Merge tag 'pinctrl-v5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / drivers / regulator / helpers.c
1 /*
2  * helpers.c  --  Voltage/Current Regulator framework helper functions.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  *  This program is free software; you can redistribute  it and/or modify it
8  *  under  the terms of  the GNU General  Public License as published by the
9  *  Free Software Foundation;  either version 2 of the  License, or (at your
10  *  option) any later version.
11  *
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/err.h>
16 #include <linux/delay.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/regulator/driver.h>
20 #include <linux/module.h>
21
22 /**
23  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
24  *
25  * @rdev: regulator to operate on
26  *
27  * Regulators that use regmap for their register I/O can set the
28  * enable_reg and enable_mask fields in their descriptor and then use
29  * this as their is_enabled operation, saving some code.
30  */
31 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
32 {
33         unsigned int val;
34         int ret;
35
36         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
37         if (ret != 0)
38                 return ret;
39
40         val &= rdev->desc->enable_mask;
41
42         if (rdev->desc->enable_is_inverted) {
43                 if (rdev->desc->enable_val)
44                         return val != rdev->desc->enable_val;
45                 return val == 0;
46         } else {
47                 if (rdev->desc->enable_val)
48                         return val == rdev->desc->enable_val;
49                 return val != 0;
50         }
51 }
52 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
53
54 /**
55  * regulator_enable_regmap - standard enable() for regmap users
56  *
57  * @rdev: regulator to operate on
58  *
59  * Regulators that use regmap for their register I/O can set the
60  * enable_reg and enable_mask fields in their descriptor and then use
61  * this as their enable() operation, saving some code.
62  */
63 int regulator_enable_regmap(struct regulator_dev *rdev)
64 {
65         unsigned int val;
66
67         if (rdev->desc->enable_is_inverted) {
68                 val = rdev->desc->disable_val;
69         } else {
70                 val = rdev->desc->enable_val;
71                 if (!val)
72                         val = rdev->desc->enable_mask;
73         }
74
75         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
76                                   rdev->desc->enable_mask, val);
77 }
78 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
79
80 /**
81  * regulator_disable_regmap - standard disable() for regmap users
82  *
83  * @rdev: regulator to operate on
84  *
85  * Regulators that use regmap for their register I/O can set the
86  * enable_reg and enable_mask fields in their descriptor and then use
87  * this as their disable() operation, saving some code.
88  */
89 int regulator_disable_regmap(struct regulator_dev *rdev)
90 {
91         unsigned int val;
92
93         if (rdev->desc->enable_is_inverted) {
94                 val = rdev->desc->enable_val;
95                 if (!val)
96                         val = rdev->desc->enable_mask;
97         } else {
98                 val = rdev->desc->disable_val;
99         }
100
101         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
102                                   rdev->desc->enable_mask, val);
103 }
104 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
105
106 static int regulator_range_selector_to_index(struct regulator_dev *rdev,
107                                              unsigned int rval)
108 {
109         int i;
110
111         if (!rdev->desc->linear_range_selectors)
112                 return -EINVAL;
113
114         rval &= rdev->desc->vsel_range_mask;
115
116         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
117                 if (rdev->desc->linear_range_selectors[i] == rval)
118                         return i;
119         }
120         return -EINVAL;
121 }
122
123 /**
124  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
125  *
126  * @rdev: regulator to operate on
127  *
128  * Regulators that use regmap for their register I/O and use pickable
129  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
130  * fields in their descriptor and then use this as their get_voltage_vsel
131  * operation, saving some code.
