfo);
3747         else
3748                 sense_len = c->err_info->SenseLen;
3749         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3750         cmd_status = c->err_info->CommandStatus;
3751         scsi_status = c->err_info->ScsiStatus;
3752         cmd_free(h, c);
3753
3754         /* Determine the reason for not ready state */
3755         ldstat = hpsa_get_volume_status(h, scsi3addr);
3756
3757         /* Keep volume offline in certain cases: */
3758         switch (ldstat) {
3759         case HPSA_LV_FAILED:
3760         case HPSA_LV_UNDERGOING_ERASE:
3761         case HPSA_LV_NOT_AVAILABLE:
3762         case HPSA_LV_UNDERGOING_RPI:
3763         case HPSA_LV_PENDING_RPI:
3764         case HPSA_LV_ENCRYPTED_NO_KEY:
3765         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3766         case HPSA_LV_UNDERGOING_ENCRYPTION:
3767         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3768         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3769                 return ldstat;
3770         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3771                 /* If VPD status page isn't available,
3772                  * use ASC/ASCQ to determine state
3773                  */
3774                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3775                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3776                         return ldstat;
3777                 break;
3778         default:
3779                 break;
3780         }
3781         return HPSA_LV_OK;
3782 }
3783
3784 /*
3785  * Find out if a logical device supports aborts by simply trying one.
3786  * Smart Array may claim not to support aborts on logical drives, but
3787  * if a MSA2000 * is connected, the drives on that will be presented
3788  * by the Smart Array as logical drives, and aborts may be sent to
3789  * those devices successfully.  So the simplest way to find out is
3790  * to simply try an abort and see how the device responds.
3791  */
3792 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3793                                         unsigned char *scsi3addr)
3794 {
3795         struct CommandList *c;
3796         struct ErrorInfo *ei;
3797         int rc = 0;
3798
3799         u64 tag = (u64) -1; /* bogus tag */
3800
3801         /* Assume that physical devices support aborts */
3802         if (!is_logical_dev_addr_mode(scsi3addr))
3803                 return 1;
3804
3805         c = cmd_alloc(h);
3806
3807         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3808         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3809                                         DEFAULT_TIMEOUT);
3810         /* no unmap needed here because no data xfer. */
3811         ei = c->err_info;
3812         switch (ei->CommandStatus) {
3813         case CMD_INVALID:
3814                 rc = 0;
3815                 break;
3816         case CMD_UNABORTABLE:
3817         case CMD_ABORT_FAILED:
3818                 rc = 1;
3819                 break;
3820         case CMD_TMF_STATUS:
3821                 rc = hpsa_evaluate_tmf_status(h, c);
3822                 break;
3823         default:
3824                 rc = 0;
3825                 break;
3826         }
3827         cmd_free(h, c);
3828         return rc;
3829 }
3830
3831 static int hpsa_update_device_info(struct ctlr_info *h,
3832         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3833         unsigned char *is_OBDR_device)
3834 {
3835
3836 #define OBDR_SIG_OFFSET 43
3837 #define OBDR_TAPE_SIG "$DR-10"
3838 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3839 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3840
3841         unsigned char *inq_buff;
3842         unsigned char *obdr_sig;
3843         int rc = 0;
3844
3845         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3846         if (!inq_buff) {
3847                 rc = -ENOMEM;
3848                 goto bail_out;
3849         }
3850
3851         /* Do an inquiry to the device to see what it is. */
3852         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3853                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3854                 dev_err(&h->pdev->dev,
3855                         "%s: inquiry failed, device will be skipped.\n",
3856                         __func__);
3857                 rc = HPSA_INQUIRY_FAILED;
3858                 goto bail_out;
3859         }
3860
3861         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3862         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3863
3864         this_device->devtype = (inq_buff[0] & 0x1f);
3865         memcpy(this_device->scsi3addr, scsi3addr, 8);
3866         memcpy(this_device->vendor, &inq_buff[8],
3867                 sizeof(this_device->vendor));
3868         memcpy(this_device->model, &inq_buff[16],
3869                 sizeof(this_device->model));
3870         this_device->rev = inq_buff[2];
3871         memset(this_device->device_id, 0,
3872                 sizeof(this_device->device_id));
3873         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3874                 sizeof(this_device->device_id)))
3875                 dev_err(&h->pdev->dev,
3876                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3877                         h->ctlr, __func__,
3878                         h->scsi_host->host_no,
3879                         this_device->target, this_device->lun,
3880                         scsi_device_type(this_device->devtype),
3881                         this_device->model);
3882
3883         if ((this_device->devtype == TYPE_DISK ||
3884                 this_device->devtype == TYPE_ZBC) &&
3885                 is_logical_dev_addr_mode(scsi3addr)) {
3886                 unsigned char volume_offline;
3887
3888                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3889                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3890                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3891                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3892                 this_device->volume_offline = volume_offline;
3893                 if (volume_offline == HPSA_LV_FAILED) {
3894                         rc = HPSA_LV_FAILED;
3895                         dev_err(&h->pdev->dev,
3896                                 "%s: LV failed, device will be skipped.\n",
3897                                 __func__);
3898                         goto bail_out;
3899                 }
3900         } else {
3901                 this_device->raid_level = RAID_UNKNOWN;
3902                 this_device->offload_config = 0;
3903                 this_device->offload_enabled = 0;
3904                 this_device->offload_to_be_enabled = 0;
3905                 this_device->hba_ioaccel_enabled = 0;
3906                 this_device->volume_offline = 0;
3907                 this_device->queue_depth = h->nr_cmds;
3908         }
3909
3910         if (is_OBDR_device) {
3911                 /* See if this is a One-Button-Disaster-Recovery device
3912                  * by looking for "$DR-10" at offset 43 in inquiry data.
3913                  */
3914                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3915                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3916                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3917                                                 OBDR_SIG_LEN) == 0);
3918         }
3919         kfree(inq_buff);
3920         return 0;
3921
3922 bail_out:
3923         kfree(inq_buff);
3924         return rc;
3925 }
3926
3927 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3928                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3929 {
3930         unsigned long flags;
3931         int rc, entry;
3932         /*
3933          * See if this device supports aborts.  If we already know
3934          * the device, we already know if it supports aborts, otherwise
3935          * we have to find out if it supports aborts by trying one.
3936          */
3937         spin_lock_irqsave(&h->devlock, flags);
3938         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3939         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3940                 entry >= 0 && entry < h->ndevices) {
3941                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3942                 spin_unlock_irqrestore(&h->devlock, flags);
3943         } else {
3944                 spin_unlock_irqrestore(&h->devlock, flags);
3945                 dev->supports_aborts =
3946                                 hpsa_device_supports_aborts(h, scsi3addr);
3947                 if (dev->supports_aborts < 0)
3948                         dev->supports_aborts = 0;
3949         }
3950 }
3951
3952 /*
3953  * Helper function to assign bus, target, lun mapping of devices.
3954  * Logical drive target and lun are assigned at this time, but
3955  * physical device lun and target assignment are deferred (assigned
3956  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3957 */
3958 static void figure_bus_target_lun(struct ctlr_info *h,
3959         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3960 {
3961         u32 lunid = get_unaligned_le32(lunaddrbytes);
3962
3963         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3964                 /* physical device, target and lun filled in later */
3965                 if (is_hba_lunid(lunaddrbytes)) {
3966                         int bus = HPSA_HBA_BUS;
3967
3968                         if (!device->rev)
3969                                 bus = HPSA_LEGACY_HBA_BUS;
3970                         hpsa_set_bus_target_lun(device,
3971                                         bus, 0, lunid & 0x3fff);
3972                 } else
3973                         /* defer target, lun assignment for physical devices */
3974                         hpsa_set_bus_target_lun(device,
3975                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3976                 return;
3977         }
3978         /* It's a logical device */
3979         if (device->external) {
3980                 hpsa_set_bus_target_lun(device,
3981                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3982                         lunid & 0x00ff);
3983                 return;
3984         }
3985         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3986                                 0, lunid & 0x3fff);
3987 }
3988
3989
3990 /*
3991  * Get address of physical disk used for an ioaccel2 mode command:
3992  *      1. Extract ioaccel2 handle from the command.
3993  *      2. Find a matching ioaccel2 handle from list of physical disks.
3994  *      3. Return:
3995  *              1 and set scsi3addr to address of matching physical
3996  *              0 if no matching physical disk was found.
3997  */
3998 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3999         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4000 {
4001         struct io_accel2_cmd *c2 =
4002                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4003         unsigned long flags;
4004         int i;
4005
4006         spin_lock_irqsave(&h->devlock, flags);
4007         for (i = 0; i < h->ndevices; i++)
4008                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4009                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
4010                                 sizeof(h->dev[i]->scsi3addr));
4011                         spin_unlock_irqrestore(&h->devlock, flags);
4012                         return 1;
4013                 }
4014         spin_unlock_irqrestore(&h->devlock, flags);
4015         return 0;
4016 }
4017
4018 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4019         int i, int nphysicals, int nlocal_logicals)
4020 {
4021         /* In report logicals, local logicals are listed first,
4022         * then any externals.
4023         */
4024         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4025
4026         if (i == raid_ctlr_position)
4027                 return 0;
4028
4029         if (i < logicals_start)
4030                 return 0;
4031
4032         /* i is in logicals range, but still within local logicals */
4033         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4034                 return 0;
4035
4036         return 1; /* it's an external lun */
4037 }
4038
4039 /*
4040  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4041  * logdev.  The number of luns in physdev and logdev are returned in
4042  * *nphysicals and *nlogicals, respectively.
4043  * Returns 0 on success, -1 otherwise.
4044  */
4045 static int hpsa_gather_lun_info(struct ctlr_info *h,
4046         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4047         struct ReportLUNdata *logdev, u32 *nlogicals)
4048 {
4049         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4050                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4051                 return -1;
4052         }
4053         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4054         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4055                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4056                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4057                 *nphysicals = HPSA_MAX_PHYS_LUN;
4058         }
4059         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4060                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4061                 return -1;
4062         }
4063         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4064         /* Reject Logicals in excess of our max capability. */
4065         if (*nlogicals > HPSA_MAX_LUN) {
4066                 dev_warn(&h->pdev->dev,
4067                         "maximum logical LUNs (%d) exceeded.  "
4068                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4069                         *nlogicals - HPSA_MAX_LUN);
4070                         *nlogicals = HPSA_MAX_LUN;
4071         }
4072         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4073                 dev_warn(&h->pdev->dev,
4074                         "maximum logical + physical LUNs (%d) exceeded. "
4075                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4076                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4077                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4078         }
4079         return 0;
4080 }
4081
4082 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4083         int i, int nphysicals, int nlogicals,
4084         struct ReportExtendedLUNdata *physdev_list,
4085         struct ReportLUNdata *logdev_list)
4086 {
4087         /* Helper function, figure out where the LUN ID info is coming from
4088          * given index i, lists of physical and logical devices, where in
4089          * the list the raid controller is supposed to appear (first or last)
4090          */
4091
4092         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4093         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4094
4095         if (i == raid_ctlr_position)
4096                 return RAID_CTLR_LUNID;
4097
4098         if (i < logicals_start)
4099                 return &physdev_list->LUN[i -
4100                                 (raid_ctlr_position == 0)].lunid[0];
4101
4102         if (i < last_device)
4103                 return &logdev_list->LUN[i - nphysicals -
4104                         (raid_ctlr_position == 0)][0];
4105         BUG();
4106         return NULL;
4107 }
4108
4109 /* get physical drive ioaccel handle and queue depth */
4110 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4111                 struct hpsa_scsi_dev_t *dev,
4112                 struct ReportExtendedLUNdata *rlep, int rle_index,
4113                 struct bmic_identify_physical_device *id_phys)
4114 {
4115         int rc;
4116         struct ext_report_lun_entry *rle;
4117
4118         /*
4119          * external targets don't support BMIC
4120          */
4121         if (dev->external) {
4122                 dev->queue_depth = 7;
4123                 return;
4124         }
4125
4126         rle = &rlep->LUN[rle_index];
4127
4128         dev->ioaccel_handle = rle->ioaccel_handle;
4129         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4130                 dev->hba_ioaccel_enabled = 1;
4131         memset(id_phys, 0, sizeof(*id_phys));
4132         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4133                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4134                         sizeof(*id_phys));
4135         if (!rc)
4136                 /* Reserve space for FW operations */
4137 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4138 #define DRIVE_QUEUE_DEPTH 7
4139                 dev->queue_depth =
4140                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4141                                 DRIVE_CMDS_RESERVED_FOR_FW;
4142         else
4143                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4144 }
4145
4146 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4147         struct ReportExtendedLUNdata *rlep, int rle_index,
4148         struct bmic_identify_physical_device *id_phys)
4149 {
4150         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4151
4152         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4153                 this_device->hba_ioaccel_enabled = 1;
4154
4155         memcpy(&this_device->active_path_index,
4156                 &id_phys->active_path_number,
4157                 sizeof(this_device->active_path_index));
4158         memcpy(&this_device->path_map,
4159                 &id_phys->redundant_path_present_map,
4160                 sizeof(this_device->path_map));
4161         memcpy(&this_device->box,
4162                 &id_phys->alternate_paths_phys_box_on_port,
4163                 sizeof(this_device->box));
4164         memcpy(&this_device->phys_connector,
4165                 &id_phys->alternate_paths_phys_connector,
4166                 sizeof(this_device->phys_connector));
4167         memcpy(&this_device->bay,
4168                 &id_phys->phys_bay_in_box,
4169                 sizeof(this_device->bay));
4170 }
4171
4172 /* get number of local logical disks. */
4173 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4174         struct bmic_identify_controller *id_ctlr,
4175         u32 *nlocals)
4176 {
4177         int rc;
4178
4179         if (!id_ctlr) {
4180                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4181                         __func__);
4182                 return -ENOMEM;
4183         }
4184         memset(id_ctlr, 0, sizeof(*id_ctlr));
4185         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4186         if (!rc)
4187                 if (id_ctlr->configured_logical_drive_count < 256)
4188                         *nlocals = id_ctlr->configured_logical_drive_count;
4189                 else
4190                         *nlocals = le16_to_cpu(
4191                                         id_ctlr->extended_logical_unit_count);
4192         else
4193                 *nlocals = -1;
4194         return rc;
4195 }
4196
4197 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4198 {
4199         struct bmic_identify_physical_device *id_phys;
4200         bool is_spare = false;
4201         int rc;
4202
4203         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4204         if (!id_phys)
4205                 return false;
4206
4207         rc = hpsa_bmic_id_physical_device(h,
4208                                         lunaddrbytes,
4209                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4210                                         id_phys, sizeof(*id_phys));
4211         if (rc == 0)
4212                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4213
4214         kfree(id_phys);
4215         return is_spare;
4216 }
4217
4218 #define RPL_DEV_FLAG_NON_DISK                           0x1
4219 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4220 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4221
4222 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4223
4224 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4225                                 struct ext_report_lun_entry *rle)
4226 {
4227         u8 device_flags;
4228         u8 device_type;
4229
4230         if (!MASKED_DEVICE(lunaddrbytes))
4231                 return false;
4232
4233         device_flags = rle->device_flags;
4234         device_type = rle->device_type;
4235
4236         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4237                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4238                         return false;
4239                 return true;
4240         }
4241
4242         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4243                 return false;
4244
4245         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4246                 return false;
4247
4248         /*
4249          * Spares may be spun down, we do not want to
4250          * do an Inquiry to a RAID set spare drive as
4251          * that would have them spun up, that is a
4252          * performance hit because I/O to the RAID device
4253          * stops while the spin up occurs which can take
4254          * over 50 seconds.
4255          */
4256         if (hpsa_is_disk_spare(h, lunaddrbytes))
4257                 return true;
4258
4259         return false;
4260 }
4261
4262 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4263 {
4264         /* the idea here is we could get notified
4265          * that some devices have changed, so we do a report
4266          * physical luns and report logical luns cmd, and adjust
4267          * our list of devices accordingly.
4268          *
4269          * The scsi3addr's of devices won't change so long as the
4270          * adapter is not reset.  That means we can rescan and
4271          * tell which devices we already know about, vs. new
4272          * devices, vs.  disappearing devices.
4273          */
4274         struct ReportExtendedLUNdata *physdev_list = NULL;
4275         struct ReportLUNdata *logdev_list = NULL;
4276         struct bmic_identify_physical_device *id_phys = NULL;
4277         struct bmic_identify_controller *id_ctlr = NULL;
4278         u32 nphysicals = 0;
4279         u32 nlogicals = 0;
4280         u32 nlocal_logicals = 0;
4281         u32 ndev_allocated = 0;
4282         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4283         int ncurrent = 0;
4284         int i, n_ext_target_devs, ndevs_to_allocate;
4285         int raid_ctlr_position;
4286         bool physical_device;
4287         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4288
4289         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4290         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4291         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4292         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4293         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4294         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4295
4296         if (!currentsd || !physdev_list || !logdev_list ||
4297                 !tmpdevice || !id_phys || !id_ctlr) {
4298                 dev_err(&h->pdev->dev, "out of memory\n");
4299                 goto out;
4300         }
4301         memset(lunzerobits, 0, sizeof(lunzerobits));
4302
4303         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4304
4305         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4306                         logdev_list, &nlogicals)) {
4307                 h->drv_req_rescan = 1;
4308                 goto out;
4309         }
4310
4311         /* Set number of local logicals (non PTRAID) */
4312         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4313                 dev_warn(&h->pdev->dev,
4314                         "%s: Can't determine number of local logical devices.\n",
4315                         __func__);
4316         }
4317
4318         /* We might see up to the maximum number of logical and physical disks
4319          * plus external target devices, and a device for the local RAID
4320          * controller.
4321          */
4322         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4323
4324         /* Allocate the per device structures */
4325         for (i = 0; i < ndevs_to_allocate; i++) {
4326                 if (i >= HPSA_MAX_DEVICES) {
4327                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4328                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4329                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4330                         break;
4331                 }
4332
4333                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4334                 if (!currentsd[i]) {
4335                         h->drv_req_rescan = 1;
4336                         goto out;
4337                 }
4338                 ndev_allocated++;
4339         }
4340
4341         if (is_scsi_rev_5(h))
4342                 raid_ctlr_position = 0;
4343         else
4344                 raid_ctlr_position = nphysicals + nlogicals;
4345
4346         /* adjust our table of devices */
4347         n_ext_target_devs = 0;
4348         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4349                 u8 *lunaddrbytes, is_OBDR = 0;
4350                 int rc = 0;
4351                 int phys_dev_index = i - (raid_ctlr_position == 0);
4352                 bool skip_device = false;
4353
4354                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4355
4356                 /* Figure out where the LUN ID info is coming from */
4357                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4358                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4359
4360                 /* Determine if this is a lun from an external target array */
4361                 tmpdevice->external =
4362                         figure_external_status(h, raid_ctlr_position, i,
4363                                                 nphysicals, nlocal_logicals);
4364
4365                 /*
4366                  * Skip over some devices such as a spare.
4367                  */
4368                 if (!tmpdevice->external && physical_device) {
4369                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4370                                         &physdev_list->LUN[phys_dev_index]);
4371                         if (skip_device)
4372                                 continue;
4373                 }
4374
4375                 /* Get device type, vendor, model, device id */
4376                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4377                                                         &is_OBDR);
4378                 if (rc == -ENOMEM) {
4379                         dev_warn(&h->pdev->dev,
4380                                 "Out of memory, rescan deferred.\n");
4381                         h->drv_req_rescan = 1;
4382                         goto out;
4383                 }
4384                 if (rc) {
4385                         h->drv_req_rescan = 1;
4386                         continue;
4387                 }
4388
4389                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4390                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4391                 this_device = currentsd[ncurrent];
4392
4393                 /* Turn on discovery_polling if there are ext target devices.
4394                  * Event-based change notification is unreliable for those.
4395                  */
4396                 if (!h->discovery_polling) {
4397                         if (tmpdevice->external) {
4398                                 h->discovery_polling = 1;
4399                                 dev_info(&h->pdev->dev,
4400                                         "External target, activate discovery polling.\n");
4401                         }
4402                 }
4403
4404
4405                 *this_device = *tmpdevice;
4406                 this_device->physical_device = physical_device;
4407
4408                 /*
4409                  * Expose all devices except for physical devices that
4410                  * are masked.
4411                  */
4412                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4413                         this_device->expose_device = 0;
4414                 else
4415                         this_device->expose_device = 1;
4416
4417
4418                 /*
4419                  * Get the SAS address for physical devices that are exposed.
4420                  */
4421                 if (this_device->physical_device && this_device->expose_device)
4422                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4423
4424                 switch (this_device->devtype) {
4425                 case TYPE_ROM:
4426                         /* We don't *really* support actual CD-ROM devices,
4427                          * just "One Button Disaster Recovery" tape drive
4428                          * which temporarily pretends to be a CD-ROM drive.
4429                          * So we check that the device is really an OBDR tape
4430                          * device by checking for "$DR-10" in bytes 43-48 of
4431                          * the inquiry data.
4432                          */
4433                         if (is_OBDR)
4434                                 ncurrent++;
4435                         break;
4436                 case TYPE_DISK:
4437                 case TYPE_ZBC:
4438                         if (this_device->physical_device) {
4439                                 /* The disk is in HBA mode. */
4440                                 /* Never use RAID mapper in HBA mode. */
4441                                 this_device->offload_enabled = 0;
4442                                 hpsa_get_ioaccel_drive_info(h, this_device,
4443                                         physdev_list, phys_dev_index, id_phys);
4444                                 hpsa_get_path_info(this_device,
4445                                         physdev_list, phys_dev_index, id_phys);
4446                         }
4447                         ncurrent++;
4448                         break;
4449                 case TYPE_TAPE:
4450                 case TYPE_MEDIUM_CHANGER:
4451                         ncurrent++;
4452                         break;
4453                 case TYPE_ENCLOSURE:
4454                         if (!this_device->external)
4455                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4456                                                 physdev_list, phys_dev_index,
4457                                                 this_device);
4458                         ncurrent++;
4459                         break;
4460                 case TYPE_RAID:
4461                         /* Only present the Smartarray HBA as a RAID controller.
4462                          * If it's a RAID controller other than the HBA itself
4463                          * (an external RAID controller, MSA500 or similar)
4464                          * don't present it.
4465                          */
4466                         if (!is_hba_lunid(lunaddrbytes))
4467                                 break;
4468                         ncurrent++;
4469                         break;
4470                 default:
4471                         break;
4472                 }
4473                 if (ncurrent >= HPSA_MAX_DEVICES)
4474                         break;
4475         }
4476
4477         if (h->sas_host == NULL) {
4478                 int rc = 0;
4479
4480                 rc = hpsa_add_sas_host(h);
4481                 if (rc) {
4482                         dev_warn(&h->pdev->dev,
4483                                 "Could not add sas host %d\n", rc);
4484                         goto out;
4485                 }
4486         }
4487
4488         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4489 out:
4490         kfree(tmpdevice);
4491         for (i = 0; i < ndev_allocated; i++)
4492                 kfree(currentsd[i]);
4493         kfree(currentsd);
4494         kfree(physdev_list);
4495         kfree(logdev_list);
4496         kfree(id_ctlr);
4497         kfree(id_phys);
4498 }
4499
4500 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4501                                    struct scatterlist *sg)
4502 {
4503         u64 addr64 = (u64) sg_dma_address(sg);
4504         unsigned int len = sg_dma_len(sg);
4505
4506         desc->Addr = cpu_to_le64(addr64);
4507         desc->Len = cpu_to_le32(len);
4508         desc->Ext = 0;
4509 }
4510
4511 /*
4512  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4513  * dma mapping  and fills in the scatter gather entries of the
4514  * hpsa command, cp.
4515  */
4516 static int hpsa_scatter_gather(struct ctlr_info *h,
4517                 struct CommandList *cp,
4518                 struct scsi_cmnd *cmd)
4519 {
4520         struct scatterlist *sg;
4521         int use_sg, i, sg_limit, chained, last_sg;
4522         struct SGDescriptor *curr_sg;
4523
4524         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4525
4526         use_sg = scsi_dma_map(cmd);
4527         if (use_sg < 0)
4528                 return use_sg;
4529
4530         if (!use_sg)
4531                 goto sglist_finished;
4532
4533         /*
4534          * If the number of entries is greater than the max for a single list,
4535          * then we have a chained list; we will set up all but one entry in the
4536          * first list (the last entry is saved for link information);
4537          * otherwise, we don't have a chained list and we'll set up at each of
4538          * the entries in the one list.
