Merge tag 'mm-stable-2023-09-04-14-00' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / power / supply / power_supply_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27
28 /* exported for the APM Power driver, APM emulation */
29 struct class *power_supply_class;
30 EXPORT_SYMBOL_GPL(power_supply_class);
31
32 ATOMIC_NOTIFIER_HEAD(power_supply_notifier);
33 EXPORT_SYMBOL_GPL(power_supply_notifier);
34
35 static struct device_type power_supply_dev_type;
36
37 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME     msecs_to_jiffies(10)
38
39 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
40                                          struct power_supply *supply)
41 {
42         int i;
43
44         if (!supply->supplied_from && !supplier->supplied_to)
45                 return false;
46
47         /* Support both supplied_to and supplied_from modes */
48         if (supply->supplied_from) {
49                 if (!supplier->desc->name)
50                         return false;
51                 for (i = 0; i < supply->num_supplies; i++)
52                         if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
53                                 return true;
54         } else {
55                 if (!supply->desc->name)
56                         return false;
57                 for (i = 0; i < supplier->num_supplicants; i++)
58                         if (!strcmp(supplier->supplied_to[i], supply->desc->name))
59                                 return true;
60         }
61
62         return false;
63 }
64
65 static int __power_supply_changed_work(struct device *dev, void *data)
66 {
67         struct power_supply *psy = data;
68         struct power_supply *pst = dev_get_drvdata(dev);
69
70         if (__power_supply_is_supplied_by(psy, pst)) {
71                 if (pst->desc->external_power_changed)
72                         pst->desc->external_power_changed(pst);
73         }
74
75         return 0;
76 }
77
78 static void power_supply_changed_work(struct work_struct *work)
79 {
80         unsigned long flags;
81         struct power_supply *psy = container_of(work, struct power_supply,
82                                                 changed_work);
83
84         dev_dbg(&psy->dev, "%s\n", __func__);
85
86         spin_lock_irqsave(&psy->changed_lock, flags);
87         /*
88          * Check 'changed' here to avoid issues due to race between
89          * power_supply_changed() and this routine. In worst case
90          * power_supply_changed() can be called again just before we take above
91          * lock. During the first call of this routine we will mark 'changed' as
92          * false and it will stay false for the next call as well.
93          */
94         if (likely(psy->changed)) {
95                 psy->changed = false;
96                 spin_unlock_irqrestore(&psy->changed_lock, flags);
97                 class_for_each_device(power_supply_class, NULL, psy,
98                                       __power_supply_changed_work);
99                 power_supply_update_leds(psy);
100                 atomic_notifier_call_chain(&power_supply_notifier,
101                                 PSY_EVENT_PROP_CHANGED, psy);
102                 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
103                 spin_lock_irqsave(&psy->changed_lock, flags);
104         }
105
106         /*
107          * Hold the wakeup_source until all events are processed.
108          * power_supply_changed() might have called again and have set 'changed'
109          * to true.
110          */
111         if (likely(!psy->changed))
112                 pm_relax(&psy->dev);
113         spin_unlock_irqrestore(&psy->changed_lock, flags);
114 }
115
116 void power_supply_changed(struct power_supply *psy)
117 {
118         unsigned long flags;
119
120         dev_dbg(&psy->dev, "%s\n", __func__);
121
122         spin_lock_irqsave(&psy->changed_lock, flags);
123         psy->changed = true;
124         pm_stay_awake(&psy->dev);
125         spin_unlock_irqrestore(&psy->changed_lock, flags);
126         schedule_work(&psy->changed_work);
127 }
128 EXPORT_SYMBOL_GPL(power_supply_changed);
129
130 /*
131  * Notify that power supply was registered after parent finished the probing.
132  *
133  * Often power supply is registered from driver's probe function. However
134  * calling power_supply_changed() directly from power_supply_register()
135  * would lead to execution of get_property() function provided by the driver
136  * too early - before the probe ends.
137  *
138  * Avoid that by waiting on parent's mutex.
139  */
140 static void power_supply_deferred_register_work(struct work_struct *work)
141 {
142         struct power_supply *psy = container_of(work, struct power_supply,
143                                                 deferred_register_work.work);
144
145         if (psy->dev.parent) {
146                 while (!mutex_trylock(&psy->dev.parent->mutex)) {
147                         if (psy->removing)
148                                 return;
149                         msleep(10);
150                 }
151         }
152
153         power_supply_changed(psy);
154
155         if (psy->dev.parent)
156                 mutex_unlock(&psy->dev.parent->mutex);
157 }
158
159 #ifdef CONFIG_OF
160 static int __power_supply_populate_supplied_from(struct device *dev,
161                                                  void *data)
162 {
163         struct power_supply *psy = data;
164         struct power_supply *epsy = dev_get_drvdata(dev);
165         struct device_node *np;
166         int i = 0;
167
168         do {
169                 np = of_parse_phandle(psy->of_node, "power-supplies", i++);
170                 if (!np)
171                         break;
172
173                 if (np == epsy->of_node) {
174                         dev_dbg(&psy->dev, "%s: Found supply : %s\n",
175                                 psy->desc->name, epsy->desc->name);
176                         psy->supplied_from[i-1] = (char *)epsy->desc->name;
177                         psy->num_supplies++;
178                         of_node_put(np);
179                         break;
180                 }
181                 of_node_put(np);
182         } while (np);
183
184         return 0;
185 }
186
187 static int power_supply_populate_supplied_from(struct power_supply *psy)
188 {
189         int error;
190
191         error = class_for_each_device(power_supply_class, NULL, psy,
192                                       __power_supply_populate_supplied_from);
193
194         dev_dbg(&psy->dev, "%s %d\n", __func__, error);
195
196         return error;
197 }
198
199 static int  __power_supply_find_supply_from_node(struct device *dev,
200                                                  void *data)
201 {
202         struct device_node *np = data;
203         struct power_supply *epsy = dev_get_drvdata(dev);
204
205         /* returning non-zero breaks out of class_for_each_device loop */
206         if (epsy->of_node == np)
207                 return 1;
208
209         return 0;
210 }
211
212 static int power_supply_find_supply_from_node(struct device_node *supply_node)
213 {
214         int error;
215
216         /*
217          * class_for_each_device() either returns its own errors or values
218          * returned by __power_supply_find_supply_from_node().