132  */
133 int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
134 {
135         unsigned int r_val;
136         int range;
137         unsigned int val;
138         int ret, i;
139         unsigned int voltages_in_range = 0;
140
141         if (!rdev->desc->linear_ranges)
142                 return -EINVAL;
143
144         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
145         if (ret != 0)
146                 return ret;
147
148         ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
149         if (ret != 0)
150                 return ret;
151
152         val &= rdev->desc->vsel_mask;
153         val >>= ffs(rdev->desc->vsel_mask) - 1;
154
155         range = regulator_range_selector_to_index(rdev, r_val);
156         if (range < 0)
157                 return -EINVAL;
158
159         for (i = 0; i < range; i++)
160                 voltages_in_range += (rdev->desc->linear_ranges[i].max_sel -
161                                      rdev->desc->linear_ranges[i].min_sel) + 1;
162
163         return val + voltages_in_range;
164 }
165 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
166
167 /**
168  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
169  *
170  * @rdev: regulator to operate on
171  * @sel: Selector to set
172  *
173  * Regulators that use regmap for their register I/O and use pickable
174  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
175  * fields in their descriptor and then use this as their set_voltage_vsel
176  * operation, saving some code.
177  */
178 int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
179                                               unsigned int sel)
180 {
181         unsigned int range;
182         int ret, i;
183         unsigned int voltages_in_range = 0;
184
185         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
186                 voltages_in_range = (rdev->desc->linear_ranges[i].max_sel -
187                                      rdev->desc->linear_ranges[i].min_sel) + 1;
188                 if (sel < voltages_in_range)
189                         break;
190                 sel -= voltages_in_range;
191         }
192
193         if (i == rdev->desc->n_linear_ranges)
194                 return -EINVAL;
195
196         sel <<= ffs(rdev->desc->vsel_mask) - 1;
197         sel += rdev->desc->linear_ranges[i].min_sel;
198
199         range = rdev->desc->linear_range_selectors[i];
200
201         if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
202                 ret = regmap_update_bits(rdev->regmap,
203                                          rdev->desc->vsel_reg,
204                                          rdev->desc->vsel_range_mask |
205                                          rdev->desc->vsel_mask, sel | range);
206         } else {
207                 ret = regmap_update_bits(rdev->regmap,
208                                          rdev->desc->vsel_range_reg,
209                                          rdev->desc->vsel_range_mask, range);
210                 if (ret)
211                         return ret;
212
213                 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
214                                   rdev->desc->vsel_mask, sel);
215         }
216
217         if (ret)
218                 return ret;
219
220         if (rdev->desc->apply_bit)
221                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
222                                          rdev->desc->apply_bit,
223                                          rdev->desc->apply_bit);
224         return ret;
225 }
226 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
227
228 /**
229  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
230  *
231  * @rdev: regulator to operate on
232  *
233  * Regulators that use regmap for their register I/O can set the
234  * vsel_reg and vsel_mask fields in their descriptor and then use this
235  * as their get_voltage_vsel operation, saving some code.
236  */
237 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
238 {
239         unsigned int val;
240         int ret;
241
242         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
243         if (ret != 0)
244                 return ret;
245
246         val &= rdev->desc->vsel_mask;
247         val >>= ffs(rdev->desc->vsel_mask) - 1;
248
249         return val;
250 }
251 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
252
253 /**
254  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
255  *
256  * @rdev: regulator to operate on
257  * @sel: Selector to set
258  *
259  * Regulators that use regmap for their register I/O can set the
260  * vsel_reg and vsel_mask fields in their descriptor and then use this
261  * as their set_voltage_vsel operation, saving some code.
262  */
263 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
264 {
265         int ret;
266
267         sel <<= ffs(rdev->desc->vsel_mask) - 1;
268
269         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
270                                   rdev->desc->vsel_mask, sel);
271         if (ret)
272                 return ret;
273
274         if (rdev->desc->apply_bit)
275                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
276                                          rdev->desc->apply_bit,
277                                          rdev->desc->apply_bit);
278         return ret;
279 }
280 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
281
282 /**
283  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
284  *
285  * @rdev: Regulator to operate on
286  * @min_uV: Lower bound for voltage
287  * @max_uV: Upper bound for voltage
288  *
289  * Drivers implementing set_voltage_sel() and list_voltage() can use
290  * this as their map_voltage() operation.  It will find a suitable
291  * voltage by calling list_voltage() until it gets something in bounds
292  * for the requested voltages.
