Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         struct gpio_desc *gpiod;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130         if (!rdev->constraints) {
131                 rdev_err(rdev, "no constraints\n");
132                 return false;
133         }
134
135         if (rdev->constraints->valid_ops_mask & ops)
136                 return true;
137
138         return false;
139 }
140
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143         if (rdev && rdev->supply)
144                 return rdev->supply->rdev;
145
146         return NULL;
147 }
148
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:               regulator source
152  * @subclass:           mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161                                   unsigned int subclass)
162 {
163         if (!mutex_trylock(&rdev->mutex)) {
164                 if (rdev->mutex_owner == current) {
165                         rdev->ref_cnt++;
166                         return;
167                 }
168                 mutex_lock_nested(&rdev->mutex, subclass);
169         }
170
171         rdev->ref_cnt = 1;
172         rdev->mutex_owner = current;
173 }
174
175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177         regulator_lock_nested(rdev, 0);
178 }
179
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:               regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189         if (rdev->ref_cnt != 0) {
190                 rdev->ref_cnt--;
191
192                 if (!rdev->ref_cnt) {
193                         rdev->mutex_owner = NULL;
194                         mutex_unlock(&rdev->mutex);
195                 }
196         }
197 }
198
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205         int i;
206
207         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208                 regulator_lock_nested(rdev, i);
209 }
210
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217         struct regulator *supply;
218
219         while (1) {
220                 regulator_unlock(rdev);
221                 supply = rdev->supply;
222
223                 if (!rdev->supply)
224                         return;
225
226                 rdev = supply->rdev;
227         }
228 }
229
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241         struct device_node *regnode = NULL;
242         char prop_name[32]; /* 32 is max size of property name */
243
244         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245
246         snprintf(prop_name, 32, "%s-supply", supply);
247         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248
249         if (!regnode) {
250                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251                                 prop_name, dev->of_node);
252                 return NULL;
253         }
254         return regnode;
255 }
256
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259                                    int *min_uV, int *max_uV)
260 {
261         BUG_ON(*min_uV > *max_uV);
262
263         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264                 rdev_err(rdev, "voltage operation not allowed\n");
265                 return -EPERM;
266         }
267
268         if (*max_uV > rdev->constraints->max_uV)
269                 *max_uV = rdev->constraints->max_uV;
270         if (*min_uV < rdev->constraints->min_uV)
271                 *min_uV = rdev->constraints->min_uV;
272
273         if (*min_uV > *max_uV) {
274                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275                          *min_uV, *max_uV);
276                 return -EINVAL;
277         }
278
279         return 0;
280 }
281
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
284 {
285         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292                                      int *min_uV, int *max_uV,
293                                      suspend_state_t state)
294 {
295         struct regulator *regulator;
296         struct regulator_voltage *voltage;
297
298         list_for_each_entry(regulator, &rdev->consumer_list, list) {
299                 voltage = &regulator->voltage[state];
300                 /*
301                  * Assume consumers that didn't say anything are OK
302                  * with anything in the constraint range.
303                  */
304                 if (!voltage->min_uV && !voltage->max_uV)
305                         continue;
306
307                 if (*max_uV > voltage->max_uV)
308                         *max_uV = voltage->max_uV;
309                 if (*min_uV < voltage->min_uV)
310                         *min_uV = voltage->min_uV;
311         }
312
313         if (*min_uV > *max_uV) {
314                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315                         *min_uV, *max_uV);
316                 return -EINVAL;
317         }
318
319         return 0;
320 }
321
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324                                         int *min_uA, int *max_uA)
325 {
326         BUG_ON(*min_uA > *max_uA);
327
328         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329                 rdev_err(rdev, "current operation not allowed\n");
330                 return -EPERM;
331         }
332
333         if (*max_uA > rdev->constraints->max_uA)
334                 *max_uA = rdev->constraints->max_uA;
335         if (*min_uA < rdev->constraints->min_uA)
336                 *min_uA = rdev->constraints->min_uA;
337
338         if (*min_uA > *max_uA) {
339                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340                          *min_uA, *max_uA);
341                 return -EINVAL;
342         }
343
344         return 0;
345 }
346
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349                                     unsigned int *mode)
350 {
351         switch (*mode) {
352         case REGULATOR_MODE_FAST:
353         case REGULATOR_MODE_NORMAL:
354         case REGULATOR_MODE_IDLE:
355         case REGULATOR_MODE_STANDBY:
356                 break;
357         default:
358                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359                 return -EINVAL;
360         }
361
362         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363                 rdev_err(rdev, "mode operation not allowed\n");
364                 return -EPERM;
365         }
366
367         /* The modes are bitmasks, the most power hungry modes having
368          * the lowest values. If the requested mode isn't supported
369          * try higher modes. */
370         while (*mode) {
371                 if (rdev->constraints->valid_modes_mask & *mode)
372                         return 0;
373                 *mode /= 2;
374         }
375
376         return -EINVAL;
377 }
378
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382         if (rdev->constraints == NULL)
383                 return NULL;
384
385         switch (state) {
386         case PM_SUSPEND_STANDBY:
387                 return &rdev->constraints->state_standby;
388         case PM_SUSPEND_MEM:
389                 return &rdev->constraints->state_mem;
390         case PM_SUSPEND_MAX:
391                 return &rdev->constraints->state_disk;
392         default:
393                 return NULL;
394         }
395 }
396
397 static ssize_t regulator_uV_show(struct device *dev,
398                                 struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         ssize_t ret;
402
403         regulator_lock(rdev);
404         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405         regulator_unlock(rdev);
406
407         return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410
411 static ssize_t regulator_uA_show(struct device *dev,
412                                 struct device_attribute *attr, char *buf)
413 {
414         struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421                          char *buf)
422 {
423         struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425         return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428
429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431         switch (mode) {
432         case REGULATOR_MODE_FAST:
433                 return sprintf(buf, "fast\n");
434         case REGULATOR_MODE_NORMAL:
435                 return sprintf(buf, "normal\n");
436         case REGULATOR_MODE_IDLE:
437                 return sprintf(buf, "idle\n");
438         case REGULATOR_MODE_STANDBY:
439                 return sprintf(buf, "standby\n");
440         }
441         return sprintf(buf, "unknown\n");
442 }
443
444 static ssize_t regulator_opmode_show(struct device *dev,
445                                     struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452
453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455         if (state > 0)
456                 return sprintf(buf, "enabled\n");
457         else if (state == 0)
458                 return sprintf(buf, "disabled\n");
459         else
460                 return sprintf(buf, "unknown\n");
461 }
462
463 static ssize_t regulator_state_show(struct device *dev,
464                                    struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         ssize_t ret;
468
469         regulator_lock(rdev);
470         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471         regulator_unlock(rdev);
472
473         return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476
477 static ssize_t regulator_status_show(struct device *dev,
478                                    struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         int status;
482         char *label;
483
484         status = rdev->desc->ops->get_status(rdev);
485         if (status < 0)
486                 return status;
487
488         switch (status) {
489         case REGULATOR_STATUS_OFF:
490                 label = "off";
491                 break;
492         case REGULATOR_STATUS_ON:
493                 label = "on";
494                 break;
495         case REGULATOR_STATUS_ERROR:
496                 label = "error";
497                 break;
498         case REGULATOR_STATUS_FAST:
499                 label = "fast";
500                 break;
501         case REGULATOR_STATUS_NORMAL:
502                 label = "normal";
503                 break;
504         case REGULATOR_STATUS_IDLE:
505                 label = "idle";
506                 break;
507         case REGULATOR_STATUS_STANDBY:
508                 label = "standby";
509                 break;
510         case REGULATOR_STATUS_BYPASS:
511                 label = "bypass";
512                 break;
513         case REGULATOR_STATUS_UNDEFINED:
514                 label = "undefined";
515                 break;
516         default:
517                 return -ERANGE;
518         }
519
520         return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523
524 static ssize_t regulator_min_uA_show(struct device *dev,
525                                     struct device_attribute *attr, char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         if (!rdev->constraints)
530                 return sprintf(buf, "constraint not defined\n");
531
532         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535
536 static ssize_t regulator_max_uA_show(struct device *dev,
537                                     struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         if (!rdev->constraints)
542                 return sprintf(buf, "constraint not defined\n");
543
544         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547
548 static ssize_t regulator_min_uV_show(struct device *dev,
549                                     struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         if (!rdev->constraints)
554                 return sprintf(buf, "constraint not defined\n");
555
556         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559
560 static ssize_t regulator_max_uV_show(struct device *dev,
561                                     struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         if (!rdev->constraints)
566                 return sprintf(buf, "constraint not defined\n");
567
568         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571
572 static ssize_t regulator_total_uA_show(struct device *dev,
573                                       struct device_attribute *attr, char *buf)
574 {
575         struct regulator_dev *rdev = dev_get_drvdata(dev);
576         struct regulator *regulator;
577         int uA = 0;
578
579         regulator_lock(rdev);
580         list_for_each_entry(regulator, &rdev->consumer_list, list)
581                 uA += regulator->uA_load;
582         regulator_unlock(rdev);
583         return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588                               char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591         return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596                          char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599
600         switch (rdev->desc->type) {
601         case REGULATOR_VOLTAGE:
602                 return sprintf(buf, "voltage\n");
603         case REGULATOR_CURRENT:
604                 return sprintf(buf, "current\n");
605         }
606         return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611                                 struct device_attribute *attr, char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618                 regulator_suspend_mem_uV_show, NULL);
619
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621                                 struct device_attribute *attr, char *buf)
622 {
623         struct regulator_dev *rdev = dev_get_drvdata(dev);
624
625         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628                 regulator_suspend_disk_uV_show, NULL);
629
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631                                 struct device_attribute *attr, char *buf)
632 {
633         struct regulator_dev *rdev = dev_get_drvdata(dev);
634
635         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638                 regulator_suspend_standby_uV_show, NULL);
639
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641                                 struct device_attribute *attr, char *buf)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644
645         return regulator_print_opmode(buf,
646                 rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649                 regulator_suspend_mem_mode_show, NULL);
650
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652                                 struct device_attribute *attr, char *buf)
653 {
654         struct regulator_dev *rdev = dev_get_drvdata(dev);
655
656         return regulator_print_opmode(buf,
657                 rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660                 regulator_suspend_disk_mode_show, NULL);
661
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663                                 struct device_attribute *attr, char *buf)
664 {
665         struct regulator_dev *rdev = dev_get_drvdata(dev);
666
667         return regulator_print_opmode(buf,
668                 rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671                 regulator_suspend_standby_mode_show, NULL);
672
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674                                    struct device_attribute *attr, char *buf)
675 {
676         struct regulator_dev *rdev = dev_get_drvdata(dev);
677
678         return regulator_print_state(buf,
679                         rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682                 regulator_suspend_mem_state_show, NULL);
683
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685                                    struct device_attribute *attr, char *buf)
686 {
687         struct regulator_dev *rdev = dev_get_drvdata(dev);
688
689         return regulator_print_state(buf,
690                         rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693                 regulator_suspend_disk_state_show, NULL);
694
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696                                    struct device_attribute *attr, char *buf)
697 {
698         struct regulator_dev *rdev = dev_get_drvdata(dev);
699
700         return regulator_print_state(buf,
701                         rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704                 regulator_suspend_standby_state_show, NULL);
705
706 static ssize_t regulator_bypass_show(struct device *dev,
707                                      struct device_attribute *attr, char *buf)
708 {
709         struct regulator_dev *rdev = dev_get_drvdata(dev);
710         const char *report;
711         bool bypass;
712         int ret;
713
714         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715
716         if (ret != 0)
717                 report = "unknown";
718         else if (bypass)
719                 report = "enabled";
720         else
721                 report = "disabled";
722
723         return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726                    regulator_bypass_show, NULL);
727
728 /* Calculate the new optimum regulator operating mode based on the new total
729  * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732         struct regulator *sibling;
733         int current_uA = 0, output_uV, input_uV, err;
734         unsigned int mode;
735
736         lockdep_assert_held_once(&rdev->mutex);
737
738         /*
739          * first check to see if we can set modes at all, otherwise just
740          * tell the consumer everything is OK.
741          */
742         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743                 return 0;
744
745         if (!rdev->desc->ops->get_optimum_mode &&
746             !rdev->desc->ops->set_load)
747                 return 0;
748
749         if (!rdev->desc->ops->set_mode &&
750             !rdev->desc->ops->set_load)
751                 return -EINVAL;
752
753         /* calc total requested load */
754         list_for_each_entry(sibling, &rdev->consumer_list, list)
755                 current_uA += sibling->uA_load;
756
757         current_uA += rdev->constraints->system_load;
758
759         if (rdev->desc->ops->set_load) {
760                 /* set the optimum mode for our new total regulator load */
761                 err = rdev->desc->ops->set_load(rdev, current_uA);
762                 if (err < 0)
763                         rdev_err(rdev, "failed to set load %d\n", current_uA);
764         } else {
765                 /* get output voltage */
766                 output_uV = _regulator_get_voltage(rdev);
767                 if (output_uV <= 0) {
768                         rdev_err(rdev, "invalid output voltage found\n");
769                         return -EINVAL;
770                 }
771
772                 /* get input voltage */
773                 input_uV = 0;
774                 if (rdev->supply)
775                         input_uV = regulator_get_voltage(rdev->supply);
776                 if (input_uV <= 0)
777                         input_uV = rdev->constraints->input_uV;
778                 if (input_uV <= 0) {
779                         rdev_err(rdev, "invalid input voltage found\n");
780                         return -EINVAL;
781                 }
782
783                 /* now get the optimum mode for our new total regulator load */
784                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785                                                          output_uV, current_uA);
786
787                 /* check the new mode is allowed */
788                 err = regulator_mode_constrain(rdev, &mode);
789                 if (err < 0) {
790                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791                                  current_uA, input_uV, output_uV);
792                         return err;
793                 }
794
795                 err = rdev->desc->ops->set_mode(rdev, mode);
796                 if (err < 0)
797                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798         }
799
800         return err;
801 }
802
803 static int suspend_set_state(struct regulator_dev *rdev,
804                                     suspend_state_t state)
805 {
806         int ret = 0;
807         struct regulator_state *rstate;
808
809         rstate = regulator_get_suspend_state(rdev, state);
810         if (rstate == NULL)
811                 return 0;
812
813         /* If we have no suspend mode configration don't set anything;
814          * only warn if the driver implements set_suspend_voltage or
815          * set_suspend_mode callback.
816          */
817         if (rstate->enabled != ENABLE_IN_SUSPEND &&
818             rstate->enabled != DISABLE_IN_SUSPEND) {
819                 if (rdev->desc->ops->set_suspend_voltage ||
820                     rdev->desc->ops->set_suspend_mode)
821                         rdev_warn(rdev, "No configuration\n");
822                 return 0;
823         }
824
825         if (rstate->enabled == ENABLE_IN_SUSPEND &&
826                 rdev->desc->ops->set_suspend_enable)
827                 ret = rdev->desc->ops->set_suspend_enable(rdev);
828         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829                 rdev->desc->ops->set_suspend_disable)
830                 ret = rdev->desc->ops->set_suspend_disable(rdev);
831         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832                 ret = 0;
833
834         if (ret < 0) {
835                 rdev_err(rdev, "failed to enabled/disable\n");
836                 return ret;
837         }
838
839         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841                 if (ret < 0) {
842                         rdev_err(rdev, "failed to set voltage\n");
843                         return ret;
844                 }
845         }
846
847         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849                 if (ret < 0) {
850                         rdev_err(rdev, "failed to set mode\n");
851                         return ret;
852                 }
853         }
854
855         return ret;
856 }
857
858 static void print_constraints(struct regulator_dev *rdev)
859 {
860         struct regulation_constraints *constraints = rdev->constraints;
861         char buf[160] = "";
862         size_t len = sizeof(buf) - 1;
863         int count = 0;
864         int ret;
865
866         if (constraints->min_uV && constraints->max_uV) {
867                 if (constraints->min_uV == constraints->max_uV)
868                         count += scnprintf(buf + count, len - count, "%d mV ",
869                                            constraints->min_uV / 1000);
870                 else
871                         count += scnprintf(buf + count, len - count,
872                                            "%d <--> %d mV ",
873                                            constraints->min_uV / 1000,
874                                            constraints->max_uV / 1000);
875         }
876
877         if (!constraints->min_uV ||
878             constraints->min_uV != constraints->max_uV) {
879                 ret = _regulator_get_voltage(rdev);
880                 if (ret > 0)
881                         count += scnprintf(buf + count, len - count,
882                                            "at %d mV ", ret / 1000);
883         }
884
885         if (constraints->uV_offset)
886                 count += scnprintf(buf + count, len - count, "%dmV offset ",
887                                    constraints->uV_offset / 1000);
888
889         if (constraints->min_uA && constraints->max_uA) {
890                 if (constraints->min_uA == constraints->max_uA)
891                         count += scnprintf(buf + count, len - count, "%d mA ",
892                                            constraints->min_uA / 1000);
893                 else
894                         count += scnprintf(buf + count, len - count,
895                                            "%d <--> %d mA ",
896                                            constraints->min_uA / 1000,
897                                            constraints->max_uA / 1000);
898         }
899
900         if (!constraints->min_uA ||
901             constraints->min_uA != constraints->max_uA) {
902                 ret = _regulator_get_current_limit(rdev);
903                 if (ret > 0)
904                         count += scnprintf(buf + count, len - count,
905                                            "at %d mA ", ret / 1000);
906         }
907
908         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909                 count += scnprintf(buf + count, len - count, "fast ");
910         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911                 count += scnprintf(buf + count, len - count, "normal ");
912         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913                 count += scnprintf(buf + count, len - count, "idle ");
914         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915                 count += scnprintf(buf + count, len - count, "standby");
916
917         if (!count)
918                 scnprintf(buf, len, "no parameters");
919
920         rdev_dbg(rdev, "%s\n", buf);
921
922         if ((constraints->min_uV != constraints->max_uV) &&
923             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924                 rdev_warn(rdev,
925                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929         struct regulation_constraints *constraints)
930 {
931         const struct regulator_ops *ops = rdev->desc->ops;
932         int ret;
933
934         /* do we need to apply the constraint voltage */
935         if (rdev->constraints->apply_uV &&
936             rdev->constraints->min_uV && rdev->constraints->max_uV) {
937                 int target_min, target_max;
938                 int current_uV = _regulator_get_voltage(rdev);
939
940                 if (current_uV == -ENOTRECOVERABLE) {
941                         /* This regulator can't be read and must be initted */
942                         rdev_info(rdev, "Setting %d-%duV\n",
943                                   rdev->constraints->min_uV,
944                                   rdev->constraints->max_uV);
945                         _regulator_do_set_voltage(rdev,
946                                                   rdev->constraints->min_uV,
947                                                   rdev->constraints->max_uV);
948                         current_uV = _regulator_get_voltage(rdev);
949                 }
950
951                 if (current_uV < 0) {
952                         rdev_err(rdev,
953                                  "failed to get the current voltage(%d)\n",
954                                  current_uV);
955                         return current_uV;
956                 }
957
958                 /*
959                  * If we're below the minimum voltage move up to the
960                  * minimum voltage, if we're above the maximum voltage
961                  * then move down to the maximum.
