[SCSI] aacraid: remove pigs in space
[sfrench/cifs-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49
50 #include "aacraid.h"
51
52 /**
53  *      fib_map_alloc           -       allocate the fib objects
54  *      @dev: Adapter to allocate for
55  *
56  *      Allocate and map the shared PCI space for the FIB blocks used to
57  *      talk to the Adaptec firmware.
58  */
59
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62         dprintk((KERN_INFO
63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68           &dev->hw_fib_pa))==NULL)
69                 return -ENOMEM;
70         return 0;
71 }
72
73 /**
74  *      aac_fib_map_free                -       free the fib objects
75  *      @dev: Adapter to free
76  *
77  *      Free the PCI mappings and the memory allocated for FIB blocks
78  *      on this adapter.
79  */
80
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83         pci_free_consistent(dev->pdev,
84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
85           dev->hw_fib_va, dev->hw_fib_pa);
86         dev->hw_fib_va = NULL;
87         dev->hw_fib_pa = 0;
88 }
89
90 /**
91  *      aac_fib_setup   -       setup the fibs
92  *      @dev: Adapter to set up
93  *
94  *      Allocate the PCI space for the fibs, map it and then intialise the
95  *      fib area, the unmapped fib data and also the free list
96  */
97
98 int aac_fib_setup(struct aac_dev * dev)
99 {
100         struct fib *fibptr;
101         struct hw_fib *hw_fib;
102         dma_addr_t hw_fib_pa;
103         int i;
104
105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
109         }
110         if (i<0)
111                 return -ENOMEM;
112
113         hw_fib = dev->hw_fib_va;
114         hw_fib_pa = dev->hw_fib_pa;
115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
116         /*
117          *      Initialise the fibs
118          */
119         for (i = 0, fibptr = &dev->fibs[i];
120                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
121                 i++, fibptr++)
122         {
123                 fibptr->dev = dev;
124                 fibptr->hw_fib_va = hw_fib;
125                 fibptr->data = (void *) fibptr->hw_fib_va->data;
126                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
127                 init_MUTEX_LOCKED(&fibptr->event_wait);
128                 spin_lock_init(&fibptr->event_lock);
129                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
130                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
131                 fibptr->hw_fib_pa = hw_fib_pa;
132                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
133                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
134         }
135         /*
136          *      Add the fib chain to the free list
137          */
138         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
139         /*
140          *      Enable this to debug out of queue space
141          */
142         dev->free_fib = &dev->fibs[0];
143         return 0;
144 }
145
146 /**
147  *      aac_fib_alloc   -       allocate a fib
148  *      @dev: Adapter to allocate the fib for
149  *
150  *      Allocate a fib from the adapter fib pool. If the pool is empty we
151  *      return NULL.
152  */
153
154 struct fib *aac_fib_alloc(struct aac_dev *dev)
155 {
156         struct fib * fibptr;
157         unsigned long flags;
158         spin_lock_irqsave(&dev->fib_lock, flags);
159         fibptr = dev->free_fib;
160         if(!fibptr){
161                 spin_unlock_irqrestore(&dev->fib_lock, flags);
162                 return fibptr;
163         }
164         dev->free_fib = fibptr->next;
165         spin_unlock_irqrestore(&dev->fib_lock, flags);
166         /*
167          *      Set the proper node type code and node byte size
168          */
169         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
170         fibptr->size = sizeof(struct fib);
171         /*
172          *      Null out fields that depend on being zero at the start of
173          *      each I/O
174          */
175         fibptr->hw_fib_va->header.XferState = 0;
176         fibptr->flags = 0;
177         fibptr->callback = NULL;
178         fibptr->callback_data = NULL;
179
180         return fibptr;
181 }
182
183 /**
184  *      aac_fib_free    -       free a fib
185  *      @fibptr: fib to free up
186  *
187  *      Frees up a fib and places it on the appropriate queue
188  */
189
190 void aac_fib_free(struct fib *fibptr)
191 {
192         unsigned long flags;
193
194         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
195         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
196                 aac_config.fib_timeouts++;
197         if (fibptr->hw_fib_va->header.XferState != 0) {
198                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
199                          (void*)fibptr,
200                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
201         }
202         fibptr->next = fibptr->dev->free_fib;
203         fibptr->dev->free_fib = fibptr;
204         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
205 }
206
207 /**
208  *      aac_fib_init    -       initialise a fib
209  *      @fibptr: The fib to initialize
210  *
211  *      Set up the generic fib fields ready for use
212  */
213
214 void aac_fib_init(struct fib *fibptr)
215 {
216         struct hw_fib *hw_fib = fibptr->hw_fib_va;
217
218         hw_fib->header.StructType = FIB_MAGIC;
219         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
220         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
221         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
222         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
223         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
224 }
225
226 /**
227  *      fib_deallocate          -       deallocate a fib
228  *      @fibptr: fib to deallocate
229  *
230  *      Will deallocate and return to the free pool the FIB pointed to by the
231  *      caller.
232  */
233
234 static void fib_dealloc(struct fib * fibptr)
235 {
236         struct hw_fib *hw_fib = fibptr->hw_fib_va;
237         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
238         hw_fib->header.XferState = 0;
239 }
240
241 /*
242  *      Commuication primitives define and support the queuing method we use to
243  *      support host to adapter commuication. All queue accesses happen through
244  *      these routines and are the only routines which have a knowledge of the
245  *       how these queues are implemented.
246  */
247
248 /**
249  *      aac_get_entry           -       get a queue entry
250  *      @dev: Adapter
251  *      @qid: Queue Number
252  *      @entry: Entry return
253  *      @index: Index return
254  *      @nonotify: notification control
255  *
256  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
257  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
258  *      returned.
259  */
260
261 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
262 {
263         struct aac_queue * q;
264         unsigned long idx;
265
266         /*
267          *      All of the queues wrap when they reach the end, so we check
268          *      to see if they have reached the end and if they have we just
269          *      set the index back to zero. This is a wrap. You could or off
270          *      the high bits in all updates but this is a bit faster I think.