293  */
294 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
295                                   int min_uV, int max_uV)
296 {
297         int best_val = INT_MAX;
298         int selector = 0;
299         int i, ret;
300
301         /* Find the smallest voltage that falls within the specified
302          * range.
303          */
304         for (i = 0; i < rdev->desc->n_voltages; i++) {
305                 ret = rdev->desc->ops->list_voltage(rdev, i);
306                 if (ret < 0)
307                         continue;
308
309                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
310                         best_val = ret;
311                         selector = i;
312                 }
313         }
314
315         if (best_val != INT_MAX)
316                 return selector;
317         else
318                 return -EINVAL;
319 }
320 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
321
322 /**
323  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
324  *
325  * @rdev: Regulator to operate on
326  * @min_uV: Lower bound for voltage
327  * @max_uV: Upper bound for voltage
328  *
329  * Drivers that have ascendant voltage list can use this as their
330  * map_voltage() operation.
331  */
332 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
333                                  int min_uV, int max_uV)
334 {
335         int i, ret;
336
337         for (i = 0; i < rdev->desc->n_voltages; i++) {
338                 ret = rdev->desc->ops->list_voltage(rdev, i);
339                 if (ret < 0)
340                         continue;
341
342                 if (ret > max_uV)
343                         break;
344
345                 if (ret >= min_uV && ret <= max_uV)
346                         return i;
347         }
348
349         return -EINVAL;
350 }
351 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
352
353 /**
354  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
355  *
356  * @rdev: Regulator to operate on
357  * @min_uV: Lower bound for voltage
358  * @max_uV: Upper bound for voltage
359  *
360  * Drivers providing min_uV and uV_step in their regulator_desc can
361  * use this as their map_voltage() operation.
362  */
363 int regulator_map_voltage_linear(struct regulator_dev *rdev,
364                                  int min_uV, int max_uV)
365 {
366         int ret, voltage;
367
368         /* Allow uV_step to be 0 for fixed voltage */
369         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
370                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
371                         return 0;
372                 else
373                         return -EINVAL;
374         }
375
376         if (!rdev->desc->uV_step) {
377                 BUG_ON(!rdev->desc->uV_step);
378                 return -EINVAL;
379         }
380
381         if (min_uV < rdev->desc->min_uV)
382                 min_uV = rdev->desc->min_uV;
383
384         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
385         if (ret < 0)
386                 return ret;
387
388         ret += rdev->desc->linear_min_sel;
389
390         /* Map back into a voltage to verify we're still in bounds */
391         voltage = rdev->desc->ops->list_voltage(rdev, ret);
392         if (voltage < min_uV || voltage > max_uV)
393                 return -EINVAL;
394
395         return ret;
396 }
397 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
398
399 /**
400  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
401  *
402  * @rdev: Regulator to operate on
403  * @min_uV: Lower bound for voltage
404  * @max_uV: Upper bound for voltage
405  *
406  * Drivers providing linear_ranges in their descriptor can use this as
407  * their map_voltage() callback.
408  */
409 int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
410                                        int min_uV, int max_uV)
411 {
412         const struct regulator_linear_range *range;
413         int ret = -EINVAL;
414         int voltage, i;
415
416         if (!rdev->desc->n_linear_ranges) {
417                 BUG_ON(!rdev->desc->n_linear_ranges);
418                 return -EINVAL;
419         }
420
421         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422                 int linear_max_uV;
423
424                 range = &rdev->desc->linear_ranges[i];
425                 linear_max_uV = range->min_uV +
426                         (range->max_sel - range->min_sel) * range->uV_step;
427
428                 if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
429                         continue;
430
431                 if (min_uV <= range->min_uV)
432                         min_uV = range->min_uV;
433
434                 /* range->uV_step == 0 means fixed voltage range */
435                 if (range->uV_step == 0) {
436                         ret = 0;
437                 } else {
438                         ret = DIV_ROUND_UP(min_uV - range->min_uV,
439                                            range->uV_step);
440                         if (ret < 0)
441                                 return ret;
442                 }
443
444                 ret += range->min_sel;
445
446                 /*
447                  * Map back into a voltage to verify we're still in bounds.