962                  */
963                 target_min = current_uV;
964                 target_max = current_uV;
965
966                 if (current_uV < rdev->constraints->min_uV) {
967                         target_min = rdev->constraints->min_uV;
968                         target_max = rdev->constraints->min_uV;
969                 }
970
971                 if (current_uV > rdev->constraints->max_uV) {
972                         target_min = rdev->constraints->max_uV;
973                         target_max = rdev->constraints->max_uV;
974                 }
975
976                 if (target_min != current_uV || target_max != current_uV) {
977                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978                                   current_uV, target_min, target_max);
979                         ret = _regulator_do_set_voltage(
980                                 rdev, target_min, target_max);
981                         if (ret < 0) {
982                                 rdev_err(rdev,
983                                         "failed to apply %d-%duV constraint(%d)\n",
984                                         target_min, target_max, ret);
985                                 return ret;
986                         }
987                 }
988         }
989
990         /* constrain machine-level voltage specs to fit
991          * the actual range supported by this regulator.
992          */
993         if (ops->list_voltage && rdev->desc->n_voltages) {
994                 int     count = rdev->desc->n_voltages;
995                 int     i;
996                 int     min_uV = INT_MAX;
997                 int     max_uV = INT_MIN;
998                 int     cmin = constraints->min_uV;
999                 int     cmax = constraints->max_uV;
1000
1001                 /* it's safe to autoconfigure fixed-voltage supplies
1002                    and the constraints are used by list_voltage. */
1003                 if (count == 1 && !cmin) {
1004                         cmin = 1;
1005                         cmax = INT_MAX;
1006                         constraints->min_uV = cmin;
1007                         constraints->max_uV = cmax;
1008                 }
1009
1010                 /* voltage constraints are optional */
1011                 if ((cmin == 0) && (cmax == 0))
1012                         return 0;
1013
1014                 /* else require explicit machine-level constraints */
1015                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016                         rdev_err(rdev, "invalid voltage constraints\n");
1017                         return -EINVAL;
1018                 }
1019
1020                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021                 for (i = 0; i < count; i++) {
1022                         int     value;
1023
1024                         value = ops->list_voltage(rdev, i);
1025                         if (value <= 0)
1026                                 continue;
1027
1028                         /* maybe adjust [min_uV..max_uV] */
1029                         if (value >= cmin && value < min_uV)
1030                                 min_uV = value;
1031                         if (value <= cmax && value > max_uV)
1032                                 max_uV = value;
1033                 }
1034
1035                 /* final: [min_uV..max_uV] valid iff constraints valid */
1036                 if (max_uV < min_uV) {
1037                         rdev_err(rdev,
1038                                  "unsupportable voltage constraints %u-%uuV\n",
1039                                  min_uV, max_uV);
1040                         return -EINVAL;
1041                 }
1042
1043                 /* use regulator's subset of machine constraints */
1044                 if (constraints->min_uV < min_uV) {
1045                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046                                  constraints->min_uV, min_uV);
1047                         constraints->min_uV = min_uV;
1048                 }
1049                 if (constraints->max_uV > max_uV) {
1050                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051                                  constraints->max_uV, max_uV);
1052                         constraints->max_uV = max_uV;
1053                 }
1054         }
1055
1056         return 0;
1057 }
1058
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060         struct regulation_constraints *constraints)
1061 {
1062         const struct regulator_ops *ops = rdev->desc->ops;
1063         int ret;
1064
1065         if (!constraints->min_uA && !constraints->max_uA)
1066                 return 0;
1067
1068         if (constraints->min_uA > constraints->max_uA) {
1069                 rdev_err(rdev, "Invalid current constraints\n");
1070                 return -EINVAL;
1071         }
1072
1073         if (!ops->set_current_limit || !ops->get_current_limit) {
1074                 rdev_warn(rdev, "Operation of current configuration missing\n");
1075                 return 0;
1076         }
1077
1078         /* Set regulator current in constraints range */
1079         ret = ops->set_current_limit(rdev, constraints->min_uA,
1080                         constraints->max_uA);
1081         if (ret < 0) {
1082                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083                 return ret;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090
1091 /**
1092  * set_machine_constraints - sets regulator constraints
1093  * @rdev: regulator source
1094  * @constraints: constraints to apply
1095  *
1096  * Allows platform initialisation code to define and constrain
1097  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1098  * Constraints *must* be set by platform code in order for some
1099  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100  * set_mode.
1101  */
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103         const struct regulation_constraints *constraints)
1104 {
1105         int ret = 0;
1106         const struct regulator_ops *ops = rdev->desc->ops;
1107
1108         if (constraints)
1109                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110                                             GFP_KERNEL);
1111         else
1112                 rdev->constraints = kzalloc(sizeof(*constraints),
1113                                             GFP_KERNEL);
1114         if (!rdev->constraints)
1115                 return -ENOMEM;
1116
1117         ret = machine_constraints_voltage(rdev, rdev->constraints);
1118         if (ret != 0)
1119                 return ret;
1120
1121         ret = machine_constraints_current(rdev, rdev->constraints);
1122         if (ret != 0)
1123                 return ret;
1124
1125         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126                 ret = ops->set_input_current_limit(rdev,
1127                                                    rdev->constraints->ilim_uA);
1128                 if (ret < 0) {
1129                         rdev_err(rdev, "failed to set input limit\n");
1130                         return ret;
1131                 }
1132         }
1133
1134         /* do we need to setup our suspend state */
1135         if (rdev->constraints->initial_state) {
1136                 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137                 if (ret < 0) {
1138                         rdev_err(rdev, "failed to set suspend state\n");
1139                         return ret;
1140                 }
1141         }
1142
1143         if (rdev->constraints->initial_mode) {
1144                 if (!ops->set_mode) {
1145                         rdev_err(rdev, "no set_mode operation\n");
1146                         return -EINVAL;
1147                 }
1148
1149                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150                 if (ret < 0) {
1151                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152                         return ret;
1153                 }
1154         }
1155
1156         /* If the constraints say the regulator should be on at this point
1157          * and we have control then make sure it is enabled.
1158          */
1159         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160                 ret = _regulator_do_enable(rdev);
1161                 if (ret < 0 && ret != -EINVAL) {
1162                         rdev_err(rdev, "failed to enable\n");
1163                         return ret;
1164                 }
1165         }
1166
1167         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168                 && ops->set_ramp_delay) {
1169                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170                 if (ret < 0) {
1171                         rdev_err(rdev, "failed to set ramp_delay\n");
1172                         return ret;
1173                 }
1174         }
1175
1176         if (rdev->constraints->pull_down && ops->set_pull_down) {
1177                 ret = ops->set_pull_down(rdev);
1178                 if (ret < 0) {
1179                         rdev_err(rdev, "failed to set pull down\n");
1180                         return ret;
1181                 }
1182         }
1183
1184         if (rdev->constraints->soft_start && ops->set_soft_start) {
1185                 ret = ops->set_soft_start(rdev);
1186                 if (ret < 0) {
1187                         rdev_err(rdev, "failed to set soft start\n");
1188                         return ret;
1189                 }
1190         }
1191
1192         if (rdev->constraints->over_current_protection
1193                 && ops->set_over_current_protection) {
1194                 ret = ops->set_over_current_protection(rdev);
1195                 if (ret < 0) {
1196                         rdev_err(rdev, "failed to set over current protection\n");
1197                         return ret;
1198                 }
1199         }
1200
1201         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202                 bool ad_state = (rdev->constraints->active_discharge ==
1203                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1204
1205                 ret = ops->set_active_discharge(rdev, ad_state);
1206                 if (ret < 0) {
1207                         rdev_err(rdev, "failed to set active discharge\n");
1208                         return ret;
1209                 }
1210         }
1211
1212         print_constraints(rdev);
1213         return 0;
1214 }
1215
1216 /**
1217  * set_supply - set regulator supply regulator
1218  * @rdev: regulator name
1219  * @supply_rdev: supply regulator name
1220  *
1221  * Called by platform initialisation code to set the supply regulator for this
1222  * regulator. This ensures that a regulators supply will also be enabled by the
1223  * core if it's child is enabled.
1224  */
1225 static int set_supply(struct regulator_dev *rdev,
1226                       struct regulator_dev *supply_rdev)
1227 {
1228         int err;
1229
1230         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1231
1232         if (!try_module_get(supply_rdev->owner))
1233                 return -ENODEV;
1234
1235         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236         if (rdev->supply == NULL) {
1237                 err = -ENOMEM;
1238                 return err;
1239         }
1240         supply_rdev->open_count++;
1241
1242         return 0;
1243 }
1244
1245 /**
1246  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247  * @rdev:         regulator source
1248  * @consumer_dev_name: dev_name() string for device supply applies to
1249  * @supply:       symbolic name for supply
1250  *
1251  * Allows platform initialisation code to map physical regulator
1252  * sources to symbolic names for supplies for use by devices.  Devices
1253  * should use these symbolic names to request regulators, avoiding the
1254  * need to provide board-specific regulator names as platform data.
1255  */
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257                                       const char *consumer_dev_name,
1258                                       const char *supply)
1259 {
1260         struct regulator_map *node;
1261         int has_dev;
1262
1263         if (supply == NULL)
1264                 return -EINVAL;
1265
1266         if (consumer_dev_name != NULL)
1267                 has_dev = 1;
1268         else
1269                 has_dev = 0;
1270
1271         list_for_each_entry(node, &regulator_map_list, list) {
1272                 if (node->dev_name && consumer_dev_name) {
1273                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274                                 continue;
1275                 } else if (node->dev_name || consumer_dev_name) {
1276                         continue;
1277                 }
1278
1279                 if (strcmp(node->supply, supply) != 0)
1280                         continue;
1281
1282                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283                          consumer_dev_name,
1284                          dev_name(&node->regulator->dev),
1285                          node->regulator->desc->name,
1286                          supply,
1287                          dev_name(&rdev->dev), rdev_get_name(rdev));
1288                 return -EBUSY;
1289         }
1290
1291         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292         if (node == NULL)
1293                 return -ENOMEM;
1294
1295         node->regulator = rdev;
1296         node->supply = supply;
1297
1298         if (has_dev) {
1299                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300                 if (node->dev_name == NULL) {
1301                         kfree(node);
1302                         return -ENOMEM;
1303                 }
1304         }
1305
1306         list_add(&node->list, &regulator_map_list);
1307         return 0;
1308 }
1309
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1311 {
1312         struct regulator_map *node, *n;
1313
1314         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315                 if (rdev == node->regulator) {
1316                         list_del(&node->list);
1317                         kfree(node->dev_name);
1318                         kfree(node);
1319                 }
1320         }
1321 }
1322
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325                                           char __user *user_buf,
1326                                           size_t count, loff_t *ppos)
1327 {
1328         const struct regulator *regulator = file->private_data;
1329         const struct regulation_constraints *c = regulator->rdev->constraints;
1330         char *buf;
1331         ssize_t ret;
1332
1333         if (!c)
1334                 return 0;
1335
1336         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337         if (!buf)
1338                 return -ENOMEM;
1339
1340         ret = snprintf(buf, PAGE_SIZE,
1341                         "always_on: %u\n"
1342                         "boot_on: %u\n"
1343                         "apply_uV: %u\n"
1344                         "ramp_disable: %u\n"
1345                         "soft_start: %u\n"
1346                         "pull_down: %u\n"
1347                         "over_current_protection: %u\n",
1348                         c->always_on,
1349                         c->boot_on,
1350                         c->apply_uV,
1351                         c->ramp_disable,
1352                         c->soft_start,
1353                         c->pull_down,
1354                         c->over_current_protection);
1355
1356         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357         kfree(buf);
1358
1359         return ret;
1360 }
1361
1362 #endif
1363
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366         .open = simple_open,
1367         .read = constraint_flags_read_file,
1368         .llseek = default_llseek,
1369 #endif
1370 };
1371
1372 #define REG_STR_SIZE    64
1373
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375                                           struct device *dev,
1376                                           const char *supply_name)
1377 {
1378         struct regulator *regulator;
1379         char buf[REG_STR_SIZE];
1380         int err, size;
1381
1382         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383         if (regulator == NULL)
1384                 return NULL;
1385
1386         regulator_lock(rdev);
1387         regulator->rdev = rdev;
1388         list_add(&regulator->list, &rdev->consumer_list);
1389
1390         if (dev) {
1391                 regulator->dev = dev;
1392
1393                 /* Add a link to the device sysfs entry */
1394                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395                                 dev->kobj.name, supply_name);
1396                 if (size >= REG_STR_SIZE)
1397                         goto overflow_err;
1398
1399                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400                 if (regulator->supply_name == NULL)
1401                         goto overflow_err;
1402
1403                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404                                         buf);
1405                 if (err) {
1406                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1407                                   dev->kobj.name, err);
1408                         /* non-fatal */
1409                 }
1410         } else {
1411                 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412                 if (regulator->supply_name == NULL)
1413                         goto overflow_err;
1414         }
1415
1416         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417                                                 rdev->debugfs);
1418         if (!regulator->debugfs) {
1419                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420         } else {
1421                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422                                    &regulator->uA_load);
1423                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427                 debugfs_create_file("constraint_flags", 0444,
1428                                     regulator->debugfs, regulator,
1429                                     &constraint_flags_fops);
1430         }
1431
1432         /*
1433          * Check now if the regulator is an always on regulator - if
1434          * it is then we don't need to do nearly so much work for
1435          * enable/disable calls.
1436          */
1437         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438             _regulator_is_enabled(rdev))
1439                 regulator->always_on = true;
1440
1441         regulator_unlock(rdev);
1442         return regulator;
1443 overflow_err:
1444         list_del(&regulator->list);
1445         kfree(regulator);
1446         regulator_unlock(rdev);
1447         return NULL;
1448 }
1449
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1451 {
1452         if (rdev->constraints && rdev->constraints->enable_time)
1453                 return rdev->constraints->enable_time;
1454         if (!rdev->desc->ops->enable_time)
1455                 return rdev->desc->enable_time;
1456         return rdev->desc->ops->enable_time(rdev);
1457 }
1458
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460                 struct device *dev, const char *supply)
1461 {
1462         struct regulator_supply_alias *map;
1463
1464         list_for_each_entry(map, &regulator_supply_alias_list, list)
1465                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466                         return map;
1467
1468         return NULL;
1469 }
1470
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1472 {
1473         struct regulator_supply_alias *map;
1474
1475         map = regulator_find_supply_alias(*dev, *supply);
1476         if (map) {
1477                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478                                 *supply, map->alias_supply,
1479                                 dev_name(map->alias_dev));
1480                 *dev = map->alias_dev;
1481                 *supply = map->alias_supply;
1482         }
1483 }
1484
1485 static int regulator_match(struct device *dev, const void *data)
1486 {
1487         struct regulator_dev *r = dev_to_rdev(dev);
1488
1489         return strcmp(rdev_get_name(r), data) == 0;
1490 }
1491
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1493 {
1494         struct device *dev;
1495
1496         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1497
1498         return dev ? dev_to_rdev(dev) : NULL;
1499 }
1500
1501 /**
1502  * regulator_dev_lookup - lookup a regulator device.
1503  * @dev: device for regulator "consumer".
1504  * @supply: Supply name or regulator ID.
1505  *
1506  * If successful, returns a struct regulator_dev that corresponds to the name
1507  * @supply and with the embedded struct device refcount incremented by one.