4539          */
4540         curr_sg = cp->SG;
4541         chained = use_sg > h->max_cmd_sg_entries;
4542         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4543         last_sg = scsi_sg_count(cmd) - 1;
4544         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4545                 hpsa_set_sg_descriptor(curr_sg, sg);
4546                 curr_sg++;
4547         }
4548
4549         if (chained) {
4550                 /*
4551                  * Continue with the chained list.  Set curr_sg to the chained
4552                  * list.  Modify the limit to the total count less the entries
4553                  * we've already set up.  Resume the scan at the list entry
4554                  * where the previous loop left off.
4555                  */
4556                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4557                 sg_limit = use_sg - sg_limit;
4558                 for_each_sg(sg, sg, sg_limit, i) {
4559                         hpsa_set_sg_descriptor(curr_sg, sg);
4560                         curr_sg++;
4561                 }
4562         }
4563
4564         /* Back the pointer up to the last entry and mark it as "last". */
4565         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4566
4567         if (use_sg + chained > h->maxSG)
4568                 h->maxSG = use_sg + chained;
4569
4570         if (chained) {
4571                 cp->Header.SGList = h->max_cmd_sg_entries;
4572                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4573                 if (hpsa_map_sg_chain_block(h, cp)) {
4574                         scsi_dma_unmap(cmd);
4575                         return -1;
4576                 }
4577                 return 0;
4578         }
4579
4580 sglist_finished:
4581
4582         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4583         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4584         return 0;
4585 }
4586
4587 #define IO_ACCEL_INELIGIBLE (1)
4588 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4589 {
4590         int is_write = 0;
4591         u32 block;
4592         u32 block_cnt;
4593
4594         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4595         switch (cdb[0]) {
4596         case WRITE_6:
4597         case WRITE_12:
4598                 is_write = 1;
4599         case READ_6:
4600         case READ_12:
4601                 if (*cdb_len == 6) {
4602                         block = (((cdb[1] & 0x1F) << 16) |
4603                                 (cdb[2] << 8) |
4604                                 cdb[3]);
4605                         block_cnt = cdb[4];
4606                         if (block_cnt == 0)
4607                                 block_cnt = 256;
4608                 } else {
4609                         BUG_ON(*cdb_len != 12);
4610                         block = get_unaligned_be32(&cdb[2]);
4611                         block_cnt = get_unaligned_be32(&cdb[6]);
4612                 }
4613                 if (block_cnt > 0xffff)
4614                         return IO_ACCEL_INELIGIBLE;
4615
4616                 cdb[0] = is_write ? WRITE_10 : READ_10;
4617                 cdb[1] = 0;
4618                 cdb[2] = (u8) (block >> 24);
4619                 cdb[3] = (u8) (block >> 16);
4620                 cdb[4] = (u8) (block >> 8);
4621                 cdb[5] = (u8) (block);
4622                 cdb[6] = 0;
4623                 cdb[7] = (u8) (block_cnt >> 8);
4624                 cdb[8] = (u8) (block_cnt);
4625                 cdb[9] = 0;
4626                 *cdb_len = 10;
4627                 break;
4628         }
4629         return 0;
4630 }
4631
4632 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4633         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4634         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4635 {
4636         struct scsi_cmnd *cmd = c->scsi_cmd;
4637         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4638         unsigned int len;
4639         unsigned int total_len = 0;
4640         struct scatterlist *sg;
4641         u64 addr64;
4642         int use_sg, i;
4643         struct SGDescriptor *curr_sg;
4644         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4645
4646         /* TODO: implement chaining support */
4647         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4648                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4649                 return IO_ACCEL_INELIGIBLE;
4650         }
4651
4652         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4653
4654         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4655                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4656                 return IO_ACCEL_INELIGIBLE;
4657         }
4658
4659         c->cmd_type = CMD_IOACCEL1;
4660
4661         /* Adjust the DMA address to point to the accelerated command buffer */
4662         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4663                                 (c->cmdindex * sizeof(*cp));
4664         BUG_ON(c->busaddr & 0x0000007F);
4665
4666         use_sg = scsi_dma_map(cmd);
4667         if (use_sg < 0) {
4668                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4669                 return use_sg;
4670         }
4671
4672         if (use_sg) {
4673                 curr_sg = cp->SG;
4674                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4675                         addr64 = (u64) sg_dma_address(sg);
4676                         len  = sg_dma_len(sg);
4677                         total_len += len;
4678                         curr_sg->Addr = cpu_to_le64(addr64);
4679                         curr_sg->Len = cpu_to_le32(len);
4680                         curr_sg->Ext = cpu_to_le32(0);
4681                         curr_sg++;
4682                 }
4683                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4684
4685                 switch (cmd->sc_data_direction) {
4686                 case DMA_TO_DEVICE:
4687                         control |= IOACCEL1_CONTROL_DATA_OUT;
4688                         break;
4689                 case DMA_FROM_DEVICE:
4690                         control |= IOACCEL1_CONTROL_DATA_IN;
4691                         break;
4692                 case DMA_NONE:
4693                         control |= IOACCEL1_CONTROL_NODATAXFER;
4694                         break;
4695                 default:
4696                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4697                         cmd->sc_data_direction);
4698                         BUG();
4699                         break;
4700                 }
4701         } else {
4702                 control |= IOACCEL1_CONTROL_NODATAXFER;
4703         }
4704
4705         c->Header.SGList = use_sg;
4706         /* Fill out the command structure to submit */
4707         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4708         cp->transfer_len = cpu_to_le32(total_len);
4709         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4710                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4711         cp->control = cpu_to_le32(control);
4712         memcpy(cp->CDB, cdb, cdb_len);
4713         memcpy(cp->CISS_LUN, scsi3addr, 8);
4714         /* Tag was already set at init time. */
4715         enqueue_cmd_and_start_io(h, c);
4716         return 0;
4717 }
4718
4719 /*
4720  * Queue a command directly to a device behind the controller using the
4721  * I/O accelerator path.
4722  */
4723 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4724         struct CommandList *c)
4725 {
4726         struct scsi_cmnd *cmd = c->scsi_cmd;
4727         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4728
4729         if (!dev)
4730                 return -1;
4731
4732         c->phys_disk = dev;
4733
4734         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4735                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4736 }
4737
4738 /*
4739  * Set encryption parameters for the ioaccel2 request
4740  */
4741 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4742         struct CommandList *c, struct io_accel2_cmd *cp)
4743 {
4744         struct scsi_cmnd *cmd = c->scsi_cmd;
4745         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4746         struct raid_map_data *map = &dev->raid_map;
4747         u64 first_block;
4748
4749         /* Are we doing encryption on this device */
4750         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4751                 return;
4752         /* Set the data encryption key index. */
4753         cp->dekindex = map->dekindex;
4754
4755         /* Set the encryption enable flag, encoded into direction field. */
4756         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4757
4758         /* Set encryption tweak values based on logical block address
4759          * If block size is 512, tweak value is LBA.
4760          * For other block sizes, tweak is (LBA * block size)/ 512)
4761          */
4762         switch (cmd->cmnd[0]) {
4763         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4764         case READ_6:
4765         case WRITE_6:
4766                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4767                                 (cmd->cmnd[2] << 8) |
4768                                 cmd->cmnd[3]);
4769                 break;
4770         case WRITE_10:
4771         case READ_10:
4772         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4773         case WRITE_12:
4774         case READ_12:
4775                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4776                 break;
4777         case WRITE_16:
4778         case READ_16:
4779                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4780                 break;
4781         default:
4782                 dev_err(&h->pdev->dev,
4783                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4784                         __func__, cmd->cmnd[0]);
4785                 BUG();
4786                 break;
4787         }
4788
4789         if (le32_to_cpu(map->volume_blk_size) != 512)
4790                 first_block = first_block *
4791                                 le32_to_cpu(map->volume_blk_size)/512;
4792
4793         cp->tweak_lower = cpu_to_le32(first_block);
4794         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4795 }
4796
4797 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4798         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4799         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4800 {
4801         struct scsi_cmnd *cmd = c->scsi_cmd;
4802         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4803         struct ioaccel2_sg_element *curr_sg;
4804         int use_sg, i;
4805         struct scatterlist *sg;
4806         u64 addr64;
4807         u32 len;
4808         u32 total_len = 0;
4809
4810         if (!cmd->device)
4811                 return -1;
4812
4813         if (!cmd->device->hostdata)
4814                 return -1;
4815
4816         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4817
4818         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4819                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4820                 return IO_ACCEL_INELIGIBLE;
4821         }
4822
4823         c->cmd_type = CMD_IOACCEL2;
4824         /* Adjust the DMA address to point to the accelerated command buffer */
4825         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4826                                 (c->cmdindex * sizeof(*cp));
4827         BUG_ON(c->busaddr & 0x0000007F);
4828
4829         memset(cp, 0, sizeof(*cp));
4830         cp->IU_type = IOACCEL2_IU_TYPE;
4831
4832         use_sg = scsi_dma_map(cmd);
4833         if (use_sg < 0) {
4834                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4835                 return use_sg;
4836         }
4837
4838         if (use_sg) {
4839                 curr_sg = cp->sg;
4840                 if (use_sg > h->ioaccel_maxsg) {
4841                         addr64 = le64_to_cpu(
4842                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4843                         curr_sg->address = cpu_to_le64(addr64);
4844                         curr_sg->length = 0;
4845                         curr_sg->reserved[0] = 0;
4846                         curr_sg->reserved[1] = 0;
4847                         curr_sg->reserved[2] = 0;
4848                         curr_sg->chain_indicator = 0x80;
4849
4850                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4851                 }
4852                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4853                         addr64 = (u64) sg_dma_address(sg);
4854                         len  = sg_dma_len(sg);
4855                         total_len += len;
4856                         curr_sg->address = cpu_to_le64(addr64);
4857                         curr_sg->length = cpu_to_le32(len);
4858                         curr_sg->reserved[0] = 0;
4859                         curr_sg->reserved[1] = 0;
4860                         curr_sg->reserved[2] = 0;
4861                         curr_sg->chain_indicator = 0;
4862                         curr_sg++;
4863                 }
4864
4865                 switch (cmd->sc_data_direction) {
4866                 case DMA_TO_DEVICE:
4867                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4868                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4869                         break;
4870                 case DMA_FROM_DEVICE:
4871                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4872                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4873                         break;
4874                 case DMA_NONE:
4875                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4876                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4877                         break;
4878                 default:
4879                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4880                                 cmd->sc_data_direction);
4881                         BUG();
4882                         break;
4883                 }
4884         } else {
4885                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4886                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4887         }
4888
4889         /* Set encryption parameters, if necessary */
4890         set_encrypt_ioaccel2(h, c, cp);
4891
4892         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4893         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4894         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4895
4896         cp->data_len = cpu_to_le32(total_len);
4897         cp->err_ptr = cpu_to_le64(c->busaddr +
4898                         offsetof(struct io_accel2_cmd, error_data));
4899         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4900
4901         /* fill in sg elements */
4902         if (use_sg > h->ioaccel_maxsg) {
4903                 cp->sg_count = 1;
4904                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4905                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4906                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4907                         scsi_dma_unmap(cmd);
4908                         return -1;
4909                 }
4910         } else
4911                 cp->sg_count = (u8) use_sg;
4912
4913         enqueue_cmd_and_start_io(h, c);
4914         return 0;
4915 }
4916
4917 /*
4918  * Queue a command to the correct I/O accelerator path.
4919  */
4920 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4921         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4922         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4923 {
4924         if (!c->scsi_cmd->device)
4925                 return -1;
4926
4927         if (!c->scsi_cmd->device->hostdata)
4928                 return -1;
4929
4930         /* Try to honor the device's queue depth */
4931         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4932                                         phys_disk->queue_depth) {
4933                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4934                 return IO_ACCEL_INELIGIBLE;
4935         }
4936         if (h->transMethod & CFGTBL_Trans_io_accel1)
4937                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4938                                                 cdb, cdb_len, scsi3addr,
4939                                                 phys_disk);
4940         else
4941                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4942                                                 cdb, cdb_len, scsi3addr,
4943                                                 phys_disk);
4944 }
4945
4946 static void raid_map_helper(struct raid_map_data *map,
4947                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4948 {
4949         if (offload_to_mirror == 0)  {
4950                 /* use physical disk in the first mirrored group. */
4951                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4952                 return;
4953         }
4954         do {
4955                 /* determine mirror group that *map_index indicates */
4956                 *current_group = *map_index /
4957                         le16_to_cpu(map->data_disks_per_row);
4958                 if (offload_to_mirror == *current_group)
4959                         continue;
4960                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4961                         /* select map index from next group */
4962                         *map_index += le16_to_cpu(map->data_disks_per_row);
4963                         (*current_group)++;
4964                 } else {
4965                         /* select map index from first group */
4966                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4967                         *current_group = 0;
4968                 }
4969         } while (offload_to_mirror != *current_group);
4970 }
4971
4972 /*
4973  * Attempt to perform offload RAID mapping for a logical volume I/O.
4974  */
4975 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4976         struct CommandList *c)
4977 {
4978         struct scsi_cmnd *cmd = c->scsi_cmd;
4979         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4980         struct raid_map_data *map = &dev->raid_map;
4981         struct raid_map_disk_data *dd = &map->data[0];
4982         int is_write = 0;
4983         u32 map_index;
4984         u64 first_block, last_block;
4985         u32 block_cnt;
4986         u32 blocks_per_row;
4987         u64 first_row, last_row;
4988         u32 first_row_offset, last_row_offset;
4989         u32 first_column, last_column;
4990         u64 r0_first_row, r0_last_row;
4991         u32 r5or6_blocks_per_row;
4992         u64 r5or6_first_row, r5or6_last_row;
4993         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4994         u32 r5or6_first_column, r5or6_last_column;
4995         u32 total_disks_per_row;
4996         u32 stripesize;
4997         u32 first_group, last_group, current_group;
4998         u32 map_row;
4999         u32 disk_handle;
5000         u64 disk_block;
5001         u32 disk_block_cnt;
5002         u8 cdb[16];
5003         u8 cdb_len;
5004         u16 strip_size;
5005 #if BITS_PER_LONG == 32
5006         u64 tmpdiv;
5007 #endif
5008         int offload_to_mirror;
5009
5010         if (!dev)
5011                 return -1;
5012
5013         /* check for valid opcode, get LBA and block count */
5014         switch (cmd->cmnd[0]) {
5015         case WRITE_6:
5016                 is_write = 1;
5017         case READ_6:
5018                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5019                                 (cmd->cmnd[2] << 8) |
5020                                 cmd->cmnd[3]);
5021                 block_cnt = cmd->cmnd[4];
5022                 if (block_cnt == 0)
5023                         block_cnt = 256;
5024                 break;
5025         case WRITE_10:
5026                 is_write = 1;
5027         case READ_10:
5028                 first_block =
5029                         (((u64) cmd->cmnd[2]) << 24) |
5030                         (((u64) cmd->cmnd[3]) << 16) |
5031                         (((u64) cmd->cmnd[4]) << 8) |
5032                         cmd->cmnd[5];
5033                 block_cnt =
5034                         (((u32) cmd->cmnd[7]) << 8) |
5035                         cmd->cmnd[8];
5036                 break;
5037         case WRITE_12:
5038                 is_write = 1;
5039         case READ_12:
5040                 first_block =
5041                         (((u64) cmd->cmnd[2]) << 24) |
5042                         (((u64) cmd->cmnd[3]) << 16) |
5043                         (((u64) cmd->cmnd[4]) << 8) |
5044                         cmd->cmnd[5];
5045                 block_cnt =
5046                         (((u32) cmd->cmnd[6]) << 24) |
5047                         (((u32) cmd->cmnd[7]) << 16) |
5048                         (((u32) cmd->cmnd[8]) << 8) |
5049                 cmd->cmnd[9];
5050                 break;
5051         case WRITE_16:
5052                 is_write = 1;
5053         case READ_16:
5054                 first_block =
5055                         (((u64) cmd->cmnd[2]) << 56) |
5056                         (((u64) cmd->cmnd[3]) << 48) |
5057                         (((u64) cmd->cmnd[4]) << 40) |
5058                         (((u64) cmd->cmnd[5]) << 32) |
5059                         (((u64) cmd->cmnd[6]) << 24) |
5060                         (((u64) cmd->cmnd[7]) << 16) |
5061                         (((u64) cmd->cmnd[8]) << 8) |
5062                         cmd->cmnd[9];
5063                 block_cnt =
5064                         (((u32) cmd->cmnd[10]) << 24) |
5065                         (((u32) cmd->cmnd[11]) << 16) |
5066                         (((u32) cmd->cmnd[12]) << 8) |
5067                         cmd->cmnd[13];
5068                 break;
5069         default:
5070                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5071         }
5072         last_block = first_block + block_cnt - 1;
5073
5074         /* check for write to non-RAID-0 */
5075         if (is_write && dev->raid_level != 0)
5076                 return IO_ACCEL_INELIGIBLE;
5077
5078         /* check for invalid block or wraparound */
5079         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5080                 last_block < first_block)
5081                 return IO_ACCEL_INELIGIBLE;
5082
5083         /* calculate stripe information for the request */
5084         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5085                                 le16_to_cpu(map->strip_size);
5086         strip_size = le16_to_cpu(map->strip_size);
5087 #if BITS_PER_LONG == 32
5088         tmpdiv = first_block;
5089         (void) do_div(tmpdiv, blocks_per_row);
5090         first_row = tmpdiv;
5091         tmpdiv = last_block;
5092         (void) do_div(tmpdiv, blocks_per_row);
5093         last_row = tmpdiv;
5094         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5095         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5096         tmpdiv = first_row_offset;
5097         (void) do_div(tmpdiv, strip_size);
5098         first_column = tmpdiv;
5099         tmpdiv = last_row_offset;
5100         (void) do_div(tmpdiv, strip_size);
5101         last_column = tmpdiv;
5102 #else
5103         first_row = first_block / blocks_per_row;
5104         last_row = last_block / blocks_per_row;
5105         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5106         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5107         first_column = first_row_offset / strip_size;
5108         last_column = last_row_offset / strip_size;
5109 #endif
5110
5111         /* if this isn't a single row/column then give to the controller */
5112         if ((first_row != last_row) || (first_column != last_column))
5113                 return IO_ACCEL_INELIGIBLE;
5114
5115         /* proceeding with driver mapping */
5116         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5117                                 le16_to_cpu(map->metadata_disks_per_row);
5118         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5119                                 le16_to_cpu(map->row_cnt);
5120         map_index = (map_row * total_disks_per_row) + first_column;
5121
5122         switch (dev->raid_level) {
5123         case HPSA_RAID_0:
5124                 break; /* nothing special to do */
5125         case HPSA_RAID_1:
5126                 /* Handles load balance across RAID 1 members.
5127                  * (2-drive R1 and R10 with even # of drives.)
5128                  * Appropriate for SSDs, not optimal for HDDs
5129                  */
5130                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5131                 if (dev->offload_to_mirror)
5132                         map_index += le16_to_cpu(map->data_disks_per_row);
5133                 dev->offload_to_mirror = !dev->offload_to_mirror;
5134                 break;
5135         case HPSA_RAID_ADM:
5136                 /* Handles N-way mirrors  (R1-ADM)
5137                  * and R10 with # of drives divisible by 3.)
5138                  */
5139                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5140
5141                 offload_to_mirror = dev->offload_to_mirror;
5142                 raid_map_helper(map, offload_to_mirror,
5143                                 &map_index, &current_group);
5144                 /* set mirror group to use next time */
5145                 offload_to_mirror =
5146                         (offload_to_mirror >=
5147                         le16_to_cpu(map->layout_map_count) - 1)
5148                         ? 0 : offload_to_mirror + 1;
5149                 dev->offload_to_mirror = offload_to_mirror;
5150                 /* Avoid direct use of dev->offload_to_mirror within this
5151                  * function since multiple threads might simultaneously
5152                  * increment it beyond the range of dev->layout_map_count -1.
5153                  */
5154                 break;
5155         case HPSA_RAID_5:
5156         case HPSA_RAID_6:
5157                 if (le16_to_cpu(map->layout_map_count) <= 1)
5158                         break;
5159
5160                 /* Verify first and last block are in same RAID group */
5161                 r5or6_blocks_per_row =
5162                         le16_to_cpu(map->strip_size) *
5163                         le16_to_cpu(map->data_disks_per_row);
5164                 BUG_ON(r5or6_blocks_per_row == 0);
5165                 stripesize = r5or6_blocks_per_row *
5166                         le16_to_cpu(map->layout_map_count);
5167 #if BITS_PER_LONG == 32
5168                 tmpdiv = first_block;
5169                 first_group = do_div(tmpdiv, stripesize);
5170                 tmpdiv = first_group;
5171                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5172                 first_group = tmpdiv;
5173                 tmpdiv = last_block;
5174                 last_group = do_div(tmpdiv, stripesize);
5175                 tmpdiv = last_group;
5176                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5177                 last_group = tmpdiv;
5178 #else
5179                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5180                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5181 #endif
5182                 if (first_group != last_group)
5183                         return IO_ACCEL_INELIGIBLE;
5184
5185                 /* Verify request is in a single row of RAID 5/6 */
5186 #if BITS_PER_LONG == 32
5187                 tmpdiv = first_block;
5188                 (void) do_div(tmpdiv, stripesize);
5189                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5190                 tmpdiv = last_block;
5191                 (void) do_div(tmpdiv, stripesize);
5192                 r5or6_last_row = r0_last_row = tmpdiv;
5193 #else
5194                 first_row = r5or6_first_row = r0_first_row =
5195                                                 first_block / stripesize;
5196                 r5or6_last_row = r0_last_row = last_block / stripesize;
5197 #endif
5198                 if (r5or6_first_row != r5or6_last_row)
5199                         return IO_ACCEL_INELIGIBLE;
5200
5201
5202                 /* Verify request is in a single column */
5203 #if BITS_PER_LONG == 32
5204                 tmpdiv = first_block;
5205                 first_row_offset = do_div(tmpdiv, stripesize);
5206                 tmpdiv = first_row_offset;
5207                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5208                 r5or6_first_row_offset = first_row_offset;
5209                 tmpdiv = last_block;
5210                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5211                 tmpdiv = r5or6_last_row_offset;
5212                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5213                 tmpdiv = r5or6_first_row_offset;
5214                 (void) do_div(tmpdiv, map->strip_size);
5215                 first_column = r5or6_first_column = tmpdiv;
5216                 tmpdiv = r5or6_last_row_offset;
5217                 (void) do_div(tmpdiv, map->strip_size);
5218                 r5or6_last_column = tmpdiv;
5219 #else
5220                 first_row_offset = r5or6_first_row_offset =
5221                         (u32)((first_block % stripesize) %
5222                                                 r5or6_blocks_per_row);
5223
5224                 r5or6_last_row_offset =
5225                         (u32)((last_block % stripesize) %
5226                                                 r5or6_blocks_per_row);
5227
5228                 first_column = r5or6_first_column =
5229                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5230                 r5or6_last_column =
5231                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5232 #endif
5233                 if (r5or6_first_column != r5or6_last_column)
5234                         return IO_ACCEL_INELIGIBLE;
5235
5236                 /* Request is eligible */
5237                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5238                         le16_to_cpu(map->row_cnt);
5239
5240                 map_index = (first_group *
5241                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5242                         (map_row * total_disks_per_row) + first_column;
5243                 break;
5244         default:
5245                 return IO_ACCEL_INELIGIBLE;
5246         }
5247
5248         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5249                 return IO_ACCEL_INELIGIBLE;
5250
5251         c->phys_disk = dev->phys_disk[map_index];
5252         if (!c->phys_disk)
5253                 return IO_ACCEL_INELIGIBLE;
5254
5255         disk_handle = dd[map_index].ioaccel_handle;
5256         disk_block = le64_to_cpu(map->disk_starting_blk) +
5257                         first_row * le16_to_cpu(map->strip_size) +
5258                         (first_row_offset - first_column *
5259                         le16_to_cpu(map->strip_size));
5260         disk_block_cnt = block_cnt;
5261
5262         /* handle differing logical/physical block sizes */
5263         if (map->phys_blk_shift) {
5264                 disk_block <<= map->phys_blk_shift;
5265                 disk_block_cnt <<= map->phys_blk_shift;
5266         }
5267         BUG_ON(disk_block_cnt > 0xffff);
5268
5269         /* build the new CDB for the physical disk I/O */
5270         if (disk_block > 0xffffffff) {
5271                 cdb[0] = is_write ? WRITE_16 : READ_16;
5272                 cdb[1] = 0;
5273                 cdb[2] = (u8) (disk_block >> 56);
5274                 cdb[3] = (u8) (disk_block >> 48);
5275                 cdb[4] = (u8) (disk_block >> 40);
5276                 cdb[5] = (u8) (disk_block >> 32);
5277                 cdb[6] = (u8) (disk_block >> 24);
5278                 cdb[7] = (u8) (disk_block >> 16);
5279                 cdb[8] = (u8) (disk_block >> 8);
5280                 cdb[9] = (u8) (disk_block);
5281                 cdb[10] = (u8) (disk_block_cnt >> 24);
5282                 cdb[11] = (u8) (disk_block_cnt >> 16);
5283                 cdb[12] = (u8) (disk_block_cnt >> 8);
5284                 cdb[13] = (u8) (disk_block_cnt);
5285                 cdb[14] = 0;
5286                 cdb[15] = 0;
5287                 cdb_len = 16;
5288         } else {
5289                 cdb[0] = is_write ? WRITE_10 : READ_10;
5290                 cdb[1] = 0;
5291                 cdb[2] = (u8) (disk_block >> 24);
5292                 cdb[3] = (u8) (disk_block >> 16);
5293                 cdb[4] = (u8) (disk_block >> 8);
5294                 cdb[5] = (u8) (disk_block);
5295                 cdb[6] = 0;
5296                 cdb[7] = (u8) (disk_block_cnt >> 8);
5297                 cdb[8] = (u8) (disk_block_cnt);
5298                 cdb[9] = 0;
5299                 cdb_len = 10;
5300         }
5301         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5302                                                 dev->scsi3addr,
5303                                                 dev->phys_disk[map_index]);
5304 }
5305
5306 /*
5307  * Submit commands down the "normal" RAID stack path
5308  * All callers to hpsa_ciss_submit must check lockup_detected
5309  * beforehand, before (opt.) and after calling cmd_alloc
5310  */
5311 static int hpsa_ciss_submit(struct ctlr_info *h,
5312         struct CommandList *c, struct scsi_cmnd *cmd,
5313         unsigned char scsi3addr[])
5314 {
5315         cmd->host_scribble = (unsigned char *) c;
5316         c->cmd_type = CMD_SCSI;
5317         c->scsi_cmd = cmd;
5318         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5319         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5320         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5321
5322         /* Fill in the request block... */
5323
5324         c->Request.Timeout = 0;
5325         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5326         c->Request.CDBLen = cmd->cmd_len;
5327         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5328         switch (cmd->sc_data_direction) {
5329         case DMA_TO_DEVICE:
5330                 c->Request.type_attr_dir =
5331                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5332                 break;
5333         case DMA_FROM_DEVICE:
5334                 c->Request.type_attr_dir =
5335                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5336                 break;
5337         case DMA_NONE:
5338                 c->Request.type_attr_dir =
5339                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5340                 break;
5341         case DMA_BIDIRECTIONAL:
5342                 /* This can happen if a buggy application does a scsi passthru
5343                  * and sets both inlen and outlen to non-zero. ( see
5344                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5345                  */
5346
5347                 c->Request.type_attr_dir =
5348                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5349                 /* This is technically wrong, and hpsa controllers should
5350                  * reject it with CMD_INVALID, which is the most correct
5351                  * response, but non-fibre backends appear to let it
5352                  * slide by, and give the same results as if this field
5353                  * were set correctly.  Either way is acceptable for
5354                  * our purposes here.