448                  * If we are not, then continue checking rest of the ranges.
449                  */
450                 voltage = rdev->desc->ops->list_voltage(rdev, ret);
451                 if (voltage >= min_uV && voltage <= max_uV)
452                         break;
453         }
454
455         if (i == rdev->desc->n_linear_ranges)
456                 return -EINVAL;
457
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
461
462 /**
463  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
464  *
465  * @rdev: Regulator to operate on
466  * @min_uV: Lower bound for voltage
467  * @max_uV: Upper bound for voltage
468  *
469  * Drivers providing pickable linear_ranges in their descriptor can use
470  * this as their map_voltage() callback.
471  */
472 int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
473                                                 int min_uV, int max_uV)
474 {
475         const struct regulator_linear_range *range;
476         int ret = -EINVAL;
477         int voltage, i;
478         unsigned int selector = 0;
479
480         if (!rdev->desc->n_linear_ranges) {
481                 BUG_ON(!rdev->desc->n_linear_ranges);
482                 return -EINVAL;
483         }
484
485         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
486                 int linear_max_uV;
487
488                 range = &rdev->desc->linear_ranges[i];
489                 linear_max_uV = range->min_uV +
490                         (range->max_sel - range->min_sel) * range->uV_step;
491
492                 if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV)) {
493                         selector += (range->max_sel - range->min_sel + 1);
494                         continue;
495                 }
496
497                 if (min_uV <= range->min_uV)
498                         min_uV = range->min_uV;
499
500                 /* range->uV_step == 0 means fixed voltage range */
501                 if (range->uV_step == 0) {
502                         ret = 0;
503                 } else {
504                         ret = DIV_ROUND_UP(min_uV - range->min_uV,
505                                            range->uV_step);
506                         if (ret < 0)
507                                 return ret;
508                 }
509
510                 ret += selector;
511
512                 voltage = rdev->desc->ops->list_voltage(rdev, ret);
513
514                 /*
515                  * Map back into a voltage to verify we're still in bounds.
516                  * We may have overlapping voltage ranges. Hence we don't
517                  * exit but retry until we have checked all ranges.
518                  */
519                 if (voltage < min_uV || voltage > max_uV)
520                         selector += (range->max_sel - range->min_sel + 1);
521                 else
522                         break;
523         }
524
525         if (i == rdev->desc->n_linear_ranges)
526                 return -EINVAL;
527
528         return ret;
529 }
530 EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
531
532 /**
533  * regulator_list_voltage_linear - List voltages with simple calculation
534  *
535  * @rdev: Regulator device
536  * @selector: Selector to convert into a voltage
537  *
538  * Regulators with a simple linear mapping between voltages and
539  * selectors can set min_uV and uV_step in the regulator descriptor
540  * and then use this function as their list_voltage() operation,
541  */
542 int regulator_list_voltage_linear(struct regulator_dev *rdev,
543                                   unsigned int selector)
544 {
545         if (selector >= rdev->desc->n_voltages)
546                 return -EINVAL;
547         if (selector < rdev->desc->linear_min_sel)
548                 return 0;
549
550         selector -= rdev->desc->linear_min_sel;
551
552         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
553 }
554 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
555
556 /**
557  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
558  *
559  * @rdev: Regulator device
560  * @selector: Selector to convert into a voltage
561  *
562  * list_voltage() operation, intended to be used by drivers utilizing pickable
563  * ranges helpers.