1508  * The refcount must be dropped by calling put_device().
1509  * On failure one of the following ERR-PTR-encoded values is returned:
1510  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511  * in the future.
1512  */
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514                                                   const char *supply)
1515 {
1516         struct regulator_dev *r = NULL;
1517         struct device_node *node;
1518         struct regulator_map *map;
1519         const char *devname = NULL;
1520
1521         regulator_supply_alias(&dev, &supply);
1522
1523         /* first do a dt based lookup */
1524         if (dev && dev->of_node) {
1525                 node = of_get_regulator(dev, supply);
1526                 if (node) {
1527                         r = of_find_regulator_by_node(node);
1528                         if (r)
1529                                 return r;
1530
1531                         /*
1532                          * We have a node, but there is no device.
1533                          * assume it has not registered yet.
1534                          */
1535                         return ERR_PTR(-EPROBE_DEFER);
1536                 }
1537         }
1538
1539         /* if not found, try doing it non-dt way */
1540         if (dev)
1541                 devname = dev_name(dev);
1542
1543         mutex_lock(&regulator_list_mutex);
1544         list_for_each_entry(map, &regulator_map_list, list) {
1545                 /* If the mapping has a device set up it must match */
1546                 if (map->dev_name &&
1547                     (!devname || strcmp(map->dev_name, devname)))
1548                         continue;
1549
1550                 if (strcmp(map->supply, supply) == 0 &&
1551                     get_device(&map->regulator->dev)) {
1552                         r = map->regulator;
1553                         break;
1554                 }
1555         }
1556         mutex_unlock(&regulator_list_mutex);
1557
1558         if (r)
1559                 return r;
1560
1561         r = regulator_lookup_by_name(supply);
1562         if (r)
1563                 return r;
1564
1565         return ERR_PTR(-ENODEV);
1566 }
1567
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1569 {
1570         struct regulator_dev *r;
1571         struct device *dev = rdev->dev.parent;
1572         int ret;
1573
1574         /* No supply to resovle? */
1575         if (!rdev->supply_name)
1576                 return 0;
1577
1578         /* Supply already resolved? */
1579         if (rdev->supply)
1580                 return 0;
1581
1582         r = regulator_dev_lookup(dev, rdev->supply_name);
1583         if (IS_ERR(r)) {
1584                 ret = PTR_ERR(r);
1585
1586                 /* Did the lookup explicitly defer for us? */
1587                 if (ret == -EPROBE_DEFER)
1588                         return ret;
1589
1590                 if (have_full_constraints()) {
1591                         r = dummy_regulator_rdev;
1592                         get_device(&r->dev);
1593                 } else {
1594                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595                                 rdev->supply_name, rdev->desc->name);
1596                         return -EPROBE_DEFER;
1597                 }
1598         }
1599
1600         /*
1601          * If the supply's parent device is not the same as the
1602          * regulator's parent device, then ensure the parent device
1603          * is bound before we resolve the supply, in case the parent
1604          * device get probe deferred and unregisters the supply.
1605          */
1606         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607                 if (!device_is_bound(r->dev.parent)) {
1608                         put_device(&r->dev);
1609                         return -EPROBE_DEFER;
1610                 }
1611         }
1612
1613         /* Recursively resolve the supply of the supply */
1614         ret = regulator_resolve_supply(r);
1615         if (ret < 0) {
1616                 put_device(&r->dev);
1617                 return ret;
1618         }
1619
1620         ret = set_supply(rdev, r);
1621         if (ret < 0) {
1622                 put_device(&r->dev);
1623                 return ret;
1624         }
1625
1626         /* Cascade always-on state to supply */
1627         if (_regulator_is_enabled(rdev)) {
1628                 ret = regulator_enable(rdev->supply);
1629                 if (ret < 0) {
1630                         _regulator_put(rdev->supply);
1631                         rdev->supply = NULL;
1632                         return ret;
1633                 }
1634         }
1635
1636         return 0;
1637 }
1638
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641                                  enum regulator_get_type get_type)
1642 {
1643         struct regulator_dev *rdev;
1644         struct regulator *regulator;
1645         const char *devname = dev ? dev_name(dev) : "deviceless";
1646         int ret;
1647
1648         if (get_type >= MAX_GET_TYPE) {
1649                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650                 return ERR_PTR(-EINVAL);
1651         }
1652
1653         if (id == NULL) {
1654                 pr_err("get() with no identifier\n");
1655                 return ERR_PTR(-EINVAL);
1656         }
1657
1658         rdev = regulator_dev_lookup(dev, id);
1659         if (IS_ERR(rdev)) {
1660                 ret = PTR_ERR(rdev);
1661
1662                 /*
1663                  * If regulator_dev_lookup() fails with error other
1664                  * than -ENODEV our job here is done, we simply return it.
1665                  */
1666                 if (ret != -ENODEV)
1667                         return ERR_PTR(ret);
1668
1669                 if (!have_full_constraints()) {
1670                         dev_warn(dev,
1671                                  "incomplete constraints, dummy supplies not allowed\n");
1672                         return ERR_PTR(-ENODEV);
1673                 }
1674
1675                 switch (get_type) {
1676                 case NORMAL_GET:
1677                         /*
1678                          * Assume that a regulator is physically present and
1679                          * enabled, even if it isn't hooked up, and just
1680                          * provide a dummy.
1681                          */
1682                         dev_warn(dev,
1683                                  "%s supply %s not found, using dummy regulator\n",
1684                                  devname, id);
1685                         rdev = dummy_regulator_rdev;
1686                         get_device(&rdev->dev);
1687                         break;
1688
1689                 case EXCLUSIVE_GET:
1690                         dev_warn(dev,
1691                                  "dummy supplies not allowed for exclusive requests\n");
1692                         /* fall through */
1693
1694                 default:
1695                         return ERR_PTR(-ENODEV);
1696                 }
1697         }
1698
1699         if (rdev->exclusive) {
1700                 regulator = ERR_PTR(-EPERM);
1701                 put_device(&rdev->dev);
1702                 return regulator;
1703         }
1704
1705         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706                 regulator = ERR_PTR(-EBUSY);
1707                 put_device(&rdev->dev);
1708                 return regulator;
1709         }
1710
1711         ret = regulator_resolve_supply(rdev);
1712         if (ret < 0) {
1713                 regulator = ERR_PTR(ret);
1714                 put_device(&rdev->dev);
1715                 return regulator;
1716         }
1717
1718         if (!try_module_get(rdev->owner)) {
1719                 regulator = ERR_PTR(-EPROBE_DEFER);
1720                 put_device(&rdev->dev);
1721                 return regulator;
1722         }
1723
1724         regulator = create_regulator(rdev, dev, id);
1725         if (regulator == NULL) {
1726                 regulator = ERR_PTR(-ENOMEM);
1727                 put_device(&rdev->dev);
1728                 module_put(rdev->owner);
1729                 return regulator;
1730         }
1731
1732         rdev->open_count++;
1733         if (get_type == EXCLUSIVE_GET) {
1734                 rdev->exclusive = 1;
1735
1736                 ret = _regulator_is_enabled(rdev);
1737                 if (ret > 0)
1738                         rdev->use_count = 1;
1739                 else
1740                         rdev->use_count = 0;
1741         }
1742
1743         device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1744
1745         return regulator;
1746 }
1747
1748 /**
1749  * regulator_get - lookup and obtain a reference to a regulator.
1750  * @dev: device for regulator "consumer"
1751  * @id: Supply name or regulator ID.
1752  *
1753  * Returns a struct regulator corresponding to the regulator producer,
1754  * or IS_ERR() condition containing errno.
1755  *
1756  * Use of supply names configured via regulator_set_device_supply() is
1757  * strongly encouraged.  It is recommended that the supply name used
1758  * should match the name used for the supply and/or the relevant
1759  * device pins in the datasheet.
1760  */
1761 struct regulator *regulator_get(struct device *dev, const char *id)
1762 {
1763         return _regulator_get(dev, id, NORMAL_GET);
1764 }
1765 EXPORT_SYMBOL_GPL(regulator_get);
1766
1767 /**
1768  * regulator_get_exclusive - obtain exclusive access to a regulator.
1769  * @dev: device for regulator "consumer"
1770  * @id: Supply name or regulator ID.
1771  *
1772  * Returns a struct regulator corresponding to the regulator producer,
1773  * or IS_ERR() condition containing errno.  Other consumers will be
1774  * unable to obtain this regulator while this reference is held and the
1775  * use count for the regulator will be initialised to reflect the current
1776  * state of the regulator.
1777  *
1778  * This is intended for use by consumers which cannot tolerate shared
1779  * use of the regulator such as those which need to force the
1780  * regulator off for correct operation of the hardware they are
1781  * controlling.
1782  *
1783  * Use of supply names configured via regulator_set_device_supply() is
1784  * strongly encouraged.  It is recommended that the supply name used
1785  * should match the name used for the supply and/or the relevant
1786  * device pins in the datasheet.
1787  */
1788 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1789 {
1790         return _regulator_get(dev, id, EXCLUSIVE_GET);
1791 }
1792 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1793
1794 /**
1795  * regulator_get_optional - obtain optional access to a regulator.
1796  * @dev: device for regulator "consumer"
1797  * @id: Supply name or regulator ID.
1798  *
1799  * Returns a struct regulator corresponding to the regulator producer,
1800  * or IS_ERR() condition containing errno.
1801  *
1802  * This is intended for use by consumers for devices which can have
1803  * some supplies unconnected in normal use, such as some MMC devices.
1804  * It can allow the regulator core to provide stub supplies for other
1805  * supplies requested using normal regulator_get() calls without
1806  * disrupting the operation of drivers that can handle absent
1807  * supplies.
1808  *
1809  * Use of supply names configured via regulator_set_device_supply() is
1810  * strongly encouraged.  It is recommended that the supply name used
1811  * should match the name used for the supply and/or the relevant
1812  * device pins in the datasheet.
1813  */
1814 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1815 {
1816         return _regulator_get(dev, id, OPTIONAL_GET);
1817 }
1818 EXPORT_SYMBOL_GPL(regulator_get_optional);
1819
1820 /* regulator_list_mutex lock held by regulator_put() */
1821 static void _regulator_put(struct regulator *regulator)
1822 {
1823         struct regulator_dev *rdev;
1824
1825         if (IS_ERR_OR_NULL(regulator))
1826                 return;
1827
1828         lockdep_assert_held_once(&regulator_list_mutex);
1829
1830         rdev = regulator->rdev;
1831
1832         debugfs_remove_recursive(regulator->debugfs);
1833
1834         if (regulator->dev) {
1835                 int count = 0;
1836                 struct regulator *r;
1837
1838                 list_for_each_entry(r, &rdev->consumer_list, list)
1839                         if (r->dev == regulator->dev)
1840                                 count++;
1841
1842                 if (count == 1)
1843                         device_link_remove(regulator->dev, &rdev->dev);
1844
1845                 /* remove any sysfs entries */
1846                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1847         }
1848
1849         regulator_lock(rdev);
1850         list_del(&regulator->list);
1851
1852         rdev->open_count--;
1853         rdev->exclusive = 0;
1854         put_device(&rdev->dev);
1855         regulator_unlock(rdev);
1856
1857         kfree_const(regulator->supply_name);
1858         kfree(regulator);
1859
1860         module_put(rdev->owner);
1861 }
1862
1863 /**
1864  * regulator_put - "free" the regulator source
1865  * @regulator: regulator source
1866  *
1867  * Note: drivers must ensure that all regulator_enable calls made on this
1868  * regulator source are balanced by regulator_disable calls prior to calling
1869  * this function.
1870  */
1871 void regulator_put(struct regulator *regulator)
1872 {
1873         mutex_lock(&regulator_list_mutex);
1874         _regulator_put(regulator);
1875         mutex_unlock(&regulator_list_mutex);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_put);
1878
1879 /**
1880  * regulator_register_supply_alias - Provide device alias for supply lookup
1881  *
1882  * @dev: device that will be given as the regulator "consumer"
1883  * @id: Supply name or regulator ID
1884  * @alias_dev: device that should be used to lookup the supply
1885  * @alias_id: Supply name or regulator ID that should be used to lookup the
1886  * supply
1887  *
1888  * All lookups for id on dev will instead be conducted for alias_id on
1889  * alias_dev.
1890  */
1891 int regulator_register_supply_alias(struct device *dev, const char *id,
1892                                     struct device *alias_dev,
1893                                     const char *alias_id)
1894 {
1895         struct regulator_supply_alias *map;
1896
1897         map = regulator_find_supply_alias(dev, id);
1898         if (map)
1899                 return -EEXIST;
1900
1901         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1902         if (!map)
1903                 return -ENOMEM;
1904
1905         map->src_dev = dev;
1906         map->src_supply = id;
1907         map->alias_dev = alias_dev;
1908         map->alias_supply = alias_id;
1909
1910         list_add(&map->list, &regulator_supply_alias_list);
1911
1912         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1913                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1914
1915         return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1918
1919 /**
1920  * regulator_unregister_supply_alias - Remove device alias
1921  *
1922  * @dev: device that will be given as the regulator "consumer"
1923  * @id: Supply name or regulator ID
1924  *
1925  * Remove a lookup alias if one exists for id on dev.
1926  */
1927 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1928 {
1929         struct regulator_supply_alias *map;
1930
1931         map = regulator_find_supply_alias(dev, id);
1932         if (map) {
1933                 list_del(&map->list);
1934                 kfree(map);
1935         }
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1938
1939 /**
1940  * regulator_bulk_register_supply_alias - register multiple aliases
1941  *
1942  * @dev: device that will be given as the regulator "consumer"
1943  * @id: List of supply names or regulator IDs
1944  * @alias_dev: device that should be used to lookup the supply
1945  * @alias_id: List of supply names or regulator IDs that should be used to
1946  * lookup the supply
1947  * @num_id: Number of aliases to register
1948  *
1949  * @return 0 on success, an errno on failure.
1950  *
1951  * This helper function allows drivers to register several supply
1952  * aliases in one operation.  If any of the aliases cannot be
1953  * registered any aliases that were registered will be removed
1954  * before returning to the caller.
1955  */
1956 int regulator_bulk_register_supply_alias(struct device *dev,
1957                                          const char *const *id,
1958                                          struct device *alias_dev,
1959                                          const char *const *alias_id,
1960                                          int num_id)
1961 {
1962         int i;
1963         int ret;
1964
1965         for (i = 0; i < num_id; ++i) {
1966                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1967                                                       alias_id[i]);
1968                 if (ret < 0)
1969                         goto err;
1970         }
1971
1972         return 0;
1973
1974 err:
1975         dev_err(dev,
1976                 "Failed to create supply alias %s,%s -> %s,%s\n",
1977                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1978
1979         while (--i >= 0)
1980                 regulator_unregister_supply_alias(dev, id[i]);
1981
1982         return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1985
1986 /**
1987  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1988  *
1989  * @dev: device that will be given as the regulator "consumer"
1990  * @id: List of supply names or regulator IDs
1991  * @num_id: Number of aliases to unregister
1992  *
1993  * This helper function allows drivers to unregister several supply
1994  * aliases in one operation.
1995  */
1996 void regulator_bulk_unregister_supply_alias(struct device *dev,
1997                                             const char *const *id,
1998                                             int num_id)
1999 {
2000         int i;
2001
2002         for (i = 0; i < num_id; ++i)
2003                 regulator_unregister_supply_alias(dev, id[i]);
2004 }
2005 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2006
2007
2008 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2009 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2010                                 const struct regulator_config *config)
2011 {
2012         struct regulator_enable_gpio *pin;
2013         struct gpio_desc *gpiod;
2014         int ret;
2015
2016         if (config->ena_gpiod)
2017                 gpiod = config->ena_gpiod;
2018         else
2019                 gpiod = gpio_to_desc(config->ena_gpio);
2020
2021         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2022                 if (pin->gpiod == gpiod) {
2023                         rdev_dbg(rdev, "GPIO %d is already used\n",
2024                                 config->ena_gpio);
2025                         goto update_ena_gpio_to_rdev;
2026                 }
2027         }
2028
2029         if (!config->ena_gpiod) {
2030                 ret = gpio_request_one(config->ena_gpio,
2031                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
2032                                        rdev_get_name(rdev));
2033                 if (ret)
2034                         return ret;
2035         }
2036
2037         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2038         if (pin == NULL) {
2039                 if (!config->ena_gpiod)
2040                         gpio_free(config->ena_gpio);
2041                 return -ENOMEM;
2042         }
2043
2044         pin->gpiod = gpiod;
2045         pin->ena_gpio_invert = config->ena_gpio_invert;
2046         list_add(&pin->list, &regulator_ena_gpio_list);
2047
2048 update_ena_gpio_to_rdev:
2049         pin->request_count++;
2050         rdev->ena_pin = pin;
2051         return 0;
2052 }
2053
2054 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2055 {
2056         struct regulator_enable_gpio *pin, *n;
2057
2058         if (!rdev->ena_pin)
2059                 return;
2060
2061         /* Free the GPIO only in case of no use */
2062         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2063                 if (pin->gpiod == rdev->ena_pin->gpiod) {
2064                         if (pin->request_count <= 1) {
2065                                 pin->request_count = 0;
2066                                 gpiod_put(pin->gpiod);
2067                                 list_del(&pin->list);
2068                                 kfree(pin);
2069                                 rdev->ena_pin = NULL;
2070                                 return;
2071                         } else {
2072                                 pin->request_count--;
2073                         }
2074                 }
2075         }
2076 }
2077
2078 /**
2079  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2080  * @rdev: regulator_dev structure
2081  * @enable: enable GPIO at initial use?