271          */
272
273         q = &dev->queues->queue[qid];
274
275         idx = *index = le32_to_cpu(*(q->headers.producer));
276         /* Interrupt Moderation, only interrupt for first two entries */
277         if (idx != le32_to_cpu(*(q->headers.consumer))) {
278                 if (--idx == 0) {
279                         if (qid == AdapNormCmdQueue)
280                                 idx = ADAP_NORM_CMD_ENTRIES;
281                         else
282                                 idx = ADAP_NORM_RESP_ENTRIES;
283                 }
284                 if (idx != le32_to_cpu(*(q->headers.consumer)))
285                         *nonotify = 1;
286         }
287
288         if (qid == AdapNormCmdQueue) {
289                 if (*index >= ADAP_NORM_CMD_ENTRIES)
290                         *index = 0; /* Wrap to front of the Producer Queue. */
291         } else {
292                 if (*index >= ADAP_NORM_RESP_ENTRIES)
293                         *index = 0; /* Wrap to front of the Producer Queue. */
294         }
295
296         /* Queue is full */
297         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
298                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
299                                 qid, q->numpending);
300                 return 0;
301         } else {
302                 *entry = q->base + *index;
303                 return 1;
304         }
305 }
306
307 /**
308  *      aac_queue_get           -       get the next free QE
309  *      @dev: Adapter
310  *      @index: Returned index
311  *      @priority: Priority of fib
312  *      @fib: Fib to associate with the queue entry
313  *      @wait: Wait if queue full
314  *      @fibptr: Driver fib object to go with fib
315  *      @nonotify: Don't notify the adapter
316  *
317  *      Gets the next free QE off the requested priorty adapter command
318  *      queue and associates the Fib with the QE. The QE represented by
319  *      index is ready to insert on the queue when this routine returns
320  *      success.
321  */
322
323 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
324 {
325         struct aac_entry * entry = NULL;
326         int map = 0;
327
328         if (qid == AdapNormCmdQueue) {
329                 /*  if no entries wait for some if caller wants to */
330                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
331                         printk(KERN_ERR "GetEntries failed\n");
332                 }
333                 /*
334                  *      Setup queue entry with a command, status and fib mapped
335                  */
336                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
337                 map = 1;
338         } else {
339                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
340                         /* if no entries wait for some if caller wants to */
341                 }
342                 /*
343                  *      Setup queue entry with command, status and fib mapped
344                  */
345                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
346                 entry->addr = hw_fib->header.SenderFibAddress;
347                         /* Restore adapters pointer to the FIB */
348                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
349                 map = 0;
350         }
351         /*
352          *      If MapFib is true than we need to map the Fib and put pointers
353          *      in the queue entry.
354          */
355         if (map)
356                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
357         return 0;
358 }
359
360 /*
361  *      Define the highest level of host to adapter communication routines.
362  *      These routines will support host to adapter FS commuication. These
363  *      routines have no knowledge of the commuication method used. This level
364  *      sends and receives FIBs. This level has no knowledge of how these FIBs
365  *      get passed back and forth.
366  */
367
368 /**
369  *      aac_fib_send    -       send a fib to the adapter
370  *      @command: Command to send
371  *      @fibptr: The fib
372  *      @size: Size of fib data area
373  *      @priority: Priority of Fib
374  *      @wait: Async/sync select
375  *      @reply: True if a reply is wanted
376  *      @callback: Called with reply
377  *      @callback_data: Passed to callback
378  *
379  *      Sends the requested FIB to the adapter and optionally will wait for a
380  *      response FIB. If the caller does not wish to wait for a response than
381  *      an event to wait on must be supplied. This event will be set when a
382  *      response FIB is received from the adapter.
383  */
384
385 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
386                 int priority, int wait, int reply, fib_callback callback,
387                 void *callback_data)
388 {
389         struct aac_dev * dev = fibptr->dev;
390         struct hw_fib * hw_fib = fibptr->hw_fib_va;
391         unsigned long flags = 0;
392         unsigned long qflags;
393
394         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395                 return -EBUSY;
396         /*
397          *      There are 5 cases with the wait and reponse requested flags.
398          *      The only invalid cases are if the caller requests to wait and
399          *      does not request a response and if the caller does not want a
400          *      response and the Fib is not allocated from pool. If a response
401          *      is not requesed the Fib will just be deallocaed by the DPC
402          *      routine when the response comes back from the adapter. No
403          *      further processing will be done besides deleting the Fib. We
404          *      will have a debug mode where the adapter can notify the host
405          *      it had a problem and the host can log that fact.
406          */
407         fibptr->flags = 0;
408         if (wait && !reply) {
409                 return -EINVAL;
410         } else if (!wait && reply) {
411                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
412                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
413         } else if (!wait && !reply) {
414                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
415                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
416         } else if (wait && reply) {
417                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
418                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
419         }
420         /*
421          *      Map the fib into 32bits by using the fib number
422          */
423
424         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
425         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
426         /*
427          *      Set FIB state to indicate where it came from and if we want a
428          *      response from the adapter. Also load the command from the
429          *      caller.
430          *
431          *      Map the hw fib pointer as a 32bit value
432          */
433         hw_fib->header.Command = cpu_to_le16(command);
434         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
435         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
436         /*
437          *      Set the size of the Fib we want to send to the adapter
438          */
439         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
440         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
441                 return -EMSGSIZE;
442         }
443         /*
444          *      Get a queue entry connect the FIB to it and send an notify
445          *      the adapter a command is ready.
446          */
447         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
448
449         /*
450          *      Fill in the Callback and CallbackContext if we are not
451          *      going to wait.
452          */
453         if (!wait) {
454                 fibptr->callback = callback;
455                 fibptr->callback_data = callback_data;
456                 fibptr->flags = FIB_CONTEXT_FLAG;
457         }
458
459         fibptr->done = 0;
460
461         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
462
463         dprintk((KERN_DEBUG "Fib contents:.\n"));
464         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
465         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
466         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
467         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
468         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
469         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
470
471         if (!dev->queues)
472                 return -EBUSY;
473
474         if(wait)
475                 spin_lock_irqsave(&fibptr->event_lock, flags);
476         aac_adapter_deliver(fibptr);
477
478         /*
479          *      If the caller wanted us to wait for response wait now.
480          */
481
482         if (wait) {
483                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
484                 /* Only set for first known interruptable command */
485                 if (wait < 0) {
486                         /*
487                          * *VERY* Dangerous to time out a command, the
488                          * assumption is made that we have no hope of
489                          * functioning because an interrupt routing or other
490                          * hardware failure has occurred.