219          *
220          * __power_supply_find_supply_from_node() will return 0 (no match)
221          * or 1 (match).
222          *
223          * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if
224          * it returned 0, or error as returned by it.
225          */
226         error = class_for_each_device(power_supply_class, NULL, supply_node,
227                                        __power_supply_find_supply_from_node);
228
229         return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
230 }
231
232 static int power_supply_check_supplies(struct power_supply *psy)
233 {
234         struct device_node *np;
235         int cnt = 0;
236
237         /* If there is already a list honor it */
238         if (psy->supplied_from && psy->num_supplies > 0)
239                 return 0;
240
241         /* No device node found, nothing to do */
242         if (!psy->of_node)
243                 return 0;
244
245         do {
246                 int ret;
247
248                 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
249                 if (!np)
250                         break;
251
252                 ret = power_supply_find_supply_from_node(np);
253                 of_node_put(np);
254
255                 if (ret) {
256                         dev_dbg(&psy->dev, "Failed to find supply!\n");
257                         return ret;
258                 }
259         } while (np);
260
261         /* Missing valid "power-supplies" entries */
262         if (cnt == 1)
263                 return 0;
264
265         /* All supplies found, allocate char ** array for filling */
266         psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
267                                           GFP_KERNEL);
268         if (!psy->supplied_from)
269                 return -ENOMEM;
270
271         *psy->supplied_from = devm_kcalloc(&psy->dev,
272                                            cnt - 1, sizeof(**psy->supplied_from),
273                                            GFP_KERNEL);
274         if (!*psy->supplied_from)
275                 return -ENOMEM;
276
277         return power_supply_populate_supplied_from(psy);
278 }
279 #else
280 static int power_supply_check_supplies(struct power_supply *psy)
281 {
282         int nval, ret;
283
284         if (!psy->dev.parent)
285                 return 0;
286
287         nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
288         if (nval <= 0)
289                 return 0;
290
291         psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
292                                                 sizeof(char *), GFP_KERNEL);
293         if (!psy->supplied_from)
294                 return -ENOMEM;
295
296         ret = device_property_read_string_array(psy->dev.parent,
297                 "supplied-from", (const char **)psy->supplied_from, nval);
298         if (ret < 0)
299                 return ret;
300
301         psy->num_supplies = nval;
302
303         return 0;
304 }
305 #endif
306
307 struct psy_am_i_supplied_data {
308         struct power_supply *psy;
309         unsigned int count;
310 };
311
312 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
313 {
314         union power_supply_propval ret = {0,};
315         struct power_supply *epsy = dev_get_drvdata(dev);
316         struct psy_am_i_supplied_data *data = _data;
317
318         if (__power_supply_is_supplied_by(epsy, data->psy)) {
319                 data->count++;
320                 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
321                                         &ret))
322                         return ret.intval;
323         }
324
325         return 0;
326 }
327
328 int power_supply_am_i_supplied(struct power_supply *psy)
329 {
330         struct psy_am_i_supplied_data data = { psy, 0 };
331         int error;
332
333         error = class_for_each_device(power_supply_class, NULL, &data,
334                                       __power_supply_am_i_supplied);
335
336         dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
337
338         if (data.count == 0)
339                 return -ENODEV;
340
341         return error;
342 }
343 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
344
345 static int __power_supply_is_system_supplied(struct device *dev, void *data)
346 {
347         union power_supply_propval ret = {0,};
348         struct power_supply *psy = dev_get_drvdata(dev);
349         unsigned int *count = data;
350
351         if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
352                 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
353                         return 0;
354
355         (*count)++;
356         if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
357                 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
358                                         &ret))
359                         return ret.intval;
360
361         return 0;
362 }
363
364 int power_supply_is_system_supplied(void)
365 {
366         int error;
367         unsigned int count = 0;
368
369         error = class_for_each_device(power_supply_class, NULL, &count,
370                                       __power_supply_is_system_supplied);
371
372         /*
373          * If no system scope power class device was found at all, most probably we
374          * are running on a desktop system, so assume we are on mains power.
375          */
376         if (count == 0)
377                 return 1;
378
379         return error;
380 }
381 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
382
383 struct psy_get_supplier_prop_data {
384         struct power_supply *psy;
385         enum power_supply_property psp;
386         union power_supply_propval *val;
387 };
388
389 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
390 {
391         struct power_supply *epsy = dev_get_drvdata(dev);
392         struct psy_get_supplier_prop_data *data = _data;
393
394         if (__power_supply_is_supplied_by(epsy, data->psy))
395                 if (!power_supply_get_property(epsy, data->psp, data->val))
396                         return 1; /* Success */
397
398         return 0; /* Continue iterating */
399 }
400
401 int power_supply_get_property_from_supplier(struct power_supply *psy,
402                                             enum power_supply_property psp,
403                                             union power_supply_propval *val)
404 {
405         struct psy_get_supplier_prop_data data = {
406                 .psy = psy,
407                 .psp = psp,
408                 .val = val,
409         };
410         int ret;
411
412         /*
413          * This function is not intended for use with a supply with multiple
414          * suppliers, we simply pick the first supply to report the psp.
415          */
416         ret = class_for_each_device(power_supply_class, NULL, &data,
417                                     __power_supply_get_supplier_property);
418         if (ret < 0)
419                 return ret;
420         if (ret == 0)
421                 return -ENODEV;
422
423         return 0;
424 }
425 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
426
427 int power_supply_set_battery_charged(struct power_supply *psy)
428 {
429         if (atomic_read(&psy->use_cnt) >= 0 &&
430                         psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
431                         psy->desc->set_charged) {
432                 psy->desc->set_charged(psy);
433                 return 0;
434         }
435
436         return -EINVAL;
437 }
438 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
439
440 static int power_supply_match_device_by_name(struct device *dev, const void *data)
441 {
442         const char *name = data;
443         struct power_supply *psy = dev_get_drvdata(dev);
444
445         return strcmp(psy->desc->name, name) == 0;
446 }
447
448 /**
449  * power_supply_get_by_name() - Search for a power supply and returns its ref
450  * @name: Power supply name to fetch
451  *
452  * If power supply was found, it increases reference count for the
453  * internal power supply's device. The user should power_supply_put()
454  * after usage.