2082  *
2083  * GPIO is enabled in case of initial use. (enable_count is 0)
2084  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2085  */
2086 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2087 {
2088         struct regulator_enable_gpio *pin = rdev->ena_pin;
2089
2090         if (!pin)
2091                 return -EINVAL;
2092
2093         if (enable) {
2094                 /* Enable GPIO at initial use */
2095                 if (pin->enable_count == 0)
2096                         gpiod_set_value_cansleep(pin->gpiod,
2097                                                  !pin->ena_gpio_invert);
2098
2099                 pin->enable_count++;
2100         } else {
2101                 if (pin->enable_count > 1) {
2102                         pin->enable_count--;
2103                         return 0;
2104                 }
2105
2106                 /* Disable GPIO if not used */
2107                 if (pin->enable_count <= 1) {
2108                         gpiod_set_value_cansleep(pin->gpiod,
2109                                                  pin->ena_gpio_invert);
2110                         pin->enable_count = 0;
2111                 }
2112         }
2113
2114         return 0;
2115 }
2116
2117 /**
2118  * _regulator_enable_delay - a delay helper function
2119  * @delay: time to delay in microseconds
2120  *
2121  * Delay for the requested amount of time as per the guidelines in:
2122  *
2123  *     Documentation/timers/timers-howto.txt
2124  *
2125  * The assumption here is that regulators will never be enabled in
2126  * atomic context and therefore sleeping functions can be used.
2127  */
2128 static void _regulator_enable_delay(unsigned int delay)
2129 {
2130         unsigned int ms = delay / 1000;
2131         unsigned int us = delay % 1000;
2132
2133         if (ms > 0) {
2134                 /*
2135                  * For small enough values, handle super-millisecond
2136                  * delays in the usleep_range() call below.
2137                  */
2138                 if (ms < 20)
2139                         us += ms * 1000;
2140                 else
2141                         msleep(ms);
2142         }
2143
2144         /*
2145          * Give the scheduler some room to coalesce with any other
2146          * wakeup sources. For delays shorter than 10 us, don't even
2147          * bother setting up high-resolution timers and just busy-
2148          * loop.
2149          */
2150         if (us >= 10)
2151                 usleep_range(us, us + 100);
2152         else
2153                 udelay(us);
2154 }
2155
2156 static int _regulator_do_enable(struct regulator_dev *rdev)
2157 {
2158         int ret, delay;
2159
2160         /* Query before enabling in case configuration dependent.  */
2161         ret = _regulator_get_enable_time(rdev);
2162         if (ret >= 0) {
2163                 delay = ret;
2164         } else {
2165                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2166                 delay = 0;
2167         }
2168
2169         trace_regulator_enable(rdev_get_name(rdev));
2170
2171         if (rdev->desc->off_on_delay) {
2172                 /* if needed, keep a distance of off_on_delay from last time
2173                  * this regulator was disabled.
2174                  */
2175                 unsigned long start_jiffy = jiffies;
2176                 unsigned long intended, max_delay, remaining;
2177
2178                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2179                 intended = rdev->last_off_jiffy + max_delay;
2180
2181                 if (time_before(start_jiffy, intended)) {
2182                         /* calc remaining jiffies to deal with one-time
2183                          * timer wrapping.
2184                          * in case of multiple timer wrapping, either it can be
2185                          * detected by out-of-range remaining, or it cannot be
2186                          * detected and we gets a panelty of
2187                          * _regulator_enable_delay().
2188                          */
2189                         remaining = intended - start_jiffy;
2190                         if (remaining <= max_delay)
2191                                 _regulator_enable_delay(
2192                                                 jiffies_to_usecs(remaining));
2193                 }
2194         }
2195
2196         if (rdev->ena_pin) {
2197                 if (!rdev->ena_gpio_state) {
2198                         ret = regulator_ena_gpio_ctrl(rdev, true);
2199                         if (ret < 0)
2200                                 return ret;
2201                         rdev->ena_gpio_state = 1;
2202                 }
2203         } else if (rdev->desc->ops->enable) {
2204                 ret = rdev->desc->ops->enable(rdev);
2205                 if (ret < 0)
2206                         return ret;
2207         } else {
2208                 return -EINVAL;
2209         }
2210
2211         /* Allow the regulator to ramp; it would be useful to extend
2212          * this for bulk operations so that the regulators can ramp
2213          * together.  */
2214         trace_regulator_enable_delay(rdev_get_name(rdev));
2215
2216         _regulator_enable_delay(delay);
2217
2218         trace_regulator_enable_complete(rdev_get_name(rdev));
2219
2220         return 0;
2221 }
2222
2223 /* locks held by regulator_enable() */
2224 static int _regulator_enable(struct regulator_dev *rdev)
2225 {
2226         int ret;
2227
2228         lockdep_assert_held_once(&rdev->mutex);
2229
2230         /* check voltage and requested load before enabling */
2231         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2232                 drms_uA_update(rdev);
2233
2234         if (rdev->use_count == 0) {
2235                 /* The regulator may on if it's not switchable or left on */
2236                 ret = _regulator_is_enabled(rdev);
2237                 if (ret == -EINVAL || ret == 0) {
2238                         if (!regulator_ops_is_valid(rdev,
2239                                         REGULATOR_CHANGE_STATUS))
2240                                 return -EPERM;
2241
2242                         ret = _regulator_do_enable(rdev);
2243                         if (ret < 0)
2244                                 return ret;
2245
2246                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2247                                              NULL);
2248                 } else if (ret < 0) {
2249                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2250                         return ret;
2251                 }
2252                 /* Fallthrough on positive return values - already enabled */
2253         }
2254
2255         rdev->use_count++;
2256
2257         return 0;
2258 }
2259
2260 /**
2261  * regulator_enable - enable regulator output
2262  * @regulator: regulator source
2263  *
2264  * Request that the regulator be enabled with the regulator output at
2265  * the predefined voltage or current value.  Calls to regulator_enable()
2266  * must be balanced with calls to regulator_disable().
2267  *
2268  * NOTE: the output value can be set by other drivers, boot loader or may be
2269  * hardwired in the regulator.
2270  */
2271 int regulator_enable(struct regulator *regulator)
2272 {
2273         struct regulator_dev *rdev = regulator->rdev;
2274         int ret = 0;
2275
2276         if (regulator->always_on)
2277                 return 0;
2278
2279         if (rdev->supply) {
2280                 ret = regulator_enable(rdev->supply);
2281                 if (ret != 0)
2282                         return ret;
2283         }
2284
2285         mutex_lock(&rdev->mutex);
2286         ret = _regulator_enable(rdev);
2287         mutex_unlock(&rdev->mutex);
2288
2289         if (ret != 0 && rdev->supply)
2290                 regulator_disable(rdev->supply);
2291
2292         return ret;
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_enable);
2295
2296 static int _regulator_do_disable(struct regulator_dev *rdev)
2297 {
2298         int ret;
2299
2300         trace_regulator_disable(rdev_get_name(rdev));
2301
2302         if (rdev->ena_pin) {
2303                 if (rdev->ena_gpio_state) {
2304                         ret = regulator_ena_gpio_ctrl(rdev, false);
2305                         if (ret < 0)
2306                                 return ret;
2307                         rdev->ena_gpio_state = 0;
2308                 }
2309
2310         } else if (rdev->desc->ops->disable) {
2311                 ret = rdev->desc->ops->disable(rdev);
2312                 if (ret != 0)
2313                         return ret;
2314         }
2315
2316         /* cares about last_off_jiffy only if off_on_delay is required by
2317          * device.
2318          */
2319         if (rdev->desc->off_on_delay)
2320                 rdev->last_off_jiffy = jiffies;
2321
2322         trace_regulator_disable_complete(rdev_get_name(rdev));
2323
2324         return 0;
2325 }
2326
2327 /* locks held by regulator_disable() */
2328 static int _regulator_disable(struct regulator_dev *rdev)
2329 {
2330         int ret = 0;
2331
2332         lockdep_assert_held_once(&rdev->mutex);
2333
2334         if (WARN(rdev->use_count <= 0,
2335                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2336                 return -EIO;
2337
2338         /* are we the last user and permitted to disable ? */
2339         if (rdev->use_count == 1 &&
2340             (rdev->constraints && !rdev->constraints->always_on)) {
2341
2342                 /* we are last user */
2343                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2344                         ret = _notifier_call_chain(rdev,
2345                                                    REGULATOR_EVENT_PRE_DISABLE,
2346                                                    NULL);
2347                         if (ret & NOTIFY_STOP_MASK)
2348                                 return -EINVAL;
2349
2350                         ret = _regulator_do_disable(rdev);
2351                         if (ret < 0) {
2352                                 rdev_err(rdev, "failed to disable\n");
2353                                 _notifier_call_chain(rdev,
2354                                                 REGULATOR_EVENT_ABORT_DISABLE,
2355                                                 NULL);
2356                                 return ret;
2357                         }
2358                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2359                                         NULL);
2360                 }
2361
2362                 rdev->use_count = 0;
2363         } else if (rdev->use_count > 1) {
2364                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2365                         drms_uA_update(rdev);
2366
2367                 rdev->use_count--;
2368         }
2369
2370         return ret;
2371 }
2372
2373 /**
2374  * regulator_disable - disable regulator output
2375  * @regulator: regulator source
2376  *
2377  * Disable the regulator output voltage or current.  Calls to
2378  * regulator_enable() must be balanced with calls to
2379  * regulator_disable().
2380  *
2381  * NOTE: this will only disable the regulator output if no other consumer
2382  * devices have it enabled, the regulator device supports disabling and
2383  * machine constraints permit this operation.
2384  */
2385 int regulator_disable(struct regulator *regulator)
2386 {
2387         struct regulator_dev *rdev = regulator->rdev;
2388         int ret = 0;
2389
2390         if (regulator->always_on)
2391                 return 0;
2392
2393         mutex_lock(&rdev->mutex);
2394         ret = _regulator_disable(rdev);
2395         mutex_unlock(&rdev->mutex);
2396
2397         if (ret == 0 && rdev->supply)
2398                 regulator_disable(rdev->supply);
2399
2400         return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_disable);
2403
2404 /* locks held by regulator_force_disable() */
2405 static int _regulator_force_disable(struct regulator_dev *rdev)
2406 {
2407         int ret = 0;
2408
2409         lockdep_assert_held_once(&rdev->mutex);
2410
2411         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2412                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2413         if (ret & NOTIFY_STOP_MASK)
2414                 return -EINVAL;
2415
2416         ret = _regulator_do_disable(rdev);
2417         if (ret < 0) {
2418                 rdev_err(rdev, "failed to force disable\n");
2419                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2420                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2421                 return ret;
2422         }
2423
2424         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2425                         REGULATOR_EVENT_DISABLE, NULL);
2426
2427         return 0;
2428 }
2429
2430 /**
2431  * regulator_force_disable - force disable regulator output
2432  * @regulator: regulator source
2433  *
2434  * Forcibly disable the regulator output voltage or current.
2435  * NOTE: this *will* disable the regulator output even if other consumer
2436  * devices have it enabled. This should be used for situations when device
2437  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2438  */
2439 int regulator_force_disable(struct regulator *regulator)
2440 {
2441         struct regulator_dev *rdev = regulator->rdev;
2442         int ret;
2443
2444         mutex_lock(&rdev->mutex);
2445         regulator->uA_load = 0;
2446         ret = _regulator_force_disable(regulator->rdev);
2447         mutex_unlock(&rdev->mutex);
2448
2449         if (rdev->supply)
2450                 while (rdev->open_count--)
2451                         regulator_disable(rdev->supply);
2452
2453         return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_force_disable);
2456
2457 static void regulator_disable_work(struct work_struct *work)
2458 {
2459         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2460                                                   disable_work.work);
2461         int count, i, ret;
2462
2463         regulator_lock(rdev);
2464
2465         BUG_ON(!rdev->deferred_disables);
2466
2467         count = rdev->deferred_disables;
2468         rdev->deferred_disables = 0;
2469
2470         /*
2471          * Workqueue functions queue the new work instance while the previous
2472          * work instance is being processed. Cancel the queued work instance
2473          * as the work instance under processing does the job of the queued
2474          * work instance.
2475          */
2476         cancel_delayed_work(&rdev->disable_work);
2477
2478         for (i = 0; i < count; i++) {
2479                 ret = _regulator_disable(rdev);
2480                 if (ret != 0)
2481                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2482         }
2483
2484         regulator_unlock(rdev);
2485
2486         if (rdev->supply) {
2487                 for (i = 0; i < count; i++) {
2488                         ret = regulator_disable(rdev->supply);
2489                         if (ret != 0) {
2490                                 rdev_err(rdev,
2491                                          "Supply disable failed: %d\n", ret);
2492                         }
2493                 }
2494         }
2495 }
2496
2497 /**
2498  * regulator_disable_deferred - disable regulator output with delay
2499  * @regulator: regulator source
2500  * @ms: miliseconds until the regulator is disabled
2501  *
2502  * Execute regulator_disable() on the regulator after a delay.  This
2503  * is intended for use with devices that require some time to quiesce.
2504  *
2505  * NOTE: this will only disable the regulator output if no other consumer
2506  * devices have it enabled, the regulator device supports disabling and
2507  * machine constraints permit this operation.
2508  */
2509 int regulator_disable_deferred(struct regulator *regulator, int ms)
2510 {
2511         struct regulator_dev *rdev = regulator->rdev;
2512
2513         if (regulator->always_on)
2514                 return 0;
2515
2516         if (!ms)
2517                 return regulator_disable(regulator);
2518
2519         regulator_lock(rdev);
2520         rdev->deferred_disables++;
2521         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2522                          msecs_to_jiffies(ms));
2523         regulator_unlock(rdev);
2524
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2528
2529 static int _regulator_is_enabled(struct regulator_dev *rdev)
2530 {
2531         /* A GPIO control always takes precedence */
2532         if (rdev->ena_pin)
2533                 return rdev->ena_gpio_state;
2534
2535         /* If we don't know then assume that the regulator is always on */
2536         if (!rdev->desc->ops->is_enabled)
2537                 return 1;
2538
2539         return rdev->desc->ops->is_enabled(rdev);
2540 }
2541
2542 static int _regulator_list_voltage(struct regulator_dev *rdev,
2543                                    unsigned selector, int lock)
2544 {
2545         const struct regulator_ops *ops = rdev->desc->ops;
2546         int ret;
2547
2548         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2549                 return rdev->desc->fixed_uV;
2550
2551         if (ops->list_voltage) {
2552                 if (selector >= rdev->desc->n_voltages)
2553                         return -EINVAL;
2554                 if (lock)
2555                         regulator_lock(rdev);
2556                 ret = ops->list_voltage(rdev, selector);
2557                 if (lock)
2558                         regulator_unlock(rdev);
2559         } else if (rdev->is_switch && rdev->supply) {
2560                 ret = _regulator_list_voltage(rdev->supply->rdev,
2561                                               selector, lock);
2562         } else {
2563                 return -EINVAL;
2564         }
2565
2566         if (ret > 0) {
2567                 if (ret < rdev->constraints->min_uV)
2568                         ret = 0;
2569                 else if (ret > rdev->constraints->max_uV)
2570                         ret = 0;
2571         }
2572
2573         return ret;
2574 }
2575
2576 /**
2577  * regulator_is_enabled - is the regulator output enabled
2578  * @regulator: regulator source
2579  *
2580  * Returns positive if the regulator driver backing the source/client
2581  * has requested that the device be enabled, zero if it hasn't, else a
2582  * negative errno code.
2583  *
2584  * Note that the device backing this regulator handle can have multiple
2585  * users, so it might be enabled even if regulator_enable() was never
2586  * called for this particular source.
2587  */
2588 int regulator_is_enabled(struct regulator *regulator)
2589 {
2590         int ret;
2591
2592         if (regulator->always_on)
2593                 return 1;
2594
2595         mutex_lock(&regulator->rdev->mutex);
2596         ret = _regulator_is_enabled(regulator->rdev);
2597         mutex_unlock(&regulator->rdev->mutex);
2598
2599         return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2602
2603 /**
2604  * regulator_count_voltages - count regulator_list_voltage() selectors
2605  * @regulator: regulator source
2606  *
2607  * Returns number of selectors, or negative errno.  Selectors are
2608  * numbered starting at zero, and typically correspond to bitfields
2609  * in hardware registers.
2610  */
2611 int regulator_count_voltages(struct regulator *regulator)
2612 {
2613         struct regulator_dev    *rdev = regulator->rdev;
2614
2615         if (rdev->desc->n_voltages)
2616                 return rdev->desc->n_voltages;
2617
2618         if (!rdev->is_switch || !rdev->supply)
2619                 return -EINVAL;
2620
2621         return regulator_count_voltages(rdev->supply);
2622 }
2623 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2624
2625 /**
2626  * regulator_list_voltage - enumerate supported voltages
2627  * @regulator: regulator source
2628  * @selector: identify voltage to list
2629  * Context: can sleep
2630  *
2631  * Returns a voltage that can be passed to @regulator_set_voltage(),
2632  * zero if this selector code can't be used on this system, or a
2633  * negative errno.