491                          */
492                         unsigned long count = 36000000L; /* 3 minutes */
493                         while (down_trylock(&fibptr->event_wait)) {
494                                 int blink;
495                                 if (--count == 0) {
496                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
497                                         spin_lock_irqsave(q->lock, qflags);
498                                         q->numpending--;
499                                         spin_unlock_irqrestore(q->lock, qflags);
500                                         if (wait == -1) {
501                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
502                                                   "Usually a result of a PCI interrupt routing problem;\n"
503                                                   "update mother board BIOS or consider utilizing one of\n"
504                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
505                                         }
506                                         return -ETIMEDOUT;
507                                 }
508                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
509                                         if (wait == -1) {
510                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
511                                                   "Usually a result of a serious unrecoverable hardware problem\n",
512                                                   blink);
513                                         }
514                                         return -EFAULT;
515                                 }
516                                 udelay(5);
517                         }
518                 } else
519                         (void)down_interruptible(&fibptr->event_wait);
520                 spin_lock_irqsave(&fibptr->event_lock, flags);
521                 if (fibptr->done == 0) {
522                         fibptr->done = 2; /* Tell interrupt we aborted */
523                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
524                         return -EINTR;
525                 }
526                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
527                 BUG_ON(fibptr->done == 0);
528
529                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
530                         return -ETIMEDOUT;
531                 return 0;
532         }
533         /*
534          *      If the user does not want a response than return success otherwise
535          *      return pending
536          */
537         if (reply)
538                 return -EINPROGRESS;
539         else
540                 return 0;
541 }
542
543 /**
544  *      aac_consumer_get        -       get the top of the queue
545  *      @dev: Adapter
546  *      @q: Queue
547  *      @entry: Return entry
548  *
549  *      Will return a pointer to the entry on the top of the queue requested that
550  *      we are a consumer of, and return the address of the queue entry. It does
551  *      not change the state of the queue.
552  */
553
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
555 {
556         u32 index;
557         int status;
558         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559                 status = 0;
560         } else {
561                 /*
562                  *      The consumer index must be wrapped if we have reached
563                  *      the end of the queue, else we just use the entry
564                  *      pointed to by the header index
565                  */
566                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
567                         index = 0;
568                 else
569                         index = le32_to_cpu(*q->headers.consumer);
570                 *entry = q->base + index;
571                 status = 1;
572         }
573         return(status);
574 }
575
576 /**
577  *      aac_consumer_free       -       free consumer entry
578  *      @dev: Adapter
579  *      @q: Queue
580  *      @qid: Queue ident
581  *
582  *      Frees up the current top of the queue we are a consumer of. If the
583  *      queue was full notify the producer that the queue is no longer full.
584  */
585
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
587 {
588         int wasfull = 0;
589         u32 notify;
590
591         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592                 wasfull = 1;
593
594         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595                 *q->headers.consumer = cpu_to_le32(1);
596         else
597                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
598
599         if (wasfull) {
600                 switch (qid) {
601
602                 case HostNormCmdQueue:
603                         notify = HostNormCmdNotFull;
604                         break;
605                 case HostNormRespQueue:
606                         notify = HostNormRespNotFull;
607                         break;
608                 default:
609                         BUG();
610                         return;
611                 }
612                 aac_adapter_notify(dev, notify);
613         }
614 }
615
616 /**
617  *      aac_fib_adapter_complete        -       complete adapter issued fib
618  *      @fibptr: fib to complete
619  *      @size: size of fib
620  *
621  *      Will do all necessary work to complete a FIB that was sent from
622  *      the adapter.
623  */
624
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
626 {
627         struct hw_fib * hw_fib = fibptr->hw_fib_va;
628         struct aac_dev * dev = fibptr->dev;
629         struct aac_queue * q;
630         unsigned long nointr = 0;
631         unsigned long qflags;
632
633         if (hw_fib->header.XferState == 0) {
634                 if (dev->comm_interface == AAC_COMM_MESSAGE)
635                         kfree (hw_fib);
636                 return 0;
637         }
638         /*
639          *      If we plan to do anything check the structure type first.
640          */
641         if (hw_fib->header.StructType != FIB_MAGIC) {
642                 if (dev->comm_interface == AAC_COMM_MESSAGE)
643                         kfree (hw_fib);
644                 return -EINVAL;
645         }
646         /*
647          *      This block handles the case where the adapter had sent us a
648          *      command and we have finished processing the command. We
649          *      call completeFib when we are done processing the command
650          *      and want to send a response back to the adapter. This will
651          *      send the completed cdb to the adapter.
652          */
653         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
655                         kfree (hw_fib);
656                 } else {
657                         u32 index;
658                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659                         if (size) {
660                                 size += sizeof(struct aac_fibhdr);
661                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
662                                         return -EMSGSIZE;
663                                 hw_fib->header.Size = cpu_to_le16(size);
664                         }
665                         q = &dev->queues->queue[AdapNormRespQueue];
666                         spin_lock_irqsave(q->lock, qflags);
667                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668                         *(q->headers.producer) = cpu_to_le32(index + 1);
669                         spin_unlock_irqrestore(q->lock, qflags);
670                         if (!(nointr & (int)aac_config.irq_mod))
671                                 aac_adapter_notify(dev, AdapNormRespQueue);
672                 }
673         } else {
674                 printk(KERN_WARNING "aac_fib_adapter_complete: "
675                         "Unknown xferstate detected.\n");
676                 BUG();
677         }
678         return 0;
679 }
680
681 /**
682  *      aac_fib_complete        -       fib completion handler
683  *      @fib: FIB to complete
684  *
685  *      Will do all necessary work to complete a FIB.
686  */
687
688 int aac_fib_complete(struct fib *fibptr)
689 {
690         struct hw_fib * hw_fib = fibptr->hw_fib_va;
691
692         /*
693          *      Check for a fib which has already been completed
694          */
695
696         if (hw_fib->header.XferState == 0)
697                 return 0;
698         /*
699          *      If we plan to do anything check the structure type first.
700          */
701
702         if (hw_fib->header.StructType != FIB_MAGIC)
703                 return -EINVAL;
704         /*
705          *      This block completes a cdb which orginated on the host and we
706          *      just need to deallocate the cdb or reinit it. At this point the
707          *      command is complete that we had sent to the adapter and this
708          *      cdb could be reused.