455  *
456  * Return: On success returns a reference to a power supply with
457  * matching name equals to @name, a NULL otherwise.
458  */
459 struct power_supply *power_supply_get_by_name(const char *name)
460 {
461         struct power_supply *psy = NULL;
462         struct device *dev = class_find_device(power_supply_class, NULL, name,
463                                         power_supply_match_device_by_name);
464
465         if (dev) {
466                 psy = dev_get_drvdata(dev);
467                 atomic_inc(&psy->use_cnt);
468         }
469
470         return psy;
471 }
472 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
473
474 /**
475  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
476  * @psy: Reference to put
477  *
478  * The reference to power supply should be put before unregistering
479  * the power supply.
480  */
481 void power_supply_put(struct power_supply *psy)
482 {
483         might_sleep();
484
485         atomic_dec(&psy->use_cnt);
486         put_device(&psy->dev);
487 }
488 EXPORT_SYMBOL_GPL(power_supply_put);
489
490 #ifdef CONFIG_OF
491 static int power_supply_match_device_node(struct device *dev, const void *data)
492 {
493         return dev->parent && dev->parent->of_node == data;
494 }
495
496 /**
497  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
498  * @np: Pointer to device node holding phandle property
499  * @property: Name of property holding a power supply name
500  *
501  * If power supply was found, it increases reference count for the
502  * internal power supply's device. The user should power_supply_put()
503  * after usage.
504  *
505  * Return: On success returns a reference to a power supply with
506  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
507  */
508 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
509                                                         const char *property)
510 {
511         struct device_node *power_supply_np;
512         struct power_supply *psy = NULL;
513         struct device *dev;
514
515         power_supply_np = of_parse_phandle(np, property, 0);
516         if (!power_supply_np)
517                 return ERR_PTR(-ENODEV);
518
519         dev = class_find_device(power_supply_class, NULL, power_supply_np,
520                                                 power_supply_match_device_node);
521
522         of_node_put(power_supply_np);
523
524         if (dev) {
525                 psy = dev_get_drvdata(dev);
526                 atomic_inc(&psy->use_cnt);
527         }
528
529         return psy;
530 }
531 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
532
533 static void devm_power_supply_put(struct device *dev, void *res)
534 {
535         struct power_supply **psy = res;
536
537         power_supply_put(*psy);
538 }
539
540 /**
541  * devm_power_supply_get_by_phandle() - Resource managed version of
542  *  power_supply_get_by_phandle()
543  * @dev: Pointer to device holding phandle property
544  * @property: Name of property holding a power supply phandle
545  *
546  * Return: On success returns a reference to a power supply with
547  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
548  */
549 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
550                                                       const char *property)
551 {
552         struct power_supply **ptr, *psy;
553
554         if (!dev->of_node)
555                 return ERR_PTR(-ENODEV);
556
557         ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
558         if (!ptr)
559                 return ERR_PTR(-ENOMEM);
560
561         psy = power_supply_get_by_phandle(dev->of_node, property);
562         if (IS_ERR_OR_NULL(psy)) {
563                 devres_free(ptr);
564         } else {
565                 *ptr = psy;
566                 devres_add(dev, ptr);
567         }
568         return psy;
569 }
570 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
571 #endif /* CONFIG_OF */
572
573 int power_supply_get_battery_info(struct power_supply *psy,
574                                   struct power_supply_battery_info **info_out)
575 {
576         struct power_supply_resistance_temp_table *resist_table;
577         struct power_supply_battery_info *info;
578         struct device_node *battery_np = NULL;
579         struct fwnode_reference_args args;
580         struct fwnode_handle *fwnode = NULL;
581         const char *value;
582         int err, len, index;
583         const __be32 *list;
584         u32 min_max[2];
585
586         if (psy->of_node) {
587                 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
588                 if (!battery_np)
589                         return -ENODEV;
590
591                 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
592         } else if (psy->dev.parent) {
593                 err = fwnode_property_get_reference_args(
594                                         dev_fwnode(psy->dev.parent),
595                                         "monitored-battery", NULL, 0, 0, &args);
596                 if (err)
597                         return err;
598
599                 fwnode = args.fwnode;
600         }
601
602         if (!fwnode)
603                 return -ENOENT;
604
605         err = fwnode_property_read_string(fwnode, "compatible", &value);
606         if (err)
607                 goto out_put_node;
608
609
610         /* Try static batteries first */
611         err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
612         if (!err)
613                 goto out_ret_pointer;
614         else if (err == -ENODEV)
615                 /*
616                  * Device does not have a static battery.
617                  * Proceed to look for a simple battery.
618                  */
619                 err = 0;
620
621         if (strcmp("simple-battery", value)) {
622                 err = -ENODEV;
623                 goto out_put_node;
624         }
625
626         info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
627         if (!info) {
628                 err = -ENOMEM;
629                 goto out_put_node;
630         }
631
632         info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
633         info->energy_full_design_uwh         = -EINVAL;
634         info->charge_full_design_uah         = -EINVAL;
635         info->voltage_min_design_uv          = -EINVAL;
636         info->voltage_max_design_uv          = -EINVAL;
637         info->precharge_current_ua           = -EINVAL;
638         info->charge_term_current_ua         = -EINVAL;
639         info->constant_charge_current_max_ua = -EINVAL;
640         info->constant_charge_voltage_max_uv = -EINVAL;
641         info->tricklecharge_current_ua       = -EINVAL;
642         info->precharge_voltage_max_uv       = -EINVAL;
643         info->charge_restart_voltage_uv      = -EINVAL;
644         info->overvoltage_limit_uv           = -EINVAL;
645         info->maintenance_charge             = NULL;
646         info->alert_low_temp_charge_current_ua = -EINVAL;
647         info->alert_low_temp_charge_voltage_uv = -EINVAL;
648         info->alert_high_temp_charge_current_ua = -EINVAL;
649         info->alert_high_temp_charge_voltage_uv = -EINVAL;
650         info->temp_ambient_alert_min         = INT_MIN;
651         info->temp_ambient_alert_max         = INT_MAX;
652         info->temp_alert_min                 = INT_MIN;
653         info->temp_alert_max                 = INT_MAX;
654         info->temp_min                       = INT_MIN;
655         info->temp_max                       = INT_MAX;
656         info->factory_internal_resistance_uohm  = -EINVAL;
657         info->resist_table                   = NULL;
658         info->bti_resistance_ohm             = -EINVAL;
659         info->bti_resistance_tolerance       = -EINVAL;
660
661         for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
662                 info->ocv_table[index]       = NULL;
663                 info->ocv_temp[index]        = -EINVAL;
664                 info->ocv_table_size[index]  = -EINVAL;
665         }
666
667         /* The property and field names below must correspond to elements
668          * in enum power_supply_property. For reasoning, see
669          * Documentation/power/power_supply_class.rst.