564  */
565 int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
566                                                  unsigned int selector)
567 {
568         const struct regulator_linear_range *range;
569         int i;
570         unsigned int all_sels = 0;
571
572         if (!rdev->desc->n_linear_ranges) {
573                 BUG_ON(!rdev->desc->n_linear_ranges);
574                 return -EINVAL;
575         }
576
577         for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
578                 unsigned int sels_in_range;
579
580                 range = &rdev->desc->linear_ranges[i];
581
582                 sels_in_range = range->max_sel - range->min_sel;
583
584                 if (all_sels + sels_in_range >= selector) {
585                         selector -= all_sels;
586                         return range->min_uV + (range->uV_step * selector);
587                 }
588
589                 all_sels += (sels_in_range + 1);
590         }
591
592         return -EINVAL;
593 }
594 EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
595
596 /**
597  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
598  *
599  * @desc: Regulator desc for regulator which volatges are to be listed
600  * @selector: Selector to convert into a voltage
601  *
602  * Regulators with a series of simple linear mappings between voltages
603  * and selectors who have set linear_ranges in the regulator descriptor
604  * can use this function prior regulator registration to list voltages.
605  * This is useful when voltages need to be listed during device-tree
606  * parsing.
607  */
608 int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
609                                              unsigned int selector)
610 {
611         const struct regulator_linear_range *range;
612         int i;
613
614         if (!desc->n_linear_ranges) {
615                 BUG_ON(!desc->n_linear_ranges);
616                 return -EINVAL;
617         }
618
619         for (i = 0; i < desc->n_linear_ranges; i++) {
620                 range = &desc->linear_ranges[i];
621
622                 if (!(selector >= range->min_sel &&
623                       selector <= range->max_sel))
624                         continue;
625
626                 selector -= range->min_sel;
627
628                 return range->min_uV + (range->uV_step * selector);
629         }
630
631         return -EINVAL;
632 }
633 EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
634
635 /**
636  * regulator_list_voltage_linear_range - List voltages for linear ranges
637  *
638  * @rdev: Regulator device
639  * @selector: Selector to convert into a voltage
640  *
641  * Regulators with a series of simple linear mappings between voltages
642  * and selectors can set linear_ranges in the regulator descriptor and
643  * then use this function as their list_voltage() operation,
644  */
645 int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
646                                         unsigned int selector)
647 {
648         return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
649 }
650 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
651
652 /**
653  * regulator_list_voltage_table - List voltages with table based mapping
654  *
655  * @rdev: Regulator device
656  * @selector: Selector to convert into a voltage
657  *
658  * Regulators with table based mapping between voltages and
659  * selectors can set volt_table in the regulator descriptor
660  * and then use this function as their list_voltage() operation.
661  */
662 int regulator_list_voltage_table(struct regulator_dev *rdev,
663                                  unsigned int selector)
664 {
665         if (!rdev->desc->volt_table) {
666                 BUG_ON(!rdev->desc->volt_table);
667                 return -EINVAL;
668         }
669
670         if (selector >= rdev->desc->n_voltages)
671                 return -EINVAL;
672
673         return rdev->desc->volt_table[selector];
674 }
675 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
676
677 /**
678  * regulator_set_bypass_regmap - Default set_bypass() using regmap
679  *
680  * @rdev: device to operate on.
681  * @enable: state to set.
682  */
683 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
684 {
685         unsigned int val;
686
687         if (enable) {
688                 val = rdev->desc->bypass_val_on;
689                 if (!val)
690                         val = rdev->desc->bypass_mask;
691         } else {
692                 val = rdev->desc->bypass_val_off;
693         }
694
695         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
696                                   rdev->desc->bypass_mask, val);
697 }
698 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
699
700 /**
701  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
702  *
703  * @rdev: device to operate on.
704  */
705 int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
706 {
707         unsigned int val;
708
709         val = rdev->desc->soft_start_val_on;
710         if (!val)
711                 val = rdev->desc->soft_start_mask;
712
713         return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
714                                   rdev->desc->soft_start_mask, val);
715 }
716 EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
717
718 /**
719  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
720  *
721  * @rdev: device to operate on.