5355                  */
5356
5357                 break;
5358
5359         default:
5360                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5361                         cmd->sc_data_direction);
5362                 BUG();
5363                 break;
5364         }
5365
5366         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5367                 hpsa_cmd_resolve_and_free(h, c);
5368                 return SCSI_MLQUEUE_HOST_BUSY;
5369         }
5370         enqueue_cmd_and_start_io(h, c);
5371         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5372         return 0;
5373 }
5374
5375 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5376                                 struct CommandList *c)
5377 {
5378         dma_addr_t cmd_dma_handle, err_dma_handle;
5379
5380         /* Zero out all of commandlist except the last field, refcount */
5381         memset(c, 0, offsetof(struct CommandList, refcount));
5382         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5383         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5384         c->err_info = h->errinfo_pool + index;
5385         memset(c->err_info, 0, sizeof(*c->err_info));
5386         err_dma_handle = h->errinfo_pool_dhandle
5387             + index * sizeof(*c->err_info);
5388         c->cmdindex = index;
5389         c->busaddr = (u32) cmd_dma_handle;
5390         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5391         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5392         c->h = h;
5393         c->scsi_cmd = SCSI_CMD_IDLE;
5394 }
5395
5396 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5397 {
5398         int i;
5399
5400         for (i = 0; i < h->nr_cmds; i++) {
5401                 struct CommandList *c = h->cmd_pool + i;
5402
5403                 hpsa_cmd_init(h, i, c);
5404                 atomic_set(&c->refcount, 0);
5405         }
5406 }
5407
5408 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5409                                 struct CommandList *c)
5410 {
5411         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5412
5413         BUG_ON(c->cmdindex != index);
5414
5415         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5416         memset(c->err_info, 0, sizeof(*c->err_info));
5417         c->busaddr = (u32) cmd_dma_handle;
5418 }
5419
5420 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5421                 struct CommandList *c, struct scsi_cmnd *cmd,
5422                 unsigned char *scsi3addr)
5423 {
5424         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5425         int rc = IO_ACCEL_INELIGIBLE;
5426
5427         if (!dev)
5428                 return SCSI_MLQUEUE_HOST_BUSY;
5429
5430         cmd->host_scribble = (unsigned char *) c;
5431
5432         if (dev->offload_enabled) {
5433                 hpsa_cmd_init(h, c->cmdindex, c);
5434                 c->cmd_type = CMD_SCSI;
5435                 c->scsi_cmd = cmd;
5436                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5437                 if (rc < 0)     /* scsi_dma_map failed. */
5438                         rc = SCSI_MLQUEUE_HOST_BUSY;
5439         } else if (dev->hba_ioaccel_enabled) {
5440                 hpsa_cmd_init(h, c->cmdindex, c);
5441                 c->cmd_type = CMD_SCSI;
5442                 c->scsi_cmd = cmd;
5443                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5444                 if (rc < 0)     /* scsi_dma_map failed. */
5445                         rc = SCSI_MLQUEUE_HOST_BUSY;
5446         }
5447         return rc;
5448 }
5449
5450 static void hpsa_command_resubmit_worker(struct work_struct *work)
5451 {
5452         struct scsi_cmnd *cmd;
5453         struct hpsa_scsi_dev_t *dev;
5454         struct CommandList *c = container_of(work, struct CommandList, work);
5455
5456         cmd = c->scsi_cmd;
5457         dev = cmd->device->hostdata;
5458         if (!dev) {
5459                 cmd->result = DID_NO_CONNECT << 16;
5460                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5461         }
5462         if (c->reset_pending)
5463                 return hpsa_cmd_resolve_and_free(c->h, c);
5464         if (c->abort_pending)
5465                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5466         if (c->cmd_type == CMD_IOACCEL2) {
5467                 struct ctlr_info *h = c->h;
5468                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5469                 int rc;
5470
5471                 if (c2->error_data.serv_response ==
5472                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5473                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5474                         if (rc == 0)
5475                                 return;
5476                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5477                                 /*
5478                                  * If we get here, it means dma mapping failed.
5479                                  * Try again via scsi mid layer, which will
5480                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5481                                  */
5482                                 cmd->result = DID_IMM_RETRY << 16;
5483                                 return hpsa_cmd_free_and_done(h, c, cmd);
5484                         }
5485                         /* else, fall thru and resubmit down CISS path */
5486                 }
5487         }
5488         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5489         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5490                 /*
5491                  * If we get here, it means dma mapping failed. Try
5492                  * again via scsi mid layer, which will then get
5493                  * SCSI_MLQUEUE_HOST_BUSY.
5494                  *
5495                  * hpsa_ciss_submit will have already freed c
5496                  * if it encountered a dma mapping failure.
5497                  */
5498                 cmd->result = DID_IMM_RETRY << 16;
5499                 cmd->scsi_done(cmd);
5500         }
5501 }
5502
5503 /* Running in struct Scsi_Host->host_lock less mode */
5504 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5505 {
5506         struct ctlr_info *h;
5507         struct hpsa_scsi_dev_t *dev;
5508         unsigned char scsi3addr[8];
5509         struct CommandList *c;
5510         int rc = 0;
5511
5512         /* Get the ptr to our adapter structure out of cmd->host. */
5513         h = sdev_to_hba(cmd->device);
5514
5515         BUG_ON(cmd->request->tag < 0);
5516
5517         dev = cmd->device->hostdata;
5518         if (!dev) {
5519                 cmd->result = DID_NO_CONNECT << 16;
5520                 cmd->scsi_done(cmd);
5521                 return 0;
5522         }
5523
5524         if (dev->removed) {
5525                 cmd->result = DID_NO_CONNECT << 16;
5526                 cmd->scsi_done(cmd);
5527                 return 0;
5528         }
5529
5530         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5531
5532         if (unlikely(lockup_detected(h))) {
5533                 cmd->result = DID_NO_CONNECT << 16;
5534                 cmd->scsi_done(cmd);
5535                 return 0;
5536         }
5537         c = cmd_tagged_alloc(h, cmd);
5538
5539         /*
5540          * Call alternate submit routine for I/O accelerated commands.
5541          * Retries always go down the normal I/O path.
5542          */
5543         if (likely(cmd->retries == 0 &&
5544                         !blk_rq_is_passthrough(cmd->request) &&
5545                         h->acciopath_status)) {
5546                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5547                 if (rc == 0)
5548                         return 0;
5549                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5550                         hpsa_cmd_resolve_and_free(h, c);
5551                         return SCSI_MLQUEUE_HOST_BUSY;
5552                 }
5553         }
5554         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5555 }
5556
5557 static void hpsa_scan_complete(struct ctlr_info *h)
5558 {
5559         unsigned long flags;
5560
5561         spin_lock_irqsave(&h->scan_lock, flags);
5562         h->scan_finished = 1;
5563         wake_up(&h->scan_wait_queue);
5564         spin_unlock_irqrestore(&h->scan_lock, flags);
5565 }
5566
5567 static void hpsa_scan_start(struct Scsi_Host *sh)
5568 {
5569         struct ctlr_info *h = shost_to_hba(sh);
5570         unsigned long flags;
5571
5572         /*
5573          * Don't let rescans be initiated on a controller known to be locked
5574          * up.  If the controller locks up *during* a rescan, that thread is
5575          * probably hosed, but at least we can prevent new rescan threads from
5576          * piling up on a locked up controller.
5577          */
5578         if (unlikely(lockup_detected(h)))
5579                 return hpsa_scan_complete(h);
5580
5581         /*
5582          * If a scan is already waiting to run, no need to add another
5583          */
5584         spin_lock_irqsave(&h->scan_lock, flags);
5585         if (h->scan_waiting) {
5586                 spin_unlock_irqrestore(&h->scan_lock, flags);
5587                 return;
5588         }
5589
5590         spin_unlock_irqrestore(&h->scan_lock, flags);
5591
5592         /* wait until any scan already in progress is finished. */
5593         while (1) {
5594                 spin_lock_irqsave(&h->scan_lock, flags);
5595                 if (h->scan_finished)
5596                         break;
5597                 h->scan_waiting = 1;
5598                 spin_unlock_irqrestore(&h->scan_lock, flags);
5599                 wait_event(h->scan_wait_queue, h->scan_finished);
5600                 /* Note: We don't need to worry about a race between this
5601                  * thread and driver unload because the midlayer will
5602                  * have incremented the reference count, so unload won't
5603                  * happen if we're in here.
5604                  */
5605         }
5606         h->scan_finished = 0; /* mark scan as in progress */
5607         h->scan_waiting = 0;
5608         spin_unlock_irqrestore(&h->scan_lock, flags);
5609
5610         if (unlikely(lockup_detected(h)))
5611                 return hpsa_scan_complete(h);
5612
5613         /*
5614          * Do the scan after a reset completion
5615          */
5616         if (h->reset_in_progress) {
5617                 h->drv_req_rescan = 1;
5618                 return;
5619         }
5620
5621         hpsa_update_scsi_devices(h);
5622
5623         hpsa_scan_complete(h);
5624 }
5625
5626 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5627 {
5628         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5629
5630         if (!logical_drive)
5631                 return -ENODEV;
5632
5633         if (qdepth < 1)
5634                 qdepth = 1;
5635         else if (qdepth > logical_drive->queue_depth)
5636                 qdepth = logical_drive->queue_depth;
5637
5638         return scsi_change_queue_depth(sdev, qdepth);
5639 }
5640
5641 static int hpsa_scan_finished(struct Scsi_Host *sh,
5642         unsigned long elapsed_time)
5643 {
5644         struct ctlr_info *h = shost_to_hba(sh);
5645         unsigned long flags;
5646         int finished;
5647
5648         spin_lock_irqsave(&h->scan_lock, flags);
5649         finished = h->scan_finished;
5650         spin_unlock_irqrestore(&h->scan_lock, flags);
5651         return finished;
5652 }
5653
5654 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5655 {
5656         struct Scsi_Host *sh;
5657
5658         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5659         if (sh == NULL) {
5660                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5661                 return -ENOMEM;
5662         }
5663
5664         sh->io_port = 0;
5665         sh->n_io_port = 0;
5666         sh->this_id = -1;
5667         sh->max_channel = 3;
5668         sh->max_cmd_len = MAX_COMMAND_SIZE;
5669         sh->max_lun = HPSA_MAX_LUN;
5670         sh->max_id = HPSA_MAX_LUN;
5671         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5672         sh->cmd_per_lun = sh->can_queue;
5673         sh->sg_tablesize = h->maxsgentries;
5674         sh->transportt = hpsa_sas_transport_template;
5675         sh->hostdata[0] = (unsigned long) h;
5676         sh->irq = pci_irq_vector(h->pdev, 0);
5677         sh->unique_id = sh->irq;
5678
5679         h->scsi_host = sh;
5680         return 0;
5681 }
5682
5683 static int hpsa_scsi_add_host(struct ctlr_info *h)
5684 {
5685         int rv;
5686
5687         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5688         if (rv) {
5689                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5690                 return rv;
5691         }
5692         scsi_scan_host(h->scsi_host);
5693         return 0;
5694 }
5695
5696 /*
5697  * The block layer has already gone to the trouble of picking out a unique,
5698  * small-integer tag for this request.  We use an offset from that value as
5699  * an index to select our command block.  (The offset allows us to reserve the
5700  * low-numbered entries for our own uses.)
5701  */
5702 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5703 {
5704         int idx = scmd->request->tag;
5705
5706         if (idx < 0)
5707                 return idx;
5708
5709         /* Offset to leave space for internal cmds. */
5710         return idx += HPSA_NRESERVED_CMDS;
5711 }
5712
5713 /*
5714  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5715  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5716  */
5717 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5718                                 struct CommandList *c, unsigned char lunaddr[],
5719                                 int reply_queue)
5720 {
5721         int rc;
5722
5723         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5724         (void) fill_cmd(c, TEST_UNIT_READY, h,
5725                         NULL, 0, 0, lunaddr, TYPE_CMD);
5726         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5727         if (rc)
5728                 return rc;
5729         /* no unmap needed here because no data xfer. */
5730
5731         /* Check if the unit is already ready. */
5732         if (c->err_info->CommandStatus == CMD_SUCCESS)
5733                 return 0;
5734
5735         /*
5736          * The first command sent after reset will receive "unit attention" to
5737          * indicate that the LUN has been reset...this is actually what we're
5738          * looking for (but, success is good too).
5739          */
5740         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5741                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5742                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5743                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5744                 return 0;
5745
5746         return 1;
5747 }
5748
5749 /*
5750  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5751  * returns zero when the unit is ready, and non-zero when giving up.
5752  */
5753 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5754                                 struct CommandList *c,
5755                                 unsigned char lunaddr[], int reply_queue)
5756 {
5757         int rc;
5758         int count = 0;
5759         int waittime = 1; /* seconds */
5760
5761         /* Send test unit ready until device ready, or give up. */
5762         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5763
5764                 /*
5765                  * Wait for a bit.  do this first, because if we send
5766                  * the TUR right away, the reset will just abort it.
5767                  */
5768                 msleep(1000 * waittime);
5769
5770                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5771                 if (!rc)
5772                         break;
5773
5774                 /* Increase wait time with each try, up to a point. */
5775                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5776                         waittime *= 2;
5777
5778                 dev_warn(&h->pdev->dev,
5779                          "waiting %d secs for device to become ready.\n",
5780                          waittime);
5781         }
5782
5783         return rc;
5784 }
5785
5786 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5787                                            unsigned char lunaddr[],
5788                                            int reply_queue)
5789 {
5790         int first_queue;
5791         int last_queue;
5792         int rq;
5793         int rc = 0;
5794         struct CommandList *c;
5795
5796         c = cmd_alloc(h);
5797
5798         /*
5799          * If no specific reply queue was requested, then send the TUR
5800          * repeatedly, requesting a reply on each reply queue; otherwise execute
5801          * the loop exactly once using only the specified queue.
5802          */
5803         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5804                 first_queue = 0;
5805                 last_queue = h->nreply_queues - 1;
5806         } else {
5807                 first_queue = reply_queue;
5808                 last_queue = reply_queue;
5809         }
5810
5811         for (rq = first_queue; rq <= last_queue; rq++) {
5812                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5813                 if (rc)
5814                         break;
5815         }
5816
5817         if (rc)
5818                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5819         else
5820                 dev_warn(&h->pdev->dev, "device is ready.\n");
5821
5822         cmd_free(h, c);
5823         return rc;
5824 }
5825
5826 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5827  * complaining.  Doing a host- or bus-reset can't do anything good here.
5828  */
5829 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5830 {
5831         int rc;
5832         struct ctlr_info *h;
5833         struct hpsa_scsi_dev_t *dev;
5834         u8 reset_type;
5835         char msg[48];
5836
5837         /* find the controller to which the command to be aborted was sent */
5838         h = sdev_to_hba(scsicmd->device);
5839         if (h == NULL) /* paranoia */
5840                 return FAILED;
5841
5842         if (lockup_detected(h))
5843                 return FAILED;
5844
5845         dev = scsicmd->device->hostdata;
5846         if (!dev) {
5847                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5848                 return FAILED;
5849         }
5850
5851         /* if controller locked up, we can guarantee command won't complete */
5852         if (lockup_detected(h)) {
5853                 snprintf(msg, sizeof(msg),
5854                          "cmd %d RESET FAILED, lockup detected",
5855                          hpsa_get_cmd_index(scsicmd));
5856                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5857                 return FAILED;
5858         }
5859
5860         /* this reset request might be the result of a lockup; check */
5861         if (detect_controller_lockup(h)) {
5862                 snprintf(msg, sizeof(msg),
5863                          "cmd %d RESET FAILED, new lockup detected",
5864                          hpsa_get_cmd_index(scsicmd));
5865                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866                 return FAILED;
5867         }
5868
5869         /* Do not attempt on controller */
5870         if (is_hba_lunid(dev->scsi3addr))
5871                 return SUCCESS;
5872
5873         if (is_logical_dev_addr_mode(dev->scsi3addr))
5874                 reset_type = HPSA_DEVICE_RESET_MSG;
5875         else
5876                 reset_type = HPSA_PHYS_TARGET_RESET;
5877
5878         sprintf(msg, "resetting %s",
5879                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5880         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5881
5882         h->reset_in_progress = 1;
5883
5884         /* send a reset to the SCSI LUN which the command was sent to */
5885         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5886                            DEFAULT_REPLY_QUEUE);
5887         sprintf(msg, "reset %s %s",
5888                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5889                 rc == 0 ? "completed successfully" : "failed");
5890         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5891         h->reset_in_progress = 0;
5892         return rc == 0 ? SUCCESS : FAILED;
5893 }
5894
5895 static void swizzle_abort_tag(u8 *tag)
5896 {
5897         u8 original_tag[8];
5898
5899         memcpy(original_tag, tag, 8);
5900         tag[0] = original_tag[3];
5901         tag[1] = original_tag[2];
5902         tag[2] = original_tag[1];
5903         tag[3] = original_tag[0];
5904         tag[4] = original_tag[7];
5905         tag[5] = original_tag[6];
5906         tag[6] = original_tag[5];
5907         tag[7] = original_tag[4];
5908 }
5909
5910 static void hpsa_get_tag(struct ctlr_info *h,
5911         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5912 {
5913         u64 tag;
5914         if (c->cmd_type == CMD_IOACCEL1) {
5915                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5916                         &h->ioaccel_cmd_pool[c->cmdindex];
5917                 tag = le64_to_cpu(cm1->tag);
5918                 *tagupper = cpu_to_le32(tag >> 32);
5919                 *taglower = cpu_to_le32(tag);
5920                 return;
5921         }
5922         if (c->cmd_type == CMD_IOACCEL2) {
5923                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5924                         &h->ioaccel2_cmd_pool[c->cmdindex];
5925                 /* upper tag not used in ioaccel2 mode */
5926                 memset(tagupper, 0, sizeof(*tagupper));
5927                 *taglower = cm2->Tag;
5928                 return;
5929         }
5930         tag = le64_to_cpu(c->Header.tag);
5931         *tagupper = cpu_to_le32(tag >> 32);
5932         *taglower = cpu_to_le32(tag);
5933 }
5934
5935 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5936         struct CommandList *abort, int reply_queue)
5937 {
5938         int rc = IO_OK;
5939         struct CommandList *c;
5940         struct ErrorInfo *ei;
5941         __le32 tagupper, taglower;
5942
5943         c = cmd_alloc(h);
5944
5945         /* fill_cmd can't fail here, no buffer to map */
5946         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5947                 0, 0, scsi3addr, TYPE_MSG);
5948         if (h->needs_abort_tags_swizzled)
5949                 swizzle_abort_tag(&c->Request.CDB[4]);
5950         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5951         hpsa_get_tag(h, abort, &taglower, &tagupper);
5952         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5953                 __func__, tagupper, taglower);
5954         /* no unmap needed here because no data xfer. */
5955
5956         ei = c->err_info;
5957         switch (ei->CommandStatus) {
5958         case CMD_SUCCESS:
5959                 break;
5960         case CMD_TMF_STATUS:
5961                 rc = hpsa_evaluate_tmf_status(h, c);
5962                 break;
5963         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5964                 rc = -1;
5965                 break;
5966         default:
5967                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5968                         __func__, tagupper, taglower);
5969                 hpsa_scsi_interpret_error(h, c);
5970                 rc = -1;
5971                 break;
5972         }
5973         cmd_free(h, c);
5974         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5975                 __func__, tagupper, taglower);
5976         return rc;
5977 }
5978
5979 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5980         struct CommandList *command_to_abort, int reply_queue)
5981 {
5982         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5983         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5984         struct io_accel2_cmd *c2a =
5985                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5986         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5987         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5988
5989         if (!dev)
5990                 return;
5991
5992         /*
5993          * We're overlaying struct hpsa_tmf_struct on top of something which
5994          * was allocated as a struct io_accel2_cmd, so we better be sure it
5995          * actually fits, and doesn't overrun the error info space.
5996          */
5997         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5998                         sizeof(struct io_accel2_cmd));
5999         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6000                         offsetof(struct hpsa_tmf_struct, error_len) +
6001                                 sizeof(ac->error_len));
6002
6003         c->cmd_type = IOACCEL2_TMF;
6004         c->scsi_cmd = SCSI_CMD_BUSY;
6005
6006         /* Adjust the DMA address to point to the accelerated command buffer */
6007         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6008                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
6009         BUG_ON(c->busaddr & 0x0000007F);
6010
6011         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6012         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6013         ac->reply_queue = reply_queue;
6014         ac->tmf = IOACCEL2_TMF_ABORT;
6015         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6016         memset(ac->lun_id, 0, sizeof(ac->lun_id));
6017         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6018         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6019         ac->error_ptr = cpu_to_le64(c->busaddr +
6020                         offsetof(struct io_accel2_cmd, error_data));
6021         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6022 }
6023
6024 /* ioaccel2 path firmware cannot handle abort task requests.
6025  * Change abort requests to physical target reset, and send to the
6026  * address of the physical disk used for the ioaccel 2 command.