670          */
671
672         if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
673                 if (!strcmp("nickel-cadmium", value))
674                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
675                 else if (!strcmp("nickel-metal-hydride", value))
676                         info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
677                 else if (!strcmp("lithium-ion", value))
678                         /* Imprecise lithium-ion type */
679                         info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
680                 else if (!strcmp("lithium-ion-polymer", value))
681                         info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
682                 else if (!strcmp("lithium-ion-iron-phosphate", value))
683                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
684                 else if (!strcmp("lithium-ion-manganese-oxide", value))
685                         info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
686                 else
687                         dev_warn(&psy->dev, "%s unknown battery type\n", value);
688         }
689
690         fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
691                              &info->energy_full_design_uwh);
692         fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
693                              &info->charge_full_design_uah);
694         fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
695                              &info->voltage_min_design_uv);
696         fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
697                              &info->voltage_max_design_uv);
698         fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
699                              &info->tricklecharge_current_ua);
700         fwnode_property_read_u32(fwnode, "precharge-current-microamp",
701                              &info->precharge_current_ua);
702         fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
703                              &info->precharge_voltage_max_uv);
704         fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
705                              &info->charge_term_current_ua);
706         fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
707                              &info->charge_restart_voltage_uv);
708         fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
709                              &info->overvoltage_limit_uv);
710         fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
711                              &info->constant_charge_current_max_ua);
712         fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
713                              &info->constant_charge_voltage_max_uv);
714         fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
715                              &info->factory_internal_resistance_uohm);
716
717         if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
718                                             min_max, ARRAY_SIZE(min_max))) {
719                 info->temp_ambient_alert_min = min_max[0];
720                 info->temp_ambient_alert_max = min_max[1];
721         }
722         if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
723                                             min_max, ARRAY_SIZE(min_max))) {
724                 info->temp_alert_min = min_max[0];
725                 info->temp_alert_max = min_max[1];
726         }
727         if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
728                                             min_max, ARRAY_SIZE(min_max))) {
729                 info->temp_min = min_max[0];
730                 info->temp_max = min_max[1];
731         }
732
733         /*
734          * The below code uses raw of-data parsing to parse
735          * /schemas/types.yaml#/definitions/uint32-matrix
736          * data, so for now this is only support with of.
737          */
738         if (!battery_np)
739                 goto out_ret_pointer;
740
741         len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
742         if (len < 0 && len != -EINVAL) {
743                 err = len;
744                 goto out_put_node;
745         } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
746                 dev_err(&psy->dev, "Too many temperature values\n");
747                 err = -EINVAL;
748                 goto out_put_node;
749         } else if (len > 0) {
750                 of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
751                                            info->ocv_temp, len);
752         }
753
754         for (index = 0; index < len; index++) {
755                 struct power_supply_battery_ocv_table *table;
756                 char *propname;
757                 int i, tab_len, size;
758
759                 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
760                 if (!propname) {
761                         power_supply_put_battery_info(psy, info);
762                         err = -ENOMEM;
763                         goto out_put_node;
764                 }
765                 list = of_get_property(battery_np, propname, &size);
766                 if (!list || !size) {
767                         dev_err(&psy->dev, "failed to get %s\n", propname);
768                         kfree(propname);
769                         power_supply_put_battery_info(psy, info);
770                         err = -EINVAL;
771                         goto out_put_node;
772                 }
773
774                 kfree(propname);
775                 tab_len = size / (2 * sizeof(__be32));
776                 info->ocv_table_size[index] = tab_len;
777
778                 table = info->ocv_table[index] =
779                         devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
780                 if (!info->ocv_table[index]) {
781                         power_supply_put_battery_info(psy, info);
782                         err = -ENOMEM;
783                         goto out_put_node;
784                 }
785
786                 for (i = 0; i < tab_len; i++) {
787                         table[i].ocv = be32_to_cpu(*list);
788                         list++;
789                         table[i].capacity = be32_to_cpu(*list);
790                         list++;
791                 }
792         }
793
794         list = of_get_property(battery_np, "resistance-temp-table", &len);
795         if (!list || !len)
796                 goto out_ret_pointer;
797
798         info->resist_table_size = len / (2 * sizeof(__be32));
799         resist_table = info->resist_table = devm_kcalloc(&psy->dev,
800                                                          info->resist_table_size,
801                                                          sizeof(*resist_table),
802                                                          GFP_KERNEL);
803         if (!info->resist_table) {
804                 power_supply_put_battery_info(psy, info);
805                 err = -ENOMEM;
806                 goto out_put_node;
807         }
808
809         for (index = 0; index < info->resist_table_size; index++) {
810                 resist_table[index].temp = be32_to_cpu(*list++);
811                 resist_table[index].resistance = be32_to_cpu(*list++);
812         }
813
814 out_ret_pointer:
815         /* Finally return the whole thing */
816         *info_out = info;
817
818 out_put_node:
819         fwnode_handle_put(fwnode);
820         of_node_put(battery_np);
821         return err;
822 }
823 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
824
825 void power_supply_put_battery_info(struct power_supply *psy,
826                                    struct power_supply_battery_info *info)
827 {
828         int i;
829
830         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
831                 if (info->ocv_table[i])
832                         devm_kfree(&psy->dev, info->ocv_table[i]);
833         }
834
835         if (info->resist_table)
836                 devm_kfree(&psy->dev, info->resist_table);
837
838         devm_kfree(&psy->dev, info);
839 }
840 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
841
842 const enum power_supply_property power_supply_battery_info_properties[] = {
843         POWER_SUPPLY_PROP_TECHNOLOGY,
844         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
845         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
846         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
847         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
848         POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
849         POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
850         POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
851         POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
852         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
853         POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
854         POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
855         POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