709          */
710         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
711                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
712         {
713                 fib_dealloc(fibptr);
714         }
715         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
716         {
717                 /*
718                  *      This handles the case when the host has aborted the I/O
719                  *      to the adapter because the adapter is not responding
720                  */
721                 fib_dealloc(fibptr);
722         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
723                 fib_dealloc(fibptr);
724         } else {
725                 BUG();
726         }
727         return 0;
728 }
729
730 /**
731  *      aac_printf      -       handle printf from firmware
732  *      @dev: Adapter
733  *      @val: Message info
734  *
735  *      Print a message passed to us by the controller firmware on the
736  *      Adaptec board
737  */
738
739 void aac_printf(struct aac_dev *dev, u32 val)
740 {
741         char *cp = dev->printfbuf;
742         if (dev->printf_enabled)
743         {
744                 int length = val & 0xffff;
745                 int level = (val >> 16) & 0xffff;
746
747                 /*
748                  *      The size of the printfbuf is set in port.c
749                  *      There is no variable or define for it
750                  */
751                 if (length > 255)
752                         length = 255;
753                 if (cp[length] != 0)
754                         cp[length] = 0;
755                 if (level == LOG_AAC_HIGH_ERROR)
756                         printk(KERN_WARNING "%s:%s", dev->name, cp);
757                 else
758                         printk(KERN_INFO "%s:%s", dev->name, cp);
759         }
760         memset(cp, 0, 256);
761 }
762
763
764 /**
765  *      aac_handle_aif          -       Handle a message from the firmware
766  *      @dev: Which adapter this fib is from
767  *      @fibptr: Pointer to fibptr from adapter
768  *
769  *      This routine handles a driver notify fib from the adapter and
770  *      dispatches it to the appropriate routine for handling.
771  */
772
773 #define AIF_SNIFF_TIMEOUT       (30*HZ)
774 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
775 {
776         struct hw_fib * hw_fib = fibptr->hw_fib_va;
777         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
778         u32 channel, id, lun, container;
779         struct scsi_device *device;
780         enum {
781                 NOTHING,
782                 DELETE,
783                 ADD,
784                 CHANGE
785         } device_config_needed = NOTHING;
786
787         /* Sniff for container changes */
788
789         if (!dev || !dev->fsa_dev)
790                 return;
791         container = channel = id = lun = (u32)-1;
792
793         /*
794          *      We have set this up to try and minimize the number of
795          * re-configures that take place. As a result of this when
796          * certain AIF's come in we will set a flag waiting for another
797          * type of AIF before setting the re-config flag.
798          */
799         switch (le32_to_cpu(aifcmd->command)) {
800         case AifCmdDriverNotify:
801                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
802                 /*
803                  *      Morph or Expand complete
804                  */
805                 case AifDenMorphComplete:
806                 case AifDenVolumeExtendComplete:
807                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
808                         if (container >= dev->maximum_num_containers)
809                                 break;
810
811                         /*
812                          *      Find the scsi_device associated with the SCSI
813                          * address. Make sure we have the right array, and if
814                          * so set the flag to initiate a new re-config once we
815                          * see an AifEnConfigChange AIF come through.
816                          */
817
818                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
819                                 device = scsi_device_lookup(dev->scsi_host_ptr,
820                                         CONTAINER_TO_CHANNEL(container),
821                                         CONTAINER_TO_ID(container),
822                                         CONTAINER_TO_LUN(container));
823                                 if (device) {
824                                         dev->fsa_dev[container].config_needed = CHANGE;
825                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
826                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
827                                         scsi_device_put(device);
828                                 }
829                         }
830                 }
831
832                 /*
833                  *      If we are waiting on something and this happens to be
834                  * that thing then set the re-configure flag.
835                  */
836                 if (container != (u32)-1) {
837                         if (container >= dev->maximum_num_containers)
838                                 break;
839                         if ((dev->fsa_dev[container].config_waiting_on ==
840                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
841                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842                                 dev->fsa_dev[container].config_waiting_on = 0;
843                 } else for (container = 0;
844                     container < dev->maximum_num_containers; ++container) {
845                         if ((dev->fsa_dev[container].config_waiting_on ==
846                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
847                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
848                                 dev->fsa_dev[container].config_waiting_on = 0;
849                 }
850                 break;
851
852         case AifCmdEventNotify:
853                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
854                 case AifEnBatteryEvent:
855                         dev->cache_protected =
856                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
857                         break;
858                 /*
859                  *      Add an Array.
860                  */
861                 case AifEnAddContainer:
862                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
863                         if (container >= dev->maximum_num_containers)
864                                 break;
865                         dev->fsa_dev[container].config_needed = ADD;
866                         dev->fsa_dev[container].config_waiting_on =
867                                 AifEnConfigChange;
868                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
869                         break;
870
871                 /*
872                  *      Delete an Array.
873                  */
874                 case AifEnDeleteContainer:
875                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
876                         if (container >= dev->maximum_num_containers)
877                                 break;
878                         dev->fsa_dev[container].config_needed = DELETE;
879                         dev->fsa_dev[container].config_waiting_on =
880                                 AifEnConfigChange;
881                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
882                         break;
883
884                 /*
885                  *      Container change detected. If we currently are not
886                  * waiting on something else, setup to wait on a Config Change.
887                  */
888                 case AifEnContainerChange:
889                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
890                         if (container >= dev->maximum_num_containers)
891                                 break;
892                         if (dev->fsa_dev[container].config_waiting_on &&
893                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
894                                 break;
895                         dev->fsa_dev[container].config_needed = CHANGE;
896                         dev->fsa_dev[container].config_waiting_on =
897                                 AifEnConfigChange;
898                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
899                         break;
900
901                 case AifEnConfigChange:
902                         break;
903
904                 case AifEnEnclosureManagement:
905                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
906                         case EM_DRIVE_INSERTION:
907                         case EM_DRIVE_REMOVAL:
908                                 container = le32_to_cpu(
909                                         ((__le32 *)aifcmd->data)[2]);
910                                 if ((container >> 28))
911                                         break;
912                                 channel = (container >> 24) & 0xF;
913                                 if (channel >= dev->maximum_num_channels)
914                                         break;
915                                 id = container & 0xFFFF;
916                                 lun = (container >> 16) & 0xFF;
917                                 if (id >= dev->maximum_num_physicals) {
918                                         /* legacy dev_t ? */
919                                         if ((0x2000 <= id) || lun || channel ||
920                                           ((channel = (id >> 7) & 0x3F) >=
921                                           dev->maximum_num_channels))
922                                                 break;
923                                         lun = (id >> 4) & 7;
924                                         id &= 0xF;
925                                 }
926                                 channel = aac_phys_to_logical(channel);
927                                 device_config_needed =
928                                   (((__le32 *)aifcmd->data)[3]
929                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ?
930                                   ADD : DELETE;
931                                 break;
932                         }
933                         break;
934                 }
935
936                 /*
937                  *      If we are waiting on something and this happens to be
938                  * that thing then set the re-configure flag.