6027  * Return 0 on success (IO_OK)
6028  *       -1 on failure
6029  */
6030
6031 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6032         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6033 {
6034         int rc = IO_OK;
6035         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6036         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6037         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6038         unsigned char *psa = &phys_scsi3addr[0];
6039
6040         /* Get a pointer to the hpsa logical device. */
6041         scmd = abort->scsi_cmd;
6042         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6043         if (dev == NULL) {
6044                 dev_warn(&h->pdev->dev,
6045                         "Cannot abort: no device pointer for command.\n");
6046                         return -1; /* not abortable */
6047         }
6048
6049         if (h->raid_offload_debug > 0)
6050                 dev_info(&h->pdev->dev,
6051                         "scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6052                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6053                         "Reset as abort", scsi3addr);
6054
6055         if (!dev->offload_enabled) {
6056                 dev_warn(&h->pdev->dev,
6057                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6058                 return -1; /* not abortable */
6059         }
6060
6061         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6062         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6063                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6064                 return -1; /* not abortable */
6065         }
6066
6067         /* send the reset */
6068         if (h->raid_offload_debug > 0)
6069                 dev_info(&h->pdev->dev,
6070                         "Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6071                         psa);
6072         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6073         if (rc != 0) {
6074                 dev_warn(&h->pdev->dev,
6075                         "Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6076                         psa);
6077                 return rc; /* failed to reset */
6078         }
6079
6080         /* wait for device to recover */
6081         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6082                 dev_warn(&h->pdev->dev,
6083                         "Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6084                         psa);
6085                 return -1;  /* failed to recover */
6086         }
6087
6088         /* device recovered */
6089         dev_info(&h->pdev->dev,
6090                 "Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6091                 psa);
6092
6093         return rc; /* success */
6094 }
6095
6096 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6097         struct CommandList *abort, int reply_queue)
6098 {
6099         int rc = IO_OK;
6100         struct CommandList *c;
6101         __le32 taglower, tagupper;
6102         struct hpsa_scsi_dev_t *dev;
6103         struct io_accel2_cmd *c2;
6104
6105         dev = abort->scsi_cmd->device->hostdata;
6106         if (!dev)
6107                 return -1;
6108
6109         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6110                 return -1;
6111
6112         c = cmd_alloc(h);
6113         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6114         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6115         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6116         hpsa_get_tag(h, abort, &taglower, &tagupper);
6117         dev_dbg(&h->pdev->dev,
6118                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6119                 __func__, tagupper, taglower);
6120         /* no unmap needed here because no data xfer. */
6121
6122         dev_dbg(&h->pdev->dev,
6123                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6124                 __func__, tagupper, taglower, c2->error_data.serv_response);
6125         switch (c2->error_data.serv_response) {
6126         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6127         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6128                 rc = 0;
6129                 break;
6130         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6131         case IOACCEL2_SERV_RESPONSE_FAILURE:
6132         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6133                 rc = -1;
6134                 break;
6135         default:
6136                 dev_warn(&h->pdev->dev,
6137                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6138                         __func__, tagupper, taglower,
6139                         c2->error_data.serv_response);
6140                 rc = -1;
6141         }
6142         cmd_free(h, c);
6143         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6144                 tagupper, taglower);
6145         return rc;
6146 }
6147
6148 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6149         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6150 {
6151         /*
6152          * ioccelerator mode 2 commands should be aborted via the
6153          * accelerated path, since RAID path is unaware of these commands,
6154          * but not all underlying firmware can handle abort TMF.
6155          * Change abort to physical device reset when abort TMF is unsupported.
6156          */
6157         if (abort->cmd_type == CMD_IOACCEL2) {
6158                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6159                         dev->physical_device)
6160                         return hpsa_send_abort_ioaccel2(h, abort,
6161                                                 reply_queue);
6162                 else
6163                         return hpsa_send_reset_as_abort_ioaccel2(h,
6164                                                         dev->scsi3addr,
6165                                                         abort, reply_queue);
6166         }
6167         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6168 }
6169
6170 /* Find out which reply queue a command was meant to return on */
6171 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6172                                         struct CommandList *c)
6173 {
6174         if (c->cmd_type == CMD_IOACCEL2)
6175                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6176         return c->Header.ReplyQueue;
6177 }
6178
6179 /*
6180  * Limit concurrency of abort commands to prevent
6181  * over-subscription of commands
6182  */
6183 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6184 {
6185 #define ABORT_CMD_WAIT_MSECS 5000
6186         return !wait_event_timeout(h->abort_cmd_wait_queue,
6187                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6188                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6189 }
6190
6191 /* Send an abort for the specified command.
6192  *      If the device and controller support it,
6193  *              send a task abort request.
6194  */
6195 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6196 {
6197
6198         int rc;
6199         struct ctlr_info *h;
6200         struct hpsa_scsi_dev_t *dev;
6201         struct CommandList *abort; /* pointer to command to be aborted */
6202         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6203         char msg[256];          /* For debug messaging. */
6204         int ml = 0;
6205         __le32 tagupper, taglower;
6206         int refcount, reply_queue;
6207
6208         if (sc == NULL)
6209                 return FAILED;
6210
6211         if (sc->device == NULL)
6212                 return FAILED;
6213
6214         /* Find the controller of the command to be aborted */
6215         h = sdev_to_hba(sc->device);
6216         if (h == NULL)
6217                 return FAILED;
6218
6219         /* Find the device of the command to be aborted */
6220         dev = sc->device->hostdata;
6221         if (!dev) {
6222                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6223                                 msg);
6224                 return FAILED;
6225         }
6226
6227         /* If controller locked up, we can guarantee command won't complete */
6228         if (lockup_detected(h)) {
6229                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6230                                         "ABORT FAILED, lockup detected");
6231                 return FAILED;
6232         }
6233
6234         /* This is a good time to check if controller lockup has occurred */
6235         if (detect_controller_lockup(h)) {
6236                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6237                                         "ABORT FAILED, new lockup detected");
6238                 return FAILED;
6239         }
6240
6241         /* Check that controller supports some kind of task abort */
6242         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6243                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6244                 return FAILED;
6245
6246         memset(msg, 0, sizeof(msg));
6247         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6248                 h->scsi_host->host_no, sc->device->channel,
6249                 sc->device->id, sc->device->lun,
6250                 "Aborting command", sc);
6251
6252         /* Get SCSI command to be aborted */
6253         abort = (struct CommandList *) sc->host_scribble;
6254         if (abort == NULL) {
6255                 /* This can happen if the command already completed. */
6256                 return SUCCESS;
6257         }
6258         refcount = atomic_inc_return(&abort->refcount);
6259         if (refcount == 1) { /* Command is done already. */
6260                 cmd_free(h, abort);
6261                 return SUCCESS;
6262         }
6263
6264         /* Don't bother trying the abort if we know it won't work. */
6265         if (abort->cmd_type != CMD_IOACCEL2 &&
6266                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6267                 cmd_free(h, abort);
6268                 return FAILED;
6269         }
6270
6271         /*
6272          * Check that we're aborting the right command.
6273          * It's possible the CommandList already completed and got re-used.
6274          */
6275         if (abort->scsi_cmd != sc) {
6276                 cmd_free(h, abort);
6277                 return SUCCESS;
6278         }
6279
6280         abort->abort_pending = true;
6281         hpsa_get_tag(h, abort, &taglower, &tagupper);
6282         reply_queue = hpsa_extract_reply_queue(h, abort);
6283         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6284         as  = abort->scsi_cmd;
6285         if (as != NULL)
6286                 ml += sprintf(msg+ml,
6287                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6288                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6289                         as->serial_number);
6290         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6291         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6292
6293         /*
6294          * Command is in flight, or possibly already completed
6295          * by the firmware (but not to the scsi mid layer) but we can't
6296          * distinguish which.  Send the abort down.
6297          */
6298         if (wait_for_available_abort_cmd(h)) {
6299                 dev_warn(&h->pdev->dev,
6300                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6301                         msg);
6302                 cmd_free(h, abort);
6303                 return FAILED;
6304         }
6305         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6306         atomic_inc(&h->abort_cmds_available);
6307         wake_up_all(&h->abort_cmd_wait_queue);
6308         if (rc != 0) {
6309                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6310                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6311                                 "FAILED to abort command");
6312                 cmd_free(h, abort);
6313                 return FAILED;
6314         }
6315         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6316         wait_event(h->event_sync_wait_queue,
6317                    abort->scsi_cmd != sc || lockup_detected(h));
6318         cmd_free(h, abort);
6319         return !lockup_detected(h) ? SUCCESS : FAILED;
6320 }
6321
6322 /*
6323  * For operations with an associated SCSI command, a command block is allocated
6324  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6325  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6326  * the complement, although cmd_free() may be called instead.
6327  */
6328 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6329                                             struct scsi_cmnd *scmd)
6330 {
6331         int idx = hpsa_get_cmd_index(scmd);
6332         struct CommandList *c = h->cmd_pool + idx;
6333
6334         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6335                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6336                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6337                 /* The index value comes from the block layer, so if it's out of
6338                  * bounds, it's probably not our bug.
6339                  */
6340                 BUG();
6341         }
6342
6343         atomic_inc(&c->refcount);
6344         if (unlikely(!hpsa_is_cmd_idle(c))) {
6345                 /*
6346                  * We expect that the SCSI layer will hand us a unique tag
6347                  * value.  Thus, there should never be a collision here between
6348                  * two requests...because if the selected command isn't idle
6349                  * then someone is going to be very disappointed.
6350                  */
6351                 dev_err(&h->pdev->dev,
6352                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6353                         idx);
6354                 if (c->scsi_cmd != NULL)
6355                         scsi_print_command(c->scsi_cmd);
6356                 scsi_print_command(scmd);
6357         }
6358
6359         hpsa_cmd_partial_init(h, idx, c);
6360         return c;
6361 }
6362
6363 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6364 {
6365         /*
6366          * Release our reference to the block.  We don't need to do anything
6367          * else to free it, because it is accessed by index.  (There's no point
6368          * in checking the result of the decrement, since we cannot guarantee
6369          * that there isn't a concurrent abort which is also accessing it.)
6370          */
6371         (void)atomic_dec(&c->refcount);
6372 }
6373
6374 /*
6375  * For operations that cannot sleep, a command block is allocated at init,
6376  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6377  * which ones are free or in use.  Lock must be held when calling this.
6378  * cmd_free() is the complement.
6379  * This function never gives up and returns NULL.  If it hangs,
6380  * another thread must call cmd_free() to free some tags.
6381  */
6382
6383 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6384 {
6385         struct CommandList *c;
6386         int refcount, i;
6387         int offset = 0;
6388
6389         /*
6390          * There is some *extremely* small but non-zero chance that that
6391          * multiple threads could get in here, and one thread could
6392          * be scanning through the list of bits looking for a free
6393          * one, but the free ones are always behind him, and other
6394          * threads sneak in behind him and eat them before he can
6395          * get to them, so that while there is always a free one, a
6396          * very unlucky thread might be starved anyway, never able to
6397          * beat the other threads.  In reality, this happens so
6398          * infrequently as to be indistinguishable from never.
6399          *
6400          * Note that we start allocating commands before the SCSI host structure
6401          * is initialized.  Since the search starts at bit zero, this
6402          * all works, since we have at least one command structure available;
6403          * however, it means that the structures with the low indexes have to be
6404          * reserved for driver-initiated requests, while requests from the block
6405          * layer will use the higher indexes.
6406          */
6407
6408         for (;;) {
6409                 i = find_next_zero_bit(h->cmd_pool_bits,
6410                                         HPSA_NRESERVED_CMDS,
6411                                         offset);
6412                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6413                         offset = 0;
6414                         continue;
6415                 }
6416                 c = h->cmd_pool + i;
6417                 refcount = atomic_inc_return(&c->refcount);
6418                 if (unlikely(refcount > 1)) {
6419                         cmd_free(h, c); /* already in use */
6420                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6421                         continue;
6422                 }
6423                 set_bit(i & (BITS_PER_LONG - 1),
6424                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6425                 break; /* it's ours now. */
6426         }
6427         hpsa_cmd_partial_init(h, i, c);
6428         return c;
6429 }
6430
6431 /*
6432  * This is the complementary operation to cmd_alloc().  Note, however, in some
6433  * corner cases it may also be used to free blocks allocated by
6434  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6435  * the clear-bit is harmless.
6436  */
6437 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6438 {
6439         if (atomic_dec_and_test(&c->refcount)) {
6440                 int i;
6441
6442                 i = c - h->cmd_pool;
6443                 clear_bit(i & (BITS_PER_LONG - 1),
6444                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6445         }
6446 }
6447
6448 #ifdef CONFIG_COMPAT
6449
6450 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6451         void __user *arg)
6452 {
6453         IOCTL32_Command_struct __user *arg32 =
6454             (IOCTL32_Command_struct __user *) arg;
6455         IOCTL_Command_struct arg64;
6456         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6457         int err;
6458         u32 cp;
6459
6460         memset(&arg64, 0, sizeof(arg64));
6461         err = 0;
6462         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6463                            sizeof(arg64.LUN_info));
6464         err |= copy_from_user(&arg64.Request, &arg32->Request,
6465                            sizeof(arg64.Request));
6466         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6467                            sizeof(arg64.error_info));
6468         err |= get_user(arg64.buf_size, &arg32->buf_size);
6469         err |= get_user(cp, &arg32->buf);
6470         arg64.buf = compat_ptr(cp);
6471         err |= copy_to_user(p, &arg64, sizeof(arg64));
6472
6473         if (err)
6474                 return -EFAULT;
6475
6476         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6477         if (err)
6478                 return err;
6479         err |= copy_in_user(&arg32->error_info, &p->error_info,
6480                          sizeof(arg32->error_info));
6481         if (err)
6482                 return -EFAULT;
6483         return err;
6484 }
6485
6486 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6487         int cmd, void __user *arg)
6488 {
6489         BIG_IOCTL32_Command_struct __user *arg32 =
6490             (BIG_IOCTL32_Command_struct __user *) arg;
6491         BIG_IOCTL_Command_struct arg64;
6492         BIG_IOCTL_Command_struct __user *p =
6493             compat_alloc_user_space(sizeof(arg64));
6494         int err;
6495         u32 cp;
6496
6497         memset(&arg64, 0, sizeof(arg64));
6498         err = 0;
6499         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6500                            sizeof(arg64.LUN_info));
6501         err |= copy_from_user(&arg64.Request, &arg32->Request,
6502                            sizeof(arg64.Request));
6503         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6504                            sizeof(arg64.error_info));
6505         err |= get_user(arg64.buf_size, &arg32->buf_size);
6506         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6507         err |= get_user(cp, &arg32->buf);
6508         arg64.buf = compat_ptr(cp);
6509         err |= copy_to_user(p, &arg64, sizeof(arg64));
6510
6511         if (err)
6512                 return -EFAULT;
6513
6514         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6515         if (err)
6516                 return err;
6517         err |= copy_in_user(&arg32->error_info, &p->error_info,
6518                          sizeof(arg32->error_info));
6519         if (err)
6520                 return -EFAULT;
6521         return err;
6522 }
6523
6524 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6525 {
6526         switch (cmd) {
6527         case CCISS_GETPCIINFO:
6528         case CCISS_GETINTINFO:
6529         case CCISS_SETINTINFO:
6530         case CCISS_GETNODENAME:
6531         case CCISS_SETNODENAME:
6532         case CCISS_GETHEARTBEAT:
6533         case CCISS_GETBUSTYPES:
6534         case CCISS_GETFIRMVER:
6535         case CCISS_GETDRIVVER:
6536         case CCISS_REVALIDVOLS:
6537         case CCISS_DEREGDISK:
6538         case CCISS_REGNEWDISK:
6539         case CCISS_REGNEWD:
6540         case CCISS_RESCANDISK:
6541         case CCISS_GETLUNINFO:
6542                 return hpsa_ioctl(dev, cmd, arg);
6543
6544         case CCISS_PASSTHRU32:
6545                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6546         case CCISS_BIG_PASSTHRU32:
6547                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6548
6549         default:
6550                 return -ENOIOCTLCMD;
6551         }
6552 }
6553 #endif
6554
6555 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6556 {
6557         struct hpsa_pci_info pciinfo;
6558
6559         if (!argp)
6560                 return -EINVAL;
6561         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6562         pciinfo.bus = h->pdev->bus->number;
6563         pciinfo.dev_fn = h->pdev->devfn;
6564         pciinfo.board_id = h->board_id;
6565         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6566                 return -EFAULT;
6567         return 0;
6568 }
6569
6570 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6571 {
6572         DriverVer_type DriverVer;
6573         unsigned char vmaj, vmin, vsubmin;
6574         int rc;
6575
6576         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6577                 &vmaj, &vmin, &vsubmin);
6578         if (rc != 3) {
6579                 dev_info(&h->pdev->dev, "driver version string '%s' "
6580                         "unrecognized.", HPSA_DRIVER_VERSION);
6581                 vmaj = 0;
6582                 vmin = 0;
6583                 vsubmin = 0;
6584         }
6585         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6586         if (!argp)
6587                 return -EINVAL;
6588         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6589                 return -EFAULT;
6590         return 0;
6591 }
6592
6593 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6594 {
6595         IOCTL_Command_struct iocommand;
6596         struct CommandList *c;
6597         char *buff = NULL;
6598         u64 temp64;
6599         int rc = 0;
6600
6601         if (!argp)
6602                 return -EINVAL;
6603         if (!capable(CAP_SYS_RAWIO))
6604                 return -EPERM;
6605         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6606                 return -EFAULT;
6607         if ((iocommand.buf_size < 1) &&
6608             (iocommand.Request.Type.Direction != XFER_NONE)) {
6609                 return -EINVAL;
6610         }
6611         if (iocommand.buf_size > 0) {
6612                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6613                 if (buff == NULL)
6614                         return -ENOMEM;
6615                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6616                         /* Copy the data into the buffer we created */
6617                         if (copy_from_user(buff, iocommand.buf,
6618                                 iocommand.buf_size)) {
6619                                 rc = -EFAULT;
6620                                 goto out_kfree;
6621                         }
6622                 } else {
6623                         memset(buff, 0, iocommand.buf_size);
6624                 }
6625         }
6626         c = cmd_alloc(h);
6627
6628         /* Fill in the command type */
6629         c->cmd_type = CMD_IOCTL_PEND;
6630         c->scsi_cmd = SCSI_CMD_BUSY;
6631         /* Fill in Command Header */
6632         c->Header.ReplyQueue = 0; /* unused in simple mode */
6633         if (iocommand.buf_size > 0) {   /* buffer to fill */
6634                 c->Header.SGList = 1;
6635                 c->Header.SGTotal = cpu_to_le16(1);
6636         } else  { /* no buffers to fill */
6637                 c->Header.SGList = 0;
6638                 c->Header.SGTotal = cpu_to_le16(0);
6639         }
6640         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6641
6642         /* Fill in Request block */
6643         memcpy(&c->Request, &iocommand.Request,
6644                 sizeof(c->Request));
6645
6646         /* Fill in the scatter gather information */
6647         if (iocommand.buf_size > 0) {
6648                 temp64 = pci_map_single(h->pdev, buff,
6649                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6650                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6651                         c->SG[0].Addr = cpu_to_le64(0);
6652                         c->SG[0].Len = cpu_to_le32(0);
6653                         rc = -ENOMEM;
6654                         goto out;
6655                 }
6656                 c->SG[0].Addr = cpu_to_le64(temp64);
6657                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6658                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6659         }
6660         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6661                                         NO_TIMEOUT);
6662         if (iocommand.buf_size > 0)
6663                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6664         check_ioctl_unit_attention(h, c);
6665         if (rc) {
6666                 rc = -EIO;
6667                 goto out;
6668         }
6669
6670         /* Copy the error information out */
6671         memcpy(&iocommand.error_info, c->err_info,
6672                 sizeof(iocommand.error_info));
6673         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6674                 rc = -EFAULT;
6675                 goto out;
6676         }
6677         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6678                 iocommand.buf_size > 0) {
6679                 /* Copy the data out of the buffer we created */
6680                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6681                         rc = -EFAULT;
6682                         goto out;
6683                 }
6684         }
6685 out:
6686         cmd_free(h, c);
6687 out_kfree:
6688         kfree(buff);
6689         return rc;
6690 }
6691
6692 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6693 {
6694         BIG_IOCTL_Command_struct *ioc;
6695         struct CommandList *c;
6696         unsigned char **buff = NULL;
6697         int *buff_size = NULL;
6698         u64 temp64;
6699         BYTE sg_used = 0;
6700         int status = 0;
6701         u32 left;
6702         u32 sz;
6703         BYTE __user *data_ptr;
6704
6705         if (!argp)
6706                 return -EINVAL;
6707         if (!capable(CAP_SYS_RAWIO))
6708                 return -EPERM;
6709         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6710         if (!ioc) {
6711                 status = -ENOMEM;
6712                 goto cleanup1;
6713         }
6714         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6715                 status = -EFAULT;
6716                 goto cleanup1;
6717         }
6718         if ((ioc->buf_size < 1) &&
6719             (ioc->Request.Type.Direction != XFER_NONE)) {
6720                 status = -EINVAL;
6721                 goto cleanup1;
6722         }
6723         /* Check kmalloc limits  using all SGs */
6724         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6725                 status = -EINVAL;
6726                 goto cleanup1;
6727         }
6728         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6729                 status = -EINVAL;
6730                 goto cleanup1;
6731         }
6732         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6733         if (!buff) {
6734                 status = -ENOMEM;
6735                 goto cleanup1;
6736         }
6737         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6738         if (!buff_size) {
6739                 status = -ENOMEM;
6740                 goto cleanup1;
6741         }
6742         left = ioc->buf_size;
6743         data_ptr = ioc->buf;
6744         while (left) {
6745                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6746                 buff_size[sg_used] = sz;
6747                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6748                 if (buff[sg_used] == NULL) {
6749                         status = -ENOMEM;
6750                         goto cleanup1;
6751                 }
6752                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6753                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6754                                 status = -EFAULT;
6755                                 goto cleanup1;
6756                         }
6757                 } else
6758                         memset(buff[sg_used], 0, sz);
6759                 left -= sz;
6760                 data_ptr += sz;
6761                 sg_used++;
6762         }
6763         c = cmd_alloc(h);
6764
6765         c->cmd_type = CMD_IOCTL_PEND;
6766         c->scsi_cmd = SCSI_CMD_BUSY;
6767         c->Header.ReplyQueue = 0;
6768         c->Header.SGList = (u8) sg_used;
6769         c->Header.SGTotal = cpu_to_le16(sg_used);
6770         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6771         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6772         if (ioc->buf_size > 0) {
6773                 int i;
6774                 for (i = 0; i < sg_used; i++) {
6775                         temp64 = pci_map_single(h->pdev, buff[i],
6776                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6777                         if (dma_mapping_error(&h->pdev->dev,
6778                                                         (dma_addr_t) temp64)) {
6779                                 c->SG[i].Addr = cpu_to_le64(0);
6780                                 c->SG[i].Len = cpu_to_le32(0);
6781                                 hpsa_pci_unmap(h->pdev, c, i,
6782                                         PCI_DMA_BIDIRECTIONAL);
6783                                 status = -ENOMEM;
6784                                 goto cleanup0;
6785                         }
6786                         c->SG[i].Addr = cpu_to_le64(temp64);
6787                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6788                         c->SG[i].Ext = cpu_to_le32(0);
6789                 }
6790                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6791         }
6792         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6793                                                 NO_TIMEOUT);
6794         if (sg_used)
6795                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6796         check_ioctl_unit_attention(h, c);
6797         if (status) {
6798                 status = -EIO;
6799                 goto cleanup0;
6800         }
6801
6802         /* Copy the error information out */
6803         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6804         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6805                 status = -EFAULT;
6806                 goto cleanup0;
6807         }
6808         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6809                 int i;
6810
6811                 /* Copy the data out of the buffer we created */
6812                 BYTE __user *ptr = ioc->buf;
6813                 for (i = 0; i < sg_used; i++) {
6814                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6815                                 status = -EFAULT;
6816                                 goto cleanup0;
6817                         }
6818                         ptr += buff_size[i];
6819                 }
6820         }
6821         status = 0;
6822 cleanup0:
6823         cmd_free(h, c);
6824 cleanup1:
6825         if (buff) {
6826                 int i;
6827
6828                 for (i = 0; i < sg_used; i++)
6829                         kfree(buff[i]);
6830                 kfree(buff);
6831         }
6832         kfree(buff_size);
6833         kfree(ioc);
6834         return status;
6835 }
6836
6837 static void check_ioctl_unit_attention(struct ctlr_info *h,
6838         struct CommandList *c)
6839 {
6840         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6841                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6842                 (void) check_for_unit_attention(h, c);
6843 }
6844
6845 /*
6846  * ioctl
6847  */
6848 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6849 {
6850         struct ctlr_info *h;
6851         void __user *argp = (void __user *)arg;
6852         int rc;
6853
6854         h = sdev_to_hba(dev);
6855
6856         switch (cmd) {
6857         case CCISS_DEREGDISK:
6858         case CCISS_REGNEWDISK:
6859         case CCISS_REGNEWD:
6860                 hpsa_scan_start(h->scsi_host);
6861                 return 0;
6862         case CCISS_GETPCIINFO:
6863                 return hpsa_getpciinfo_ioctl(h, argp);
6864         case CCISS_GETDRIVVER:
6865                 return hpsa_getdrivver_ioctl(h, argp);
6866         case CCISS_PASSTHRU:
6867                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6868                         return -EAGAIN;
6869                 rc = hpsa_passthru_ioctl(h, argp);
6870                 atomic_inc(&h->passthru_cmds_avail);
6871                 return rc;
6872         case CCISS_BIG_PASSTHRU:
6873                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6874                         return -EAGAIN;
6875                 rc = hpsa_big_passthru_ioctl(h, argp);
6876                 atomic_inc(&h->passthru_cmds_avail);
6877                 return rc;
6878         default:
6879                 return -ENOTTY;
6880         }
6881 }
6882
6883 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6884                                 u8 reset_type)
6885 {
6886         struct CommandList *c;
6887
6888         c = cmd_alloc(h);
6889
6890         /* fill_cmd can't fail here, no data buffer to map */
6891         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6892                 RAID_CTLR_LUNID, TYPE_MSG);
6893         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6894         c->waiting = NULL;
6895         enqueue_cmd_and_start_io(h, c);
6896         /* Don't wait for completion, the reset won't complete.  Don't free
6897          * the command either.  This is the last command we will send before
6898          * re-initializing everything, so it doesn't matter and won't leak.