2634  */
2635 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2636 {
2637         return _regulator_list_voltage(regulator->rdev, selector, 1);
2638 }
2639 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2640
2641 /**
2642  * regulator_get_regmap - get the regulator's register map
2643  * @regulator: regulator source
2644  *
2645  * Returns the register map for the given regulator, or an ERR_PTR value
2646  * if the regulator doesn't use regmap.
2647  */
2648 struct regmap *regulator_get_regmap(struct regulator *regulator)
2649 {
2650         struct regmap *map = regulator->rdev->regmap;
2651
2652         return map ? map : ERR_PTR(-EOPNOTSUPP);
2653 }
2654
2655 /**
2656  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2657  * @regulator: regulator source
2658  * @vsel_reg: voltage selector register, output parameter
2659  * @vsel_mask: mask for voltage selector bitfield, output parameter
2660  *
2661  * Returns the hardware register offset and bitmask used for setting the
2662  * regulator voltage. This might be useful when configuring voltage-scaling
2663  * hardware or firmware that can make I2C requests behind the kernel's back,
2664  * for example.
2665  *
2666  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2667  * and 0 is returned, otherwise a negative errno is returned.
2668  */
2669 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2670                                          unsigned *vsel_reg,
2671                                          unsigned *vsel_mask)
2672 {
2673         struct regulator_dev *rdev = regulator->rdev;
2674         const struct regulator_ops *ops = rdev->desc->ops;
2675
2676         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2677                 return -EOPNOTSUPP;
2678
2679         *vsel_reg = rdev->desc->vsel_reg;
2680         *vsel_mask = rdev->desc->vsel_mask;
2681
2682          return 0;
2683 }
2684 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2685
2686 /**
2687  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2688  * @regulator: regulator source
2689  * @selector: identify voltage to list
2690  *
2691  * Converts the selector to a hardware-specific voltage selector that can be
2692  * directly written to the regulator registers. The address of the voltage
2693  * register can be determined by calling @regulator_get_hardware_vsel_register.
2694  *
2695  * On error a negative errno is returned.
2696  */
2697 int regulator_list_hardware_vsel(struct regulator *regulator,
2698                                  unsigned selector)
2699 {
2700         struct regulator_dev *rdev = regulator->rdev;
2701         const struct regulator_ops *ops = rdev->desc->ops;
2702
2703         if (selector >= rdev->desc->n_voltages)
2704                 return -EINVAL;
2705         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2706                 return -EOPNOTSUPP;
2707
2708         return selector;
2709 }
2710 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2711
2712 /**
2713  * regulator_get_linear_step - return the voltage step size between VSEL values
2714  * @regulator: regulator source
2715  *
2716  * Returns the voltage step size between VSEL values for linear
2717  * regulators, or return 0 if the regulator isn't a linear regulator.
2718  */
2719 unsigned int regulator_get_linear_step(struct regulator *regulator)
2720 {
2721         struct regulator_dev *rdev = regulator->rdev;
2722
2723         return rdev->desc->uV_step;
2724 }
2725 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2726
2727 /**
2728  * regulator_is_supported_voltage - check if a voltage range can be supported
2729  *
2730  * @regulator: Regulator to check.
2731  * @min_uV: Minimum required voltage in uV.
2732  * @max_uV: Maximum required voltage in uV.
2733  *
2734  * Returns a boolean or a negative error code.
2735  */
2736 int regulator_is_supported_voltage(struct regulator *regulator,
2737                                    int min_uV, int max_uV)
2738 {
2739         struct regulator_dev *rdev = regulator->rdev;
2740         int i, voltages, ret;
2741
2742         /* If we can't change voltage check the current voltage */
2743         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2744                 ret = regulator_get_voltage(regulator);
2745                 if (ret >= 0)
2746                         return min_uV <= ret && ret <= max_uV;
2747                 else
2748                         return ret;
2749         }
2750
2751         /* Any voltage within constrains range is fine? */
2752         if (rdev->desc->continuous_voltage_range)
2753                 return min_uV >= rdev->constraints->min_uV &&
2754                                 max_uV <= rdev->constraints->max_uV;
2755
2756         ret = regulator_count_voltages(regulator);
2757         if (ret < 0)
2758                 return ret;
2759         voltages = ret;
2760
2761         for (i = 0; i < voltages; i++) {
2762                 ret = regulator_list_voltage(regulator, i);
2763
2764                 if (ret >= min_uV && ret <= max_uV)
2765                         return 1;
2766         }
2767
2768         return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2771
2772 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2773                                  int max_uV)
2774 {
2775         const struct regulator_desc *desc = rdev->desc;
2776
2777         if (desc->ops->map_voltage)
2778                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2779
2780         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2781                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2782
2783         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2784                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2785
2786         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2787 }
2788
2789 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2790                                        int min_uV, int max_uV,
2791                                        unsigned *selector)
2792 {
2793         struct pre_voltage_change_data data;
2794         int ret;
2795
2796         data.old_uV = _regulator_get_voltage(rdev);
2797         data.min_uV = min_uV;
2798         data.max_uV = max_uV;
2799         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2800                                    &data);
2801         if (ret & NOTIFY_STOP_MASK)
2802                 return -EINVAL;
2803
2804         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2805         if (ret >= 0)
2806                 return ret;
2807
2808         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2809                              (void *)data.old_uV);
2810
2811         return ret;
2812 }
2813
2814 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2815                                            int uV, unsigned selector)
2816 {
2817         struct pre_voltage_change_data data;
2818         int ret;
2819
2820         data.old_uV = _regulator_get_voltage(rdev);
2821         data.min_uV = uV;
2822         data.max_uV = uV;
2823         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2824                                    &data);
2825         if (ret & NOTIFY_STOP_MASK)
2826                 return -EINVAL;
2827
2828         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2829         if (ret >= 0)
2830                 return ret;
2831
2832         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2833                              (void *)data.old_uV);
2834
2835         return ret;
2836 }
2837
2838 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2839                                        int old_uV, int new_uV)
2840 {
2841         unsigned int ramp_delay = 0;
2842
2843         if (rdev->constraints->ramp_delay)
2844                 ramp_delay = rdev->constraints->ramp_delay;
2845         else if (rdev->desc->ramp_delay)
2846                 ramp_delay = rdev->desc->ramp_delay;
2847         else if (rdev->constraints->settling_time)
2848                 return rdev->constraints->settling_time;
2849         else if (rdev->constraints->settling_time_up &&
2850                  (new_uV > old_uV))
2851                 return rdev->constraints->settling_time_up;
2852         else if (rdev->constraints->settling_time_down &&
2853                  (new_uV < old_uV))
2854                 return rdev->constraints->settling_time_down;
2855
2856         if (ramp_delay == 0) {
2857                 rdev_dbg(rdev, "ramp_delay not set\n");
2858                 return 0;
2859         }
2860
2861         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2862 }
2863
2864 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2865                                      int min_uV, int max_uV)
2866 {
2867         int ret;
2868         int delay = 0;
2869         int best_val = 0;
2870         unsigned int selector;
2871         int old_selector = -1;
2872         const struct regulator_ops *ops = rdev->desc->ops;
2873         int old_uV = _regulator_get_voltage(rdev);
2874
2875         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2876
2877         min_uV += rdev->constraints->uV_offset;
2878         max_uV += rdev->constraints->uV_offset;
2879
2880         /*
2881          * If we can't obtain the old selector there is not enough
2882          * info to call set_voltage_time_sel().
2883          */
2884         if (_regulator_is_enabled(rdev) &&
2885             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2886                 old_selector = ops->get_voltage_sel(rdev);
2887                 if (old_selector < 0)
2888                         return old_selector;
2889         }
2890
2891         if (ops->set_voltage) {
2892                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2893                                                   &selector);
2894
2895                 if (ret >= 0) {
2896                         if (ops->list_voltage)
2897                                 best_val = ops->list_voltage(rdev,
2898                                                              selector);
2899                         else
2900                                 best_val = _regulator_get_voltage(rdev);
2901                 }
2902
2903         } else if (ops->set_voltage_sel) {
2904                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2905                 if (ret >= 0) {
2906                         best_val = ops->list_voltage(rdev, ret);
2907                         if (min_uV <= best_val && max_uV >= best_val) {
2908                                 selector = ret;
2909                                 if (old_selector == selector)
2910                                         ret = 0;
2911                                 else
2912                                         ret = _regulator_call_set_voltage_sel(
2913                                                 rdev, best_val, selector);
2914                         } else {
2915                                 ret = -EINVAL;
2916                         }
2917                 }
2918         } else {
2919                 ret = -EINVAL;
2920         }
2921
2922         if (ret)
2923                 goto out;
2924
2925         if (ops->set_voltage_time_sel) {
2926                 /*
2927                  * Call set_voltage_time_sel if successfully obtained
2928                  * old_selector
2929                  */
2930                 if (old_selector >= 0 && old_selector != selector)
2931                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2932                                                           selector);
2933         } else {
2934                 if (old_uV != best_val) {
2935                         if (ops->set_voltage_time)
2936                                 delay = ops->set_voltage_time(rdev, old_uV,
2937                                                               best_val);
2938                         else
2939                                 delay = _regulator_set_voltage_time(rdev,
2940                                                                     old_uV,
2941                                                                     best_val);
2942                 }
2943         }
2944
2945         if (delay < 0) {
2946                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2947                 delay = 0;
2948         }
2949
2950         /* Insert any necessary delays */
2951         if (delay >= 1000) {
2952                 mdelay(delay / 1000);
2953                 udelay(delay % 1000);
2954         } else if (delay) {
2955                 udelay(delay);
2956         }
2957
2958         if (best_val >= 0) {
2959                 unsigned long data = best_val;
2960
2961                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2962                                      (void *)data);
2963         }
2964
2965 out:
2966         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2967
2968         return ret;
2969 }
2970
2971 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2972                                   int min_uV, int max_uV, suspend_state_t state)
2973 {
2974         struct regulator_state *rstate;
2975         int uV, sel;
2976
2977         rstate = regulator_get_suspend_state(rdev, state);
2978         if (rstate == NULL)
2979                 return -EINVAL;
2980
2981         if (min_uV < rstate->min_uV)
2982                 min_uV = rstate->min_uV;
2983         if (max_uV > rstate->max_uV)
2984                 max_uV = rstate->max_uV;
2985
2986         sel = regulator_map_voltage(rdev, min_uV, max_uV);
2987         if (sel < 0)
2988                 return sel;
2989
2990         uV = rdev->desc->ops->list_voltage(rdev, sel);
2991         if (uV >= min_uV && uV <= max_uV)
2992                 rstate->uV = uV;
2993
2994         return 0;
2995 }
2996
2997 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2998                                           int min_uV, int max_uV,
2999                                           suspend_state_t state)
3000 {
3001         struct regulator_dev *rdev = regulator->rdev;
3002         struct regulator_voltage *voltage = &regulator->voltage[state];
3003         int ret = 0;
3004         int old_min_uV, old_max_uV;
3005         int current_uV;
3006         int best_supply_uV = 0;
3007         int supply_change_uV = 0;
3008
3009         /* If we're setting the same range as last time the change
3010          * should be a noop (some cpufreq implementations use the same
3011          * voltage for multiple frequencies, for example).
3012          */
3013         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3014                 goto out;
3015
3016         /* If we're trying to set a range that overlaps the current voltage,
3017          * return successfully even though the regulator does not support
3018          * changing the voltage.
3019          */
3020         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021                 current_uV = _regulator_get_voltage(rdev);
3022                 if (min_uV <= current_uV && current_uV <= max_uV) {
3023                         voltage->min_uV = min_uV;
3024                         voltage->max_uV = max_uV;
3025                         goto out;
3026                 }
3027         }
3028
3029         /* sanity check */
3030         if (!rdev->desc->ops->set_voltage &&
3031             !rdev->desc->ops->set_voltage_sel) {
3032                 ret = -EINVAL;
3033                 goto out;
3034         }
3035
3036         /* constraints check */
3037         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3038         if (ret < 0)
3039                 goto out;
3040
3041         /* restore original values in case of error */
3042         old_min_uV = voltage->min_uV;
3043         old_max_uV = voltage->max_uV;
3044         voltage->min_uV = min_uV;
3045         voltage->max_uV = max_uV;
3046
3047         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3048         if (ret < 0)
3049                 goto out2;
3050
3051         if (rdev->supply &&
3052             regulator_ops_is_valid(rdev->supply->rdev,
3053                                    REGULATOR_CHANGE_VOLTAGE) &&
3054             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3055                                            rdev->desc->ops->get_voltage_sel))) {
3056                 int current_supply_uV;
3057                 int selector;
3058
3059                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3060                 if (selector < 0) {
3061                         ret = selector;
3062                         goto out2;
3063                 }
3064
3065                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3066                 if (best_supply_uV < 0) {
3067                         ret = best_supply_uV;
3068                         goto out2;
3069                 }
3070
3071                 best_supply_uV += rdev->desc->min_dropout_uV;
3072
3073                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3074                 if (current_supply_uV < 0) {
3075                         ret = current_supply_uV;
3076                         goto out2;
3077                 }
3078
3079                 supply_change_uV = best_supply_uV - current_supply_uV;
3080         }
3081
3082         if (supply_change_uV > 0) {
3083                 ret = regulator_set_voltage_unlocked(rdev->supply,
3084                                 best_supply_uV, INT_MAX, state);
3085                 if (ret) {
3086                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3087                                         ret);
3088                         goto out2;
3089                 }
3090         }
3091
3092         if (state == PM_SUSPEND_ON)
3093                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3094         else
3095                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3096                                                         max_uV, state);
3097         if (ret < 0)
3098                 goto out2;
3099
3100         if (supply_change_uV < 0) {
3101                 ret = regulator_set_voltage_unlocked(rdev->supply,
3102                                 best_supply_uV, INT_MAX, state);
3103                 if (ret)
3104                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3105                                         ret);
3106                 /* No need to fail here */
3107                 ret = 0;
3108         }
3109
3110 out:
3111         return ret;
3112 out2:
3113         voltage->min_uV = old_min_uV;
3114         voltage->max_uV = old_max_uV;
3115
3116         return ret;
3117 }
3118
3119 /**
3120  * regulator_set_voltage - set regulator output voltage
3121  * @regulator: regulator source
3122  * @min_uV: Minimum required voltage in uV
3123  * @max_uV: Maximum acceptable voltage in uV
3124  *
3125  * Sets a voltage regulator to the desired output voltage. This can be set
3126  * during any regulator state. IOW, regulator can be disabled or enabled.
3127  *
3128  * If the regulator is enabled then the voltage will change to the new value
3129  * immediately otherwise if the regulator is disabled the regulator will
3130  * output at the new voltage when enabled.
3131  *
3132  * NOTE: If the regulator is shared between several devices then the lowest
3133  * request voltage that meets the system constraints will be used.
3134  * Regulator system constraints must be set for this regulator before
3135  * calling this function otherwise this call will fail.
3136  */
3137 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3138 {
3139         int ret = 0;
3140
3141         regulator_lock_supply(regulator->rdev);
3142
3143         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3144                                              PM_SUSPEND_ON);
3145
3146         regulator_unlock_supply(regulator->rdev);
3147
3148         return ret;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3151
3152 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3153                                            suspend_state_t state, bool en)
3154 {
3155         struct regulator_state *rstate;
3156
3157         rstate = regulator_get_suspend_state(rdev, state);
3158         if (rstate == NULL)
3159                 return -EINVAL;
3160
3161         if (!rstate->changeable)
3162                 return -EPERM;
3163
3164         rstate->enabled = en;
3165
3166         return 0;
3167 }
3168
3169 int regulator_suspend_enable(struct regulator_dev *rdev,
3170                                     suspend_state_t state)
3171 {
3172         return regulator_suspend_toggle(rdev, state, true);
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3175
3176 int regulator_suspend_disable(struct regulator_dev *rdev,
3177                                      suspend_state_t state)
3178 {
3179         struct regulator *regulator;
3180         struct regulator_voltage *voltage;
3181
3182         /*
3183          * if any consumer wants this regulator device keeping on in
3184          * suspend states, don't set it as disabled.
3185          */
3186         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3187                 voltage = &regulator->voltage[state];
3188                 if (voltage->min_uV || voltage->max_uV)
3189                         return 0;
3190         }
3191
3192         return regulator_suspend_toggle(rdev, state, false);
3193 }
3194 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3195
3196 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3197                                           int min_uV, int max_uV,
3198                                           suspend_state_t state)
3199 {
3200         struct regulator_dev *rdev = regulator->rdev;
3201         struct regulator_state *rstate;
3202
3203         rstate = regulator_get_suspend_state(rdev, state);
3204         if (rstate == NULL)
3205                 return -EINVAL;
3206
3207         if (rstate->min_uV == rstate->max_uV) {
3208                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3209                 return -EPERM;
3210         }
3211
3212         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3213 }
3214
3215 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3216                                   int max_uV, suspend_state_t state)
3217 {
3218         int ret = 0;
3219
3220         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3221         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3222                 return -EINVAL;
3223
3224         regulator_lock_supply(regulator->rdev);
3225
3226         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3227                                              max_uV, state);
3228
3229         regulator_unlock_supply(regulator->rdev);
3230
3231         return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3234
3235 /**
3236  * regulator_set_voltage_time - get raise/fall time
3237  * @regulator: regulator source
3238  * @old_uV: starting voltage in microvolts
3239  * @new_uV: target voltage in microvolts
3240  *
3241  * Provided with the starting and ending voltage, this function attempts to
3242  * calculate the time in microseconds required to rise or fall to this new
3243  * voltage.