939                  */
940                 if (container != (u32)-1) {
941                         if (container >= dev->maximum_num_containers)
942                                 break;
943                         if ((dev->fsa_dev[container].config_waiting_on ==
944                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
945                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
946                                 dev->fsa_dev[container].config_waiting_on = 0;
947                 } else for (container = 0;
948                     container < dev->maximum_num_containers; ++container) {
949                         if ((dev->fsa_dev[container].config_waiting_on ==
950                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
951                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
952                                 dev->fsa_dev[container].config_waiting_on = 0;
953                 }
954                 break;
955
956         case AifCmdJobProgress:
957                 /*
958                  *      These are job progress AIF's. When a Clear is being
959                  * done on a container it is initially created then hidden from
960                  * the OS. When the clear completes we don't get a config
961                  * change so we monitor the job status complete on a clear then
962                  * wait for a container change.
963                  */
964
965                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
966                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
967                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
968                         for (container = 0;
969                             container < dev->maximum_num_containers;
970                             ++container) {
971                                 /*
972                                  * Stomp on all config sequencing for all
973                                  * containers?
974                                  */
975                                 dev->fsa_dev[container].config_waiting_on =
976                                         AifEnContainerChange;
977                                 dev->fsa_dev[container].config_needed = ADD;
978                                 dev->fsa_dev[container].config_waiting_stamp =
979                                         jiffies;
980                         }
981                 }
982                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
983                     ((__le32 *)aifcmd->data)[6] == 0 &&
984                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
985                         for (container = 0;
986                             container < dev->maximum_num_containers;
987                             ++container) {
988                                 /*
989                                  * Stomp on all config sequencing for all
990                                  * containers?
991                                  */
992                                 dev->fsa_dev[container].config_waiting_on =
993                                         AifEnContainerChange;
994                                 dev->fsa_dev[container].config_needed = DELETE;
995                                 dev->fsa_dev[container].config_waiting_stamp =
996                                         jiffies;
997                         }
998                 }
999                 break;
1000         }
1001
1002         if (device_config_needed == NOTHING)
1003         for (container = 0; container < dev->maximum_num_containers;
1004             ++container) {
1005                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1006                         (dev->fsa_dev[container].config_needed != NOTHING) &&
1007                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1008                         device_config_needed =
1009                                 dev->fsa_dev[container].config_needed;
1010                         dev->fsa_dev[container].config_needed = NOTHING;
1011                         channel = CONTAINER_TO_CHANNEL(container);
1012                         id = CONTAINER_TO_ID(container);
1013                         lun = CONTAINER_TO_LUN(container);
1014                         break;
1015                 }
1016         }
1017         if (device_config_needed == NOTHING)
1018                 return;
1019
1020         /*
1021          *      If we decided that a re-configuration needs to be done,
1022          * schedule it here on the way out the door, please close the door
1023          * behind you.
1024          */
1025
1026         /*
1027          *      Find the scsi_device associated with the SCSI address,
1028          * and mark it as changed, invalidating the cache. This deals
1029          * with changes to existing device IDs.
1030          */
1031
1032         if (!dev || !dev->scsi_host_ptr)
1033                 return;
1034         /*
1035          * force reload of disk info via aac_probe_container
1036          */
1037         if ((channel == CONTAINER_CHANNEL) &&
1038           (device_config_needed != NOTHING)) {
1039                 if (dev->fsa_dev[container].valid == 1)
1040                         dev->fsa_dev[container].valid = 2;
1041                 aac_probe_container(dev, container);
1042         }
1043         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1044         if (device) {
1045                 switch (device_config_needed) {
1046                 case DELETE:
1047                         if (scsi_device_online(device)) {
1048                                 scsi_device_set_state(device, SDEV_OFFLINE);
1049                                 sdev_printk(KERN_INFO, device,
1050                                         "Device offlined - %s\n",
1051                                         (channel == CONTAINER_CHANNEL) ?
1052                                                 "array deleted" :
1053                                                 "enclosure services event");
1054                         }
1055                         break;
1056                 case ADD:
1057                         if (!scsi_device_online(device)) {
1058                                 sdev_printk(KERN_INFO, device,
1059                                         "Device online - %s\n",
1060                                         (channel == CONTAINER_CHANNEL) ?
1061                                                 "array created" :
1062                                                 "enclosure services event");
1063                                 scsi_device_set_state(device, SDEV_RUNNING);
1064                         }
1065                         /* FALLTHRU */
1066                 case CHANGE:
1067                         if ((channel == CONTAINER_CHANNEL)
1068                          && (!dev->fsa_dev[container].valid)) {
1069                                 if (!scsi_device_online(device))
1070                                         break;
1071                                 scsi_device_set_state(device, SDEV_OFFLINE);
1072                                 sdev_printk(KERN_INFO, device,
1073                                         "Device offlined - %s\n",
1074                                         "array failed");
1075                                 break;
1076                         }
1077                         scsi_rescan_device(&device->sdev_gendev);
1078
1079                 default:
1080                         break;
1081                 }
1082                 scsi_device_put(device);
1083                 device_config_needed = NOTHING;
1084         }
1085         if (device_config_needed == ADD)
1086                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1087 }
1088
1089 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1090 {
1091         int index, quirks;
1092         int retval;
1093         struct Scsi_Host *host;
1094         struct scsi_device *dev;
1095         struct scsi_cmnd *command;
1096         struct scsi_cmnd *command_list;
1097         int jafo = 0;
1098
1099         /*
1100          * Assumptions:
1101          *      - host is locked, unless called by the aacraid thread.
1102          *        (a matter of convenience, due to legacy issues surrounding
1103          *        eh_host_adapter_reset).
1104          *      - in_reset is asserted, so no new i/o is getting to the
1105          *        card.
1106          *      - The card is dead, or will be very shortly ;-/ so no new
1107          *        commands are completing in the interrupt service.
1108          */
1109         host = aac->scsi_host_ptr;
1110         scsi_block_requests(host);
1111         aac_adapter_disable_int(aac);
1112         if (aac->thread->pid != current->pid) {
1113                 spin_unlock_irq(host->host_lock);
1114                 kthread_stop(aac->thread);
1115                 jafo = 1;
1116         }
1117
1118         /*
1119          *      If a positive health, means in a known DEAD PANIC
1120          * state and the adapter could be reset to `try again'.
1121          */
1122         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1123
1124         if (retval)
1125                 goto out;
1126
1127         /*
1128          *      Loop through the fibs, close the synchronous FIBS
1129          */
1130         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1131                 struct fib *fib = &aac->fibs[index];
1132                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1133                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1134                         unsigned long flagv;
1135                         spin_lock_irqsave(&fib->event_lock, flagv);
1136                         up(&fib->event_wait);
1137                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1138                         schedule();
1139                         retval = 0;
1140                 }
1141         }
1142         /* Give some extra time for ioctls to complete. */
1143         if (retval == 0)
1144                 ssleep(2);
1145         index = aac->cardtype;
1146
1147         /*
1148          * Re-initialize the adapter, first free resources, then carefully
1149          * apply the initialization sequence to come back again. Only risk
1150          * is a change in Firmware dropping cache, it is assumed the caller
1151          * will ensure that i/o is queisced and the card is flushed in that
1152          * case.