6899          */
6900         return;
6901 }
6902
6903 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6904         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6905         int cmd_type)
6906 {
6907         int pci_dir = XFER_NONE;
6908         u64 tag; /* for commands to be aborted */
6909
6910         c->cmd_type = CMD_IOCTL_PEND;
6911         c->scsi_cmd = SCSI_CMD_BUSY;
6912         c->Header.ReplyQueue = 0;
6913         if (buff != NULL && size > 0) {
6914                 c->Header.SGList = 1;
6915                 c->Header.SGTotal = cpu_to_le16(1);
6916         } else {
6917                 c->Header.SGList = 0;
6918                 c->Header.SGTotal = cpu_to_le16(0);
6919         }
6920         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6921
6922         if (cmd_type == TYPE_CMD) {
6923                 switch (cmd) {
6924                 case HPSA_INQUIRY:
6925                         /* are we trying to read a vital product page */
6926                         if (page_code & VPD_PAGE) {
6927                                 c->Request.CDB[1] = 0x01;
6928                                 c->Request.CDB[2] = (page_code & 0xff);
6929                         }
6930                         c->Request.CDBLen = 6;
6931                         c->Request.type_attr_dir =
6932                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6933                         c->Request.Timeout = 0;
6934                         c->Request.CDB[0] = HPSA_INQUIRY;
6935                         c->Request.CDB[4] = size & 0xFF;
6936                         break;
6937                 case HPSA_REPORT_LOG:
6938                 case HPSA_REPORT_PHYS:
6939                         /* Talking to controller so It's a physical command
6940                            mode = 00 target = 0.  Nothing to write.
6941                          */
6942                         c->Request.CDBLen = 12;
6943                         c->Request.type_attr_dir =
6944                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6945                         c->Request.Timeout = 0;
6946                         c->Request.CDB[0] = cmd;
6947                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6948                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6949                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6950                         c->Request.CDB[9] = size & 0xFF;
6951                         break;
6952                 case BMIC_SENSE_DIAG_OPTIONS:
6953                         c->Request.CDBLen = 16;
6954                         c->Request.type_attr_dir =
6955                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6956                         c->Request.Timeout = 0;
6957                         /* Spec says this should be BMIC_WRITE */
6958                         c->Request.CDB[0] = BMIC_READ;
6959                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6960                         break;
6961                 case BMIC_SET_DIAG_OPTIONS:
6962                         c->Request.CDBLen = 16;
6963                         c->Request.type_attr_dir =
6964                                         TYPE_ATTR_DIR(cmd_type,
6965                                                 ATTR_SIMPLE, XFER_WRITE);
6966                         c->Request.Timeout = 0;
6967                         c->Request.CDB[0] = BMIC_WRITE;
6968                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6969                         break;
6970                 case HPSA_CACHE_FLUSH:
6971                         c->Request.CDBLen = 12;
6972                         c->Request.type_attr_dir =
6973                                         TYPE_ATTR_DIR(cmd_type,
6974                                                 ATTR_SIMPLE, XFER_WRITE);
6975                         c->Request.Timeout = 0;
6976                         c->Request.CDB[0] = BMIC_WRITE;
6977                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6978                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6979                         c->Request.CDB[8] = size & 0xFF;
6980                         break;
6981                 case TEST_UNIT_READY:
6982                         c->Request.CDBLen = 6;
6983                         c->Request.type_attr_dir =
6984                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6985                         c->Request.Timeout = 0;
6986                         break;
6987                 case HPSA_GET_RAID_MAP:
6988                         c->Request.CDBLen = 12;
6989                         c->Request.type_attr_dir =
6990                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6991                         c->Request.Timeout = 0;
6992                         c->Request.CDB[0] = HPSA_CISS_READ;
6993                         c->Request.CDB[1] = cmd;
6994                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6995                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6996                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6997                         c->Request.CDB[9] = size & 0xFF;
6998                         break;
6999                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
7000                         c->Request.CDBLen = 10;
7001                         c->Request.type_attr_dir =
7002                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7003                         c->Request.Timeout = 0;
7004                         c->Request.CDB[0] = BMIC_READ;
7005                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7006                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7007                         c->Request.CDB[8] = (size >> 8) & 0xFF;
7008                         break;
7009                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7010                         c->Request.CDBLen = 10;
7011                         c->Request.type_attr_dir =
7012                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7013                         c->Request.Timeout = 0;
7014                         c->Request.CDB[0] = BMIC_READ;
7015                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7016                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7017                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7018                         break;
7019                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7020                         c->Request.CDBLen = 10;
7021                         c->Request.type_attr_dir =
7022                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7023                         c->Request.Timeout = 0;
7024                         c->Request.CDB[0] = BMIC_READ;
7025                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7026                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7027                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7028                         break;
7029                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7030                         c->Request.CDBLen = 10;
7031                         c->Request.type_attr_dir =
7032                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7033                         c->Request.Timeout = 0;
7034                         c->Request.CDB[0] = BMIC_READ;
7035                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7036                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7037                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7038                         break;
7039                 case BMIC_IDENTIFY_CONTROLLER:
7040                         c->Request.CDBLen = 10;
7041                         c->Request.type_attr_dir =
7042                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7043                         c->Request.Timeout = 0;
7044                         c->Request.CDB[0] = BMIC_READ;
7045                         c->Request.CDB[1] = 0;
7046                         c->Request.CDB[2] = 0;
7047                         c->Request.CDB[3] = 0;
7048                         c->Request.CDB[4] = 0;
7049                         c->Request.CDB[5] = 0;
7050                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7051                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7052                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7053                         c->Request.CDB[9] = 0;
7054                         break;
7055                 default:
7056                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7057                         BUG();
7058                         return -1;
7059                 }
7060         } else if (cmd_type == TYPE_MSG) {
7061                 switch (cmd) {
7062
7063                 case  HPSA_PHYS_TARGET_RESET:
7064                         c->Request.CDBLen = 16;
7065                         c->Request.type_attr_dir =
7066                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7067                         c->Request.Timeout = 0; /* Don't time out */
7068                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7069                         c->Request.CDB[0] = HPSA_RESET;
7070                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7071                         /* Physical target reset needs no control bytes 4-7*/
7072                         c->Request.CDB[4] = 0x00;
7073                         c->Request.CDB[5] = 0x00;
7074                         c->Request.CDB[6] = 0x00;
7075                         c->Request.CDB[7] = 0x00;
7076                         break;
7077                 case  HPSA_DEVICE_RESET_MSG:
7078                         c->Request.CDBLen = 16;
7079                         c->Request.type_attr_dir =
7080                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7081                         c->Request.Timeout = 0; /* Don't time out */
7082                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7083                         c->Request.CDB[0] =  cmd;
7084                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7085                         /* If bytes 4-7 are zero, it means reset the */
7086                         /* LunID device */
7087                         c->Request.CDB[4] = 0x00;
7088                         c->Request.CDB[5] = 0x00;
7089                         c->Request.CDB[6] = 0x00;
7090                         c->Request.CDB[7] = 0x00;
7091                         break;
7092                 case  HPSA_ABORT_MSG:
7093                         memcpy(&tag, buff, sizeof(tag));
7094                         dev_dbg(&h->pdev->dev,
7095                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7096                                 tag, c->Header.tag);
7097                         c->Request.CDBLen = 16;
7098                         c->Request.type_attr_dir =
7099                                         TYPE_ATTR_DIR(cmd_type,
7100                                                 ATTR_SIMPLE, XFER_WRITE);
7101                         c->Request.Timeout = 0; /* Don't time out */
7102                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7103                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7104                         c->Request.CDB[2] = 0x00; /* reserved */
7105                         c->Request.CDB[3] = 0x00; /* reserved */
7106                         /* Tag to abort goes in CDB[4]-CDB[11] */
7107                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7108                         c->Request.CDB[12] = 0x00; /* reserved */
7109                         c->Request.CDB[13] = 0x00; /* reserved */
7110                         c->Request.CDB[14] = 0x00; /* reserved */
7111                         c->Request.CDB[15] = 0x00; /* reserved */
7112                 break;
7113                 default:
7114                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7115                                 cmd);
7116                         BUG();
7117                 }
7118         } else {
7119                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7120                 BUG();
7121         }
7122
7123         switch (GET_DIR(c->Request.type_attr_dir)) {
7124         case XFER_READ:
7125                 pci_dir = PCI_DMA_FROMDEVICE;
7126                 break;
7127         case XFER_WRITE:
7128                 pci_dir = PCI_DMA_TODEVICE;
7129                 break;
7130         case XFER_NONE:
7131                 pci_dir = PCI_DMA_NONE;
7132                 break;
7133         default:
7134                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7135         }
7136         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7137                 return -1;
7138         return 0;
7139 }
7140
7141 /*
7142  * Map (physical) PCI mem into (virtual) kernel space
7143  */
7144 static void __iomem *remap_pci_mem(ulong base, ulong size)
7145 {
7146         ulong page_base = ((ulong) base) & PAGE_MASK;
7147         ulong page_offs = ((ulong) base) - page_base;
7148         void __iomem *page_remapped = ioremap_nocache(page_base,
7149                 page_offs + size);
7150
7151         return page_remapped ? (page_remapped + page_offs) : NULL;
7152 }
7153
7154 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7155 {
7156         return h->access.command_completed(h, q);
7157 }
7158
7159 static inline bool interrupt_pending(struct ctlr_info *h)
7160 {
7161         return h->access.intr_pending(h);
7162 }
7163
7164 static inline long interrupt_not_for_us(struct ctlr_info *h)
7165 {
7166         return (h->access.intr_pending(h) == 0) ||
7167                 (h->interrupts_enabled == 0);
7168 }
7169
7170 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7171         u32 raw_tag)
7172 {
7173         if (unlikely(tag_index >= h->nr_cmds)) {
7174                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7175                 return 1;
7176         }
7177         return 0;
7178 }
7179
7180 static inline void finish_cmd(struct CommandList *c)
7181 {
7182         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7183         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7184                         || c->cmd_type == CMD_IOACCEL2))
7185                 complete_scsi_command(c);
7186         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7187                 complete(c->waiting);
7188 }
7189
7190 /* process completion of an indexed ("direct lookup") command */
7191 static inline void process_indexed_cmd(struct ctlr_info *h,
7192         u32 raw_tag)
7193 {
7194         u32 tag_index;
7195         struct CommandList *c;
7196
7197         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7198         if (!bad_tag(h, tag_index, raw_tag)) {
7199                 c = h->cmd_pool + tag_index;
7200                 finish_cmd(c);
7201         }
7202 }
7203
7204 /* Some controllers, like p400, will give us one interrupt
7205  * after a soft reset, even if we turned interrupts off.
7206  * Only need to check for this in the hpsa_xxx_discard_completions
7207  * functions.
7208  */
7209 static int ignore_bogus_interrupt(struct ctlr_info *h)
7210 {
7211         if (likely(!reset_devices))
7212                 return 0;
7213
7214         if (likely(h->interrupts_enabled))
7215                 return 0;
7216
7217         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7218                 "(known firmware bug.)  Ignoring.\n");
7219
7220         return 1;
7221 }
7222
7223 /*
7224  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7225  * Relies on (h-q[x] == x) being true for x such that
7226  * 0 <= x < MAX_REPLY_QUEUES.
7227  */
7228 static struct ctlr_info *queue_to_hba(u8 *queue)
7229 {
7230         return container_of((queue - *queue), struct ctlr_info, q[0]);
7231 }
7232
7233 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7234 {
7235         struct ctlr_info *h = queue_to_hba(queue);
7236         u8 q = *(u8 *) queue;
7237         u32 raw_tag;
7238
7239         if (ignore_bogus_interrupt(h))
7240                 return IRQ_NONE;
7241
7242         if (interrupt_not_for_us(h))
7243                 return IRQ_NONE;
7244         h->last_intr_timestamp = get_jiffies_64();
7245         while (interrupt_pending(h)) {
7246                 raw_tag = get_next_completion(h, q);
7247                 while (raw_tag != FIFO_EMPTY)
7248                         raw_tag = next_command(h, q);
7249         }
7250         return IRQ_HANDLED;
7251 }
7252
7253 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7254 {
7255         struct ctlr_info *h = queue_to_hba(queue);
7256         u32 raw_tag;
7257         u8 q = *(u8 *) queue;
7258
7259         if (ignore_bogus_interrupt(h))
7260                 return IRQ_NONE;
7261
7262         h->last_intr_timestamp = get_jiffies_64();
7263         raw_tag = get_next_completion(h, q);
7264         while (raw_tag != FIFO_EMPTY)
7265                 raw_tag = next_command(h, q);
7266         return IRQ_HANDLED;
7267 }
7268
7269 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7270 {
7271         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7272         u32 raw_tag;
7273         u8 q = *(u8 *) queue;
7274
7275         if (interrupt_not_for_us(h))
7276                 return IRQ_NONE;
7277         h->last_intr_timestamp = get_jiffies_64();
7278         while (interrupt_pending(h)) {
7279                 raw_tag = get_next_completion(h, q);
7280                 while (raw_tag != FIFO_EMPTY) {
7281                         process_indexed_cmd(h, raw_tag);
7282                         raw_tag = next_command(h, q);
7283                 }
7284         }
7285         return IRQ_HANDLED;
7286 }
7287
7288 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7289 {
7290         struct ctlr_info *h = queue_to_hba(queue);
7291         u32 raw_tag;
7292         u8 q = *(u8 *) queue;
7293
7294         h->last_intr_timestamp = get_jiffies_64();
7295         raw_tag = get_next_completion(h, q);
7296         while (raw_tag != FIFO_EMPTY) {
7297                 process_indexed_cmd(h, raw_tag);
7298                 raw_tag = next_command(h, q);
7299         }
7300         return IRQ_HANDLED;
7301 }
7302
7303 /* Send a message CDB to the firmware. Careful, this only works
7304  * in simple mode, not performant mode due to the tag lookup.
7305  * We only ever use this immediately after a controller reset.
7306  */
7307 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7308                         unsigned char type)
7309 {
7310         struct Command {
7311                 struct CommandListHeader CommandHeader;
7312                 struct RequestBlock Request;
7313                 struct ErrDescriptor ErrorDescriptor;
7314         };
7315         struct Command *cmd;
7316         static const size_t cmd_sz = sizeof(*cmd) +
7317                                         sizeof(cmd->ErrorDescriptor);
7318         dma_addr_t paddr64;
7319         __le32 paddr32;
7320         u32 tag;
7321         void __iomem *vaddr;
7322         int i, err;
7323
7324         vaddr = pci_ioremap_bar(pdev, 0);
7325         if (vaddr == NULL)
7326                 return -ENOMEM;
7327
7328         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7329          * CCISS commands, so they must be allocated from the lower 4GiB of
7330          * memory.
7331          */
7332         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7333         if (err) {
7334                 iounmap(vaddr);
7335                 return err;
7336         }
7337
7338         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7339         if (cmd == NULL) {
7340                 iounmap(vaddr);
7341                 return -ENOMEM;
7342         }
7343
7344         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7345          * although there's no guarantee, we assume that the address is at
7346          * least 4-byte aligned (most likely, it's page-aligned).
7347          */
7348         paddr32 = cpu_to_le32(paddr64);
7349
7350         cmd->CommandHeader.ReplyQueue = 0;
7351         cmd->CommandHeader.SGList = 0;
7352         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7353         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7354         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7355
7356         cmd->Request.CDBLen = 16;
7357         cmd->Request.type_attr_dir =
7358                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7359         cmd->Request.Timeout = 0; /* Don't time out */
7360         cmd->Request.CDB[0] = opcode;
7361         cmd->Request.CDB[1] = type;
7362         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7363         cmd->ErrorDescriptor.Addr =
7364                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7365         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7366
7367         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7368
7369         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7370                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7371                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7372                         break;
7373                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7374         }
7375
7376         iounmap(vaddr);
7377
7378         /* we leak the DMA buffer here ... no choice since the controller could
7379          *  still complete the command.
7380          */
7381         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7382                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7383                         opcode, type);
7384                 return -ETIMEDOUT;
7385         }
7386
7387         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7388
7389         if (tag & HPSA_ERROR_BIT) {
7390                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7391                         opcode, type);
7392                 return -EIO;
7393         }
7394
7395         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7396                 opcode, type);
7397         return 0;
7398 }
7399
7400 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7401
7402 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7403         void __iomem *vaddr, u32 use_doorbell)
7404 {
7405
7406         if (use_doorbell) {
7407                 /* For everything after the P600, the PCI power state method
7408                  * of resetting the controller doesn't work, so we have this
7409                  * other way using the doorbell register.
7410                  */
7411                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7412                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7413
7414                 /* PMC hardware guys tell us we need a 10 second delay after
7415                  * doorbell reset and before any attempt to talk to the board
7416                  * at all to ensure that this actually works and doesn't fall
7417                  * over in some weird corner cases.
7418                  */
7419                 msleep(10000);
7420         } else { /* Try to do it the PCI power state way */
7421
7422                 /* Quoting from the Open CISS Specification: "The Power
7423                  * Management Control/Status Register (CSR) controls the power
7424                  * state of the device.  The normal operating state is D0,
7425                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7426                  * the controller, place the interface device in D3 then to D0,
7427                  * this causes a secondary PCI reset which will reset the
7428                  * controller." */
7429
7430                 int rc = 0;
7431
7432                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7433
7434                 /* enter the D3hot power management state */
7435                 rc = pci_set_power_state(pdev, PCI_D3hot);
7436                 if (rc)
7437                         return rc;
7438
7439                 msleep(500);
7440
7441                 /* enter the D0 power management state */
7442                 rc = pci_set_power_state(pdev, PCI_D0);
7443                 if (rc)
7444                         return rc;
7445
7446                 /*
7447                  * The P600 requires a small delay when changing states.
7448                  * Otherwise we may think the board did not reset and we bail.
7449                  * This for kdump only and is particular to the P600.
7450                  */
7451                 msleep(500);
7452         }
7453         return 0;
7454 }
7455
7456 static void init_driver_version(char *driver_version, int len)
7457 {
7458         memset(driver_version, 0, len);
7459         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7460 }
7461
7462 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7463 {
7464         char *driver_version;
7465         int i, size = sizeof(cfgtable->driver_version);
7466
7467         driver_version = kmalloc(size, GFP_KERNEL);
7468         if (!driver_version)
7469                 return -ENOMEM;
7470
7471         init_driver_version(driver_version, size);
7472         for (i = 0; i < size; i++)
7473                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7474         kfree(driver_version);
7475         return 0;
7476 }
7477
7478 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7479                                           unsigned char *driver_ver)
7480 {
7481         int i;
7482
7483         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7484                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7485 }
7486
7487 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7488 {
7489
7490         char *driver_ver, *old_driver_ver;
7491         int rc, size = sizeof(cfgtable->driver_version);
7492
7493         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7494         if (!old_driver_ver)
7495                 return -ENOMEM;
7496         driver_ver = old_driver_ver + size;
7497
7498         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7499          * should have been changed, otherwise we know the reset failed.
7500          */
7501         init_driver_version(old_driver_ver, size);
7502         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7503         rc = !memcmp(driver_ver, old_driver_ver, size);
7504         kfree(old_driver_ver);
7505         return rc;
7506 }
7507 /* This does a hard reset of the controller using PCI power management
7508  * states or the using the doorbell register.
7509  */
7510 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7511 {
7512         u64 cfg_offset;
7513         u32 cfg_base_addr;
7514         u64 cfg_base_addr_index;
7515         void __iomem *vaddr;
7516         unsigned long paddr;
7517         u32 misc_fw_support;
7518         int rc;
7519         struct CfgTable __iomem *cfgtable;
7520         u32 use_doorbell;
7521         u16 command_register;
7522
7523         /* For controllers as old as the P600, this is very nearly
7524          * the same thing as
7525          *
7526          * pci_save_state(pci_dev);
7527          * pci_set_power_state(pci_dev, PCI_D3hot);
7528          * pci_set_power_state(pci_dev, PCI_D0);
7529          * pci_restore_state(pci_dev);
7530          *
7531          * For controllers newer than the P600, the pci power state
7532          * method of resetting doesn't work so we have another way
7533          * using the doorbell register.
7534          */
7535
7536         if (!ctlr_is_resettable(board_id)) {
7537                 dev_warn(&pdev->dev, "Controller not resettable\n");
7538                 return -ENODEV;
7539         }
7540
7541         /* if controller is soft- but not hard resettable... */
7542         if (!ctlr_is_hard_resettable(board_id))
7543                 return -ENOTSUPP; /* try soft reset later. */
7544
7545         /* Save the PCI command register */
7546         pci_read_config_word(pdev, 4, &command_register);
7547         pci_save_state(pdev);
7548
7549         /* find the first memory BAR, so we can find the cfg table */
7550         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7551         if (rc)
7552                 return rc;
7553         vaddr = remap_pci_mem(paddr, 0x250);
7554         if (!vaddr)
7555                 return -ENOMEM;
7556
7557         /* find cfgtable in order to check if reset via doorbell is supported */
7558         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7559                                         &cfg_base_addr_index, &cfg_offset);
7560         if (rc)
7561                 goto unmap_vaddr;
7562         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7563                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7564         if (!cfgtable) {
7565                 rc = -ENOMEM;
7566                 goto unmap_vaddr;
7567         }
7568         rc = write_driver_ver_to_cfgtable(cfgtable);
7569         if (rc)
7570                 goto unmap_cfgtable;
7571
7572         /* If reset via doorbell register is supported, use that.
7573          * There are two such methods.  Favor the newest method.
7574          */
7575         misc_fw_support = readl(&cfgtable->misc_fw_support);
7576         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7577         if (use_doorbell) {
7578                 use_doorbell = DOORBELL_CTLR_RESET2;
7579         } else {
7580                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7581                 if (use_doorbell) {
7582                         dev_warn(&pdev->dev,
7583                                 "Soft reset not supported. Firmware update is required.\n");
7584                         rc = -ENOTSUPP; /* try soft reset */
7585                         goto unmap_cfgtable;
7586                 }
7587         }
7588
7589         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7590         if (rc)
7591                 goto unmap_cfgtable;
7592
7593         pci_restore_state(pdev);
7594         pci_write_config_word(pdev, 4, command_register);
7595
7596         /* Some devices (notably the HP Smart Array 5i Controller)
7597            need a little pause here */
7598         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7599
7600         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7601         if (rc) {
7602                 dev_warn(&pdev->dev,
7603                         "Failed waiting for board to become ready after hard reset\n");
7604                 goto unmap_cfgtable;
7605         }
7606
7607         rc = controller_reset_failed(vaddr);
7608         if (rc < 0)
7609                 goto unmap_cfgtable;
7610         if (rc) {
7611                 dev_warn(&pdev->dev, "Unable to successfully reset "
7612                         "controller. Will try soft reset.\n");
7613                 rc = -ENOTSUPP;
7614         } else {
7615                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7616         }
7617
7618 unmap_cfgtable:
7619         iounmap(cfgtable);
7620
7621 unmap_vaddr:
7622         iounmap(vaddr);
7623         return rc;
7624 }
7625
7626 /*
7627  *  We cannot read the structure directly, for portability we must use
7628  *   the io functions.
7629  *   This is for debug only.