3244  */
3245 int regulator_set_voltage_time(struct regulator *regulator,
3246                                int old_uV, int new_uV)
3247 {
3248         struct regulator_dev *rdev = regulator->rdev;
3249         const struct regulator_ops *ops = rdev->desc->ops;
3250         int old_sel = -1;
3251         int new_sel = -1;
3252         int voltage;
3253         int i;
3254
3255         if (ops->set_voltage_time)
3256                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3257         else if (!ops->set_voltage_time_sel)
3258                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3259
3260         /* Currently requires operations to do this */
3261         if (!ops->list_voltage || !rdev->desc->n_voltages)
3262                 return -EINVAL;
3263
3264         for (i = 0; i < rdev->desc->n_voltages; i++) {
3265                 /* We only look for exact voltage matches here */
3266                 voltage = regulator_list_voltage(regulator, i);
3267                 if (voltage < 0)
3268                         return -EINVAL;
3269                 if (voltage == 0)
3270                         continue;
3271                 if (voltage == old_uV)
3272                         old_sel = i;
3273                 if (voltage == new_uV)
3274                         new_sel = i;
3275         }
3276
3277         if (old_sel < 0 || new_sel < 0)
3278                 return -EINVAL;
3279
3280         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3281 }
3282 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3283
3284 /**
3285  * regulator_set_voltage_time_sel - get raise/fall time
3286  * @rdev: regulator source device
3287  * @old_selector: selector for starting voltage
3288  * @new_selector: selector for target voltage
3289  *
3290  * Provided with the starting and target voltage selectors, this function
3291  * returns time in microseconds required to rise or fall to this new voltage
3292  *
3293  * Drivers providing ramp_delay in regulation_constraints can use this as their
3294  * set_voltage_time_sel() operation.
3295  */
3296 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3297                                    unsigned int old_selector,
3298                                    unsigned int new_selector)
3299 {
3300         int old_volt, new_volt;
3301
3302         /* sanity check */
3303         if (!rdev->desc->ops->list_voltage)
3304                 return -EINVAL;
3305
3306         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3307         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3308
3309         if (rdev->desc->ops->set_voltage_time)
3310                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3311                                                          new_volt);
3312         else
3313                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3314 }
3315 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3316
3317 /**
3318  * regulator_sync_voltage - re-apply last regulator output voltage
3319  * @regulator: regulator source
3320  *
3321  * Re-apply the last configured voltage.  This is intended to be used
3322  * where some external control source the consumer is cooperating with
3323  * has caused the configured voltage to change.
3324  */
3325 int regulator_sync_voltage(struct regulator *regulator)
3326 {
3327         struct regulator_dev *rdev = regulator->rdev;
3328         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3329         int ret, min_uV, max_uV;
3330
3331         regulator_lock(rdev);
3332
3333         if (!rdev->desc->ops->set_voltage &&
3334             !rdev->desc->ops->set_voltage_sel) {
3335                 ret = -EINVAL;
3336                 goto out;
3337         }
3338
3339         /* This is only going to work if we've had a voltage configured. */
3340         if (!voltage->min_uV && !voltage->max_uV) {
3341                 ret = -EINVAL;
3342                 goto out;
3343         }
3344
3345         min_uV = voltage->min_uV;
3346         max_uV = voltage->max_uV;
3347
3348         /* This should be a paranoia check... */
3349         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3350         if (ret < 0)
3351                 goto out;
3352
3353         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3354         if (ret < 0)
3355                 goto out;
3356
3357         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3358
3359 out:
3360         regulator_unlock(rdev);
3361         return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3364
3365 static int _regulator_get_voltage(struct regulator_dev *rdev)
3366 {
3367         int sel, ret;
3368         bool bypassed;
3369
3370         if (rdev->desc->ops->get_bypass) {
3371                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3372                 if (ret < 0)
3373                         return ret;
3374                 if (bypassed) {
3375                         /* if bypassed the regulator must have a supply */
3376                         if (!rdev->supply) {
3377                                 rdev_err(rdev,
3378                                          "bypassed regulator has no supply!\n");
3379                                 return -EPROBE_DEFER;
3380                         }
3381
3382                         return _regulator_get_voltage(rdev->supply->rdev);
3383                 }
3384         }
3385
3386         if (rdev->desc->ops->get_voltage_sel) {
3387                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3388                 if (sel < 0)
3389                         return sel;
3390                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3391         } else if (rdev->desc->ops->get_voltage) {
3392                 ret = rdev->desc->ops->get_voltage(rdev);
3393         } else if (rdev->desc->ops->list_voltage) {
3394                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3395         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3396                 ret = rdev->desc->fixed_uV;
3397         } else if (rdev->supply) {
3398                 ret = _regulator_get_voltage(rdev->supply->rdev);
3399         } else {
3400                 return -EINVAL;
3401         }
3402
3403         if (ret < 0)
3404                 return ret;
3405         return ret - rdev->constraints->uV_offset;
3406 }
3407
3408 /**
3409  * regulator_get_voltage - get regulator output voltage
3410  * @regulator: regulator source
3411  *
3412  * This returns the current regulator voltage in uV.
3413  *
3414  * NOTE: If the regulator is disabled it will return the voltage value. This
3415  * function should not be used to determine regulator state.
3416  */
3417 int regulator_get_voltage(struct regulator *regulator)
3418 {
3419         int ret;
3420
3421         regulator_lock_supply(regulator->rdev);
3422
3423         ret = _regulator_get_voltage(regulator->rdev);
3424
3425         regulator_unlock_supply(regulator->rdev);
3426
3427         return ret;
3428 }
3429 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3430
3431 /**
3432  * regulator_set_current_limit - set regulator output current limit
3433  * @regulator: regulator source
3434  * @min_uA: Minimum supported current in uA
3435  * @max_uA: Maximum supported current in uA
3436  *
3437  * Sets current sink to the desired output current. This can be set during
3438  * any regulator state. IOW, regulator can be disabled or enabled.
3439  *
3440  * If the regulator is enabled then the current will change to the new value
3441  * immediately otherwise if the regulator is disabled the regulator will
3442  * output at the new current when enabled.
3443  *
3444  * NOTE: Regulator system constraints must be set for this regulator before
3445  * calling this function otherwise this call will fail.
3446  */
3447 int regulator_set_current_limit(struct regulator *regulator,
3448                                int min_uA, int max_uA)
3449 {
3450         struct regulator_dev *rdev = regulator->rdev;
3451         int ret;
3452
3453         regulator_lock(rdev);
3454
3455         /* sanity check */
3456         if (!rdev->desc->ops->set_current_limit) {
3457                 ret = -EINVAL;
3458                 goto out;
3459         }
3460
3461         /* constraints check */
3462         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3463         if (ret < 0)
3464                 goto out;
3465
3466         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3467 out:
3468         regulator_unlock(rdev);
3469         return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3472
3473 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3474 {
3475         int ret;
3476
3477         regulator_lock(rdev);
3478
3479         /* sanity check */
3480         if (!rdev->desc->ops->get_current_limit) {
3481                 ret = -EINVAL;
3482                 goto out;
3483         }
3484
3485         ret = rdev->desc->ops->get_current_limit(rdev);
3486 out:
3487         regulator_unlock(rdev);
3488         return ret;
3489 }
3490
3491 /**
3492  * regulator_get_current_limit - get regulator output current
3493  * @regulator: regulator source
3494  *
3495  * This returns the current supplied by the specified current sink in uA.
3496  *
3497  * NOTE: If the regulator is disabled it will return the current value. This
3498  * function should not be used to determine regulator state.
3499  */
3500 int regulator_get_current_limit(struct regulator *regulator)
3501 {
3502         return _regulator_get_current_limit(regulator->rdev);
3503 }
3504 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3505
3506 /**
3507  * regulator_set_mode - set regulator operating mode
3508  * @regulator: regulator source
3509  * @mode: operating mode - one of the REGULATOR_MODE constants
3510  *
3511  * Set regulator operating mode to increase regulator efficiency or improve
3512  * regulation performance.
3513  *
3514  * NOTE: Regulator system constraints must be set for this regulator before
3515  * calling this function otherwise this call will fail.
3516  */
3517 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3518 {
3519         struct regulator_dev *rdev = regulator->rdev;
3520         int ret;
3521         int regulator_curr_mode;
3522
3523         regulator_lock(rdev);
3524
3525         /* sanity check */
3526         if (!rdev->desc->ops->set_mode) {
3527                 ret = -EINVAL;
3528                 goto out;
3529         }
3530
3531         /* return if the same mode is requested */
3532         if (rdev->desc->ops->get_mode) {
3533                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3534                 if (regulator_curr_mode == mode) {
3535                         ret = 0;
3536                         goto out;
3537                 }
3538         }
3539
3540         /* constraints check */
3541         ret = regulator_mode_constrain(rdev, &mode);
3542         if (ret < 0)
3543                 goto out;
3544
3545         ret = rdev->desc->ops->set_mode(rdev, mode);
3546 out:
3547         regulator_unlock(rdev);
3548         return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(regulator_set_mode);
3551
3552 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3553 {
3554         int ret;
3555
3556         regulator_lock(rdev);
3557
3558         /* sanity check */
3559         if (!rdev->desc->ops->get_mode) {
3560                 ret = -EINVAL;
3561                 goto out;
3562         }
3563
3564         ret = rdev->desc->ops->get_mode(rdev);
3565 out:
3566         regulator_unlock(rdev);
3567         return ret;
3568 }
3569
3570 /**
3571  * regulator_get_mode - get regulator operating mode
3572  * @regulator: regulator source
3573  *
3574  * Get the current regulator operating mode.
3575  */
3576 unsigned int regulator_get_mode(struct regulator *regulator)
3577 {
3578         return _regulator_get_mode(regulator->rdev);
3579 }
3580 EXPORT_SYMBOL_GPL(regulator_get_mode);
3581
3582 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3583                                         unsigned int *flags)
3584 {
3585         int ret;
3586
3587         regulator_lock(rdev);
3588
3589         /* sanity check */
3590         if (!rdev->desc->ops->get_error_flags) {
3591                 ret = -EINVAL;
3592                 goto out;
3593         }
3594
3595         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3596 out:
3597         regulator_unlock(rdev);
3598         return ret;
3599 }
3600
3601 /**
3602  * regulator_get_error_flags - get regulator error information
3603  * @regulator: regulator source
3604  * @flags: pointer to store error flags
3605  *
3606  * Get the current regulator error information.
3607  */
3608 int regulator_get_error_flags(struct regulator *regulator,
3609                                 unsigned int *flags)
3610 {
3611         return _regulator_get_error_flags(regulator->rdev, flags);
3612 }
3613 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3614
3615 /**
3616  * regulator_set_load - set regulator load
3617  * @regulator: regulator source
3618  * @uA_load: load current
3619  *
3620  * Notifies the regulator core of a new device load. This is then used by
3621  * DRMS (if enabled by constraints) to set the most efficient regulator
3622  * operating mode for the new regulator loading.
3623  *
3624  * Consumer devices notify their supply regulator of the maximum power
3625  * they will require (can be taken from device datasheet in the power
3626  * consumption tables) when they change operational status and hence power
3627  * state. Examples of operational state changes that can affect power
3628  * consumption are :-
3629  *
3630  *    o Device is opened / closed.
3631  *    o Device I/O is about to begin or has just finished.
3632  *    o Device is idling in between work.
3633  *
3634  * This information is also exported via sysfs to userspace.
3635  *
3636  * DRMS will sum the total requested load on the regulator and change
3637  * to the most efficient operating mode if platform constraints allow.
3638  *
3639  * On error a negative errno is returned.
3640  */
3641 int regulator_set_load(struct regulator *regulator, int uA_load)
3642 {
3643         struct regulator_dev *rdev = regulator->rdev;
3644         int ret;
3645
3646         regulator_lock(rdev);
3647         regulator->uA_load = uA_load;
3648         ret = drms_uA_update(rdev);
3649         regulator_unlock(rdev);
3650
3651         return ret;
3652 }
3653 EXPORT_SYMBOL_GPL(regulator_set_load);
3654
3655 /**
3656  * regulator_allow_bypass - allow the regulator to go into bypass mode
3657  *
3658  * @regulator: Regulator to configure
3659  * @enable: enable or disable bypass mode
3660  *
3661  * Allow the regulator to go into bypass mode if all other consumers
3662  * for the regulator also enable bypass mode and the machine
3663  * constraints allow this.  Bypass mode means that the regulator is
3664  * simply passing the input directly to the output with no regulation.
3665  */
3666 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3667 {
3668         struct regulator_dev *rdev = regulator->rdev;
3669         int ret = 0;
3670
3671         if (!rdev->desc->ops->set_bypass)
3672                 return 0;
3673
3674         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3675                 return 0;
3676
3677         regulator_lock(rdev);
3678
3679         if (enable && !regulator->bypass) {
3680                 rdev->bypass_count++;
3681
3682                 if (rdev->bypass_count == rdev->open_count) {
3683                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3684                         if (ret != 0)
3685                                 rdev->bypass_count--;
3686                 }
3687
3688         } else if (!enable && regulator->bypass) {
3689                 rdev->bypass_count--;
3690
3691                 if (rdev->bypass_count != rdev->open_count) {
3692                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3693                         if (ret != 0)
3694                                 rdev->bypass_count++;
3695                 }
3696         }
3697
3698         if (ret == 0)
3699                 regulator->bypass = enable;
3700
3701         regulator_unlock(rdev);
3702
3703         return ret;
3704 }
3705 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3706
3707 /**
3708  * regulator_register_notifier - register regulator event notifier
3709  * @regulator: regulator source
3710  * @nb: notifier block
3711  *
3712  * Register notifier block to receive regulator events.
3713  */
3714 int regulator_register_notifier(struct regulator *regulator,
3715                               struct notifier_block *nb)
3716 {
3717         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3718                                                 nb);
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3721
3722 /**
3723  * regulator_unregister_notifier - unregister regulator event notifier
3724  * @regulator: regulator source
3725  * @nb: notifier block
3726  *
3727  * Unregister regulator event notifier block.
3728  */
3729 int regulator_unregister_notifier(struct regulator *regulator,
3730                                 struct notifier_block *nb)
3731 {
3732         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3733                                                   nb);
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3736
3737 /* notify regulator consumers and downstream regulator consumers.
3738  * Note mutex must be held by caller.
3739  */
3740 static int _notifier_call_chain(struct regulator_dev *rdev,
3741                                   unsigned long event, void *data)
3742 {
3743         /* call rdev chain first */
3744         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3745 }
3746
3747 /**
3748  * regulator_bulk_get - get multiple regulator consumers
3749  *
3750  * @dev:           Device to supply
3751  * @num_consumers: Number of consumers to register
3752  * @consumers:     Configuration of consumers; clients are stored here.
3753  *
3754  * @return 0 on success, an errno on failure.
3755  *
3756  * This helper function allows drivers to get several regulator
3757  * consumers in one operation.  If any of the regulators cannot be
3758  * acquired then any regulators that were allocated will be freed
3759  * before returning to the caller.
3760  */
3761 int regulator_bulk_get(struct device *dev, int num_consumers,
3762                        struct regulator_bulk_data *consumers)
3763 {
3764         int i;
3765         int ret;
3766
3767         for (i = 0; i < num_consumers; i++)
3768                 consumers[i].consumer = NULL;
3769
3770         for (i = 0; i < num_consumers; i++) {
3771                 consumers[i].consumer = regulator_get(dev,
3772                                                       consumers[i].supply);
3773                 if (IS_ERR(consumers[i].consumer)) {
3774                         ret = PTR_ERR(consumers[i].consumer);
3775                         dev_err(dev, "Failed to get supply '%s': %d\n",
3776                                 consumers[i].supply, ret);
3777                         consumers[i].consumer = NULL;
3778                         goto err;
3779                 }
3780         }
3781
3782         return 0;
3783
3784 err:
3785         while (--i >= 0)
3786                 regulator_put(consumers[i].consumer);
3787
3788         return ret;
3789 }
3790 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3791
3792 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3793 {
3794         struct regulator_bulk_data *bulk = data;
3795
3796         bulk->ret = regulator_enable(bulk->consumer);
3797 }
3798
3799 /**
3800  * regulator_bulk_enable - enable multiple regulator consumers
3801  *
3802  * @num_consumers: Number of consumers
3803  * @consumers:     Consumer data; clients are stored here.
3804  * @return         0 on success, an errno on failure
3805  *
3806  * This convenience API allows consumers to enable multiple regulator
3807  * clients in a single API call.  If any consumers cannot be enabled
3808  * then any others that were enabled will be disabled again prior to
3809  * return.
