Merge tag 'asoc-fix-4.17-rc2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / pwm / pwm-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2016
4  *
5  * Author: Gerald Baeza <gerald.baeza@st.com>
6  *
7  * Inspired by timer-stm32.c from Maxime Coquelin
8  *             pwm-atmel.c from Bo Shen
9  */
10
11 #include <linux/mfd/stm32-timers.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/platform_device.h>
15 #include <linux/pwm.h>
16
17 #define CCMR_CHANNEL_SHIFT 8
18 #define CCMR_CHANNEL_MASK  0xFF
19 #define MAX_BREAKINPUT 2
20
21 struct stm32_pwm {
22         struct pwm_chip chip;
23         struct mutex lock; /* protect pwm config/enable */
24         struct clk *clk;
25         struct regmap *regmap;
26         u32 max_arr;
27         bool have_complementary_output;
28 };
29
30 struct stm32_breakinput {
31         u32 index;
32         u32 level;
33         u32 filter;
34 };
35
36 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
37 {
38         return container_of(chip, struct stm32_pwm, chip);
39 }
40
41 static u32 active_channels(struct stm32_pwm *dev)
42 {
43         u32 ccer;
44
45         regmap_read(dev->regmap, TIM_CCER, &ccer);
46
47         return ccer & TIM_CCER_CCXE;
48 }
49
50 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
51 {
52         switch (ch) {
53         case 0:
54                 return regmap_write(dev->regmap, TIM_CCR1, value);
55         case 1:
56                 return regmap_write(dev->regmap, TIM_CCR2, value);
57         case 2:
58                 return regmap_write(dev->regmap, TIM_CCR3, value);
59         case 3:
60                 return regmap_write(dev->regmap, TIM_CCR4, value);
61         }
62         return -EINVAL;
63 }
64
65 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
66                             int duty_ns, int period_ns)
67 {
68         unsigned long long prd, div, dty;
69         unsigned int prescaler = 0;
70         u32 ccmr, mask, shift;
71
72         /* Period and prescaler values depends on clock rate */
73         div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
74
75         do_div(div, NSEC_PER_SEC);
76         prd = div;
77
78         while (div > priv->max_arr) {
79                 prescaler++;
80                 div = prd;
81                 do_div(div, prescaler + 1);
82         }
83
84         prd = div;
85
86         if (prescaler > MAX_TIM_PSC)
87                 return -EINVAL;
88
89         /*
90          * All channels share the same prescaler and counter so when two
91          * channels are active at the same time we can't change them
92          */
93         if (active_channels(priv) & ~(1 << ch * 4)) {
94                 u32 psc, arr;
95
96                 regmap_read(priv->regmap, TIM_PSC, &psc);
97                 regmap_read(priv->regmap, TIM_ARR, &arr);
98
99                 if ((psc != prescaler) || (arr != prd - 1))
100                         return -EBUSY;
101         }
102
103         regmap_write(priv->regmap, TIM_PSC, prescaler);
104         regmap_write(priv->regmap, TIM_ARR, prd - 1);
105         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
106
107         /* Calculate the duty cycles */
108         dty = prd * duty_ns;
109         do_div(dty, period_ns);
110
111         write_ccrx(priv, ch, dty);
112
113         /* Configure output mode */
114         shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
115         ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
116         mask = CCMR_CHANNEL_MASK << shift;
117
118         if (ch < 2)
119                 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
120         else
121                 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
122
123         regmap_update_bits(priv->regmap, TIM_BDTR,
124                            TIM_BDTR_MOE | TIM_BDTR_AOE,
125                            TIM_BDTR_MOE | TIM_BDTR_AOE);
126
127         return 0;
128 }
129
130 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
131                                   enum pwm_polarity polarity)
132 {
133         u32 mask;
134
135         mask = TIM_CCER_CC1P << (ch * 4);
136         if (priv->have_complementary_output)
137                 mask |= TIM_CCER_CC1NP << (ch * 4);
138
139         regmap_update_bits(priv->regmap, TIM_CCER, mask,
140                            polarity == PWM_POLARITY_NORMAL ? 0 : mask);
141
142         return 0;
143 }
144
145 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
146 {
147         u32 mask;
148         int ret;
149
150         ret = clk_enable(priv->clk);
151         if (ret)
152                 return ret;
153
154         /* Enable channel */
155         mask = TIM_CCER_CC1E << (ch * 4);
156         if (priv->have_complementary_output)
157                 mask |= TIM_CCER_CC1NE << (ch * 4);
158
159         regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
160
161         /* Make sure that registers are updated */
162         regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
163
164         /* Enable controller */
165         regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
166
167         return 0;
168 }
169
170 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
171 {
172         u32 mask;
173
174         /* Disable channel */
175         mask = TIM_CCER_CC1E << (ch * 4);
176         if (priv->have_complementary_output)
177                 mask |= TIM_CCER_CC1NE << (ch * 4);
178
179         regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
180
181         /* When all channels are disabled, we can disable the controller */
182         if (!active_channels(priv))
183                 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
184
185         clk_disable(priv->clk);
186 }
187
188 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
189                            struct pwm_state *state)
190 {
191         bool enabled;
192         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
193         int ret;
194
195         enabled = pwm->state.enabled;
196
197         if (enabled && !state->enabled) {
198                 stm32_pwm_disable(priv, pwm->hwpwm);
199                 return 0;
200         }
201
202         if (state->polarity != pwm->state.polarity)
203                 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
204
205         ret = stm32_pwm_config(priv, pwm->hwpwm,
206                                state->duty_cycle, state->period);
207         if (ret)
208                 return ret;
209
210         if (!enabled && state->enabled)
211                 ret = stm32_pwm_enable(priv, pwm->hwpwm);
212
213         return ret;
214 }
215
216 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
217                                   struct pwm_state *state)
218 {
219         struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
220         int ret;
221
222         /* protect common prescaler for all active channels */
223         mutex_lock(&priv->lock);
224         ret = stm32_pwm_apply(chip, pwm, state);
225         mutex_unlock(&priv->lock);
226
227         return ret;
228 }
229
230 static const struct pwm_ops stm32pwm_ops = {
231         .owner = THIS_MODULE,
232         .apply = stm32_pwm_apply_locked,
233 };
234
235 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
236                                     int index, int level, int filter)
237 {
238         u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
239         int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
240         u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
241                                 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
242         u32 bdtr = bke;
243
244         /*
245          * The both bits could be set since only one will be wrote
246          * due to mask value.