856         POWER_SUPPLY_PROP_TEMP_MIN,
857         POWER_SUPPLY_PROP_TEMP_MAX,
858 };
859 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
860
861 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
863
864 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
865                                         enum power_supply_property psp)
866 {
867         if (!info)
868                 return false;
869
870         switch (psp) {
871                 case POWER_SUPPLY_PROP_TECHNOLOGY:
872                         return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
873                 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
874                         return info->energy_full_design_uwh >= 0;
875                 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
876                         return info->charge_full_design_uah >= 0;
877                 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
878                         return info->voltage_min_design_uv >= 0;
879                 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
880                         return info->voltage_max_design_uv >= 0;
881                 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
882                         return info->precharge_current_ua >= 0;
883                 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
884                         return info->charge_term_current_ua >= 0;
885                 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
886                         return info->constant_charge_current_max_ua >= 0;
887                 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
888                         return info->constant_charge_voltage_max_uv >= 0;
889                 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
890                         return info->temp_ambient_alert_min > INT_MIN;
891                 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
892                         return info->temp_ambient_alert_max < INT_MAX;
893                 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
894                         return info->temp_alert_min > INT_MIN;
895                 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
896                         return info->temp_alert_max < INT_MAX;
897                 case POWER_SUPPLY_PROP_TEMP_MIN:
898                         return info->temp_min > INT_MIN;
899                 case POWER_SUPPLY_PROP_TEMP_MAX:
900                         return info->temp_max < INT_MAX;
901                 default:
902                         return false;
903         }
904 }
905 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
906
907 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
908                                        enum power_supply_property psp,
909                                        union power_supply_propval *val)
910 {
911         if (!info)
912                 return -EINVAL;
913
914         if (!power_supply_battery_info_has_prop(info, psp))
915                 return -EINVAL;
916
917         switch (psp) {
918                 case POWER_SUPPLY_PROP_TECHNOLOGY:
919                         val->intval = info->technology;
920                         return 0;
921                 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
922                         val->intval = info->energy_full_design_uwh;
923                         return 0;
924                 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
925                         val->intval = info->charge_full_design_uah;
926                         return 0;
927                 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
928                         val->intval = info->voltage_min_design_uv;
929                         return 0;
930                 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
931                         val->intval = info->voltage_max_design_uv;
932                         return 0;
933                 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
934                         val->intval = info->precharge_current_ua;
935                         return 0;
936                 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937                         val->intval = info->charge_term_current_ua;
938                         return 0;
939                 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
940                         val->intval = info->constant_charge_current_max_ua;
941                         return 0;
942                 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
943                         val->intval = info->constant_charge_voltage_max_uv;
944                         return 0;
945                 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
946                         val->intval = info->temp_ambient_alert_min;
947                         return 0;
948                 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
949                         val->intval = info->temp_ambient_alert_max;
950                         return 0;
951                 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
952                         val->intval = info->temp_alert_min;
953                         return 0;
954                 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
955                         val->intval = info->temp_alert_max;
956                         return 0;
957                 case POWER_SUPPLY_PROP_TEMP_MIN:
958                         val->intval = info->temp_min;
959                         return 0;
960                 case POWER_SUPPLY_PROP_TEMP_MAX:
961                         val->intval = info->temp_max;
962                         return 0;
963                 default:
964                         return -EINVAL;
965         }
966 }
967 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
968
969 /**
970  * power_supply_temp2resist_simple() - find the battery internal resistance
971  * percent from temperature
972  * @table: Pointer to battery resistance temperature table
973  * @table_len: The table length
974  * @temp: Current temperature
975  *
976  * This helper function is used to look up battery internal resistance percent
977  * according to current temperature value from the resistance temperature table,
978  * and the table must be ordered descending. Then the actual battery internal
979  * resistance = the ideal battery internal resistance * percent / 100.
980  *
981  * Return: the battery internal resistance percent
982  */
983 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
984                                     int table_len, int temp)
985 {
986         int i, high, low;
987
988         for (i = 0; i < table_len; i++)
989                 if (temp > table[i].temp)
990                         break;
991
992         /* The library function will deal with high == low */
993         if (i == 0)
994                 high = low = i;
995         else if (i == table_len)
996                 high = low = i - 1;
997         else
998                 high = (low = i) - 1;
999
1000         return fixp_linear_interpolate(table[low].temp,
1001                                        table[low].resistance,
1002                                        table[high].temp,
1003                                        table[high].resistance,
1004                                        temp);
1005 }
1006 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1007
1008 /**
1009  * power_supply_vbat2ri() - find the battery internal resistance
1010  * from the battery voltage
1011  * @info: The battery information container
1012  * @vbat_uv: The battery voltage in microvolt
1013  * @charging: If we are charging (true) or not (false)
1014  *
1015  * This helper function is used to look up battery internal resistance
1016  * according to current battery voltage. Depending on whether the battery
1017  * is currently charging or not, different resistance will be returned.
1018  *
1019  * Returns the internal resistance in microohm or negative error code.
1020  */
1021 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1022                          int vbat_uv, bool charging)
1023 {
1024         struct power_supply_vbat_ri_table *vbat2ri;
1025         int table_len;
1026         int i, high, low;
1027
1028         /*
1029          * If we are charging, and the battery supplies a separate table
1030          * for this state, we use that in order to compensate for the
1031          * charging voltage. Otherwise we use the main table.
1032          */
1033         if (charging && info->vbat2ri_charging) {
1034                 vbat2ri = info->vbat2ri_charging;
1035                 table_len = info->vbat2ri_charging_size;
1036         } else {
1037                 vbat2ri = info->vbat2ri_discharging;
1038                 table_len = info->vbat2ri_discharging_size;
1039         }
1040
1041         /*
1042          * If no tables are specified, or if we are above the highest voltage in
1043          * the voltage table, just return the factory specified internal resistance.