1153          */
1154         aac_fib_map_free(aac);
1155         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1156         aac->comm_addr = NULL;
1157         aac->comm_phys = 0;
1158         kfree(aac->queues);
1159         aac->queues = NULL;
1160         free_irq(aac->pdev->irq, aac);
1161         kfree(aac->fsa_dev);
1162         aac->fsa_dev = NULL;
1163         quirks = aac_get_driver_ident(index)->quirks;
1164         if (quirks & AAC_QUIRK_31BIT) {
1165                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
1166                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
1167                         goto out;
1168         } else {
1169                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1170                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1171                         goto out;
1172         }
1173         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1174                 goto out;
1175         if (quirks & AAC_QUIRK_31BIT)
1176                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1177                         goto out;
1178         if (jafo) {
1179                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1180                 if (IS_ERR(aac->thread)) {
1181                         retval = PTR_ERR(aac->thread);
1182                         goto out;
1183                 }
1184         }
1185         (void)aac_get_adapter_info(aac);
1186         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1187                 host->sg_tablesize = 34;
1188                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1189         }
1190         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1191                 host->sg_tablesize = 17;
1192                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1193         }
1194         aac_get_config_status(aac, 1);
1195         aac_get_containers(aac);
1196         /*
1197          * This is where the assumption that the Adapter is quiesced
1198          * is important.
1199          */
1200         command_list = NULL;
1201         __shost_for_each_device(dev, host) {
1202                 unsigned long flags;
1203                 spin_lock_irqsave(&dev->list_lock, flags);
1204                 list_for_each_entry(command, &dev->cmd_list, list)
1205                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1206                                 command->SCp.buffer = (struct scatterlist *)command_list;
1207                                 command_list = command;
1208                         }
1209                 spin_unlock_irqrestore(&dev->list_lock, flags);
1210         }
1211         while ((command = command_list)) {
1212                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1213                 command->SCp.buffer = NULL;
1214                 command->result = DID_OK << 16
1215                   | COMMAND_COMPLETE << 8
1216                   | SAM_STAT_TASK_SET_FULL;
1217                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1218                 command->scsi_done(command);
1219         }
1220         retval = 0;
1221
1222 out:
1223         aac->in_reset = 0;
1224         scsi_unblock_requests(host);
1225         if (jafo) {
1226                 spin_lock_irq(host->host_lock);
1227         }
1228         return retval;
1229 }
1230
1231 int aac_reset_adapter(struct aac_dev * aac, int forced)
1232 {
1233         unsigned long flagv = 0;
1234         int retval;
1235         struct Scsi_Host * host;
1236
1237         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1238                 return -EBUSY;
1239
1240         if (aac->in_reset) {
1241                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1242                 return -EBUSY;
1243         }
1244         aac->in_reset = 1;
1245         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1246
1247         /*
1248          * Wait for all commands to complete to this specific
1249          * target (block maximum 60 seconds). Although not necessary,
1250          * it does make us a good storage citizen.
1251          */
1252         host = aac->scsi_host_ptr;
1253         scsi_block_requests(host);
1254         if (forced < 2) for (retval = 60; retval; --retval) {
1255                 struct scsi_device * dev;
1256                 struct scsi_cmnd * command;
1257                 int active = 0;
1258
1259                 __shost_for_each_device(dev, host) {
1260                         spin_lock_irqsave(&dev->list_lock, flagv);
1261                         list_for_each_entry(command, &dev->cmd_list, list) {
1262                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1263                                         active++;
1264                                         break;
1265                                 }
1266                         }
1267                         spin_unlock_irqrestore(&dev->list_lock, flagv);
1268                         if (active)
1269                                 break;
1270
1271                 }
1272                 /*
1273                  * We can exit If all the commands are complete
1274                  */
1275                 if (active == 0)
1276                         break;
1277                 ssleep(1);
1278         }
1279
1280         /* Quiesce build, flush cache, write through mode */
1281         if (forced < 2)
1282                 aac_send_shutdown(aac);
1283         spin_lock_irqsave(host->host_lock, flagv);
1284         retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1285         spin_unlock_irqrestore(host->host_lock, flagv);
1286
1287         if ((forced < 2) && (retval == -ENODEV)) {
1288                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1289                 struct fib * fibctx = aac_fib_alloc(aac);
1290                 if (fibctx) {
1291                         struct aac_pause *cmd;
1292                         int status;
1293
1294                         aac_fib_init(fibctx);
1295
1296                         cmd = (struct aac_pause *) fib_data(fibctx);
1297
1298                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1299                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1300                         cmd->timeout = cpu_to_le32(1);
1301                         cmd->min = cpu_to_le32(1);
1302                         cmd->noRescan = cpu_to_le32(1);
1303                         cmd->count = cpu_to_le32(0);
1304
1305                         status = aac_fib_send(ContainerCommand,
1306                           fibctx,
1307                           sizeof(struct aac_pause),
1308                           FsaNormal,
1309                           -2 /* Timeout silently */, 1,
1310                           NULL, NULL);
1311
1312                         if (status >= 0)
1313                                 aac_fib_complete(fibctx);
1314                         aac_fib_free(fibctx);
1315                 }
1316         }
1317
1318         return retval;
1319 }
1320
1321 int aac_check_health(struct aac_dev * aac)
1322 {
1323         int BlinkLED;
1324         unsigned long time_now, flagv = 0;
1325         struct list_head * entry;
1326         struct Scsi_Host * host;
1327
1328         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1329         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1330                 return 0;
1331
1332         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1333                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1334                 return 0; /* OK */
1335         }
1336
1337         aac->in_reset = 1;
1338
1339         /* Fake up an AIF:
1340          *      aac_aifcmd.command = AifCmdEventNotify = 1
1341          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1342          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1343          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1344          *      aac.aifcmd.data[2] = AifHighPriority = 3
1345          *      aac.aifcmd.data[3] = BlinkLED
1346          */
1347
1348         time_now = jiffies/HZ;
1349         entry = aac->fib_list.next;
1350
1351         /*
1352          * For each Context that is on the
1353          * fibctxList, make a copy of the
1354          * fib, and then set the event to wake up the
1355          * thread that is waiting for it.