722  */
723 int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
724 {
725         unsigned int val;
726
727         val = rdev->desc->pull_down_val_on;
728         if (!val)
729                 val = rdev->desc->pull_down_mask;
730
731         return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
732                                   rdev->desc->pull_down_mask, val);
733 }
734 EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
735
736 /**
737  * regulator_get_bypass_regmap - Default get_bypass() using regmap
738  *
739  * @rdev: device to operate on.
740  * @enable: current state.
741  */
742 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
743 {
744         unsigned int val;
745         unsigned int val_on = rdev->desc->bypass_val_on;
746         int ret;
747
748         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
749         if (ret != 0)
750                 return ret;
751
752         if (!val_on)
753                 val_on = rdev->desc->bypass_mask;
754
755         *enable = (val & rdev->desc->bypass_mask) == val_on;
756
757         return 0;
758 }
759 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
760
761 /**
762  * regulator_set_active_discharge_regmap - Default set_active_discharge()
763  *                                         using regmap
764  *
765  * @rdev: device to operate on.
766  * @enable: state to set, 0 to disable and 1 to enable.
767  */
768 int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
769                                           bool enable)
770 {
771         unsigned int val;
772
773         if (enable)
774                 val = rdev->desc->active_discharge_on;
775         else
776                 val = rdev->desc->active_discharge_off;
777
778         return regmap_update_bits(rdev->regmap,
779                                   rdev->desc->active_discharge_reg,
780                                   rdev->desc->active_discharge_mask, val);
781 }
782 EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
783
784 /**
785  * regulator_set_current_limit_regmap - set_current_limit for regmap users
786  *
787  * @rdev: regulator to operate on
788  * @min_uA: Lower bound for current limit
789  * @max_uA: Upper bound for current limit
790  *
791  * Regulators that use regmap for their register I/O can set curr_table,
792  * csel_reg and csel_mask fields in their descriptor and then use this
793  * as their set_current_limit operation, saving some code.
794  */
795 int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
796                                        int min_uA, int max_uA)
797 {
798         unsigned int n_currents = rdev->desc->n_current_limits;
799         int i, sel = -1;
800
801         if (n_currents == 0)
802                 return -EINVAL;
803
804         if (rdev->desc->curr_table) {
805                 const unsigned int *curr_table = rdev->desc->curr_table;
806                 bool ascend = curr_table[n_currents - 1] > curr_table[0];
807
808                 /* search for closest to maximum */
809                 if (ascend) {
810                         for (i = n_currents - 1; i >= 0; i--) {
811                                 if (min_uA <= curr_table[i] &&
812                                     curr_table[i] <= max_uA) {
813                                         sel = i;
814                                         break;
815                                 }
816                         }
817                 } else {
818                         for (i = 0; i < n_currents; i++) {
819                                 if (min_uA <= curr_table[i] &&
820                                     curr_table[i] <= max_uA) {
821                                         sel = i;
822                                         break;
823                                 }
824                         }
825                 }
826         }
827
828         if (sel < 0)
829                 return -EINVAL;
830
831         sel <<= ffs(rdev->desc->csel_mask) - 1;
832
833         return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
834                                   rdev->desc->csel_mask, sel);
835 }
836 EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
837
838 /**
839  * regulator_get_current_limit_regmap - get_current_limit for regmap users
840  *
841  * @rdev: regulator to operate on
842  *
843  * Regulators that use regmap for their register I/O can set the
844  * csel_reg and csel_mask fields in their descriptor and then use this
845  * as their get_current_limit operation, saving some code.
846  */
847 int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
848 {
849         unsigned int val;
850         int ret;
851
852         ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
853         if (ret != 0)
854                 return ret;
855
856         val &= rdev->desc->csel_mask;
857         val >>= ffs(rdev->desc->csel_mask) - 1;
858
859         if (rdev->desc->curr_table) {
860                 if (val >= rdev->desc->n_current_limits)
861                         return -EINVAL;
862
863                 return rdev->desc->curr_table[val];
864         }
865
866         return -EINVAL;
867 }
868 EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);