7630  */
7631 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7632 {
7633 #ifdef HPSA_DEBUG
7634         int i;
7635         char temp_name[17];
7636
7637         dev_info(dev, "Controller Configuration information\n");
7638         dev_info(dev, "------------------------------------\n");
7639         for (i = 0; i < 4; i++)
7640                 temp_name[i] = readb(&(tb->Signature[i]));
7641         temp_name[4] = '\0';
7642         dev_info(dev, "   Signature = %s\n", temp_name);
7643         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7644         dev_info(dev, "   Transport methods supported = 0x%x\n",
7645                readl(&(tb->TransportSupport)));
7646         dev_info(dev, "   Transport methods active = 0x%x\n",
7647                readl(&(tb->TransportActive)));
7648         dev_info(dev, "   Requested transport Method = 0x%x\n",
7649                readl(&(tb->HostWrite.TransportRequest)));
7650         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7651                readl(&(tb->HostWrite.CoalIntDelay)));
7652         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7653                readl(&(tb->HostWrite.CoalIntCount)));
7654         dev_info(dev, "   Max outstanding commands = %d\n",
7655                readl(&(tb->CmdsOutMax)));
7656         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7657         for (i = 0; i < 16; i++)
7658                 temp_name[i] = readb(&(tb->ServerName[i]));
7659         temp_name[16] = '\0';
7660         dev_info(dev, "   Server Name = %s\n", temp_name);
7661         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7662                 readl(&(tb->HeartBeat)));
7663 #endif                          /* HPSA_DEBUG */
7664 }
7665
7666 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7667 {
7668         int i, offset, mem_type, bar_type;
7669
7670         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7671                 return 0;
7672         offset = 0;
7673         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7674                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7675                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7676                         offset += 4;
7677                 else {
7678                         mem_type = pci_resource_flags(pdev, i) &
7679                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7680                         switch (mem_type) {
7681                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7682                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7683                                 offset += 4;    /* 32 bit */
7684                                 break;
7685                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7686                                 offset += 8;
7687                                 break;
7688                         default:        /* reserved in PCI 2.2 */
7689                                 dev_warn(&pdev->dev,
7690                                        "base address is invalid\n");
7691                                 return -1;
7692                                 break;
7693                         }
7694                 }
7695                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7696                         return i + 1;
7697         }
7698         return -1;
7699 }
7700
7701 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7702 {
7703         pci_free_irq_vectors(h->pdev);
7704         h->msix_vectors = 0;
7705 }
7706
7707 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7708  * controllers that are capable. If not, we use legacy INTx mode.
7709  */
7710 static int hpsa_interrupt_mode(struct ctlr_info *h)
7711 {
7712         unsigned int flags = PCI_IRQ_LEGACY;
7713         int ret;
7714
7715         /* Some boards advertise MSI but don't really support it */
7716         switch (h->board_id) {
7717         case 0x40700E11:
7718         case 0x40800E11:
7719         case 0x40820E11:
7720         case 0x40830E11:
7721                 break;
7722         default:
7723                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7724                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7725                 if (ret > 0) {
7726                         h->msix_vectors = ret;
7727                         return 0;
7728                 }
7729
7730                 flags |= PCI_IRQ_MSI;
7731                 break;
7732         }
7733
7734         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7735         if (ret < 0)
7736                 return ret;
7737         return 0;
7738 }
7739
7740 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7741 {
7742         int i;
7743         u32 subsystem_vendor_id, subsystem_device_id;
7744
7745         subsystem_vendor_id = pdev->subsystem_vendor;
7746         subsystem_device_id = pdev->subsystem_device;
7747         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7748                     subsystem_vendor_id;
7749
7750         for (i = 0; i < ARRAY_SIZE(products); i++)
7751                 if (*board_id == products[i].board_id)
7752                         return i;
7753
7754         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7755                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7756                 !hpsa_allow_any) {
7757                 dev_warn(&pdev->dev, "unrecognized board ID: "
7758                         "0x%08x, ignoring.\n", *board_id);
7759                         return -ENODEV;
7760         }
7761         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7762 }
7763
7764 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7765                                     unsigned long *memory_bar)
7766 {
7767         int i;
7768
7769         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7770                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7771                         /* addressing mode bits already removed */
7772                         *memory_bar = pci_resource_start(pdev, i);
7773                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7774                                 *memory_bar);
7775                         return 0;
7776                 }
7777         dev_warn(&pdev->dev, "no memory BAR found\n");
7778         return -ENODEV;
7779 }
7780
7781 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7782                                      int wait_for_ready)
7783 {
7784         int i, iterations;
7785         u32 scratchpad;
7786         if (wait_for_ready)
7787                 iterations = HPSA_BOARD_READY_ITERATIONS;
7788         else
7789                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7790
7791         for (i = 0; i < iterations; i++) {
7792                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7793                 if (wait_for_ready) {
7794                         if (scratchpad == HPSA_FIRMWARE_READY)
7795                                 return 0;
7796                 } else {
7797                         if (scratchpad != HPSA_FIRMWARE_READY)
7798                                 return 0;
7799                 }
7800                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7801         }
7802         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7803         return -ENODEV;
7804 }
7805
7806 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7807                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7808                                u64 *cfg_offset)
7809 {
7810         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7811         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7812         *cfg_base_addr &= (u32) 0x0000ffff;
7813         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7814         if (*cfg_base_addr_index == -1) {
7815                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7816                 return -ENODEV;
7817         }
7818         return 0;
7819 }
7820
7821 static void hpsa_free_cfgtables(struct ctlr_info *h)
7822 {
7823         if (h->transtable) {
7824                 iounmap(h->transtable);
7825                 h->transtable = NULL;
7826         }
7827         if (h->cfgtable) {
7828                 iounmap(h->cfgtable);
7829                 h->cfgtable = NULL;
7830         }
7831 }
7832
7833 /* Find and map CISS config table and transfer table
7834 + * several items must be unmapped (freed) later
7835 + * */
7836 static int hpsa_find_cfgtables(struct ctlr_info *h)
7837 {
7838         u64 cfg_offset;
7839         u32 cfg_base_addr;
7840         u64 cfg_base_addr_index;
7841         u32 trans_offset;
7842         int rc;
7843
7844         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7845                 &cfg_base_addr_index, &cfg_offset);
7846         if (rc)
7847                 return rc;
7848         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7849                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7850         if (!h->cfgtable) {
7851                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7852                 return -ENOMEM;
7853         }
7854         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7855         if (rc)
7856                 return rc;
7857         /* Find performant mode table. */
7858         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7859         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7860                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7861                                 sizeof(*h->transtable));
7862         if (!h->transtable) {
7863                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7864                 hpsa_free_cfgtables(h);
7865                 return -ENOMEM;
7866         }
7867         return 0;
7868 }
7869
7870 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7871 {
7872 #define MIN_MAX_COMMANDS 16
7873         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7874
7875         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7876
7877         /* Limit commands in memory limited kdump scenario. */
7878         if (reset_devices && h->max_commands > 32)
7879                 h->max_commands = 32;
7880
7881         if (h->max_commands < MIN_MAX_COMMANDS) {
7882                 dev_warn(&h->pdev->dev,
7883                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7884                         h->max_commands,
7885                         MIN_MAX_COMMANDS);
7886                 h->max_commands = MIN_MAX_COMMANDS;
7887         }
7888 }
7889
7890 /* If the controller reports that the total max sg entries is greater than 512,
7891  * then we know that chained SG blocks work.  (Original smart arrays did not
7892  * support chained SG blocks and would return zero for max sg entries.)
7893  */
7894 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7895 {
7896         return h->maxsgentries > 512;
7897 }
7898
7899 /* Interrogate the hardware for some limits:
7900  * max commands, max SG elements without chaining, and with chaining,
7901  * SG chain block size, etc.
7902  */
7903 static void hpsa_find_board_params(struct ctlr_info *h)
7904 {
7905         hpsa_get_max_perf_mode_cmds(h);
7906         h->nr_cmds = h->max_commands;
7907         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7908         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7909         if (hpsa_supports_chained_sg_blocks(h)) {
7910                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7911                 h->max_cmd_sg_entries = 32;
7912                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7913                 h->maxsgentries--; /* save one for chain pointer */
7914         } else {
7915                 /*
7916                  * Original smart arrays supported at most 31 s/g entries
7917                  * embedded inline in the command (trying to use more
7918                  * would lock up the controller)
7919                  */
7920                 h->max_cmd_sg_entries = 31;
7921                 h->maxsgentries = 31; /* default to traditional values */
7922                 h->chainsize = 0;
7923         }
7924
7925         /* Find out what task management functions are supported and cache */
7926         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7927         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7928                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7929         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7930                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7931         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7932                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7933 }
7934
7935 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7936 {
7937         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7938                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7939                 return false;
7940         }
7941         return true;
7942 }
7943
7944 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7945 {
7946         u32 driver_support;
7947
7948         driver_support = readl(&(h->cfgtable->driver_support));
7949         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7950 #ifdef CONFIG_X86
7951         driver_support |= ENABLE_SCSI_PREFETCH;
7952 #endif
7953         driver_support |= ENABLE_UNIT_ATTN;
7954         writel(driver_support, &(h->cfgtable->driver_support));
7955 }
7956
7957 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7958  * in a prefetch beyond physical memory.
7959  */
7960 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7961 {
7962         u32 dma_prefetch;
7963
7964         if (h->board_id != 0x3225103C)
7965                 return;
7966         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7967         dma_prefetch |= 0x8000;
7968         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7969 }
7970
7971 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7972 {
7973         int i;
7974         u32 doorbell_value;
7975         unsigned long flags;
7976         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7977         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7978                 spin_lock_irqsave(&h->lock, flags);
7979                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7980                 spin_unlock_irqrestore(&h->lock, flags);
7981                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7982                         goto done;
7983                 /* delay and try again */
7984                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7985         }
7986         return -ENODEV;
7987 done:
7988         return 0;
7989 }
7990
7991 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7992 {
7993         int i;
7994         u32 doorbell_value;
7995         unsigned long flags;
7996
7997         /* under certain very rare conditions, this can take awhile.
7998          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7999          * as we enter this code.)
8000          */
8001         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8002                 if (h->remove_in_progress)
8003                         goto done;
8004                 spin_lock_irqsave(&h->lock, flags);
8005                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8006                 spin_unlock_irqrestore(&h->lock, flags);
8007                 if (!(doorbell_value & CFGTBL_ChangeReq))
8008                         goto done;
8009                 /* delay and try again */
8010                 msleep(MODE_CHANGE_WAIT_INTERVAL);
8011         }
8012         return -ENODEV;
8013 done:
8014         return 0;
8015 }
8016
8017 /* return -ENODEV or other reason on error, 0 on success */
8018 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8019 {
8020         u32 trans_support;
8021
8022         trans_support = readl(&(h->cfgtable->TransportSupport));
8023         if (!(trans_support & SIMPLE_MODE))
8024                 return -ENOTSUPP;
8025
8026         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8027
8028         /* Update the field, and then ring the doorbell */
8029         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8030         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8031         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8032         if (hpsa_wait_for_mode_change_ack(h))
8033                 goto error;
8034         print_cfg_table(&h->pdev->dev, h->cfgtable);
8035         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8036                 goto error;
8037         h->transMethod = CFGTBL_Trans_Simple;
8038         return 0;
8039 error:
8040         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8041         return -ENODEV;
8042 }
8043
8044 /* free items allocated or mapped by hpsa_pci_init */
8045 static void hpsa_free_pci_init(struct ctlr_info *h)
8046 {
8047         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8048         iounmap(h->vaddr);                      /* pci_init 3 */
8049         h->vaddr = NULL;
8050         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8051         /*
8052          * call pci_disable_device before pci_release_regions per
8053          * Documentation/PCI/pci.txt
8054          */
8055         pci_disable_device(h->pdev);            /* pci_init 1 */
8056         pci_release_regions(h->pdev);           /* pci_init 2 */
8057 }
8058
8059 /* several items must be freed later */
8060 static int hpsa_pci_init(struct ctlr_info *h)
8061 {
8062         int prod_index, err;
8063
8064         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8065         if (prod_index < 0)
8066                 return prod_index;
8067         h->product_name = products[prod_index].product_name;
8068         h->access = *(products[prod_index].access);
8069
8070         h->needs_abort_tags_swizzled =
8071                 ctlr_needs_abort_tags_swizzled(h->board_id);
8072
8073         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8074                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8075
8076         err = pci_enable_device(h->pdev);
8077         if (err) {
8078                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8079                 pci_disable_device(h->pdev);
8080                 return err;
8081         }
8082
8083         err = pci_request_regions(h->pdev, HPSA);
8084         if (err) {
8085                 dev_err(&h->pdev->dev,
8086                         "failed to obtain PCI resources\n");
8087                 pci_disable_device(h->pdev);
8088                 return err;
8089         }
8090
8091         pci_set_master(h->pdev);
8092
8093         err = hpsa_interrupt_mode(h);
8094         if (err)
8095                 goto clean1;
8096         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8097         if (err)
8098                 goto clean2;    /* intmode+region, pci */
8099         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8100         if (!h->vaddr) {
8101                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8102                 err = -ENOMEM;
8103                 goto clean2;    /* intmode+region, pci */
8104         }
8105         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8106         if (err)
8107                 goto clean3;    /* vaddr, intmode+region, pci */
8108         err = hpsa_find_cfgtables(h);
8109         if (err)
8110                 goto clean3;    /* vaddr, intmode+region, pci */
8111         hpsa_find_board_params(h);
8112
8113         if (!hpsa_CISS_signature_present(h)) {
8114                 err = -ENODEV;
8115                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8116         }
8117         hpsa_set_driver_support_bits(h);
8118         hpsa_p600_dma_prefetch_quirk(h);
8119         err = hpsa_enter_simple_mode(h);
8120         if (err)
8121                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8122         return 0;
8123
8124 clean4: /* cfgtables, vaddr, intmode+region, pci */
8125         hpsa_free_cfgtables(h);
8126 clean3: /* vaddr, intmode+region, pci */
8127         iounmap(h->vaddr);
8128         h->vaddr = NULL;
8129 clean2: /* intmode+region, pci */
8130         hpsa_disable_interrupt_mode(h);
8131 clean1:
8132         /*
8133          * call pci_disable_device before pci_release_regions per
8134          * Documentation/PCI/pci.txt
8135          */
8136         pci_disable_device(h->pdev);
8137         pci_release_regions(h->pdev);
8138         return err;
8139 }
8140
8141 static void hpsa_hba_inquiry(struct ctlr_info *h)
8142 {
8143         int rc;
8144
8145 #define HBA_INQUIRY_BYTE_COUNT 64
8146         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8147         if (!h->hba_inquiry_data)
8148                 return;
8149         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8150                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8151         if (rc != 0) {
8152                 kfree(h->hba_inquiry_data);
8153                 h->hba_inquiry_data = NULL;
8154         }
8155 }
8156
8157 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8158 {
8159         int rc, i;
8160         void __iomem *vaddr;
8161
8162         if (!reset_devices)
8163                 return 0;
8164
8165         /* kdump kernel is loading, we don't know in which state is
8166          * the pci interface. The dev->enable_cnt is equal zero
8167          * so we call enable+disable, wait a while and switch it on.
8168          */
8169         rc = pci_enable_device(pdev);
8170         if (rc) {
8171                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8172                 return -ENODEV;
8173         }
8174         pci_disable_device(pdev);
8175         msleep(260);                    /* a randomly chosen number */
8176         rc = pci_enable_device(pdev);
8177         if (rc) {
8178                 dev_warn(&pdev->dev, "failed to enable device.\n");
8179                 return -ENODEV;
8180         }
8181
8182         pci_set_master(pdev);
8183
8184         vaddr = pci_ioremap_bar(pdev, 0);
8185         if (vaddr == NULL) {
8186                 rc = -ENOMEM;
8187                 goto out_disable;
8188         }
8189         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8190         iounmap(vaddr);
8191
8192         /* Reset the controller with a PCI power-cycle or via doorbell */
8193         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8194
8195         /* -ENOTSUPP here means we cannot reset the controller
8196          * but it's already (and still) up and running in
8197          * "performant mode".  Or, it might be 640x, which can't reset
8198          * due to concerns about shared bbwc between 6402/6404 pair.
8199          */
8200         if (rc)
8201                 goto out_disable;
8202
8203         /* Now try to get the controller to respond to a no-op */
8204         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8205         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8206                 if (hpsa_noop(pdev) == 0)
8207                         break;
8208                 else
8209                         dev_warn(&pdev->dev, "no-op failed%s\n",
8210                                         (i < 11 ? "; re-trying" : ""));
8211         }
8212
8213 out_disable:
8214
8215         pci_disable_device(pdev);
8216         return rc;
8217 }
8218
8219 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8220 {
8221         kfree(h->cmd_pool_bits);
8222         h->cmd_pool_bits = NULL;
8223         if (h->cmd_pool) {
8224                 pci_free_consistent(h->pdev,
8225                                 h->nr_cmds * sizeof(struct CommandList),
8226                                 h->cmd_pool,
8227                                 h->cmd_pool_dhandle);
8228                 h->cmd_pool = NULL;
8229                 h->cmd_pool_dhandle = 0;
8230         }
8231         if (h->errinfo_pool) {
8232                 pci_free_consistent(h->pdev,
8233                                 h->nr_cmds * sizeof(struct ErrorInfo),
8234                                 h->errinfo_pool,
8235                                 h->errinfo_pool_dhandle);
8236                 h->errinfo_pool = NULL;
8237                 h->errinfo_pool_dhandle = 0;
8238         }
8239 }
8240
8241 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8242 {
8243         h->cmd_pool_bits = kzalloc(
8244                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8245                 sizeof(unsigned long), GFP_KERNEL);
8246         h->cmd_pool = pci_alloc_consistent(h->pdev,
8247                     h->nr_cmds * sizeof(*h->cmd_pool),
8248                     &(h->cmd_pool_dhandle));
8249         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8250                     h->nr_cmds * sizeof(*h->errinfo_pool),
8251                     &(h->errinfo_pool_dhandle));
8252         if ((h->cmd_pool_bits == NULL)
8253             || (h->cmd_pool == NULL)
8254             || (h->errinfo_pool == NULL)) {
8255                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8256                 goto clean_up;
8257         }
8258         hpsa_preinitialize_commands(h);
8259         return 0;
8260 clean_up:
8261         hpsa_free_cmd_pool(h);
8262         return -ENOMEM;
8263 }
8264
8265 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8266 static void hpsa_free_irqs(struct ctlr_info *h)
8267 {
8268         int i;
8269
8270         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8271                 /* Single reply queue, only one irq to free */
8272                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8273                 h->q[h->intr_mode] = 0;
8274                 return;
8275         }
8276
8277         for (i = 0; i < h->msix_vectors; i++) {
8278                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8279                 h->q[i] = 0;
8280         }
8281         for (; i < MAX_REPLY_QUEUES; i++)
8282                 h->q[i] = 0;
8283 }
8284
8285 /* returns 0 on success; cleans up and returns -Enn on error */
8286 static int hpsa_request_irqs(struct ctlr_info *h,
8287         irqreturn_t (*msixhandler)(int, void *),
8288         irqreturn_t (*intxhandler)(int, void *))
8289 {
8290         int rc, i;
8291
8292         /*
8293          * initialize h->q[x] = x so that interrupt handlers know which
8294          * queue to process.
8295          */
8296         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8297                 h->q[i] = (u8) i;
8298
8299         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8300                 /* If performant mode and MSI-X, use multiple reply queues */
8301                 for (i = 0; i < h->msix_vectors; i++) {
8302                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8303                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8304                                         0, h->intrname[i],
8305                                         &h->q[i]);
8306                         if (rc) {
8307                                 int j;
8308
8309                                 dev_err(&h->pdev->dev,
8310                                         "failed to get irq %d for %s\n",
8311                                        pci_irq_vector(h->pdev, i), h->devname);
8312                                 for (j = 0; j < i; j++) {
8313                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8314                                         h->q[j] = 0;
8315                                 }
8316                                 for (; j < MAX_REPLY_QUEUES; j++)
8317                                         h->q[j] = 0;
8318                                 return rc;
8319                         }
8320                 }
8321         } else {
8322                 /* Use single reply pool */
8323                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8324                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8325                                 h->msix_vectors ? "x" : "");
8326                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8327                                 msixhandler, 0,
8328                                 h->intrname[0],
8329                                 &h->q[h->intr_mode]);
8330                 } else {
8331                         sprintf(h->intrname[h->intr_mode],
8332                                 "%s-intx", h->devname);
8333                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8334                                 intxhandler, IRQF_SHARED,
8335                                 h->intrname[0],
8336                                 &h->q[h->intr_mode]);
8337                 }
8338         }
8339         if (rc) {
8340                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8341                        pci_irq_vector(h->pdev, 0), h->devname);
8342                 hpsa_free_irqs(h);
8343                 return -ENODEV;
8344         }
8345         return 0;
8346 }
8347
8348 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8349 {
8350         int rc;
8351         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8352
8353         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8354         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8355         if (rc) {
8356                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8357                 return rc;
8358         }
8359
8360         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8361         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8362         if (rc) {
8363                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8364                         "after soft reset.\n");
8365                 return rc;
8366         }
8367
8368         return 0;
8369 }
8370
8371 static void hpsa_free_reply_queues(struct ctlr_info *h)
8372 {
8373         int i;
8374
8375         for (i = 0; i < h->nreply_queues; i++) {
8376                 if (!h->reply_queue[i].head)
8377                         continue;
8378                 pci_free_consistent(h->pdev,
8379                                         h->reply_queue_size,
8380                                         h->reply_queue[i].head,
8381                                         h->reply_queue[i].busaddr);
8382                 h->reply_queue[i].head = NULL;
8383                 h->reply_queue[i].busaddr = 0;
8384         }
8385         h->reply_queue_size = 0;
8386 }
8387
8388 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8389 {
8390         hpsa_free_performant_mode(h);           /* init_one 7 */
8391         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8392         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8393         hpsa_free_irqs(h);                      /* init_one 4 */
8394         scsi_host_put(h->scsi_host);            /* init_one 3 */
8395         h->scsi_host = NULL;                    /* init_one 3 */
8396         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8397         free_percpu(h->lockup_detected);        /* init_one 2 */
8398         h->lockup_detected = NULL;              /* init_one 2 */
8399         if (h->resubmit_wq) {
8400                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8401                 h->resubmit_wq = NULL;
8402         }
8403         if (h->rescan_ctlr_wq) {
8404                 destroy_workqueue(h->rescan_ctlr_wq);
8405                 h->rescan_ctlr_wq = NULL;
8406         }
8407         kfree(h);                               /* init_one 1 */
8408 }
8409
8410 /* Called when controller lockup detected. */
8411 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8412 {
8413         int i, refcount;
8414         struct CommandList *c;
8415         int failcount = 0;
8416
8417         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8418         for (i = 0; i < h->nr_cmds; i++) {
8419                 c = h->cmd_pool + i;
8420                 refcount = atomic_inc_return(&c->refcount);
8421                 if (refcount > 1) {
8422                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8423                         finish_cmd(c);
8424                         atomic_dec(&h->commands_outstanding);
8425                         failcount++;
8426                 }
8427                 cmd_free(h, c);
8428         }
8429         dev_warn(&h->pdev->dev,
8430                 "failed %d commands in fail_all\n", failcount);
8431 }
8432
8433 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8434 {
8435         int cpu;
8436
8437         for_each_online_cpu(cpu) {
8438                 u32 *lockup_detected;
8439                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8440                 *lockup_detected = value;
8441         }
8442         wmb(); /* be sure the per-cpu variables are out to memory */
8443 }
8444
8445 static void controller_lockup_detected(struct ctlr_info *h)
8446 {
8447         unsigned long flags;
8448         u32 lockup_detected;
8449
8450         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8451         spin_lock_irqsave(&h->lock, flags);
8452         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8453         if (!lockup_detected) {
8454                 /* no heartbeat, but controller gave us a zero. */
8455                 dev_warn(&h->pdev->dev,
8456                         "lockup detected after %d but scratchpad register is zero\n",
8457                         h->heartbeat_sample_interval / HZ);
8458                 lockup_detected = 0xffffffff;
8459         }
8460         set_lockup_detected_for_all_cpus(h, lockup_detected);
8461         spin_unlock_irqrestore(&h->lock, flags);
8462         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8463                         lockup_detected, h->heartbeat_sample_interval / HZ);
8464         pci_disable_device(h->pdev);
8465         fail_all_outstanding_cmds(h);
8466 }
8467
8468 static int detect_controller_lockup(struct ctlr_info *h)
8469 {
8470         u64 now;
8471         u32 heartbeat;
8472         unsigned long flags;
8473
8474         now = get_jiffies_64();
8475         /* If we've received an interrupt recently, we're ok. */
8476         if (time_after64(h->last_intr_timestamp +
8477                                 (h->heartbeat_sample_interval), now))
8478                 return false;
8479
8480         /*
8481          * If we've already checked the heartbeat recently, we're ok.
8482          * This could happen if someone sends us a signal. We
8483          * otherwise don't care about signals in this thread.