3810  */
3811 int regulator_bulk_enable(int num_consumers,
3812                           struct regulator_bulk_data *consumers)
3813 {
3814         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3815         int i;
3816         int ret = 0;
3817
3818         for (i = 0; i < num_consumers; i++) {
3819                 if (consumers[i].consumer->always_on)
3820                         consumers[i].ret = 0;
3821                 else
3822                         async_schedule_domain(regulator_bulk_enable_async,
3823                                               &consumers[i], &async_domain);
3824         }
3825
3826         async_synchronize_full_domain(&async_domain);
3827
3828         /* If any consumer failed we need to unwind any that succeeded */
3829         for (i = 0; i < num_consumers; i++) {
3830                 if (consumers[i].ret != 0) {
3831                         ret = consumers[i].ret;
3832                         goto err;
3833                 }
3834         }
3835
3836         return 0;
3837
3838 err:
3839         for (i = 0; i < num_consumers; i++) {
3840                 if (consumers[i].ret < 0)
3841                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3842                                consumers[i].ret);
3843                 else
3844                         regulator_disable(consumers[i].consumer);
3845         }
3846
3847         return ret;
3848 }
3849 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3850
3851 /**
3852  * regulator_bulk_disable - disable multiple regulator consumers
3853  *
3854  * @num_consumers: Number of consumers
3855  * @consumers:     Consumer data; clients are stored here.
3856  * @return         0 on success, an errno on failure
3857  *
3858  * This convenience API allows consumers to disable multiple regulator
3859  * clients in a single API call.  If any consumers cannot be disabled
3860  * then any others that were disabled will be enabled again prior to
3861  * return.
3862  */
3863 int regulator_bulk_disable(int num_consumers,
3864                            struct regulator_bulk_data *consumers)
3865 {
3866         int i;
3867         int ret, r;
3868
3869         for (i = num_consumers - 1; i >= 0; --i) {
3870                 ret = regulator_disable(consumers[i].consumer);
3871                 if (ret != 0)
3872                         goto err;
3873         }
3874
3875         return 0;
3876
3877 err:
3878         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3879         for (++i; i < num_consumers; ++i) {
3880                 r = regulator_enable(consumers[i].consumer);
3881                 if (r != 0)
3882                         pr_err("Failed to re-enable %s: %d\n",
3883                                consumers[i].supply, r);
3884         }
3885
3886         return ret;
3887 }
3888 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3889
3890 /**
3891  * regulator_bulk_force_disable - force disable multiple regulator consumers
3892  *
3893  * @num_consumers: Number of consumers
3894  * @consumers:     Consumer data; clients are stored here.
3895  * @return         0 on success, an errno on failure
3896  *
3897  * This convenience API allows consumers to forcibly disable multiple regulator
3898  * clients in a single API call.
3899  * NOTE: This should be used for situations when device damage will
3900  * likely occur if the regulators are not disabled (e.g. over temp).
3901  * Although regulator_force_disable function call for some consumers can
3902  * return error numbers, the function is called for all consumers.
3903  */
3904 int regulator_bulk_force_disable(int num_consumers,
3905                            struct regulator_bulk_data *consumers)
3906 {
3907         int i;
3908         int ret = 0;
3909
3910         for (i = 0; i < num_consumers; i++) {
3911                 consumers[i].ret =
3912                             regulator_force_disable(consumers[i].consumer);
3913
3914                 /* Store first error for reporting */
3915                 if (consumers[i].ret && !ret)
3916                         ret = consumers[i].ret;
3917         }
3918
3919         return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3922
3923 /**
3924  * regulator_bulk_free - free multiple regulator consumers
3925  *
3926  * @num_consumers: Number of consumers
3927  * @consumers:     Consumer data; clients are stored here.
3928  *
3929  * This convenience API allows consumers to free multiple regulator
3930  * clients in a single API call.
3931  */
3932 void regulator_bulk_free(int num_consumers,
3933                          struct regulator_bulk_data *consumers)
3934 {
3935         int i;
3936
3937         for (i = 0; i < num_consumers; i++) {
3938                 regulator_put(consumers[i].consumer);
3939                 consumers[i].consumer = NULL;
3940         }
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3943
3944 /**
3945  * regulator_notifier_call_chain - call regulator event notifier
3946  * @rdev: regulator source
3947  * @event: notifier block
3948  * @data: callback-specific data.
3949  *
3950  * Called by regulator drivers to notify clients a regulator event has
3951  * occurred. We also notify regulator clients downstream.
3952  * Note lock must be held by caller.
3953  */
3954 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3955                                   unsigned long event, void *data)
3956 {
3957         lockdep_assert_held_once(&rdev->mutex);
3958
3959         _notifier_call_chain(rdev, event, data);
3960         return NOTIFY_DONE;
3961
3962 }
3963 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3964
3965 /**
3966  * regulator_mode_to_status - convert a regulator mode into a status
3967  *
3968  * @mode: Mode to convert
3969  *
3970  * Convert a regulator mode into a status.
3971  */
3972 int regulator_mode_to_status(unsigned int mode)
3973 {
3974         switch (mode) {
3975         case REGULATOR_MODE_FAST:
3976                 return REGULATOR_STATUS_FAST;
3977         case REGULATOR_MODE_NORMAL:
3978                 return REGULATOR_STATUS_NORMAL;
3979         case REGULATOR_MODE_IDLE:
3980                 return REGULATOR_STATUS_IDLE;
3981         case REGULATOR_MODE_STANDBY:
3982                 return REGULATOR_STATUS_STANDBY;
3983         default:
3984                 return REGULATOR_STATUS_UNDEFINED;
3985         }
3986 }
3987 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3988
3989 static struct attribute *regulator_dev_attrs[] = {
3990         &dev_attr_name.attr,
3991         &dev_attr_num_users.attr,
3992         &dev_attr_type.attr,
3993         &dev_attr_microvolts.attr,
3994         &dev_attr_microamps.attr,
3995         &dev_attr_opmode.attr,
3996         &dev_attr_state.attr,
3997         &dev_attr_status.attr,
3998         &dev_attr_bypass.attr,
3999         &dev_attr_requested_microamps.attr,
4000         &dev_attr_min_microvolts.attr,
4001         &dev_attr_max_microvolts.attr,
4002         &dev_attr_min_microamps.attr,
4003         &dev_attr_max_microamps.attr,
4004         &dev_attr_suspend_standby_state.attr,
4005         &dev_attr_suspend_mem_state.attr,
4006         &dev_attr_suspend_disk_state.attr,
4007         &dev_attr_suspend_standby_microvolts.attr,
4008         &dev_attr_suspend_mem_microvolts.attr,
4009         &dev_attr_suspend_disk_microvolts.attr,
4010         &dev_attr_suspend_standby_mode.attr,
4011         &dev_attr_suspend_mem_mode.attr,
4012         &dev_attr_suspend_disk_mode.attr,
4013         NULL
4014 };
4015
4016 /*
4017  * To avoid cluttering sysfs (and memory) with useless state, only
4018  * create attributes that can be meaningfully displayed.
4019  */
4020 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4021                                          struct attribute *attr, int idx)
4022 {
4023         struct device *dev = kobj_to_dev(kobj);
4024         struct regulator_dev *rdev = dev_to_rdev(dev);
4025         const struct regulator_ops *ops = rdev->desc->ops;
4026         umode_t mode = attr->mode;
4027
4028         /* these three are always present */
4029         if (attr == &dev_attr_name.attr ||
4030             attr == &dev_attr_num_users.attr ||
4031             attr == &dev_attr_type.attr)
4032                 return mode;
4033
4034         /* some attributes need specific methods to be displayed */
4035         if (attr == &dev_attr_microvolts.attr) {
4036                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4037                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4038                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4039                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4040                         return mode;
4041                 return 0;
4042         }
4043
4044         if (attr == &dev_attr_microamps.attr)
4045                 return ops->get_current_limit ? mode : 0;
4046
4047         if (attr == &dev_attr_opmode.attr)
4048                 return ops->get_mode ? mode : 0;
4049
4050         if (attr == &dev_attr_state.attr)
4051                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4052
4053         if (attr == &dev_attr_status.attr)
4054                 return ops->get_status ? mode : 0;
4055
4056         if (attr == &dev_attr_bypass.attr)
4057                 return ops->get_bypass ? mode : 0;
4058
4059         /* some attributes are type-specific */
4060         if (attr == &dev_attr_requested_microamps.attr)
4061                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4062
4063         /* constraints need specific supporting methods */
4064         if (attr == &dev_attr_min_microvolts.attr ||
4065             attr == &dev_attr_max_microvolts.attr)
4066                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4067
4068         if (attr == &dev_attr_min_microamps.attr ||
4069             attr == &dev_attr_max_microamps.attr)
4070                 return ops->set_current_limit ? mode : 0;
4071
4072         if (attr == &dev_attr_suspend_standby_state.attr ||
4073             attr == &dev_attr_suspend_mem_state.attr ||
4074             attr == &dev_attr_suspend_disk_state.attr)
4075                 return mode;
4076
4077         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4078             attr == &dev_attr_suspend_mem_microvolts.attr ||
4079             attr == &dev_attr_suspend_disk_microvolts.attr)
4080                 return ops->set_suspend_voltage ? mode : 0;
4081
4082         if (attr == &dev_attr_suspend_standby_mode.attr ||
4083             attr == &dev_attr_suspend_mem_mode.attr ||
4084             attr == &dev_attr_suspend_disk_mode.attr)
4085                 return ops->set_suspend_mode ? mode : 0;
4086
4087         return mode;
4088 }
4089
4090 static const struct attribute_group regulator_dev_group = {
4091         .attrs = regulator_dev_attrs,
4092         .is_visible = regulator_attr_is_visible,
4093 };
4094
4095 static const struct attribute_group *regulator_dev_groups[] = {
4096         &regulator_dev_group,
4097         NULL
4098 };
4099
4100 static void regulator_dev_release(struct device *dev)
4101 {
4102         struct regulator_dev *rdev = dev_get_drvdata(dev);
4103
4104         kfree(rdev->constraints);
4105         of_node_put(rdev->dev.of_node);
4106         kfree(rdev);
4107 }
4108
4109 static void rdev_init_debugfs(struct regulator_dev *rdev)
4110 {
4111         struct device *parent = rdev->dev.parent;
4112         const char *rname = rdev_get_name(rdev);
4113         char name[NAME_MAX];
4114
4115         /* Avoid duplicate debugfs directory names */
4116         if (parent && rname == rdev->desc->name) {
4117                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4118                          rname);
4119                 rname = name;
4120         }
4121
4122         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4123         if (!rdev->debugfs) {
4124                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4125                 return;
4126         }
4127
4128         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4129                            &rdev->use_count);
4130         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4131                            &rdev->open_count);
4132         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4133                            &rdev->bypass_count);
4134 }
4135
4136 static int regulator_register_resolve_supply(struct device *dev, void *data)
4137 {
4138         struct regulator_dev *rdev = dev_to_rdev(dev);
4139
4140         if (regulator_resolve_supply(rdev))
4141                 rdev_dbg(rdev, "unable to resolve supply\n");
4142
4143         return 0;
4144 }
4145
4146 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4147 {
4148         struct coupling_desc *c_desc = &rdev->coupling_desc;
4149         int n_coupled = c_desc->n_coupled;
4150         struct regulator_dev *c_rdev;
4151         int i;
4152
4153         for (i = 1; i < n_coupled; i++) {
4154                 /* already resolved */
4155                 if (c_desc->coupled_rdevs[i])
4156                         continue;
4157
4158                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4159
4160                 if (c_rdev) {
4161                         c_desc->coupled_rdevs[i] = c_rdev;
4162                         c_desc->n_resolved++;
4163                 }
4164         }
4165
4166         if (rdev->coupling_desc.n_resolved < n_coupled)
4167                 return -1;
4168         else
4169                 return 0;
4170 }
4171
4172 static int regulator_register_fill_coupling_array(struct device *dev,
4173                                                   void *data)
4174 {
4175         struct regulator_dev *rdev = dev_to_rdev(dev);
4176
4177         if (!IS_ENABLED(CONFIG_OF))
4178                 return 0;
4179
4180         if (regulator_fill_coupling_array(rdev))
4181                 rdev_dbg(rdev, "unable to resolve coupling\n");
4182
4183         return 0;
4184 }
4185
4186 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4187 {
4188         int n_phandles;
4189
4190         if (!IS_ENABLED(CONFIG_OF))
4191                 n_phandles = 0;
4192         else
4193                 n_phandles = of_get_n_coupled(rdev);
4194
4195         if (n_phandles + 1 > MAX_COUPLED) {
4196                 rdev_err(rdev, "too many regulators coupled\n");
4197                 return -EPERM;
4198         }
4199
4200         /*
4201          * Every regulator should always have coupling descriptor filled with
4202          * at least pointer to itself.
4203          */
4204         rdev->coupling_desc.coupled_rdevs[0] = rdev;
4205         rdev->coupling_desc.n_coupled = n_phandles + 1;
4206         rdev->coupling_desc.n_resolved++;
4207
4208         /* regulator isn't coupled */
4209         if (n_phandles == 0)
4210                 return 0;
4211
4212         /* regulator, which can't change its voltage, can't be coupled */
4213         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4214                 rdev_err(rdev, "voltage operation not allowed\n");
4215                 return -EPERM;
4216         }
4217
4218         if (rdev->constraints->max_spread <= 0) {
4219                 rdev_err(rdev, "wrong max_spread value\n");
4220                 return -EPERM;
4221         }
4222
4223         if (!of_check_coupling_data(rdev))
4224                 return -EPERM;
4225
4226         /*
4227          * After everything has been checked, try to fill rdevs array
4228          * with pointers to regulators parsed from device tree. If some
4229          * regulators are not registered yet, retry in late init call
4230          */
4231         regulator_fill_coupling_array(rdev);
4232
4233         return 0;
4234 }
4235
4236 /**
4237  * regulator_register - register regulator
4238  * @regulator_desc: regulator to register
4239  * @cfg: runtime configuration for regulator
4240  *
4241  * Called by regulator drivers to register a regulator.
4242  * Returns a valid pointer to struct regulator_dev on success
4243  * or an ERR_PTR() on error.
4244  */
4245 struct regulator_dev *
4246 regulator_register(const struct regulator_desc *regulator_desc,
4247                    const struct regulator_config *cfg)
4248 {
4249         const struct regulation_constraints *constraints = NULL;
4250         const struct regulator_init_data *init_data;
4251         struct regulator_config *config = NULL;
4252         static atomic_t regulator_no = ATOMIC_INIT(-1);
4253         struct regulator_dev *rdev;
4254         struct device *dev;
4255         int ret, i;
4256
4257         if (regulator_desc == NULL || cfg == NULL)
4258                 return ERR_PTR(-EINVAL);
4259
4260         dev = cfg->dev;
4261         WARN_ON(!dev);
4262
4263         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4264                 return ERR_PTR(-EINVAL);
4265
4266         if (regulator_desc->type != REGULATOR_VOLTAGE &&
4267             regulator_desc->type != REGULATOR_CURRENT)
4268                 return ERR_PTR(-EINVAL);
4269
4270         /* Only one of each should be implemented */
4271         WARN_ON(regulator_desc->ops->get_voltage &&
4272                 regulator_desc->ops->get_voltage_sel);
4273         WARN_ON(regulator_desc->ops->set_voltage &&
4274                 regulator_desc->ops->set_voltage_sel);
4275
4276         /* If we're using selectors we must implement list_voltage. */
4277         if (regulator_desc->ops->get_voltage_sel &&
4278             !regulator_desc->ops->list_voltage) {
4279                 return ERR_PTR(-EINVAL);
4280         }
4281         if (regulator_desc->ops->set_voltage_sel &&
4282             !regulator_desc->ops->list_voltage) {
4283                 return ERR_PTR(-EINVAL);
4284         }
4285
4286         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4287         if (rdev == NULL)
4288                 return ERR_PTR(-ENOMEM);
4289
4290         /*
4291          * Duplicate the config so the driver could override it after
4292          * parsing init data.
4293          */
4294         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4295         if (config == NULL) {
4296                 kfree(rdev);
4297                 return ERR_PTR(-ENOMEM);
4298         }
4299
4300         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4301                                                &rdev->dev.of_node);
4302         if (!init_data) {
4303                 init_data = config->init_data;
4304                 rdev->dev.of_node = of_node_get(config->of_node);
4305         }
4306
4307         mutex_init(&rdev->mutex);
4308         rdev->reg_data = config->driver_data;
4309         rdev->owner = regulator_desc->owner;
4310         rdev->desc = regulator_desc;
4311         if (config->regmap)
4312                 rdev->regmap = config->regmap;
4313         else if (dev_get_regmap(dev, NULL))
4314                 rdev->regmap = dev_get_regmap(dev, NULL);
4315         else if (dev->parent)
4316                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4317         INIT_LIST_HEAD(&rdev->consumer_list);
4318         INIT_LIST_HEAD(&rdev->list);
4319         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4320         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4321
4322         /* preform any regulator specific init */
4323         if (init_data && init_data->regulator_init) {
4324                 ret = init_data->regulator_init(rdev->reg_data);
4325                 if (ret < 0)
4326                         goto clean;
4327         }
4328
4329         if (config->ena_gpiod ||
4330             ((config->ena_gpio || config->ena_gpio_initialized) &&
4331              gpio_is_valid(config->ena_gpio))) {
4332                 mutex_lock(&regulator_list_mutex);
4333                 ret = regulator_ena_gpio_request(rdev, config);
4334                 mutex_unlock(&regulator_list_mutex);
4335                 if (ret != 0) {
4336                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4337                                  config->ena_gpio, ret);
4338                         goto clean;
4339                 }
4340         }
4341
4342         /* register with sysfs */
4343         rdev->dev.class = &regulator_class;
4344         rdev->dev.parent = dev;
4345         dev_set_name(&rdev->dev, "regulator.%lu",
4346                     (unsigned long) atomic_inc_return(&regulator_no));
4347
4348         /* set regulator constraints */
4349         if (init_data)
4350                 constraints = &init_data->constraints;
4351
4352         if (init_data && init_data->supply_regulator)
4353                 rdev->supply_name = init_data->supply_regulator;
4354         else if (regulator_desc->supply_name)
4355                 rdev->supply_name = regulator_desc->supply_name;
4356
4357         /*
4358          * Attempt to resolve the regulator supply, if specified,
4359          * but don't return an error if we fail because we will try
4360          * to resolve it again later as more regulators are added.