1356          */
1357         while (entry != &aac->fib_list) {
1358                 /*
1359                  * Extract the fibctx
1360                  */
1361                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1362                 struct hw_fib * hw_fib;
1363                 struct fib * fib;
1364                 /*
1365                  * Check if the queue is getting
1366                  * backlogged
1367                  */
1368                 if (fibctx->count > 20) {
1369                         /*
1370                          * It's *not* jiffies folks,
1371                          * but jiffies / HZ, so do not
1372                          * panic ...
1373                          */
1374                         u32 time_last = fibctx->jiffies;
1375                         /*
1376                          * Has it been > 2 minutes
1377                          * since the last read off
1378                          * the queue?
1379                          */
1380                         if ((time_now - time_last) > aif_timeout) {
1381                                 entry = entry->next;
1382                                 aac_close_fib_context(aac, fibctx);
1383                                 continue;
1384                         }
1385                 }
1386                 /*
1387                  * Warning: no sleep allowed while
1388                  * holding spinlock
1389                  */
1390                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1391                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1392                 if (fib && hw_fib) {
1393                         struct aac_aifcmd * aif;
1394
1395                         fib->hw_fib_va = hw_fib;
1396                         fib->dev = aac;
1397                         aac_fib_init(fib);
1398                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1399                         fib->size = sizeof (struct fib);
1400                         fib->data = hw_fib->data;
1401                         aif = (struct aac_aifcmd *)hw_fib->data;
1402                         aif->command = cpu_to_le32(AifCmdEventNotify);
1403                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1404                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1405                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1406                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1407                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1408
1409                         /*
1410                          * Put the FIB onto the
1411                          * fibctx's fibs
1412                          */
1413                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1414                         fibctx->count++;
1415                         /*
1416                          * Set the event to wake up the
1417                          * thread that will waiting.
1418                          */
1419                         up(&fibctx->wait_sem);
1420                 } else {
1421                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1422                         kfree(fib);
1423                         kfree(hw_fib);
1424                 }
1425                 entry = entry->next;
1426         }
1427
1428         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1429
1430         if (BlinkLED < 0) {
1431                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1432                 goto out;
1433         }
1434
1435         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1436
1437         if (!aac_check_reset || ((aac_check_reset != 1) &&
1438                 (aac->supplement_adapter_info.SupportedOptions2 &
1439                         AAC_OPTION_IGNORE_RESET)))
1440                 goto out;
1441         host = aac->scsi_host_ptr;
1442         if (aac->thread->pid != current->pid)
1443                 spin_lock_irqsave(host->host_lock, flagv);
1444         BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1445         if (aac->thread->pid != current->pid)
1446                 spin_unlock_irqrestore(host->host_lock, flagv);
1447         return BlinkLED;
1448
1449 out:
1450         aac->in_reset = 0;
1451         return BlinkLED;
1452 }
1453
1454
1455 /**
1456  *      aac_command_thread      -       command processing thread
1457  *      @dev: Adapter to monitor
1458  *
1459  *      Waits on the commandready event in it's queue. When the event gets set
1460  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1461  *      until the queue is empty. When the queue is empty it will wait for
1462  *      more FIBs.
1463  */
1464
1465 int aac_command_thread(void *data)
1466 {
1467         struct aac_dev *dev = data;
1468         struct hw_fib *hw_fib, *hw_newfib;
1469         struct fib *fib, *newfib;
1470         struct aac_fib_context *fibctx;
1471         unsigned long flags;
1472         DECLARE_WAITQUEUE(wait, current);
1473         unsigned long next_jiffies = jiffies + HZ;
1474         unsigned long next_check_jiffies = next_jiffies;
1475         long difference = HZ;
1476
1477         /*
1478          *      We can only have one thread per adapter for AIF's.
1479          */
1480         if (dev->aif_thread)
1481                 return -EINVAL;
1482
1483         /*
1484          *      Let the DPC know it has a place to send the AIF's to.
1485          */
1486         dev->aif_thread = 1;
1487         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1488         set_current_state(TASK_INTERRUPTIBLE);
1489         dprintk ((KERN_INFO "aac_command_thread start\n"));
1490         while (1) {
1491                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1492                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1493                         struct list_head *entry;
1494                         struct aac_aifcmd * aifcmd;
1495
1496                         set_current_state(TASK_RUNNING);
1497
1498                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1499                         list_del(entry);
1500
1501                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1502                         fib = list_entry(entry, struct fib, fiblink);
1503                         /*
1504                          *      We will process the FIB here or pass it to a
1505                          *      worker thread that is TBD. We Really can't
1506                          *      do anything at this point since we don't have
1507                          *      anything defined for this thread to do.
1508                          */
1509                         hw_fib = fib->hw_fib_va;
1510                         memset(fib, 0, sizeof(struct fib));
1511                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1512                         fib->size = sizeof(struct fib);
1513                         fib->hw_fib_va = hw_fib;
1514                         fib->data = hw_fib->data;
1515                         fib->dev = dev;
1516                         /*
1517                          *      We only handle AifRequest fibs from the adapter.
1518                          */
1519                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1520                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1521                                 /* Handle Driver Notify Events */
1522                                 aac_handle_aif(dev, fib);
1523                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1524                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1525                         } else {
1526                                 /* The u32 here is important and intended. We are using
1527                                    32bit wrapping time to fit the adapter field */
1528
1529                                 u32 time_now, time_last;
1530                                 unsigned long flagv;
1531                                 unsigned num;
1532                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1533                                 struct fib ** fib_pool, ** fib_p;
1534
1535                                 /* Sniff events */
1536                                 if ((aifcmd->command ==
1537                                      cpu_to_le32(AifCmdEventNotify)) ||
1538                                     (aifcmd->command ==
1539                                      cpu_to_le32(AifCmdJobProgress))) {
1540                                         aac_handle_aif(dev, fib);
1541                                 }
1542
1543                                 time_now = jiffies/HZ;
1544
1545                                 /*
1546                                  * Warning: no sleep allowed while
1547                                  * holding spinlock. We take the estimate
1548                                  * and pre-allocate a set of fibs outside the
1549                                  * lock.