8484          */
8485         if (time_after64(h->last_heartbeat_timestamp +
8486                                 (h->heartbeat_sample_interval), now))
8487                 return false;
8488
8489         /* If heartbeat has not changed since we last looked, we're not ok. */
8490         spin_lock_irqsave(&h->lock, flags);
8491         heartbeat = readl(&h->cfgtable->HeartBeat);
8492         spin_unlock_irqrestore(&h->lock, flags);
8493         if (h->last_heartbeat == heartbeat) {
8494                 controller_lockup_detected(h);
8495                 return true;
8496         }
8497
8498         /* We're ok. */
8499         h->last_heartbeat = heartbeat;
8500         h->last_heartbeat_timestamp = now;
8501         return false;
8502 }
8503
8504 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8505 {
8506         int i;
8507         char *event_type;
8508
8509         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8510                 return;
8511
8512         /* Ask the controller to clear the events we're handling. */
8513         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8514                         | CFGTBL_Trans_io_accel2)) &&
8515                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8516                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8517
8518                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8519                         event_type = "state change";
8520                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8521                         event_type = "configuration change";
8522                 /* Stop sending new RAID offload reqs via the IO accelerator */
8523                 scsi_block_requests(h->scsi_host);
8524                 for (i = 0; i < h->ndevices; i++) {
8525                         h->dev[i]->offload_enabled = 0;
8526                         h->dev[i]->offload_to_be_enabled = 0;
8527                 }
8528                 hpsa_drain_accel_commands(h);
8529                 /* Set 'accelerator path config change' bit */
8530                 dev_warn(&h->pdev->dev,
8531                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8532                         h->events, event_type);
8533                 writel(h->events, &(h->cfgtable->clear_event_notify));
8534                 /* Set the "clear event notify field update" bit 6 */
8535                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8536                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8537                 hpsa_wait_for_clear_event_notify_ack(h);
8538                 scsi_unblock_requests(h->scsi_host);
8539         } else {
8540                 /* Acknowledge controller notification events. */
8541                 writel(h->events, &(h->cfgtable->clear_event_notify));
8542                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8543                 hpsa_wait_for_clear_event_notify_ack(h);
8544 #if 0
8545                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8546                 hpsa_wait_for_mode_change_ack(h);
8547 #endif
8548         }
8549         return;
8550 }
8551
8552 /* Check a register on the controller to see if there are configuration
8553  * changes (added/changed/removed logical drives, etc.) which mean that
8554  * we should rescan the controller for devices.
8555  * Also check flag for driver-initiated rescan.
8556  */
8557 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8558 {
8559         if (h->drv_req_rescan) {
8560                 h->drv_req_rescan = 0;
8561                 return 1;
8562         }
8563
8564         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8565                 return 0;
8566
8567         h->events = readl(&(h->cfgtable->event_notify));
8568         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8569 }
8570
8571 /*
8572  * Check if any of the offline devices have become ready
8573  */
8574 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8575 {
8576         unsigned long flags;
8577         struct offline_device_entry *d;
8578         struct list_head *this, *tmp;
8579
8580         spin_lock_irqsave(&h->offline_device_lock, flags);
8581         list_for_each_safe(this, tmp, &h->offline_device_list) {
8582                 d = list_entry(this, struct offline_device_entry,
8583                                 offline_list);
8584                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8585                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8586                         spin_lock_irqsave(&h->offline_device_lock, flags);
8587                         list_del(&d->offline_list);
8588                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589                         return 1;
8590                 }
8591                 spin_lock_irqsave(&h->offline_device_lock, flags);
8592         }
8593         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8594         return 0;
8595 }
8596
8597 static int hpsa_luns_changed(struct ctlr_info *h)
8598 {
8599         int rc = 1; /* assume there are changes */
8600         struct ReportLUNdata *logdev = NULL;
8601
8602         /* if we can't find out if lun data has changed,
8603          * assume that it has.
8604          */
8605
8606         if (!h->lastlogicals)
8607                 return rc;
8608
8609         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8610         if (!logdev)
8611                 return rc;
8612
8613         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8614                 dev_warn(&h->pdev->dev,
8615                         "report luns failed, can't track lun changes.\n");
8616                 goto out;
8617         }
8618         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8619                 dev_info(&h->pdev->dev,
8620                         "Lun changes detected.\n");
8621                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8622                 goto out;
8623         } else
8624                 rc = 0; /* no changes detected. */
8625 out:
8626         kfree(logdev);
8627         return rc;
8628 }
8629
8630 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8631 {
8632         unsigned long flags;
8633         struct ctlr_info *h = container_of(to_delayed_work(work),
8634                                         struct ctlr_info, rescan_ctlr_work);
8635
8636
8637         if (h->remove_in_progress)
8638                 return;
8639
8640         /*
8641          * Do the scan after the reset
8642          */
8643         if (h->reset_in_progress) {
8644                 h->drv_req_rescan = 1;
8645                 return;
8646         }
8647
8648         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8649                 scsi_host_get(h->scsi_host);
8650                 hpsa_ack_ctlr_events(h);
8651                 hpsa_scan_start(h->scsi_host);
8652                 scsi_host_put(h->scsi_host);
8653         } else if (h->discovery_polling) {
8654                 hpsa_disable_rld_caching(h);
8655                 if (hpsa_luns_changed(h)) {
8656                         struct Scsi_Host *sh = NULL;
8657
8658                         dev_info(&h->pdev->dev,
8659                                 "driver discovery polling rescan.\n");
8660                         sh = scsi_host_get(h->scsi_host);
8661                         if (sh != NULL) {
8662                                 hpsa_scan_start(sh);
8663                                 scsi_host_put(sh);
8664                         }
8665                 }
8666         }
8667         spin_lock_irqsave(&h->lock, flags);
8668         if (!h->remove_in_progress)
8669                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8670                                 h->heartbeat_sample_interval);
8671         spin_unlock_irqrestore(&h->lock, flags);
8672 }
8673
8674 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8675 {
8676         unsigned long flags;
8677         struct ctlr_info *h = container_of(to_delayed_work(work),
8678                                         struct ctlr_info, monitor_ctlr_work);
8679
8680         detect_controller_lockup(h);
8681         if (lockup_detected(h))
8682                 return;
8683
8684         spin_lock_irqsave(&h->lock, flags);
8685         if (!h->remove_in_progress)
8686                 schedule_delayed_work(&h->monitor_ctlr_work,
8687                                 h->heartbeat_sample_interval);
8688         spin_unlock_irqrestore(&h->lock, flags);
8689 }
8690
8691 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8692                                                 char *name)
8693 {
8694         struct workqueue_struct *wq = NULL;
8695
8696         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8697         if (!wq)
8698                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8699
8700         return wq;
8701 }
8702
8703 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8704 {
8705         int dac, rc;
8706         struct ctlr_info *h;
8707         int try_soft_reset = 0;
8708         unsigned long flags;
8709         u32 board_id;
8710
8711         if (number_of_controllers == 0)
8712                 printk(KERN_INFO DRIVER_NAME "\n");
8713
8714         rc = hpsa_lookup_board_id(pdev, &board_id);
8715         if (rc < 0) {
8716                 dev_warn(&pdev->dev, "Board ID not found\n");
8717                 return rc;
8718         }
8719
8720         rc = hpsa_init_reset_devices(pdev, board_id);
8721         if (rc) {
8722                 if (rc != -ENOTSUPP)
8723                         return rc;
8724                 /* If the reset fails in a particular way (it has no way to do
8725                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8726                  * a soft reset once we get the controller configured up to the
8727                  * point that it can accept a command.
8728                  */
8729                 try_soft_reset = 1;
8730                 rc = 0;
8731         }
8732
8733 reinit_after_soft_reset:
8734
8735         /* Command structures must be aligned on a 32-byte boundary because
8736          * the 5 lower bits of the address are used by the hardware. and by
8737          * the driver.  See comments in hpsa.h for more info.
8738          */
8739         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8740         h = kzalloc(sizeof(*h), GFP_KERNEL);
8741         if (!h) {
8742                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8743                 return -ENOMEM;
8744         }
8745
8746         h->pdev = pdev;
8747
8748         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8749         INIT_LIST_HEAD(&h->offline_device_list);
8750         spin_lock_init(&h->lock);
8751         spin_lock_init(&h->offline_device_lock);
8752         spin_lock_init(&h->scan_lock);
8753         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8754         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8755
8756         /* Allocate and clear per-cpu variable lockup_detected */
8757         h->lockup_detected = alloc_percpu(u32);
8758         if (!h->lockup_detected) {
8759                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8760                 rc = -ENOMEM;
8761                 goto clean1;    /* aer/h */
8762         }
8763         set_lockup_detected_for_all_cpus(h, 0);
8764
8765         rc = hpsa_pci_init(h);
8766         if (rc)
8767                 goto clean2;    /* lu, aer/h */
8768
8769         /* relies on h-> settings made by hpsa_pci_init, including
8770          * interrupt_mode h->intr */
8771         rc = hpsa_scsi_host_alloc(h);
8772         if (rc)
8773                 goto clean2_5;  /* pci, lu, aer/h */
8774
8775         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8776         h->ctlr = number_of_controllers;
8777         number_of_controllers++;
8778
8779         /* configure PCI DMA stuff */
8780         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8781         if (rc == 0) {
8782                 dac = 1;
8783         } else {
8784                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8785                 if (rc == 0) {
8786                         dac = 0;
8787                 } else {
8788                         dev_err(&pdev->dev, "no suitable DMA available\n");
8789                         goto clean3;    /* shost, pci, lu, aer/h */
8790                 }
8791         }
8792
8793         /* make sure the board interrupts are off */
8794         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8795
8796         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8797         if (rc)
8798                 goto clean3;    /* shost, pci, lu, aer/h */
8799         rc = hpsa_alloc_cmd_pool(h);
8800         if (rc)
8801                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8802         rc = hpsa_alloc_sg_chain_blocks(h);
8803         if (rc)
8804                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8805         init_waitqueue_head(&h->scan_wait_queue);
8806         init_waitqueue_head(&h->abort_cmd_wait_queue);
8807         init_waitqueue_head(&h->event_sync_wait_queue);
8808         mutex_init(&h->reset_mutex);
8809         h->scan_finished = 1; /* no scan currently in progress */
8810         h->scan_waiting = 0;
8811
8812         pci_set_drvdata(pdev, h);
8813         h->ndevices = 0;
8814
8815         spin_lock_init(&h->devlock);
8816         rc = hpsa_put_ctlr_into_performant_mode(h);
8817         if (rc)
8818                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8819
8820         /* create the resubmit workqueue */
8821         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8822         if (!h->rescan_ctlr_wq) {
8823                 rc = -ENOMEM;
8824                 goto clean7;
8825         }
8826
8827         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8828         if (!h->resubmit_wq) {
8829                 rc = -ENOMEM;
8830                 goto clean7;    /* aer/h */
8831         }
8832
8833         /*
8834          * At this point, the controller is ready to take commands.
8835          * Now, if reset_devices and the hard reset didn't work, try
8836          * the soft reset and see if that works.
8837          */
8838         if (try_soft_reset) {
8839
8840                 /* This is kind of gross.  We may or may not get a completion
8841                  * from the soft reset command, and if we do, then the value
8842                  * from the fifo may or may not be valid.  So, we wait 10 secs
8843                  * after the reset throwing away any completions we get during
8844                  * that time.  Unregister the interrupt handler and register
8845                  * fake ones to scoop up any residual completions.
8846                  */
8847                 spin_lock_irqsave(&h->lock, flags);
8848                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8849                 spin_unlock_irqrestore(&h->lock, flags);
8850                 hpsa_free_irqs(h);
8851                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8852                                         hpsa_intx_discard_completions);
8853                 if (rc) {
8854                         dev_warn(&h->pdev->dev,
8855                                 "Failed to request_irq after soft reset.\n");
8856                         /*
8857                          * cannot goto clean7 or free_irqs will be called
8858                          * again. Instead, do its work
8859                          */
8860                         hpsa_free_performant_mode(h);   /* clean7 */
8861                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8862                         hpsa_free_cmd_pool(h);          /* clean5 */
8863                         /*
8864                          * skip hpsa_free_irqs(h) clean4 since that
8865                          * was just called before request_irqs failed
8866                          */
8867                         goto clean3;
8868                 }
8869
8870                 rc = hpsa_kdump_soft_reset(h);
8871                 if (rc)
8872                         /* Neither hard nor soft reset worked, we're hosed. */
8873                         goto clean7;
8874
8875                 dev_info(&h->pdev->dev, "Board READY.\n");
8876                 dev_info(&h->pdev->dev,
8877                         "Waiting for stale completions to drain.\n");
8878                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8879                 msleep(10000);
8880                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8881
8882                 rc = controller_reset_failed(h->cfgtable);
8883                 if (rc)
8884                         dev_info(&h->pdev->dev,
8885                                 "Soft reset appears to have failed.\n");
8886
8887                 /* since the controller's reset, we have to go back and re-init
8888                  * everything.  Easiest to just forget what we've done and do it
8889                  * all over again.
8890                  */
8891                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8892                 try_soft_reset = 0;
8893                 if (rc)
8894                         /* don't goto clean, we already unallocated */
8895                         return -ENODEV;
8896
8897                 goto reinit_after_soft_reset;
8898         }
8899
8900         /* Enable Accelerated IO path at driver layer */
8901         h->acciopath_status = 1;
8902         /* Disable discovery polling.*/
8903         h->discovery_polling = 0;
8904
8905
8906         /* Turn the interrupts on so we can service requests */
8907         h->access.set_intr_mask(h, HPSA_INTR_ON);
8908
8909         hpsa_hba_inquiry(h);
8910
8911         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8912         if (!h->lastlogicals)
8913                 dev_info(&h->pdev->dev,
8914                         "Can't track change to report lun data\n");
8915
8916         /* hook into SCSI subsystem */
8917         rc = hpsa_scsi_add_host(h);
8918         if (rc)
8919                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920
8921         /* Monitor the controller for firmware lockups */
8922         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8923         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8924         schedule_delayed_work(&h->monitor_ctlr_work,
8925                                 h->heartbeat_sample_interval);
8926         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8927         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8928                                 h->heartbeat_sample_interval);
8929         return 0;
8930
8931 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8932         hpsa_free_performant_mode(h);
8933         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8934 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8935         hpsa_free_sg_chain_blocks(h);
8936 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8937         hpsa_free_cmd_pool(h);
8938 clean4: /* irq, shost, pci, lu, aer/h */
8939         hpsa_free_irqs(h);
8940 clean3: /* shost, pci, lu, aer/h */
8941         scsi_host_put(h->scsi_host);
8942         h->scsi_host = NULL;
8943 clean2_5: /* pci, lu, aer/h */
8944         hpsa_free_pci_init(h);
8945 clean2: /* lu, aer/h */
8946         if (h->lockup_detected) {
8947                 free_percpu(h->lockup_detected);
8948                 h->lockup_detected = NULL;
8949         }
8950 clean1: /* wq/aer/h */
8951         if (h->resubmit_wq) {
8952                 destroy_workqueue(h->resubmit_wq);
8953                 h->resubmit_wq = NULL;
8954         }
8955         if (h->rescan_ctlr_wq) {
8956                 destroy_workqueue(h->rescan_ctlr_wq);
8957                 h->rescan_ctlr_wq = NULL;
8958         }
8959         kfree(h);
8960         return rc;
8961 }
8962
8963 static void hpsa_flush_cache(struct ctlr_info *h)
8964 {
8965         char *flush_buf;
8966         struct CommandList *c;
8967         int rc;
8968
8969         if (unlikely(lockup_detected(h)))
8970                 return;
8971         flush_buf = kzalloc(4, GFP_KERNEL);
8972         if (!flush_buf)
8973                 return;
8974
8975         c = cmd_alloc(h);
8976
8977         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8978                 RAID_CTLR_LUNID, TYPE_CMD)) {
8979                 goto out;
8980         }
8981         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8982                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8983         if (rc)
8984                 goto out;
8985         if (c->err_info->CommandStatus != 0)
8986 out:
8987                 dev_warn(&h->pdev->dev,
8988                         "error flushing cache on controller\n");
8989         cmd_free(h, c);
8990         kfree(flush_buf);
8991 }
8992
8993 /* Make controller gather fresh report lun data each time we
8994  * send down a report luns request
8995  */
8996 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8997 {
8998         u32 *options;
8999         struct CommandList *c;
9000         int rc;
9001
9002         /* Don't bother trying to set diag options if locked up */
9003         if (unlikely(h->lockup_detected))
9004                 return;
9005
9006         options = kzalloc(sizeof(*options), GFP_KERNEL);
9007         if (!options)
9008                 return;
9009
9010         c = cmd_alloc(h);
9011
9012         /* first, get the current diag options settings */
9013         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9014                 RAID_CTLR_LUNID, TYPE_CMD))
9015                 goto errout;
9016
9017         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9018                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9019         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9020                 goto errout;
9021
9022         /* Now, set the bit for disabling the RLD caching */
9023         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9024
9025         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9026                 RAID_CTLR_LUNID, TYPE_CMD))
9027                 goto errout;
9028
9029         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9030                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9031         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9032                 goto errout;
9033
9034         /* Now verify that it got set: */
9035         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9036                 RAID_CTLR_LUNID, TYPE_CMD))
9037                 goto errout;
9038
9039         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9040                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9041         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9042                 goto errout;
9043
9044         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9045                 goto out;
9046
9047 errout:
9048         dev_err(&h->pdev->dev,
9049                         "Error: failed to disable report lun data caching.\n");
9050 out:
9051         cmd_free(h, c);
9052         kfree(options);
9053 }
9054
9055 static void hpsa_shutdown(struct pci_dev *pdev)
9056 {
9057         struct ctlr_info *h;
9058
9059         h = pci_get_drvdata(pdev);
9060         /* Turn board interrupts off  and send the flush cache command
9061          * sendcmd will turn off interrupt, and send the flush...
9062          * To write all data in the battery backed cache to disks
9063          */
9064         hpsa_flush_cache(h);
9065         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9066         hpsa_free_irqs(h);                      /* init_one 4 */
9067         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9068 }
9069
9070 static void hpsa_free_device_info(struct ctlr_info *h)
9071 {
9072         int i;
9073
9074         for (i = 0; i < h->ndevices; i++) {
9075                 kfree(h->dev[i]);
9076                 h->dev[i] = NULL;
9077         }
9078 }
9079
9080 static void hpsa_remove_one(struct pci_dev *pdev)
9081 {
9082         struct ctlr_info *h;
9083         unsigned long flags;
9084
9085         if (pci_get_drvdata(pdev) == NULL) {
9086                 dev_err(&pdev->dev, "unable to remove device\n");
9087                 return;
9088         }
9089         h = pci_get_drvdata(pdev);
9090
9091         /* Get rid of any controller monitoring work items */
9092         spin_lock_irqsave(&h->lock, flags);
9093         h->remove_in_progress = 1;
9094         spin_unlock_irqrestore(&h->lock, flags);
9095         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9096         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9097         destroy_workqueue(h->rescan_ctlr_wq);
9098         destroy_workqueue(h->resubmit_wq);
9099
9100         /*
9101          * Call before disabling interrupts.
9102          * scsi_remove_host can trigger I/O operations especially
9103          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9104          * operations which cannot complete and will hang the system.
9105          */
9106         if (h->scsi_host)
9107                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9108         /* includes hpsa_free_irqs - init_one 4 */
9109         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9110         hpsa_shutdown(pdev);
9111
9112         hpsa_free_device_info(h);               /* scan */
9113
9114         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9115         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9116         hpsa_free_ioaccel2_sg_chain_blocks(h);
9117         hpsa_free_performant_mode(h);                   /* init_one 7 */
9118         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9119         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9120         kfree(h->lastlogicals);
9121
9122         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9123
9124         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9125         h->scsi_host = NULL;                            /* init_one 3 */
9126
9127         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9128         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9129
9130         free_percpu(h->lockup_detected);                /* init_one 2 */
9131         h->lockup_detected = NULL;                      /* init_one 2 */
9132         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9133
9134         hpsa_delete_sas_host(h);
9135
9136         kfree(h);                                       /* init_one 1 */
9137 }
9138
9139 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9140         __attribute__((unused)) pm_message_t state)
9141 {
9142         return -ENOSYS;
9143 }
9144
9145 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9146 {
9147         return -ENOSYS;
9148 }
9149
9150 static struct pci_driver hpsa_pci_driver = {
9151         .name = HPSA,
9152         .probe = hpsa_init_one,
9153         .remove = hpsa_remove_one,
9154         .id_table = hpsa_pci_device_id, /* id_table */
9155         .shutdown = hpsa_shutdown,
9156         .suspend = hpsa_suspend,
9157         .resume = hpsa_resume,
9158 };
9159
9160 /* Fill in bucket_map[], given nsgs (the max number of
9161  * scatter gather elements supported) and bucket[],
9162  * which is an array of 8 integers.  The bucket[] array
9163  * contains 8 different DMA transfer sizes (in 16
9164  * byte increments) which the controller uses to fetch
9165  * commands.  This function fills in bucket_map[], which
9166  * maps a given number of scatter gather elements to one of
9167  * the 8 DMA transfer sizes.  The point of it is to allow the
9168  * controller to only do as much DMA as needed to fetch the
9169  * command, with the DMA transfer size encoded in the lower
9170  * bits of the command address.
9171  */
9172 static void  calc_bucket_map(int bucket[], int num_buckets,
9173         int nsgs, int min_blocks, u32 *bucket_map)
9174 {
9175         int i, j, b, size;
9176
9177         /* Note, bucket_map must have nsgs+1 entries. */
9178         for (i = 0; i <= nsgs; i++) {
9179                 /* Compute size of a command with i SG entries */
9180                 size = i + min_blocks;
9181                 b = num_buckets; /* Assume the biggest bucket */
9182                 /* Find the bucket that is just big enough */
9183                 for (j = 0; j < num_buckets; j++) {
9184                         if (bucket[j] >= size) {
9185                                 b = j;
9186                                 break;
9187                         }
9188                 }
9189                 /* for a command with i SG entries, use bucket b. */
9190                 bucket_map[i] = b;
9191         }
9192 }
9193
9194 /*
9195  * return -ENODEV on err, 0 on success (or no action)
9196  * allocates numerous items that must be freed later
9197  */
9198 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9199 {
9200         int i;
9201         unsigned long register_value;
9202         unsigned long transMethod = CFGTBL_Trans_Performant |
9203                         (trans_support & CFGTBL_Trans_use_short_tags) |
9204                                 CFGTBL_Trans_enable_directed_msix |
9205                         (trans_support & (CFGTBL_Trans_io_accel1 |
9206                                 CFGTBL_Trans_io_accel2));
9207         struct access_method access = SA5_performant_access;
9208
9209         /* This is a bit complicated.  There are 8 registers on
9210          * the controller which we write to to tell it 8 different
9211          * sizes of commands which there may be.  It's a way of
9212          * reducing the DMA done to fetch each command.  Encoded into
9213          * each command's tag are 3 bits which communicate to the controller
9214          * which of the eight sizes that command fits within.  The size of
9215          * each command depends on how many scatter gather entries there are.
9216          * Each SG entry requires 16 bytes.  The eight registers are programmed
9217          * with the number of 16-byte blocks a command of that size requires.
9218          * The smallest command possible requires 5 such 16 byte blocks.
9219          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9220          * blocks.  Note, this only extends to the SG entries contained
9221          * within the command block, and does not extend to chained blocks
9222          * of SG elements.   bft[] contains the eight values we write to
9223          * the registers.  They are not evenly distributed, but have more
9224          * sizes for small commands, and fewer sizes for larger commands.
9225          */
9226         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9227 #define MIN_IOACCEL2_BFT_ENTRY 5
9228 #define HPSA_IOACCEL2_HEADER_SZ 4
9229         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9230                         13, 14, 15, 16, 17, 18, 19,
9231                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9232         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9233         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9234         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9235                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9236         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9237         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9238         /*  5 = 1 s/g entry or 4k
9239          *  6 = 2 s/g entry or 8k
9240          *  8 = 4 s/g entry or 16k
9241          * 10 = 6 s/g entry or 24k
9242          */
9243
9244         /* If the controller supports either ioaccel method then
9245          * we can also use the RAID stack submit path that does not
9246          * perform the superfluous readl() after each command submission.