1044          */
1045         if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1046                 if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1047                         return info->factory_internal_resistance_charging_uohm;
1048                 else
1049                         return info->factory_internal_resistance_uohm;
1050         }
1051
1052         /* Break loop at table_len - 1 because that is the highest index */
1053         for (i = 0; i < table_len - 1; i++)
1054                 if (vbat_uv > vbat2ri[i].vbat_uv)
1055                         break;
1056
1057         /* The library function will deal with high == low */
1058         if ((i == 0) || (i == (table_len - 1)))
1059                 high = i;
1060         else
1061                 high = i - 1;
1062         low = i;
1063
1064         return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1065                                        vbat2ri[low].ri_uohm,
1066                                        vbat2ri[high].vbat_uv,
1067                                        vbat2ri[high].ri_uohm,
1068                                        vbat_uv);
1069 }
1070 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1071
1072 struct power_supply_maintenance_charge_table *
1073 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1074                                               int index)
1075 {
1076         if (index >= info->maintenance_charge_size)
1077                 return NULL;
1078         return &info->maintenance_charge[index];
1079 }
1080 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1081
1082 /**
1083  * power_supply_ocv2cap_simple() - find the battery capacity
1084  * @table: Pointer to battery OCV lookup table
1085  * @table_len: OCV table length
1086  * @ocv: Current OCV value
1087  *
1088  * This helper function is used to look up battery capacity according to
1089  * current OCV value from one OCV table, and the OCV table must be ordered
1090  * descending.
1091  *
1092  * Return: the battery capacity.
1093  */
1094 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1095                                 int table_len, int ocv)
1096 {
1097         int i, high, low;
1098
1099         for (i = 0; i < table_len; i++)
1100                 if (ocv > table[i].ocv)
1101                         break;
1102
1103         /* The library function will deal with high == low */
1104         if (i == 0)
1105                 high = low = i;
1106         else if (i == table_len)
1107                 high = low = i - 1;
1108         else
1109                 high = (low = i) - 1;
1110
1111         return fixp_linear_interpolate(table[low].ocv,
1112                                        table[low].capacity,
1113                                        table[high].ocv,
1114                                        table[high].capacity,
1115                                        ocv);
1116 }
1117 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1118
1119 struct power_supply_battery_ocv_table *
1120 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1121                                 int temp, int *table_len)
1122 {
1123         int best_temp_diff = INT_MAX, temp_diff;
1124         u8 i, best_index = 0;
1125
1126         if (!info->ocv_table[0])
1127                 return NULL;
1128
1129         for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1130                 /* Out of capacity tables */
1131                 if (!info->ocv_table[i])
1132                         break;
1133
1134                 temp_diff = abs(info->ocv_temp[i] - temp);
1135
1136                 if (temp_diff < best_temp_diff) {
1137                         best_temp_diff = temp_diff;
1138                         best_index = i;
1139                 }
1140         }
1141
1142         *table_len = info->ocv_table_size[best_index];
1143         return info->ocv_table[best_index];
1144 }
1145 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1146
1147 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1148                                  int ocv, int temp)
1149 {
1150         struct power_supply_battery_ocv_table *table;
1151         int table_len;
1152
1153         table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1154         if (!table)
1155                 return -EINVAL;
1156
1157         return power_supply_ocv2cap_simple(table, table_len, ocv);
1158 }
1159 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1160
1161 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1162                                        int resistance)
1163 {
1164         int low, high;
1165
1166         /* Nothing like this can be checked */
1167         if (info->bti_resistance_ohm <= 0)
1168                 return false;
1169
1170         /* This will be extremely strict and unlikely to work */
1171         if (info->bti_resistance_tolerance <= 0)
1172                 return (info->bti_resistance_ohm == resistance);
1173
1174         low = info->bti_resistance_ohm -
1175                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1176         high = info->bti_resistance_ohm +
1177                 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1178
1179         return ((resistance >= low) && (resistance <= high));
1180 }
1181 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1182
1183 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1184                              enum power_supply_property psp)
1185 {
1186         bool found = false;
1187         int i;
1188
1189         for (i = 0; i < psy_desc->num_properties; i++) {
1190                 if (psy_desc->properties[i] == psp) {
1191                         found = true;
1192                         break;
1193                 }
1194         }
1195
1196         return found;
1197 }
1198
1199 int power_supply_get_property(struct power_supply *psy,
1200                             enum power_supply_property psp,
1201                             union power_supply_propval *val)
1202 {
1203         if (atomic_read(&psy->use_cnt) <= 0) {
1204                 if (!psy->initialized)
1205                         return -EAGAIN;
1206                 return -ENODEV;
1207         }
1208
1209         if (psy_has_property(psy->desc, psp))
1210                 return psy->desc->get_property(psy, psp, val);
1211         else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1212                 return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1213         else
1214                 return -EINVAL;
1215 }
1216 EXPORT_SYMBOL_GPL(power_supply_get_property);
1217
1218 int power_supply_set_property(struct power_supply *psy,
1219                             enum power_supply_property psp,
1220                             const union power_supply_propval *val)
1221 {
1222         if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1223                 return -ENODEV;
1224
1225         return psy->desc->set_property(psy, psp, val);
1226 }
1227 EXPORT_SYMBOL_GPL(power_supply_set_property);
1228
1229 int power_supply_property_is_writeable(struct power_supply *psy,
1230                                         enum power_supply_property psp)
1231 {
1232         if (atomic_read(&psy->use_cnt) <= 0 ||
1233                         !psy->desc->property_is_writeable)
1234                 return -ENODEV;
1235
1236         return psy->desc->property_is_writeable(psy, psp);
1237 }
1238 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1239
1240 void power_supply_external_power_changed(struct power_supply *psy)
1241 {
1242         if (atomic_read(&psy->use_cnt) <= 0 ||
1243                         !psy->desc->external_power_changed)
1244                 return;
1245
1246         psy->desc->external_power_changed(psy);
1247 }
1248 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1249
1250 int power_supply_powers(struct power_supply *psy, struct device *dev)
1251 {
1252         return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1253 }
1254 EXPORT_SYMBOL_GPL(power_supply_powers);
1255