4361          */
4362         if (regulator_resolve_supply(rdev))
4363                 rdev_dbg(rdev, "unable to resolve supply\n");
4364
4365         ret = set_machine_constraints(rdev, constraints);
4366         if (ret < 0)
4367                 goto wash;
4368
4369         mutex_lock(&regulator_list_mutex);
4370         ret = regulator_resolve_coupling(rdev);
4371         mutex_unlock(&regulator_list_mutex);
4372
4373         if (ret != 0)
4374                 goto wash;
4375
4376         /* add consumers devices */
4377         if (init_data) {
4378                 mutex_lock(&regulator_list_mutex);
4379                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4380                         ret = set_consumer_device_supply(rdev,
4381                                 init_data->consumer_supplies[i].dev_name,
4382                                 init_data->consumer_supplies[i].supply);
4383                         if (ret < 0) {
4384                                 mutex_unlock(&regulator_list_mutex);
4385                                 dev_err(dev, "Failed to set supply %s\n",
4386                                         init_data->consumer_supplies[i].supply);
4387                                 goto unset_supplies;
4388                         }
4389                 }
4390                 mutex_unlock(&regulator_list_mutex);
4391         }
4392
4393         if (!rdev->desc->ops->get_voltage &&
4394             !rdev->desc->ops->list_voltage &&
4395             !rdev->desc->fixed_uV)
4396                 rdev->is_switch = true;
4397
4398         ret = device_register(&rdev->dev);
4399         if (ret != 0) {
4400                 put_device(&rdev->dev);
4401                 goto unset_supplies;
4402         }
4403
4404         dev_set_drvdata(&rdev->dev, rdev);
4405         rdev_init_debugfs(rdev);
4406
4407         /* try to resolve regulators supply since a new one was registered */
4408         class_for_each_device(&regulator_class, NULL, NULL,
4409                               regulator_register_resolve_supply);
4410         kfree(config);
4411         return rdev;
4412
4413 unset_supplies:
4414         mutex_lock(&regulator_list_mutex);
4415         unset_regulator_supplies(rdev);
4416         mutex_unlock(&regulator_list_mutex);
4417 wash:
4418         kfree(rdev->constraints);
4419         mutex_lock(&regulator_list_mutex);
4420         regulator_ena_gpio_free(rdev);
4421         mutex_unlock(&regulator_list_mutex);
4422 clean:
4423         kfree(rdev);
4424         kfree(config);
4425         return ERR_PTR(ret);
4426 }
4427 EXPORT_SYMBOL_GPL(regulator_register);
4428
4429 /**
4430  * regulator_unregister - unregister regulator
4431  * @rdev: regulator to unregister
4432  *
4433  * Called by regulator drivers to unregister a regulator.
4434  */
4435 void regulator_unregister(struct regulator_dev *rdev)
4436 {
4437         if (rdev == NULL)
4438                 return;
4439
4440         if (rdev->supply) {
4441                 while (rdev->use_count--)
4442                         regulator_disable(rdev->supply);
4443                 regulator_put(rdev->supply);
4444         }
4445         mutex_lock(&regulator_list_mutex);
4446         debugfs_remove_recursive(rdev->debugfs);
4447         flush_work(&rdev->disable_work.work);
4448         WARN_ON(rdev->open_count);
4449         unset_regulator_supplies(rdev);
4450         list_del(&rdev->list);
4451         regulator_ena_gpio_free(rdev);
4452         mutex_unlock(&regulator_list_mutex);
4453         device_unregister(&rdev->dev);
4454 }
4455 EXPORT_SYMBOL_GPL(regulator_unregister);
4456
4457 #ifdef CONFIG_SUSPEND
4458 static int _regulator_suspend(struct device *dev, void *data)
4459 {
4460         struct regulator_dev *rdev = dev_to_rdev(dev);
4461         suspend_state_t *state = data;
4462         int ret;
4463
4464         regulator_lock(rdev);
4465         ret = suspend_set_state(rdev, *state);
4466         regulator_unlock(rdev);
4467
4468         return ret;
4469 }
4470
4471 /**
4472  * regulator_suspend - prepare regulators for system wide suspend
4473  * @state: system suspend state
4474  *
4475  * Configure each regulator with it's suspend operating parameters for state.
4476  */
4477 static int regulator_suspend(struct device *dev)
4478 {
4479         suspend_state_t state = pm_suspend_target_state;
4480
4481         return class_for_each_device(&regulator_class, NULL, &state,
4482                                      _regulator_suspend);
4483 }
4484
4485 static int _regulator_resume(struct device *dev, void *data)
4486 {
4487         int ret = 0;
4488         struct regulator_dev *rdev = dev_to_rdev(dev);
4489         suspend_state_t *state = data;
4490         struct regulator_state *rstate;
4491
4492         rstate = regulator_get_suspend_state(rdev, *state);
4493         if (rstate == NULL)
4494                 return 0;
4495
4496         regulator_lock(rdev);
4497
4498         if (rdev->desc->ops->resume &&
4499             (rstate->enabled == ENABLE_IN_SUSPEND ||
4500              rstate->enabled == DISABLE_IN_SUSPEND))
4501                 ret = rdev->desc->ops->resume(rdev);
4502
4503         regulator_unlock(rdev);
4504
4505         return ret;
4506 }
4507
4508 static int regulator_resume(struct device *dev)
4509 {
4510         suspend_state_t state = pm_suspend_target_state;
4511
4512         return class_for_each_device(&regulator_class, NULL, &state,
4513                                      _regulator_resume);
4514 }
4515
4516 #else /* !CONFIG_SUSPEND */
4517
4518 #define regulator_suspend       NULL
4519 #define regulator_resume        NULL
4520
4521 #endif /* !CONFIG_SUSPEND */
4522
4523 #ifdef CONFIG_PM
4524 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4525         .suspend        = regulator_suspend,
4526         .resume         = regulator_resume,
4527 };
4528 #endif
4529
4530 struct class regulator_class = {
4531         .name = "regulator",
4532         .dev_release = regulator_dev_release,
4533         .dev_groups = regulator_dev_groups,
4534 #ifdef CONFIG_PM
4535         .pm = &regulator_pm_ops,
4536 #endif
4537 };
4538 /**
4539  * regulator_has_full_constraints - the system has fully specified constraints
4540  *
4541  * Calling this function will cause the regulator API to disable all
4542  * regulators which have a zero use count and don't have an always_on
4543  * constraint in a late_initcall.
4544  *
4545  * The intention is that this will become the default behaviour in a
4546  * future kernel release so users are encouraged to use this facility
4547  * now.
4548  */
4549 void regulator_has_full_constraints(void)
4550 {
4551         has_full_constraints = 1;
4552 }
4553 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4554
4555 /**
4556  * rdev_get_drvdata - get rdev regulator driver data
4557  * @rdev: regulator
4558  *
4559  * Get rdev regulator driver private data. This call can be used in the
4560  * regulator driver context.
4561  */
4562 void *rdev_get_drvdata(struct regulator_dev *rdev)
4563 {
4564         return rdev->reg_data;
4565 }
4566 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4567
4568 /**
4569  * regulator_get_drvdata - get regulator driver data
4570  * @regulator: regulator
4571  *
4572  * Get regulator driver private data. This call can be used in the consumer
4573  * driver context when non API regulator specific functions need to be called.
4574  */
4575 void *regulator_get_drvdata(struct regulator *regulator)
4576 {
4577         return regulator->rdev->reg_data;
4578 }
4579 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4580
4581 /**
4582  * regulator_set_drvdata - set regulator driver data
4583  * @regulator: regulator
4584  * @data: data
4585  */
4586 void regulator_set_drvdata(struct regulator *regulator, void *data)
4587 {
4588         regulator->rdev->reg_data = data;
4589 }
4590 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4591
4592 /**
4593  * regulator_get_id - get regulator ID
4594  * @rdev: regulator
4595  */
4596 int rdev_get_id(struct regulator_dev *rdev)
4597 {
4598         return rdev->desc->id;
4599 }
4600 EXPORT_SYMBOL_GPL(rdev_get_id);
4601
4602 struct device *rdev_get_dev(struct regulator_dev *rdev)
4603 {
4604         return &rdev->dev;
4605 }
4606 EXPORT_SYMBOL_GPL(rdev_get_dev);
4607
4608 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4609 {
4610         return reg_init_data->driver_data;
4611 }
4612 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4613
4614 #ifdef CONFIG_DEBUG_FS
4615 static int supply_map_show(struct seq_file *sf, void *data)
4616 {
4617         struct regulator_map *map;
4618
4619         list_for_each_entry(map, &regulator_map_list, list) {
4620                 seq_printf(sf, "%s -> %s.%s\n",
4621                                 rdev_get_name(map->regulator), map->dev_name,
4622                                 map->supply);
4623         }
4624
4625         return 0;
4626 }
4627
4628 static int supply_map_open(struct inode *inode, struct file *file)
4629 {
4630         return single_open(file, supply_map_show, inode->i_private);
4631 }
4632 #endif
4633
4634 static const struct file_operations supply_map_fops = {
4635 #ifdef CONFIG_DEBUG_FS
4636         .open = supply_map_open,
4637         .read = seq_read,
4638         .llseek = seq_lseek,
4639         .release = single_release,
4640 #endif
4641 };
4642
4643 #ifdef CONFIG_DEBUG_FS
4644 struct summary_data {
4645         struct seq_file *s;
4646         struct regulator_dev *parent;
4647         int level;
4648 };
4649
4650 static void regulator_summary_show_subtree(struct seq_file *s,
4651                                            struct regulator_dev *rdev,
4652                                            int level);
4653
4654 static int regulator_summary_show_children(struct device *dev, void *data)
4655 {
4656         struct regulator_dev *rdev = dev_to_rdev(dev);
4657         struct summary_data *summary_data = data;
4658
4659         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4660                 regulator_summary_show_subtree(summary_data->s, rdev,
4661                                                summary_data->level + 1);
4662
4663         return 0;
4664 }
4665
4666 static void regulator_summary_show_subtree(struct seq_file *s,
4667                                            struct regulator_dev *rdev,
4668                                            int level)
4669 {
4670         struct regulation_constraints *c;
4671         struct regulator *consumer;
4672         struct summary_data summary_data;
4673
4674         if (!rdev)
4675                 return;
4676
4677         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4678                    level * 3 + 1, "",
4679                    30 - level * 3, rdev_get_name(rdev),
4680                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4681
4682         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4683         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4684
4685         c = rdev->constraints;
4686         if (c) {
4687                 switch (rdev->desc->type) {
4688                 case REGULATOR_VOLTAGE:
4689                         seq_printf(s, "%5dmV %5dmV ",
4690                                    c->min_uV / 1000, c->max_uV / 1000);
4691                         break;
4692                 case REGULATOR_CURRENT:
4693                         seq_printf(s, "%5dmA %5dmA ",
4694                                    c->min_uA / 1000, c->max_uA / 1000);
4695                         break;
4696                 }
4697         }
4698
4699         seq_puts(s, "\n");
4700
4701         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4702                 if (consumer->dev && consumer->dev->class == &regulator_class)
4703                         continue;
4704
4705                 seq_printf(s, "%*s%-*s ",
4706                            (level + 1) * 3 + 1, "",
4707                            30 - (level + 1) * 3,
4708                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
4709
4710                 switch (rdev->desc->type) {
4711                 case REGULATOR_VOLTAGE:
4712                         seq_printf(s, "%37dmV %5dmV",
4713                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4714                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4715                         break;
4716                 case REGULATOR_CURRENT:
4717                         break;
4718                 }
4719
4720                 seq_puts(s, "\n");
4721         }
4722
4723         summary_data.s = s;
4724         summary_data.level = level;
4725         summary_data.parent = rdev;
4726
4727         class_for_each_device(&regulator_class, NULL, &summary_data,
4728                               regulator_summary_show_children);
4729 }
4730
4731 static int regulator_summary_show_roots(struct device *dev, void *data)
4732 {
4733         struct regulator_dev *rdev = dev_to_rdev(dev);
4734         struct seq_file *s = data;
4735
4736         if (!rdev->supply)
4737                 regulator_summary_show_subtree(s, rdev, 0);
4738
4739         return 0;
4740 }
4741
4742 static int regulator_summary_show(struct seq_file *s, void *data)
4743 {
4744         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4745         seq_puts(s, "-------------------------------------------------------------------------------\n");
4746
4747         class_for_each_device(&regulator_class, NULL, s,
4748                               regulator_summary_show_roots);
4749
4750         return 0;
4751 }
4752
4753 static int regulator_summary_open(struct inode *inode, struct file *file)
4754 {
4755         return single_open(file, regulator_summary_show, inode->i_private);
4756 }
4757 #endif
4758
4759 static const struct file_operations regulator_summary_fops = {
4760 #ifdef CONFIG_DEBUG_FS
4761         .open           = regulator_summary_open,
4762         .read           = seq_read,
4763         .llseek         = seq_lseek,
4764         .release        = single_release,
4765 #endif
4766 };
4767
4768 static int __init regulator_init(void)
4769 {
4770         int ret;
4771
4772         ret = class_register(&regulator_class);
4773
4774         debugfs_root = debugfs_create_dir("regulator", NULL);
4775         if (!debugfs_root)
4776                 pr_warn("regulator: Failed to create debugfs directory\n");
4777
4778         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4779                             &supply_map_fops);
4780
4781         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4782                             NULL, &regulator_summary_fops);
4783
4784         regulator_dummy_init();
4785
4786         return ret;
4787 }
4788
4789 /* init early to allow our consumers to complete system booting */
4790 core_initcall(regulator_init);
4791
4792 static int __init regulator_late_cleanup(struct device *dev, void *data)
4793 {
4794         struct regulator_dev *rdev = dev_to_rdev(dev);
4795         const struct regulator_ops *ops = rdev->desc->ops;
4796         struct regulation_constraints *c = rdev->constraints;
4797         int enabled, ret;
4798
4799         if (c && c->always_on)
4800                 return 0;
4801
4802         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4803                 return 0;
4804
4805         regulator_lock(rdev);
4806
4807         if (rdev->use_count)
4808                 goto unlock;
4809
4810         /* If we can't read the status assume it's on. */
4811         if (ops->is_enabled)
4812                 enabled = ops->is_enabled(rdev);
4813         else
4814                 enabled = 1;
4815
4816         if (!enabled)
4817                 goto unlock;
4818
4819         if (have_full_constraints()) {
4820                 /* We log since this may kill the system if it goes
4821                  * wrong. */
4822                 rdev_info(rdev, "disabling\n");
4823                 ret = _regulator_do_disable(rdev);
4824                 if (ret != 0)
4825                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4826         } else {
4827                 /* The intention is that in future we will
4828                  * assume that full constraints are provided
4829                  * so warn even if we aren't going to do
4830                  * anything here.
4831                  */
4832                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4833         }
4834
4835 unlock:
4836         regulator_unlock(rdev);
4837
4838         return 0;
4839 }
4840
4841 static int __init regulator_init_complete(void)
4842 {
4843         /*
4844          * Since DT doesn't provide an idiomatic mechanism for
4845          * enabling full constraints and since it's much more natural
4846          * with DT to provide them just assume that a DT enabled
4847          * system has full constraints.
4848          */
4849         if (of_have_populated_dt())
4850                 has_full_constraints = true;
4851
4852         /*
4853          * Regulators may had failed to resolve their input supplies
4854          * when were registered, either because the input supply was
4855          * not registered yet or because its parent device was not
4856          * bound yet. So attempt to resolve the input supplies for
4857          * pending regulators before trying to disable unused ones.
4858          */
4859         class_for_each_device(&regulator_class, NULL, NULL,
4860                               regulator_register_resolve_supply);
4861
4862         /* If we have a full configuration then disable any regulators
4863          * we have permission to change the status for and which are
4864          * not in use or always_on.  This is effectively the default
4865          * for DT and ACPI as they have full constraints.
4866          */
4867         class_for_each_device(&regulator_class, NULL, NULL,
4868                               regulator_late_cleanup);
4869
4870         class_for_each_device(&regulator_class, NULL, NULL,
4871                               regulator_register_fill_coupling_array);
4872
4873         return 0;
4874 }
4875 late_initcall_sync(regulator_init_complete);