1550                                  */
1551                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1552                                     / sizeof(struct hw_fib); /* some extra */
1553                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1554                                 entry = dev->fib_list.next;
1555                                 while (entry != &dev->fib_list) {
1556                                         entry = entry->next;
1557                                         ++num;
1558                                 }
1559                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1560                                 hw_fib_pool = NULL;
1561                                 fib_pool = NULL;
1562                                 if (num
1563                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1564                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1565                                         hw_fib_p = hw_fib_pool;
1566                                         fib_p = fib_pool;
1567                                         while (hw_fib_p < &hw_fib_pool[num]) {
1568                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1569                                                         --hw_fib_p;
1570                                                         break;
1571                                                 }
1572                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1573                                                         kfree(*(--hw_fib_p));
1574                                                         break;
1575                                                 }
1576                                         }
1577                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1578                                                 kfree(fib_pool);
1579                                                 fib_pool = NULL;
1580                                                 kfree(hw_fib_pool);
1581                                                 hw_fib_pool = NULL;
1582                                         }
1583                                 } else {
1584                                         kfree(hw_fib_pool);
1585                                         hw_fib_pool = NULL;
1586                                 }
1587                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1588                                 entry = dev->fib_list.next;
1589                                 /*
1590                                  * For each Context that is on the
1591                                  * fibctxList, make a copy of the
1592                                  * fib, and then set the event to wake up the
1593                                  * thread that is waiting for it.
1594                                  */
1595                                 hw_fib_p = hw_fib_pool;
1596                                 fib_p = fib_pool;
1597                                 while (entry != &dev->fib_list) {
1598                                         /*
1599                                          * Extract the fibctx
1600                                          */
1601                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1602                                         /*
1603                                          * Check if the queue is getting
1604                                          * backlogged
1605                                          */
1606                                         if (fibctx->count > 20)
1607                                         {
1608                                                 /*
1609                                                  * It's *not* jiffies folks,
1610                                                  * but jiffies / HZ so do not
1611                                                  * panic ...
1612                                                  */
1613                                                 time_last = fibctx->jiffies;
1614                                                 /*
1615                                                  * Has it been > 2 minutes
1616                                                  * since the last read off
1617                                                  * the queue?
1618                                                  */
1619                                                 if ((time_now - time_last) > aif_timeout) {
1620                                                         entry = entry->next;
1621                                                         aac_close_fib_context(dev, fibctx);
1622                                                         continue;
1623                                                 }
1624                                         }
1625                                         /*
1626                                          * Warning: no sleep allowed while
1627                                          * holding spinlock
1628                                          */
1629                                         if (hw_fib_p < &hw_fib_pool[num]) {
1630                                                 hw_newfib = *hw_fib_p;
1631                                                 *(hw_fib_p++) = NULL;
1632                                                 newfib = *fib_p;
1633                                                 *(fib_p++) = NULL;
1634                                                 /*
1635                                                  * Make the copy of the FIB
1636                                                  */
1637                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1638                                                 memcpy(newfib, fib, sizeof(struct fib));
1639                                                 newfib->hw_fib_va = hw_newfib;
1640                                                 /*
1641                                                  * Put the FIB onto the
1642                                                  * fibctx's fibs
1643                                                  */
1644                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1645                                                 fibctx->count++;
1646                                                 /*
1647                                                  * Set the event to wake up the
1648                                                  * thread that is waiting.
1649                                                  */
1650                                                 up(&fibctx->wait_sem);
1651                                         } else {
1652                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1653                                         }
1654                                         entry = entry->next;
1655                                 }
1656                                 /*
1657                                  *      Set the status of this FIB
1658                                  */
1659                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1660                                 aac_fib_adapter_complete(fib, sizeof(u32));
1661                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1662                                 /* Free up the remaining resources */
1663                                 hw_fib_p = hw_fib_pool;
1664                                 fib_p = fib_pool;
1665                                 while (hw_fib_p < &hw_fib_pool[num]) {
1666                                         kfree(*hw_fib_p);
1667                                         kfree(*fib_p);
1668                                         ++fib_p;
1669                                         ++hw_fib_p;
1670                                 }
1671                                 kfree(hw_fib_pool);
1672                                 kfree(fib_pool);
1673                         }
1674                         kfree(fib);
1675                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1676                 }
1677                 /*
1678                  *      There are no more AIF's
1679                  */
1680                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1681
1682                 /*
1683                  *      Background activity
1684                  */
1685                 if ((time_before(next_check_jiffies,next_jiffies))
1686                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
1687                         next_check_jiffies = next_jiffies;
1688                         if (aac_check_health(dev) == 0) {
1689                                 difference = ((long)(unsigned)check_interval)
1690                                            * HZ;
1691                                 next_check_jiffies = jiffies + difference;
1692                         } else if (!dev->queues)
1693                                 break;
1694                 }
1695                 if (!time_before(next_check_jiffies,next_jiffies)
1696                  && ((difference = next_jiffies - jiffies) <= 0)) {
1697                         struct timeval now;
1698                         int ret;
1699
1700                         /* Don't even try to talk to adapter if its sick */
1701                         ret = aac_check_health(dev);
1702                         if (!ret && !dev->queues)
1703                                 break;
1704                         next_check_jiffies = jiffies
1705                                            + ((long)(unsigned)check_interval)
1706                                            * HZ;
1707                         do_gettimeofday(&now);
1708
1709                         /* Synchronize our watches */
1710                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1711                          && (now.tv_usec > (1000000 / HZ)))
1712                                 difference = (((1000000 - now.tv_usec) * HZ)
1713                                   + 500000) / 1000000;
1714                         else if (ret == 0) {
1715                                 struct fib *fibptr;
1716
1717                                 if ((fibptr = aac_fib_alloc(dev))) {
1718                                         __le32 *info;
1719
1720                                         aac_fib_init(fibptr);
1721
1722                                         info = (__le32 *) fib_data(fibptr);
1723                                         if (now.tv_usec > 500000)
1724                                                 ++now.tv_sec;
1725
1726                                         *info = cpu_to_le32(now.tv_sec);
1727
1728                                         (void)aac_fib_send(SendHostTime,
1729                                                 fibptr,
1730                                                 sizeof(*info),
1731                                                 FsaNormal,
1732                                                 1, 1,
1733                                                 NULL,
1734                                                 NULL);
1735                                         aac_fib_complete(fibptr);
1736                                         aac_fib_free(fibptr);
1737                                 }
1738                                 difference = (long)(unsigned)update_interval*HZ;
1739                         } else {
1740                                 /* retry shortly */
1741                                 difference = 10 * HZ;
1742                         }
1743                         next_jiffies = jiffies + difference;
1744                         if (time_before(next_check_jiffies,next_jiffies))
1745                                 difference = next_check_jiffies - jiffies;
1746                 }
1747                 if (difference <= 0)
1748                         difference = 1;
1749                 set_current_state(TASK_INTERRUPTIBLE);
1750                 schedule_timeout(difference);
1751
1752                 if (kthread_should_stop())
1753                         break;
1754         }
1755         if (dev->queues)
1756                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1757         dev->aif_thread = 0;
1758         return 0;
1759 }