1256 static void power_supply_dev_release(struct device *dev)
1257 {
1258         struct power_supply *psy = to_power_supply(dev);
1259         dev_dbg(dev, "%s\n", __func__);
1260         kfree(psy);
1261 }
1262
1263 int power_supply_reg_notifier(struct notifier_block *nb)
1264 {
1265         return atomic_notifier_chain_register(&power_supply_notifier, nb);
1266 }
1267 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1268
1269 void power_supply_unreg_notifier(struct notifier_block *nb)
1270 {
1271         atomic_notifier_chain_unregister(&power_supply_notifier, nb);
1272 }
1273 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1274
1275 #ifdef CONFIG_THERMAL
1276 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1277                 int *temp)
1278 {
1279         struct power_supply *psy;
1280         union power_supply_propval val;
1281         int ret;
1282
1283         WARN_ON(tzd == NULL);
1284         psy = thermal_zone_device_priv(tzd);
1285         ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1286         if (ret)
1287                 return ret;
1288
1289         /* Convert tenths of degree Celsius to milli degree Celsius. */
1290         *temp = val.intval * 100;
1291
1292         return ret;
1293 }
1294
1295 static struct thermal_zone_device_ops psy_tzd_ops = {
1296         .get_temp = power_supply_read_temp,
1297 };
1298
1299 static int psy_register_thermal(struct power_supply *psy)
1300 {
1301         int ret;
1302
1303         if (psy->desc->no_thermal)
1304                 return 0;
1305
1306         /* Register battery zone device psy reports temperature */
1307         if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1308                 /* Prefer our hwmon device and avoid duplicates */
1309                 struct thermal_zone_params tzp = {
1310                         .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1311                 };
1312                 psy->tzd = thermal_zone_device_register(psy->desc->name,
1313                                 0, 0, psy, &psy_tzd_ops, &tzp, 0, 0);
1314                 if (IS_ERR(psy->tzd))
1315                         return PTR_ERR(psy->tzd);
1316                 ret = thermal_zone_device_enable(psy->tzd);
1317                 if (ret)
1318                         thermal_zone_device_unregister(psy->tzd);
1319                 return ret;
1320         }
1321
1322         return 0;
1323 }
1324
1325 static void psy_unregister_thermal(struct power_supply *psy)
1326 {
1327         if (IS_ERR_OR_NULL(psy->tzd))
1328                 return;
1329         thermal_zone_device_unregister(psy->tzd);
1330 }
1331
1332 #else
1333 static int psy_register_thermal(struct power_supply *psy)
1334 {
1335         return 0;
1336 }
1337
1338 static void psy_unregister_thermal(struct power_supply *psy)
1339 {
1340 }
1341 #endif
1342
1343 static struct power_supply *__must_check
1344 __power_supply_register(struct device *parent,
1345                                    const struct power_supply_desc *desc,
1346                                    const struct power_supply_config *cfg,
1347                                    bool ws)
1348 {
1349         struct device *dev;
1350         struct power_supply *psy;
1351         int rc;
1352
1353         if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1354                 return ERR_PTR(-EINVAL);
1355
1356         if (!parent)
1357                 pr_warn("%s: Expected proper parent device for '%s'\n",
1358                         __func__, desc->name);
1359
1360         if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1361             (!desc->usb_types || !desc->num_usb_types))
1362                 return ERR_PTR(-EINVAL);
1363
1364         psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1365         if (!psy)
1366                 return ERR_PTR(-ENOMEM);
1367
1368         dev = &psy->dev;
1369
1370         device_initialize(dev);
1371
1372         dev->class = power_supply_class;
1373         dev->type = &power_supply_dev_type;
1374         dev->parent = parent;
1375         dev->release = power_supply_dev_release;
1376         dev_set_drvdata(dev, psy);
1377         psy->desc = desc;
1378         if (cfg) {
1379                 dev->groups = cfg->attr_grp;
1380                 psy->drv_data = cfg->drv_data;
1381                 psy->of_node =
1382                         cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1383                 psy->supplied_to = cfg->supplied_to;
1384                 psy->num_supplicants = cfg->num_supplicants;
1385         }
1386
1387         rc = dev_set_name(dev, "%s", desc->name);
1388         if (rc)
1389                 goto dev_set_name_failed;
1390
1391         INIT_WORK(&psy->changed_work, power_supply_changed_work);
1392         INIT_DELAYED_WORK(&psy->deferred_register_work,
1393                           power_supply_deferred_register_work);
1394
1395         rc = power_supply_check_supplies(psy);
1396         if (rc) {
1397                 dev_dbg(dev, "Not all required supplies found, defer probe\n");
1398                 goto check_supplies_failed;
1399         }
1400
1401         /*
1402          * Expose constant battery info, if it is available. While there are
1403          * some chargers accessing constant battery data, we only want to
1404          * expose battery data to userspace for battery devices.
1405          */
1406         if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1407                 rc = power_supply_get_battery_info(psy, &psy->battery_info);
1408                 if (rc && rc != -ENODEV && rc != -ENOENT)
1409                         goto check_supplies_failed;
1410         }
1411
1412         spin_lock_init(&psy->changed_lock);
1413         rc = device_add(dev);
1414         if (rc)
1415                 goto device_add_failed;
1416
1417         rc = device_init_wakeup(dev, ws);
1418         if (rc)
1419                 goto wakeup_init_failed;
1420
1421         rc = psy_register_thermal(psy);
1422         if (rc)
1423                 goto register_thermal_failed;
1424
1425         rc = power_supply_create_triggers(psy);
1426         if (rc)
1427                 goto create_triggers_failed;
1428
1429         rc = power_supply_add_hwmon_sysfs(psy);
1430         if (rc)
1431                 goto add_hwmon_sysfs_failed;
1432
1433         /*
1434          * Update use_cnt after any uevents (most notably from device_add()).
1435          * We are here still during driver's probe but
1436          * the power_supply_uevent() calls back driver's get_property
1437          * method so:
1438          * 1. Driver did not assigned the returned struct power_supply,
1439          * 2. Driver could not finish initialization (anything in its probe
1440          *    after calling power_supply_register()).
1441          */
1442         atomic_inc(&psy->use_cnt);
1443         psy->initialized = true;
1444
1445         queue_delayed_work(system_power_efficient_wq,
1446                            &psy->deferred_register_work,
1447                            POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1448
1449         return psy;
1450
1451 add_hwmon_sysfs_failed:
1452         power_supply_remove_triggers(psy);
1453 create_triggers_failed:
1454         psy_unregister_thermal(psy);
1455 register_thermal_failed:
1456 wakeup_init_failed:
1457         device_del(dev);
1458 device_add_failed:
1459 check_supplies_failed:
1460 dev_set_name_failed:
1461         put_device(dev);
1462         return ERR_PTR(rc);
1463 }
1464
1465 /**
1466  * power_supply_register() - Register new power supply
1467  * @parent:     Device to be a parent of power supply's device, usually
1468  *              the device which probe function calls this
1469  * @desc:       Description of power supply, must be valid through whole
1470  *              lifetime of this power supply
1471  * @cfg:        Run-time specific configuration accessed during registering,
1472  *              may be NULL
1473  *
1474  * Return: A pointer to newly allocated power_supply on success
1475  * or ERR_PTR otherwise.