9247          */
9248         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9249                 access = SA5_performant_access_no_read;
9250
9251         /* Controller spec: zero out this buffer. */
9252         for (i = 0; i < h->nreply_queues; i++)
9253                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9254
9255         bft[7] = SG_ENTRIES_IN_CMD + 4;
9256         calc_bucket_map(bft, ARRAY_SIZE(bft),
9257                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9258         for (i = 0; i < 8; i++)
9259                 writel(bft[i], &h->transtable->BlockFetch[i]);
9260
9261         /* size of controller ring buffer */
9262         writel(h->max_commands, &h->transtable->RepQSize);
9263         writel(h->nreply_queues, &h->transtable->RepQCount);
9264         writel(0, &h->transtable->RepQCtrAddrLow32);
9265         writel(0, &h->transtable->RepQCtrAddrHigh32);
9266
9267         for (i = 0; i < h->nreply_queues; i++) {
9268                 writel(0, &h->transtable->RepQAddr[i].upper);
9269                 writel(h->reply_queue[i].busaddr,
9270                         &h->transtable->RepQAddr[i].lower);
9271         }
9272
9273         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9274         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9275         /*
9276          * enable outbound interrupt coalescing in accelerator mode;
9277          */
9278         if (trans_support & CFGTBL_Trans_io_accel1) {
9279                 access = SA5_ioaccel_mode1_access;
9280                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9281                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9282         } else
9283                 if (trans_support & CFGTBL_Trans_io_accel2)
9284                         access = SA5_ioaccel_mode2_access;
9285         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286         if (hpsa_wait_for_mode_change_ack(h)) {
9287                 dev_err(&h->pdev->dev,
9288                         "performant mode problem - doorbell timeout\n");
9289                 return -ENODEV;
9290         }
9291         register_value = readl(&(h->cfgtable->TransportActive));
9292         if (!(register_value & CFGTBL_Trans_Performant)) {
9293                 dev_err(&h->pdev->dev,
9294                         "performant mode problem - transport not active\n");
9295                 return -ENODEV;
9296         }
9297         /* Change the access methods to the performant access methods */
9298         h->access = access;
9299         h->transMethod = transMethod;
9300
9301         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9302                 (trans_support & CFGTBL_Trans_io_accel2)))
9303                 return 0;
9304
9305         if (trans_support & CFGTBL_Trans_io_accel1) {
9306                 /* Set up I/O accelerator mode */
9307                 for (i = 0; i < h->nreply_queues; i++) {
9308                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9309                         h->reply_queue[i].current_entry =
9310                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9311                 }
9312                 bft[7] = h->ioaccel_maxsg + 8;
9313                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9314                                 h->ioaccel1_blockFetchTable);
9315
9316                 /* initialize all reply queue entries to unused */
9317                 for (i = 0; i < h->nreply_queues; i++)
9318                         memset(h->reply_queue[i].head,
9319                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9320                                 h->reply_queue_size);
9321
9322                 /* set all the constant fields in the accelerator command
9323                  * frames once at init time to save CPU cycles later.
9324                  */
9325                 for (i = 0; i < h->nr_cmds; i++) {
9326                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9327
9328                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9329                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9330                                         (i * sizeof(struct ErrorInfo)));
9331                         cp->err_info_len = sizeof(struct ErrorInfo);
9332                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9333                         cp->host_context_flags =
9334                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9335                         cp->timeout_sec = 0;
9336                         cp->ReplyQueue = 0;
9337                         cp->tag =
9338                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9339                         cp->host_addr =
9340                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9341                                         (i * sizeof(struct io_accel1_cmd)));
9342                 }
9343         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9344                 u64 cfg_offset, cfg_base_addr_index;
9345                 u32 bft2_offset, cfg_base_addr;
9346                 int rc;
9347
9348                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9349                         &cfg_base_addr_index, &cfg_offset);
9350                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9351                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9352                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9353                                 4, h->ioaccel2_blockFetchTable);
9354                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9355                 BUILD_BUG_ON(offsetof(struct CfgTable,
9356                                 io_accel_request_size_offset) != 0xb8);
9357                 h->ioaccel2_bft2_regs =
9358                         remap_pci_mem(pci_resource_start(h->pdev,
9359                                         cfg_base_addr_index) +
9360                                         cfg_offset + bft2_offset,
9361                                         ARRAY_SIZE(bft2) *
9362                                         sizeof(*h->ioaccel2_bft2_regs));
9363                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9364                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9365         }
9366         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9367         if (hpsa_wait_for_mode_change_ack(h)) {
9368                 dev_err(&h->pdev->dev,
9369                         "performant mode problem - enabling ioaccel mode\n");
9370                 return -ENODEV;
9371         }
9372         return 0;
9373 }
9374
9375 /* Free ioaccel1 mode command blocks and block fetch table */
9376 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9377 {
9378         if (h->ioaccel_cmd_pool) {
9379                 pci_free_consistent(h->pdev,
9380                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9381                         h->ioaccel_cmd_pool,
9382                         h->ioaccel_cmd_pool_dhandle);
9383                 h->ioaccel_cmd_pool = NULL;
9384                 h->ioaccel_cmd_pool_dhandle = 0;
9385         }
9386         kfree(h->ioaccel1_blockFetchTable);
9387         h->ioaccel1_blockFetchTable = NULL;
9388 }
9389
9390 /* Allocate ioaccel1 mode command blocks and block fetch table */
9391 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9392 {
9393         h->ioaccel_maxsg =
9394                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9395         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9396                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9397
9398         /* Command structures must be aligned on a 128-byte boundary
9399          * because the 7 lower bits of the address are used by the
9400          * hardware.
9401          */
9402         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9403                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9404         h->ioaccel_cmd_pool =
9405                 pci_alloc_consistent(h->pdev,
9406                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9407                         &(h->ioaccel_cmd_pool_dhandle));
9408
9409         h->ioaccel1_blockFetchTable =
9410                 kmalloc(((h->ioaccel_maxsg + 1) *
9411                                 sizeof(u32)), GFP_KERNEL);
9412
9413         if ((h->ioaccel_cmd_pool == NULL) ||
9414                 (h->ioaccel1_blockFetchTable == NULL))
9415                 goto clean_up;
9416
9417         memset(h->ioaccel_cmd_pool, 0,
9418                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9419         return 0;
9420
9421 clean_up:
9422         hpsa_free_ioaccel1_cmd_and_bft(h);
9423         return -ENOMEM;
9424 }
9425
9426 /* Free ioaccel2 mode command blocks and block fetch table */
9427 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9428 {
9429         hpsa_free_ioaccel2_sg_chain_blocks(h);
9430
9431         if (h->ioaccel2_cmd_pool) {
9432                 pci_free_consistent(h->pdev,
9433                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9434                         h->ioaccel2_cmd_pool,
9435                         h->ioaccel2_cmd_pool_dhandle);
9436                 h->ioaccel2_cmd_pool = NULL;
9437                 h->ioaccel2_cmd_pool_dhandle = 0;
9438         }
9439         kfree(h->ioaccel2_blockFetchTable);
9440         h->ioaccel2_blockFetchTable = NULL;
9441 }
9442
9443 /* Allocate ioaccel2 mode command blocks and block fetch table */
9444 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9445 {
9446         int rc;
9447
9448         /* Allocate ioaccel2 mode command blocks and block fetch table */
9449
9450         h->ioaccel_maxsg =
9451                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9452         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9453                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9454
9455         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9456                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9457         h->ioaccel2_cmd_pool =
9458                 pci_alloc_consistent(h->pdev,
9459                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9460                         &(h->ioaccel2_cmd_pool_dhandle));
9461
9462         h->ioaccel2_blockFetchTable =
9463                 kmalloc(((h->ioaccel_maxsg + 1) *
9464                                 sizeof(u32)), GFP_KERNEL);
9465
9466         if ((h->ioaccel2_cmd_pool == NULL) ||
9467                 (h->ioaccel2_blockFetchTable == NULL)) {
9468                 rc = -ENOMEM;
9469                 goto clean_up;
9470         }
9471
9472         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9473         if (rc)
9474                 goto clean_up;
9475
9476         memset(h->ioaccel2_cmd_pool, 0,
9477                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9478         return 0;
9479
9480 clean_up:
9481         hpsa_free_ioaccel2_cmd_and_bft(h);
9482         return rc;
9483 }
9484
9485 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9486 static void hpsa_free_performant_mode(struct ctlr_info *h)
9487 {
9488         kfree(h->blockFetchTable);
9489         h->blockFetchTable = NULL;
9490         hpsa_free_reply_queues(h);
9491         hpsa_free_ioaccel1_cmd_and_bft(h);
9492         hpsa_free_ioaccel2_cmd_and_bft(h);
9493 }
9494
9495 /* return -ENODEV on error, 0 on success (or no action)
9496  * allocates numerous items that must be freed later
9497  */
9498 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9499 {
9500         u32 trans_support;
9501         unsigned long transMethod = CFGTBL_Trans_Performant |
9502                                         CFGTBL_Trans_use_short_tags;
9503         int i, rc;
9504
9505         if (hpsa_simple_mode)
9506                 return 0;
9507
9508         trans_support = readl(&(h->cfgtable->TransportSupport));
9509         if (!(trans_support & PERFORMANT_MODE))
9510                 return 0;
9511
9512         /* Check for I/O accelerator mode support */
9513         if (trans_support & CFGTBL_Trans_io_accel1) {
9514                 transMethod |= CFGTBL_Trans_io_accel1 |
9515                                 CFGTBL_Trans_enable_directed_msix;
9516                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9517                 if (rc)
9518                         return rc;
9519         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9520                 transMethod |= CFGTBL_Trans_io_accel2 |
9521                                 CFGTBL_Trans_enable_directed_msix;
9522                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9523                 if (rc)
9524                         return rc;
9525         }
9526
9527         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9528         hpsa_get_max_perf_mode_cmds(h);
9529         /* Performant mode ring buffer and supporting data structures */
9530         h->reply_queue_size = h->max_commands * sizeof(u64);
9531
9532         for (i = 0; i < h->nreply_queues; i++) {
9533                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9534                                                 h->reply_queue_size,
9535                                                 &(h->reply_queue[i].busaddr));
9536                 if (!h->reply_queue[i].head) {
9537                         rc = -ENOMEM;
9538                         goto clean1;    /* rq, ioaccel */
9539                 }
9540                 h->reply_queue[i].size = h->max_commands;
9541                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9542                 h->reply_queue[i].current_entry = 0;
9543         }
9544
9545         /* Need a block fetch table for performant mode */
9546         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9547                                 sizeof(u32)), GFP_KERNEL);
9548         if (!h->blockFetchTable) {
9549                 rc = -ENOMEM;
9550                 goto clean1;    /* rq, ioaccel */
9551         }
9552
9553         rc = hpsa_enter_performant_mode(h, trans_support);
9554         if (rc)
9555                 goto clean2;    /* bft, rq, ioaccel */
9556         return 0;
9557
9558 clean2: /* bft, rq, ioaccel */
9559         kfree(h->blockFetchTable);
9560         h->blockFetchTable = NULL;
9561 clean1: /* rq, ioaccel */
9562         hpsa_free_reply_queues(h);
9563         hpsa_free_ioaccel1_cmd_and_bft(h);
9564         hpsa_free_ioaccel2_cmd_and_bft(h);
9565         return rc;
9566 }
9567
9568 static int is_accelerated_cmd(struct CommandList *c)
9569 {
9570         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9571 }
9572
9573 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9574 {
9575         struct CommandList *c = NULL;
9576         int i, accel_cmds_out;
9577         int refcount;
9578
9579         do { /* wait for all outstanding ioaccel commands to drain out */
9580                 accel_cmds_out = 0;
9581                 for (i = 0; i < h->nr_cmds; i++) {
9582                         c = h->cmd_pool + i;
9583                         refcount = atomic_inc_return(&c->refcount);
9584                         if (refcount > 1) /* Command is allocated */
9585                                 accel_cmds_out += is_accelerated_cmd(c);
9586                         cmd_free(h, c);
9587                 }
9588                 if (accel_cmds_out <= 0)
9589                         break;
9590                 msleep(100);
9591         } while (1);
9592 }
9593
9594 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9595                                 struct hpsa_sas_port *hpsa_sas_port)
9596 {
9597         struct hpsa_sas_phy *hpsa_sas_phy;
9598         struct sas_phy *phy;
9599
9600         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9601         if (!hpsa_sas_phy)
9602                 return NULL;
9603
9604         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9605                 hpsa_sas_port->next_phy_index);
9606         if (!phy) {
9607                 kfree(hpsa_sas_phy);
9608                 return NULL;
9609         }
9610
9611         hpsa_sas_port->next_phy_index++;
9612         hpsa_sas_phy->phy = phy;
9613         hpsa_sas_phy->parent_port = hpsa_sas_port;
9614
9615         return hpsa_sas_phy;
9616 }
9617
9618 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9619 {
9620         struct sas_phy *phy = hpsa_sas_phy->phy;
9621
9622         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9623         sas_phy_free(phy);
9624         if (hpsa_sas_phy->added_to_port)
9625                 list_del(&hpsa_sas_phy->phy_list_entry);
9626         kfree(hpsa_sas_phy);
9627 }
9628
9629 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9630 {
9631         int rc;
9632         struct hpsa_sas_port *hpsa_sas_port;
9633         struct sas_phy *phy;
9634         struct sas_identify *identify;
9635
9636         hpsa_sas_port = hpsa_sas_phy->parent_port;
9637         phy = hpsa_sas_phy->phy;
9638
9639         identify = &phy->identify;
9640         memset(identify, 0, sizeof(*identify));
9641         identify->sas_address = hpsa_sas_port->sas_address;
9642         identify->device_type = SAS_END_DEVICE;
9643         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9644         identify->target_port_protocols = SAS_PROTOCOL_STP;
9645         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9646         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9648         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9650
9651         rc = sas_phy_add(hpsa_sas_phy->phy);
9652         if (rc)
9653                 return rc;
9654
9655         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9656         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9657                         &hpsa_sas_port->phy_list_head);
9658         hpsa_sas_phy->added_to_port = true;
9659
9660         return 0;
9661 }
9662
9663 static int
9664         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9665                                 struct sas_rphy *rphy)
9666 {
9667         struct sas_identify *identify;
9668
9669         identify = &rphy->identify;
9670         identify->sas_address = hpsa_sas_port->sas_address;
9671         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9672         identify->target_port_protocols = SAS_PROTOCOL_STP;
9673
9674         return sas_rphy_add(rphy);
9675 }
9676
9677 static struct hpsa_sas_port
9678         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9679                                 u64 sas_address)
9680 {
9681         int rc;
9682         struct hpsa_sas_port *hpsa_sas_port;
9683         struct sas_port *port;
9684
9685         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9686         if (!hpsa_sas_port)
9687                 return NULL;
9688
9689         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9690         hpsa_sas_port->parent_node = hpsa_sas_node;
9691
9692         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9693         if (!port)
9694                 goto free_hpsa_port;
9695
9696         rc = sas_port_add(port);
9697         if (rc)
9698                 goto free_sas_port;
9699
9700         hpsa_sas_port->port = port;
9701         hpsa_sas_port->sas_address = sas_address;
9702         list_add_tail(&hpsa_sas_port->port_list_entry,
9703                         &hpsa_sas_node->port_list_head);
9704
9705         return hpsa_sas_port;
9706
9707 free_sas_port:
9708         sas_port_free(port);
9709 free_hpsa_port:
9710         kfree(hpsa_sas_port);
9711
9712         return NULL;
9713 }
9714
9715 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9716 {
9717         struct hpsa_sas_phy *hpsa_sas_phy;
9718         struct hpsa_sas_phy *next;
9719
9720         list_for_each_entry_safe(hpsa_sas_phy, next,
9721                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9722                 hpsa_free_sas_phy(hpsa_sas_phy);
9723
9724         sas_port_delete(hpsa_sas_port->port);
9725         list_del(&hpsa_sas_port->port_list_entry);
9726         kfree(hpsa_sas_port);
9727 }
9728
9729 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9730 {
9731         struct hpsa_sas_node *hpsa_sas_node;
9732
9733         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9734         if (hpsa_sas_node) {
9735                 hpsa_sas_node->parent_dev = parent_dev;
9736                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9737         }
9738
9739         return hpsa_sas_node;
9740 }
9741
9742 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9743 {
9744         struct hpsa_sas_port *hpsa_sas_port;
9745         struct hpsa_sas_port *next;
9746
9747         if (!hpsa_sas_node)
9748                 return;
9749
9750         list_for_each_entry_safe(hpsa_sas_port, next,
9751                         &hpsa_sas_node->port_list_head, port_list_entry)
9752                 hpsa_free_sas_port(hpsa_sas_port);
9753
9754         kfree(hpsa_sas_node);
9755 }
9756
9757 static struct hpsa_scsi_dev_t
9758         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9759                                         struct sas_rphy *rphy)
9760 {
9761         int i;
9762         struct hpsa_scsi_dev_t *device;
9763
9764         for (i = 0; i < h->ndevices; i++) {
9765                 device = h->dev[i];
9766                 if (!device->sas_port)
9767                         continue;
9768                 if (device->sas_port->rphy == rphy)
9769                         return device;
9770         }
9771
9772         return NULL;
9773 }
9774
9775 static int hpsa_add_sas_host(struct ctlr_info *h)
9776 {
9777         int rc;
9778         struct device *parent_dev;
9779         struct hpsa_sas_node *hpsa_sas_node;
9780         struct hpsa_sas_port *hpsa_sas_port;
9781         struct hpsa_sas_phy *hpsa_sas_phy;
9782
9783         parent_dev = &h->scsi_host->shost_gendev;
9784
9785         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9786         if (!hpsa_sas_node)
9787                 return -ENOMEM;
9788
9789         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9790         if (!hpsa_sas_port) {
9791                 rc = -ENODEV;
9792                 goto free_sas_node;
9793         }
9794
9795         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9796         if (!hpsa_sas_phy) {
9797                 rc = -ENODEV;
9798                 goto free_sas_port;
9799         }
9800
9801         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9802         if (rc)
9803                 goto free_sas_phy;
9804
9805         h->sas_host = hpsa_sas_node;
9806
9807         return 0;
9808
9809 free_sas_phy:
9810         hpsa_free_sas_phy(hpsa_sas_phy);
9811 free_sas_port:
9812         hpsa_free_sas_port(hpsa_sas_port);
9813 free_sas_node:
9814         hpsa_free_sas_node(hpsa_sas_node);
9815
9816         return rc;
9817 }
9818
9819 static void hpsa_delete_sas_host(struct ctlr_info *h)
9820 {
9821         hpsa_free_sas_node(h->sas_host);
9822 }
9823
9824 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9825                                 struct hpsa_scsi_dev_t *device)
9826 {
9827         int rc;
9828         struct hpsa_sas_port *hpsa_sas_port;
9829         struct sas_rphy *rphy;
9830
9831         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9832         if (!hpsa_sas_port)
9833                 return -ENOMEM;
9834
9835         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9836         if (!rphy) {
9837                 rc = -ENODEV;
9838                 goto free_sas_port;
9839         }
9840
9841         hpsa_sas_port->rphy = rphy;
9842         device->sas_port = hpsa_sas_port;
9843
9844         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9845         if (rc)
9846                 goto free_sas_port;
9847
9848         return 0;
9849
9850 free_sas_port:
9851         hpsa_free_sas_port(hpsa_sas_port);
9852         device->sas_port = NULL;
9853
9854         return rc;
9855 }
9856
9857 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9858 {
9859         if (device->sas_port) {
9860                 hpsa_free_sas_port(device->sas_port);
9861                 device->sas_port = NULL;
9862         }
9863 }
9864
9865 static int
9866 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9867 {
9868         return 0;
9869 }
9870
9871 static int
9872 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9873 {
9874         *identifier = 0;
9875         return 0;
9876 }
9877
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881         return -ENXIO;
9882 }
9883
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887         return 0;
9888 }
9889
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893         return 0;
9894 }
9895
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899         return 0;
9900 }
9901
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910         return -EINVAL;
9911 }
9912
9913 /* SMP = Serial Management Protocol */
9914 static int
9915 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9916 struct request *req)
9917 {
9918         return -EINVAL;
9919 }
9920
9921 static struct sas_function_template hpsa_sas_transport_functions = {
9922         .get_linkerrors = hpsa_sas_get_linkerrors,
9923         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9924         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9925         .phy_reset = hpsa_sas_phy_reset,
9926         .phy_enable = hpsa_sas_phy_enable,
9927         .phy_setup = hpsa_sas_phy_setup,
9928         .phy_release = hpsa_sas_phy_release,
9929         .set_phy_speed = hpsa_sas_phy_speed,
9930         .smp_handler = hpsa_sas_smp_handler,
9931 };
9932
9933 /*
9934  *  This is it.  Register the PCI driver information for the cards we control
9935  *  the OS will call our registered routines when it finds one of our cards.
9936  */
9937 static int __init hpsa_init(void)
9938 {
9939         int rc;
9940
9941         hpsa_sas_transport_template =
9942                 sas_attach_transport(&hpsa_sas_transport_functions);
9943         if (!hpsa_sas_transport_template)
9944                 return -ENODEV;
9945
9946         rc = pci_register_driver(&hpsa_pci_driver);
9947
9948         if (rc)
9949                 sas_release_transport(hpsa_sas_transport_template);
9950
9951         return rc;
9952 }
9953
9954 static void __exit hpsa_cleanup(void)
9955 {
9956         pci_unregister_driver(&hpsa_pci_driver);
9957         sas_release_transport(hpsa_sas_transport_template);
9958 }
9959
9960 static void __attribute__((unused)) verify_offsets(void)
9961 {
9962 #define VERIFY_OFFSET(member, offset) \
9963         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9964
9965         VERIFY_OFFSET(structure_size, 0);
9966         VERIFY_OFFSET(volume_blk_size, 4);
9967         VERIFY_OFFSET(volume_blk_cnt, 8);
9968         VERIFY_OFFSET(phys_blk_shift, 16);
9969         VERIFY_OFFSET(parity_rotation_shift, 17);
9970         VERIFY_OFFSET(strip_size, 18);
9971         VERIFY_OFFSET(disk_starting_blk, 20);
9972         VERIFY_OFFSET(disk_blk_cnt, 28);
9973         VERIFY_OFFSET(data_disks_per_row, 36);
9974         VERIFY_OFFSET(metadata_disks_per_row, 38);
9975         VERIFY_OFFSET(row_cnt, 40);
9976         VERIFY_OFFSET(layout_map_count, 42);
9977         VERIFY_OFFSET(flags, 44);
9978         VERIFY_OFFSET(dekindex, 46);
9979         /* VERIFY_OFFSET(reserved, 48 */
9980         VERIFY_OFFSET(data, 64);
9981
9982 #undef VERIFY_OFFSET
9983
9984 #define VERIFY_OFFSET(member, offset) \
9985         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9986
9987         VERIFY_OFFSET(IU_type, 0);
9988         VERIFY_OFFSET(direction, 1);
9989         VERIFY_OFFSET(reply_queue, 2);
9990         /* VERIFY_OFFSET(reserved1, 3);  */
9991         VERIFY_OFFSET(scsi_nexus, 4);
9992         VERIFY_OFFSET(Tag, 8);
9993         VERIFY_OFFSET(cdb, 16);
9994         VERIFY_OFFSET(cciss_lun, 32);
9995         VERIFY_OFFSET(data_len, 40);
9996         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9997         VERIFY_OFFSET(sg_count, 45);
9998         /* VERIFY_OFFSET(reserved3 */
9999         VERIFY_OFFSET(err_ptr, 48);
10000         VERIFY_OFFSET(err_len, 56);
10001         /* VERIFY_OFFSET(reserved4  */
10002         VERIFY_OFFSET(sg, 64);
10003
10004 #undef VERIFY_OFFSET
10005
10006 #define VERIFY_OFFSET(member, offset) \
10007         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10008
10009         VERIFY_OFFSET(dev_handle, 0x00);
10010         VERIFY_OFFSET(reserved1, 0x02);
10011         VERIFY_OFFSET(function, 0x03);
10012         VERIFY_OFFSET(reserved2, 0x04);
10013         VERIFY_OFFSET(err_info, 0x0C);
10014         VERIFY_OFFSET(reserved3, 0x10);
10015         VERIFY_OFFSET(err_info_len, 0x12);
10016         VERIFY_OFFSET(reserved4, 0x13);
10017         VERIFY_OFFSET(sgl_offset, 0x14);
10018         VERIFY_OFFSET(reserved5, 0x15);
10019         VERIFY_OFFSET(transfer_len, 0x1C);
10020         VERIFY_OFFSET(reserved6, 0x20);
10021         VERIFY_OFFSET(io_flags, 0x24);
10022         VERIFY_OFFSET(reserved7, 0x26);
10023         VERIFY_OFFSET(LUN, 0x34);
10024         VERIFY_OFFSET(control, 0x3C);
10025         VERIFY_OFFSET(CDB, 0x40);
10026         VERIFY_OFFSET(reserved8, 0x50);
10027         VERIFY_OFFSET(host_context_flags, 0x60);
10028         VERIFY_OFFSET(timeout_sec, 0x62);
10029         VERIFY_OFFSET(ReplyQueue, 0x64);
10030         VERIFY_OFFSET(reserved9, 0x65);
10031         VERIFY_OFFSET(tag, 0x68);
10032         VERIFY_OFFSET(host_addr, 0x70);
10033         VERIFY_OFFSET(CISS_LUN, 0x78);
10034         VERIFY_OFFSET(SG, 0x78 + 8);
10035 #undef VERIFY_OFFSET
10036 }
10037
10038 module_init(hpsa_init);
10039 module_exit(hpsa_cleanup);