247          */
248         if (level)
249                 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
250
251         bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
252
253         regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
254
255         regmap_read(priv->regmap, TIM_BDTR, &bdtr);
256
257         return (bdtr & bke) ? 0 : -EINVAL;
258 }
259
260 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
261                                        struct device_node *np)
262 {
263         struct stm32_breakinput breakinput[MAX_BREAKINPUT];
264         int nb, ret, i, array_size;
265
266         nb = of_property_count_elems_of_size(np, "st,breakinput",
267                                              sizeof(struct stm32_breakinput));
268
269         /*
270          * Because "st,breakinput" parameter is optional do not make probe
271          * failed if it doesn't exist.
272          */
273         if (nb <= 0)
274                 return 0;
275
276         if (nb > MAX_BREAKINPUT)
277                 return -EINVAL;
278
279         array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
280         ret = of_property_read_u32_array(np, "st,breakinput",
281                                          (u32 *)breakinput, array_size);
282         if (ret)
283                 return ret;
284
285         for (i = 0; i < nb && !ret; i++) {
286                 ret = stm32_pwm_set_breakinput(priv,
287                                                breakinput[i].index,
288                                                breakinput[i].level,
289                                                breakinput[i].filter);
290         }
291
292         return ret;
293 }
294
295 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
296 {
297         u32 ccer;
298
299         /*
300          * If complementary bit doesn't exist writing 1 will have no
301          * effect so we can detect it.
302          */
303         regmap_update_bits(priv->regmap,
304                            TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
305         regmap_read(priv->regmap, TIM_CCER, &ccer);
306         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
307
308         priv->have_complementary_output = (ccer != 0);
309 }
310
311 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
312 {
313         u32 ccer;
314         int npwm = 0;
315
316         /*
317          * If channels enable bits don't exist writing 1 will have no
318          * effect so we can detect and count them.
319          */
320         regmap_update_bits(priv->regmap,
321                            TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
322         regmap_read(priv->regmap, TIM_CCER, &ccer);
323         regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
324
325         if (ccer & TIM_CCER_CC1E)
326                 npwm++;
327
328         if (ccer & TIM_CCER_CC2E)
329                 npwm++;
330
331         if (ccer & TIM_CCER_CC3E)
332                 npwm++;
333
334         if (ccer & TIM_CCER_CC4E)
335                 npwm++;
336
337         return npwm;
338 }
339
340 static int stm32_pwm_probe(struct platform_device *pdev)
341 {
342         struct device *dev = &pdev->dev;
343         struct device_node *np = dev->of_node;
344         struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
345         struct stm32_pwm *priv;
346         int ret;
347
348         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
349         if (!priv)
350                 return -ENOMEM;
351
352         mutex_init(&priv->lock);
353         priv->regmap = ddata->regmap;
354         priv->clk = ddata->clk;
355         priv->max_arr = ddata->max_arr;
356
357         if (!priv->regmap || !priv->clk)
358                 return -EINVAL;
359
360         ret = stm32_pwm_apply_breakinputs(priv, np);
361         if (ret)
362                 return ret;
363
364         stm32_pwm_detect_complementary(priv);
365
366         priv->chip.base = -1;
367         priv->chip.dev = dev;
368         priv->chip.ops = &stm32pwm_ops;
369         priv->chip.npwm = stm32_pwm_detect_channels(priv);
370
371         ret = pwmchip_add(&priv->chip);
372         if (ret < 0)
373                 return ret;
374
375         platform_set_drvdata(pdev, priv);
376
377         return 0;
378 }
379
380 static int stm32_pwm_remove(struct platform_device *pdev)
381 {
382         struct stm32_pwm *priv = platform_get_drvdata(pdev);
383         unsigned int i;
384
385         for (i = 0; i < priv->chip.npwm; i++)
386                 pwm_disable(&priv->chip.pwms[i]);
387
388         pwmchip_remove(&priv->chip);
389
390         return 0;
391 }
392
393 static const struct of_device_id stm32_pwm_of_match[] = {
394         { .compatible = "st,stm32-pwm", },
395         { /* end node */ },
396 };
397 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
398
399 static struct platform_driver stm32_pwm_driver = {
400         .probe  = stm32_pwm_probe,
401         .remove = stm32_pwm_remove,
402         .driver = {
403                 .name = "stm32-pwm",
404                 .of_match_table = stm32_pwm_of_match,
405         },
406 };
407 module_platform_driver(stm32_pwm_driver);
408
409 MODULE_ALIAS("platform:stm32-pwm");
410 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
411 MODULE_LICENSE("GPL v2");