1476  * Use power_supply_unregister() on returned power_supply pointer to release
1477  * resources.
1478  */
1479 struct power_supply *__must_check power_supply_register(struct device *parent,
1480                 const struct power_supply_desc *desc,
1481                 const struct power_supply_config *cfg)
1482 {
1483         return __power_supply_register(parent, desc, cfg, true);
1484 }
1485 EXPORT_SYMBOL_GPL(power_supply_register);
1486
1487 /**
1488  * power_supply_register_no_ws() - Register new non-waking-source power supply
1489  * @parent:     Device to be a parent of power supply's device, usually
1490  *              the device which probe function calls this
1491  * @desc:       Description of power supply, must be valid through whole
1492  *              lifetime of this power supply
1493  * @cfg:        Run-time specific configuration accessed during registering,
1494  *              may be NULL
1495  *
1496  * Return: A pointer to newly allocated power_supply on success
1497  * or ERR_PTR otherwise.
1498  * Use power_supply_unregister() on returned power_supply pointer to release
1499  * resources.
1500  */
1501 struct power_supply *__must_check
1502 power_supply_register_no_ws(struct device *parent,
1503                 const struct power_supply_desc *desc,
1504                 const struct power_supply_config *cfg)
1505 {
1506         return __power_supply_register(parent, desc, cfg, false);
1507 }
1508 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1509
1510 static void devm_power_supply_release(struct device *dev, void *res)
1511 {
1512         struct power_supply **psy = res;
1513
1514         power_supply_unregister(*psy);
1515 }
1516
1517 /**
1518  * devm_power_supply_register() - Register managed power supply
1519  * @parent:     Device to be a parent of power supply's device, usually
1520  *              the device which probe function calls this
1521  * @desc:       Description of power supply, must be valid through whole
1522  *              lifetime of this power supply
1523  * @cfg:        Run-time specific configuration accessed during registering,
1524  *              may be NULL
1525  *
1526  * Return: A pointer to newly allocated power_supply on success
1527  * or ERR_PTR otherwise.
1528  * The returned power_supply pointer will be automatically unregistered
1529  * on driver detach.
1530  */
1531 struct power_supply *__must_check
1532 devm_power_supply_register(struct device *parent,
1533                 const struct power_supply_desc *desc,
1534                 const struct power_supply_config *cfg)
1535 {
1536         struct power_supply **ptr, *psy;
1537
1538         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1539
1540         if (!ptr)
1541                 return ERR_PTR(-ENOMEM);
1542         psy = __power_supply_register(parent, desc, cfg, true);
1543         if (IS_ERR(psy)) {
1544                 devres_free(ptr);
1545         } else {
1546                 *ptr = psy;
1547                 devres_add(parent, ptr);
1548         }
1549         return psy;
1550 }
1551 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1552
1553 /**
1554  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1555  * @parent:     Device to be a parent of power supply's device, usually
1556  *              the device which probe function calls this
1557  * @desc:       Description of power supply, must be valid through whole
1558  *              lifetime of this power supply
1559  * @cfg:        Run-time specific configuration accessed during registering,
1560  *              may be NULL
1561  *
1562  * Return: A pointer to newly allocated power_supply on success
1563  * or ERR_PTR otherwise.
1564  * The returned power_supply pointer will be automatically unregistered
1565  * on driver detach.
1566  */
1567 struct power_supply *__must_check
1568 devm_power_supply_register_no_ws(struct device *parent,
1569                 const struct power_supply_desc *desc,
1570                 const struct power_supply_config *cfg)
1571 {
1572         struct power_supply **ptr, *psy;
1573
1574         ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1575
1576         if (!ptr)
1577                 return ERR_PTR(-ENOMEM);
1578         psy = __power_supply_register(parent, desc, cfg, false);
1579         if (IS_ERR(psy)) {
1580                 devres_free(ptr);
1581         } else {
1582                 *ptr = psy;
1583                 devres_add(parent, ptr);
1584         }
1585         return psy;
1586 }
1587 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1588
1589 /**
1590  * power_supply_unregister() - Remove this power supply from system
1591  * @psy:        Pointer to power supply to unregister
1592  *
1593  * Remove this power supply from the system. The resources of power supply
1594  * will be freed here or on last power_supply_put() call.
1595  */
1596 void power_supply_unregister(struct power_supply *psy)
1597 {
1598         WARN_ON(atomic_dec_return(&psy->use_cnt));
1599         psy->removing = true;
1600         cancel_work_sync(&psy->changed_work);
1601         cancel_delayed_work_sync(&psy->deferred_register_work);
1602         sysfs_remove_link(&psy->dev.kobj, "powers");
1603         power_supply_remove_hwmon_sysfs(psy);
1604         power_supply_remove_triggers(psy);
1605         psy_unregister_thermal(psy);
1606         device_init_wakeup(&psy->dev, false);
1607         device_unregister(&psy->dev);
1608 }
1609 EXPORT_SYMBOL_GPL(power_supply_unregister);
1610
1611 void *power_supply_get_drvdata(struct power_supply *psy)
1612 {
1613         return psy->drv_data;
1614 }
1615 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1616
1617 static int __init power_supply_class_init(void)
1618 {
1619         power_supply_class = class_create("power_supply");
1620
1621         if (IS_ERR(power_supply_class))
1622                 return PTR_ERR(power_supply_class);
1623
1624         power_supply_class->dev_uevent = power_supply_uevent;
1625         power_supply_init_attrs(&power_supply_dev_type);
1626
1627         return 0;
1628 }
1629
1630 static void __exit power_supply_class_exit(void)
1631 {
1632         class_destroy(power_supply_class);
1633 }
1634
1635 subsys_initcall(power_supply_class_init);
1636 module_exit(power_supply_class_exit);
1637
1638 MODULE_DESCRIPTION("Universal power supply monitor class");
1639 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, "
1640               "Szabolcs Gyurko, "
1641               "Anton Vorontsov <cbou@mail.ru>");